
Approximately Optimal Risk-averse Routing Policies via Adaptive Discretization

Darrell Hoy
Electrical Engineering and Computer Science

Northwestern University
darrell.hoy@u.northwestern.edu

Evdokia Nikolova
Electrical and Computer Engineering

University of Texas at Austin
nikolova@austin.utexas.edu

Abstract

Mitigating risk in decision-making has been a long-
standing problem. Due to the mathematical challenge
of its nonlinear nature, especially in adaptive decision-
making problems, finding optimal policies is typically
intractable. With a focus on efficient algorithms, we ask
how well we can approximate the optimal policies for
the difficult case of general utility models of risk.
Little is known about efficient algorithms beyond the
very special cases of linear (risk-neutral) and exponen-
tial utilities since general utilities are not separable and
preclude the use of traditional dynamic programming
techniques. In this paper, we consider general utility
functions and investigate efficient computation of ap-
proximately optimal routing policies, where the goal is
to maximize the expected utility of arriving at a des-
tination around a given deadline. We present an adap-
tive discretization variant of successive approximation
which gives an ε-optimal policy in polynomial time.
The main insight is to perform discretization at the util-
ity level space, which results in a nonuniform discretiza-
tion of the domain, and applies for any monotone utility
function.

Introduction
A central question in decision making under uncertainty is
how to mitigate risk. Under the expected utility framework
this means to find the decision (or a sequence of decisions)
that maximizes the expected utility of the decision, for some
nonlinear utility function that represents the agent’s risk-
averse preferences.

In adaptive or sequential decision-making, due to the large
space of possible decisions, it is especially challenging to
compute an optimal policy—that is, an optimal sequence of
actions, efficiently. In the prevalent framework of Markov
Decision Processes (MDPs), efficient algorithms are known
for the special cases of linear utility (that corresponds to a
risk-neutral agent) and exponential utility, which was used
to define risk-sensitive MDPs (Howard and Matheson 1972).
The latter allows for efficient computation since the expo-
nential utility function of a sum of rewards separates into a
product of terms, specifying a utility for each action.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Little is known about efficient computation of the optimal
policy for utility functions beyond linear and exponential,
and we provide examples suggesting that computing the op-
timal policy in such situations is likely intractable. With the
goal of retaining efficient computation, we focus on finding
an approximately optimal policy and, in particular, on the
question how well can we approximate routing decisions in
polynomial time?

Our main result is that the optimal routing policy can be
approximated arbitrarily well, in polynomial time, under ar-
bitrary monotone utility functions. At the core of our al-
gorithm, we present a general-purpose technique based on
adaptive discretization that works for any monotone utility
function. The main insight is to perform discretization at
the utility level space, which results in a nonuniform dis-
cretization of the domain (cost or travel time). We use this
technique to generate ε-approximate routing policies in time
polynomial in the input size and 1

ε .
In contrast to much of the literature, our approximation is

to the optimal continuous-time policy, not the optimal policy
to the time-discretized problem. This is essential in nonlin-
ear utility models since standard constant-step discretization
of time incurs approximation errors that may become sig-
nificant when the utility function is a step function (e.g., the
probability of arriving on time) or a steep function with a
large gradient.

While we discuss agents who have non-linear utilities
over arrival times, our model applies equally well when
agents have a non-linear utility over the expenditure of a dif-
ferent resource, for instance money or fuel.

Related Work
Risk-sensitive Markov Decision Processes (MDPs) (Howard
and Matheson 1972) have seen a recent boom in risk
models expanding from the exponential utility function
model to other nonlinear and general utilities (Bäuerle
and Rieder 2014; Ruszczyński 2010; Wu and Lin 1999;
Ermon et al. 2011; 2012; Liu and Koenig 2005; 2006; 2008;
Dean et al. 1993; Xu and Mannor 2011; Osogami 2011;
Le Tallec 2007). Recognizing the challenge of nonlinear
cumulative reward functions, most recent work focuses on
characterizing properties of such MDPs or providing heuris-
tics. Little remains known about efficient computation of ap-
proximately optimal policies. Ruszczyński (2010) observes

that we cannot expect a Markov optimal policy if our atti-
tude to risk depends on the whole past. In a mean-variance
risk model, Mannor and Tsitsiklis (2011) show hardness re-
sults in settings where standard MDPs for expected reward
maximizers are polynomial-time solvable.

Most closely related to our approach, Li and Littman
(2005) perform a discretization adaptively by holding off on
the discretization of each step until necessary, however they
do not prove any polynomial convergence, and leave open
the exact discretization involved in each utility step.

Rigorous and efficient approximation of optimal policies
has remained open when restricted to routing policies, as
well. Fan and Nie (2006) consider the 0-1 utility function
(referred to as the stochastic on time arrival—SOTA prob-
lem), and show that using successive approximation, conver-
gence to the optimal solution will happen in acyclic graphs.
Nie and Fan (2006) consider a discretization via uniform
time-steps approach and give an algorithm which converges
in pseudo-polynomial time to the optimal policy under the
given discretization scheme. Samaranayake, Blandin, and
Bayen (2011) noted that in settings where edge lengths are
lower-bounded by a constant, the convergence can happen
much faster; they also discuss using a Fast Fourier Trans-
form (FFT) and ‘zero-delay convolutions’ in a subsequent
paper (Samaranayake, Blandin, and Bayen 2012) to speed
up the convolution at each step. Nie et al. (2012) recently
considered an adaptive discretization approach for the 0-1
utility function.

The stochastic Canadian Traveler Problem (CTP) seeks
routing policies for minimizing the expected travel time
when the edge travel times come from given distribu-
tions and are observed upon reaching one endpoint of the
edge (Papadimitriou and Yannakakis 1991), as opposed to at
the end of traversing an edge in our setting. The CTP is #P-
hard and optimal policies have been computed efficiently for
directed acyclic graphs and undirected graphs consisting of
disjoint paths or trees (Nikolova and Karger 2008), and com-
plexity results have been given for other CTP variants (Fried
et al. 2013).

Problem statement and preliminaries
Given a directed graph G = (V,E), an agent wishes to
route from source node s to destination node d. The non-
negative cost of each edge e is drawn independently from a
continuous cumulative distribution function (c.d.f.) Fe, and
the agent does not see the edge cost until traversing the edge.
In the case of a graph with cycles, traversing an edge mul-
tiple times yields different, independently drawn costs for
each time the edge is traversed. The agent’s utility upon ar-
riving at the destination d at time t is given by the utility
function u(t).

The agent is allowed to change her route at any node. As
such, instead of looking for the optimal path, we are inter-
ested in the optimal routing strategy. We call a routing policy
P (v, t) a function that gives the desired neighbor to travel to
from node v upon arrival at time t.

This is a generalization of the stochastic on time arrival
problem (Fan and Nie 2006; Samaranayake, Blandin, and
Bayen 2012), in which travelers aim to find a policy that

maximizes the chance that they arrive at their destination
within a certain travel budget. Our generalization allows the
use of arbitrary monotone utility functions when arriving at
the destination, rather than the hard deadline of the earlier
work that corresponds to a 0-1 utility function.

Notation
When speaking about a deadline, it is more intuitive to refer
to edge travel times or delays. When we do, time and delay
will be equivalent to the notion of edge cost here, as will be
clear from the context.

A routing policy P (v, t) maps a vertex-time pair (v, t) to a
neighboring vertex w (namely, a vertex w such that there ex-
ists an edge e = (v, w)). A routing policy generation prob-
lem is a tuple (G, (s, d), u) where s, d ∈ V , and u(t) denotes
the expected utility of arriving at d at time t. We assume u
to be a monotone non-increasing function, namely arriving
early is always weakly better than arriving later.

Let U∗P (v, t) be the expected utility of following policy P
at vertex v and time t; hence U∗P (d, t) = u(t). We will often
use UP (v, t) to denote an estimate of the expected utility
from following P at vertex v, time t.

Denote by P ∗ the optimal such routing policy. The Bell-
man equation tells us that this policy satisfies

U∗P∗(d, t) = u(t), (1)

U∗P∗(v, t) = max
e=(v,w)

∫ T

t

fe(z − t)U∗P∗(w, z)dz, (2)

where z represents the total travel time from the source to
node u and T is an upper bound on the travel time (for exam-
ple, defined as the value of T for which the utility function
becomes zero: U(d, T) = 0).

Examples
We consider a few examples of the behavior of optimal poli-
cies to develop intuition about their properties and chal-
lenges. We first show that the optimal policy can be arbi-
trarily better than the optimal path, even when the path can
be recalculated along the way.

We then show that the optimal policy can take exponen-
tial space in the size of the graph, which implies that a
polynomial-time exact algorithm for calculating the optimal
policy is unlikely. Both examples assume a 0-1 step utility
function at a deadline, namely, the expected utility is to max-
imize the probability of arriving before the deadline.
Example 1. The optimal policy can be arbitrarily better
than the optimal path.

Consider routing across the network shown in Figure 1,
from s to d with a deadline of 6—that is, u(t) = 1 if t ≤ 6
and 0 otherwise. Each top edge has cost 2i half the time,
and is free the rest of the time. If an edge is ever free, then
the policy can route the agent directly to d to arrive exactly
on time—hence ensuring arrival 7/8 of the time. Choosing
a fixed path ends up with arriving on time only 1/2 of the
time. Taking the number of vertices to be larger and tak-
ing the probability of a free edge to be smaller, these arrival
probabilities can be made to approach 1 and 0 respectively.

s 1 2 3

d

{
1 p. 1/2

0 p. 1/2

{
2 p. 1/2

0 p. 1/2

{
4 p. 1/2

0 p. 1/2

6 5 3

Figure 1: With a deadline of D = 6, the optimal policy arrives
on time 7/8 of the time while any fixed path manages 4/8. As
the number of vertices increase, and the probability of a free edge
decreases, this gap can approach 1.

s 1 2 d

4

{
2 p. 1/2

5 p. 1/2

8

{
4 p. 1/2

10 p. 1/2

16

{
8 p. 1/2

20 p. 1/2

Figure 2: The optimal policy for routing from s to dwith a deadline
ofD can take exponential space. From any vertex, there will be one
interval in the policy table for each possible path to the destination
vertex d.

One way of dealing with uncertainty in practice is to allow
the agent to recalculate their path at every node. However, by
only calculating the best path a agent is not accounting for
the possibility of changing her plan. Thus, with only light
changes to the example we can prevent the agent from being
able to take advantage of her adaptability.
Example 2. The optimal policy can be arbitrarily better
than the strategy of following and recalculating the optimal
path at every node in the graph.

Consider adding an s-d edge to the graph in Figure 1 that
takes time 6 with probability 1/2 + ε and time 7 otherwise.
Then the s-d edge is the best path to take and there are no
intermediate nodes to take advantage of the freedom to re-
calculate the path.
Example 3. The optimal policy can take space exponential
in the size of the graph.

Consider the graph shown in Figure 2, with a deadline of
D. At vertex 2, the optimal policy is simple—take the safe
high edge if t + 16 ≤ D, otherwise take the riskier bottom
edge. From vertex 1, the optimal policy requires 4 entries,
each alternating between the high and low edges, and the
optimal policy from s requires 8 entries:

P ∗(s, t) =

H for t ≤ D − 28,
L for D − 28 < t ≤ D − 26,
H for D − 26 < t ≤ D − 24,
...
L for D − 16 < t ≤ D − 14.

The same process continues when increasing the number
of vertices; thus the number of entries in the optimal policy
can grow exponentially with the size of the graph.

Discretization
In this section, we discuss approaches to discretization for
approximately solving the dynamic programming problem
at each state. For each node v, we consider the subproblem
of finding its next-hop neighbor at a given time t and an esti-
mate of the utility from traversing the edge to that neighbor,
for given estimates of utilities UP (w, t) for each neighbor-
ing node w ∈ Nv .

Solving the given routing problem relies on being able to
quickly calculate a convolution of the edge length distribu-
tion with the expected utility of arriving at the end of the
edge at the given time.

An adaptive discretization scheme is considered in (Nie
et al. 2012), in which the process is split into two opera-
tions: first, splitting the region into many uniform intervals,
and second, consolidating nearby intervals that do not have
enough individual probability mass.

We present a more general and efficient adaptive dis-
cretization scheme that enables an improvement in the cal-
culation of precise error bounds.

Discretization with step-functions
Consider the case of an edge e = (v, w), with a constant
time computable c.d.f. Fe(t), and an expected utility of ar-
riving at w of Uw(t) over the interval [0, T]. Then, the utility

of taking edge e from v at time t is ∫Tt fe(z − t)Uw(z)dz.
The best such utility then, given the neighborhood Nv of v,
is maxw∈Nv ∫

T
t fe(z − t)Uw(z)dz.

In the general case, this integral is challenging to compute
and even more so to solve the problem optimally. However,
in the special case when Uw(z) is a step function with k
steps, the integral can be easily computed in O(k) time as
follows: Write the step-function Ud(z) as

Ud(z) =

a1, s0 ≤ z < s1
a2, s1 ≤ z < s2
. . .

ak, sk−1 ≤ z < sk,

for some constants a1, ..., ak, s0, ..., sk. Then, our convolu-
tion becomes:∫ T
t
fe(z − t)Ud(z)dz =

∑k

i=1

∫ si

si−1

fe(z − t)Uw(z)dz

=
∑k

i=1

∫ si

si−1

fe(z − t)aidz

=
∑k

i=1
ai(Fe(si − t)− Fe(si−1 − t)).

The last quantity is easy to compute quickly in our prob-
lem. With n neighbors, each having a utility function that is
a step function with O(k) steps, the running time for com-
puting the best edge to take at time t is O(kn).

Alternative Discretization Techniques
We now give more details about our adaptive discretization
and contrast it with other natural discretization approaches
into constant time and constant utility intervals.

Constant time intervals The most natural and common
approach is to discretize in constant units of time. For exam-
ple, for each edge, for the desired level of accuracy ε, cal-
culate this value for every desired discretization point iε for
i from 0 to T/ε. This is the discretization approach used by
Nie and Fan (2006) and Samaranayake, Blandin, and Bayen
(2011). However, we desire an approximation not in terms
of time, but in terms of expected utility. In scenarios where
small changes in time may result in large changes in ex-
pected utility, this approach may well result in a very in-
efficient use of space/time.

Constant utility intervals Ideally, we should do a dis-
cretization in expected utility space: in this way, we could
choose the right places for the step function so that the quan-
tity ai − ai−1 is a constant. Given a desired step size of δ,
this would need only a maximum of 1/δ steps. However,
fully inverting the convolution will rarely be feasible and we
need to consider approximation schemes instead.

Adaptive discretization We discretize time in a way
that results in constant utility intervals by binary search-
ing for effective discretization points. Specifically, we
begin with a time interval [0, T], and desire to gener-
ate a step function represented by the following pairs
[(s0, a0), (s1, a1), . . . (sT , aT)] such that ∀i, ai − ai−1 < δ.
To do this, we add discretization points in the middle of in-
tervals that are further away from each other than δ. We split
the interval in two by adding a discretization point right in
the middle and repeat until all intervals are closer than δ to
one another.

1. Calculate a0 = U(0), aT = U(T) and create a list of the
time-utility pairs [(s0, a0), (sT , aT)].

2. While there is an adjacent set of pairs in the list
(si+1, ai+1) and (si, ai) such that ai+1 − ai > δ:

(a) Add ((si+1 + si)/2, U((si+1 + si)/2)) to the list.

To minimize the number of points used, we merge adja-
cent intervals if together they do not account for a utility
difference of more than δ. The optimal utility discretization
needs a discretization point every time the utility changes by
δ and we need at most two points for each increase by δ.
Thus, we achieve a 2-approximation to the minimum num-
ber of points needed.

Algorithm
We consider the case that G is a directed acyclic graph
(DAG). For real-world applications of interest, such as driv-
ing between a given source and destination in a road net-
work, the relevant subgraph is close to a DAG. Our approach
extends to more general graphs with the caveat that more as-
sumptions must be made to ensure convergence within poly-
nomial time. One such assumption is that all edges share a
lower bound on edge delay.

Policy Generation
We take a standard policy iteration approach to solving the
generic problem, making use of the above-mentioned adap-
tive discretization technique.

For each vertex, we keep track of the optimal policy as a
set of intervals. Associated with each interval is the neigh-
bor to travel to and the expected utility of traveling to the
neighbor at the end of the interval.

Algorithm 1 BESTNEIGHBOR (v, t) — Calculate best
neighbor from vertex v at time t

for each adjacent edge e = (v, w) do
ue ←

∑
(a,b) UP (w, b) · (Fe(b− t)− Fe(a− t))

end for
e∗ ← argmaxe(ue)
return (e∗, ue∗)

Algorithm 2 ADAPTIVEDISC (v, (a, b)) — Adaptively dis-
cretize vertex v for times in interval (a, b).

if UP (v, a)− UP (v, b) ≤ δ then
return [(a, UP (v, a)), (b, UP (v, b))]

else
x← (a+ b)/2
(P (v, x), UP (v, x))← BESTNEIGHBOR(v, x)
return ADAPTIVEDISC(v, (a, x)) +

ADAPTIVEDISC(v, (x, b))
end if

Algorithm 3 UPDATEDAGPOLICY (G)

Sort vertices in reverse topological order from d
for each vertex v do

UP (v, 0)← BESTNEIGHBOR(v, 0)
UP (v, T)← BESTNEIGHBOR(v, T)
ADAPTIVEDISC(v, (0, T))
Remove excess discretization points

end for
return (P,UP)

Error Bounds
In this section, we prove tight bounds on the approximation
error of our algorithm. Let L(v) be the number of edges in
the longest path from v to d.
Lemma 1. Consider a policy P (v, t) with estimated utility
UP (v, t) from Algorithm 3. Then, for all vertices v, UP (v, t)
is an underestimate of the actual expected utility from fol-
lowing P and is within δL(v) of the actual expected utility.
Specifically,

U∗P (v, t)− δL(v) ≤ UP (v, t) ≤ U∗P (v, t). (3)

Proof. We use induction on the number of edges in the
longest path from a vertex to the destination d. For d, the
policy is initially the optimal policy, and so U∗P (d, t) =
UP (d, t).

Now, assume true for all vertices w such that L(w) < `.
Consider a vertex v s.t. L(v) = `. As our graph is a DAG,

for every w ∈ Nv , L(w) < `. Thus, by assumption, for any
such w,U∗P (w, t)− δL(w) ≤ UP (w, t) ≤ U∗P (w, t).

We now consider the amount of error that is added in
by the discretization explicitly at node v. This loss comes
directly from the discretization and the possibility that the
agent following the policy arrives at a vertex just after a dis-
cretization step and waits until the next time discretization
step to move. The actual utility from leaving on arrival could
differ from the waiting utility by as much as δ. At every real-
ization of delay upon the edge, the agent could gain as much
as δ extra utility.

Let UP denote the optimal local choice at v, given the
already computed policies of neighbors:

UP (v, t) = maxw∈Nv

∫ T
t
fe(z − t)UP (w, z)dz.

From our induction hypothesis, using UP exactly here satis-
fies:

U∗P (w, t)− δ(L(w)− 1) ≤ UP (w, t) ≤ U∗P (w, t),

by taking the expectation over the neighbors. We lose one
more δ due to discretization, hence

UP (v, t)− δ ≤ UP (v, t) ≤ UP (v, t).

Combining together gives U∗P (w, t)−δL(w) ≤ UP (w, t) ≤
U∗P (w, t).

Now, we consider how much utility P can lose relative to
the optimal policy. This reduces to the following question: If
P (v, t) = e, how much better could traveling to a different
outgoing edge e′ be?
Lemma 2. Consider a policy P (v, t) and estimated utility
UP (v, t) from Algorithm 3. Then, for every vertex v and time
t,UP is within δL(v) of the utility from following the optimal
policy U∗P∗ . In particular,

U∗P∗(v, t)− δL(v) ≤ UP (v, t). (4)

Proof. We will prove the lemma via induction on the num-
ber of edges in the longest path from a vertex to d.

Let UP,e(v, t) denote the utility from explicitly taking
edge e = (v, w) at t and following P otherwise. Hence,
U∗P∗(v, t) = maxe=(v,w) U

∗
P∗,e(v, t).

Now, assume that Equation (4) holds for all vertices w
such that L(w) < `. Consider a vertex v such that L(v) = `.

By the Bellman Equation, we have:

U∗P∗(v, t) = maxe=(v,w)

∫ T
t
fe(z − t)U∗P∗(w, z)dz.

By our induction hypothesis, UP (w, z) + δL(w) ≥
U∗P∗(w, z) for all neighboring vertices u, hence

U∗P∗(v, t) ≤ max
e=(v,w)

∫ T

t

fe(z − t)(UP (w, z) + δL(w))dz

≤ max
e=(v,w)

∫ T

t

fe(z − t)UP (w, z)dz + δ(L(w))

≤ max
e=(v,w)

∫ T

t

fe(z − t)UP (w, z)dz + δ(L(v)− 1).

The second inequality follows by separating the δ(L(w))
term from the general integral and integrating over the den-
sity. The last follows as our graph is a DAG.

Via discretization, we lose another δ, but we know:

UP (v, t) ≥ max
e=(v,w)

∫ T

t

fe(z − t)UP (w, z)dz − δ.

Combining gives:

UP (v, t) + δ ≥ max
e=(v,w)

∫ T

t

fe(z − t)UP (w, z)dz

≥ U∗P∗(v, t)− δ(L(v)− 1) (5)

Thus, U∗P∗(v, t)− δL(v) ≤ UP (v, t).

Running time
Lemma 3. For graphs with uniformly continuous edge delay
distributions, Algorithm 3 runs in time O(|E|/δ2 + |G|).

Proof. BESTNEIGHBOR runs in O(1/δ) time for each edge
and time assuming Fe runs in constant time and is called
O(1/δ) times, under the assumption Fe is uniformly contin-
uous. Thus, BESTNEIGHBOR accounts for O(|E|/δ2) time.
Analyzing the graph adds an extra |G|, yielding a running
time of O(|E|/δ2 + |G|).

Theorem 4. There is an additive polynomial-time approx-
imation scheme (PTAS) for the optimal policy generation
problem over DAGs.

Proof. By Lemma 2, after running Algorithm 3, the policy
has UP (s, 0) ≥ U∗P∗(s, 0) − δL(s). Hence, for a given de-
sired error bound ε, running UPDATEDAGPOLICY with δ =
ε/L(s) gives additive error ε in time O(|E|L(s)2/ε2+ |G|),
where L(s) ≤ |V | is the number of edges on the longest
path from s to the destination.

Experiments
We tested Algorithm 3 on m × n grid graphs, routing from
the (0, 0) vertex to (m − 1, n − 1) vertex. We compare
adaptive discretization to uniform time based discretiza-
tion, where time discretization is done with L(s)/ε steps to
achieve a policy of about the same size as the adaptive pol-
icy.

The distribution on each edge is an independent gamma-
distribution with lower support of 10, mean drawn uniformly
between 25 and 35 and shape parameter drawn uniformly
between 1 and 100. A 0-1 utility is used with a deadline
of 30 · ((m − 1) + (n − 1)), ensuring a reasonable chance
of arriving on time. 5 different graphs are tested for each
configuration. Errors given are the standard deviation over
these 5 graphs. Expected utilities are calculated by follow-
ing the policy for 50000 realizations of delays on the graph.
The implementation is in Python and single-threaded, and
execution times are on an Intel Xeon E5-2630 2.3GHz pro-
cessor.

Convergence Figure 3 details how the expected utility
from the adaptive and uniform policies change as the desired

5 10 15 20 25 30 35
0.5

0.6

0.7

0.8

Desired accuracy (1/ε)

U
til

ity

Adaptive
Adaptive Guarantee

Uniform

Figure 3: Utility of policies on a 10 × 10 grid graph with varying
desired accuracy.

accuracy increases. The adaptive guarantee refers to the ex-
pected utility that is guaranteed by the algorithm. Note that
the actual expected utility is much higher, reflecting the pes-
simism inherent in the analysis for the guarantee. Even the
guarantee however converges much faster than the perfor-
mance of uniform discretization.

Runtime Figure 4 details the effect of increasing de-
sired accuracy on runtimes. The adaptive algorithm is slower
for a given 1/ε, but it appears to be a constant factor. Con-
trolling for achieved accuracy diminishes these. The results
reflect that the runtime is quadratic in 1/ε, as proven in
Lemma 3. Figure 5 shows the effect of increasing the size
of a graph on policy generation time, supporting the poly-
nomial bound from Lemma 3. The graphs tested are grid
graphs with fixed width 10, and fixed error bound ε = 1/8.

Extensions
In this section, we list possible improvements that would
make our algorithm more practical.

Keeping track of errors. The calculations of error
bounds assume that at every node all options are feasible,
and that the potential optimal policy may involve travers-
ing the longest path to the destination. This is more gen-
eral than necessary and keeping track of more information
at each point would improve the final error estimates.

Adaptively discretizing vertices. Vertices will contribute
differently to the error relative to the optimal policy based on
how likely it is they are reached. We can use this to discretize
the policy more precisely at important vertices relative to
unimportant vertices.

Pruning unusable edges. When keeping track of errors
precisely, we can explicitly rule out utilizing some paths, if
the optimal upper bound on using the edge is worse than
the underestimate of policy utility from a given vertex v. In
addition, there may be edges which are first-order stochasti-
cally dominated (FOSD) by other paths that can be removed.
For instance, staying on a highway will dominate getting off
of the highway and taking local roads.

Working from large to small δ. From our above men-
tioned techniques, it is very feasible to significantly reduce
the necessary graph to consider after running the algorithm.
One approach then is to start with a large δ, and continue to
alternate pruning the graph and halving δ until the desired

5 10 15 20 25 30 35
0

200

400

600

Desired accuracy (1/ε)

Ti
m

e
(s

)

Adaptive
Uniform

Figure 4: Policy generation time with varying desired accuracy on
10× 10 graphs.

accuracy is reached. This algorithm still runs in polynomial
time, but may be much more practical in a real-world imple-
mentation.

Conclusion
We have presented a new adaptive discretization scheme to
approximate risk-averse routing policies efficiently and arbi-
trarily well. Our risk-averse model is very general, allowing
for arbitrary monotone decreasing utility functions (reflect-
ing that earlier arrival is weakly preferred to later arrival).
The challenges with arbitrary nonlinear functions are that
(1) the expected utility corresponding to a given route is dif-
ficult to evaluate and (2) such functions are in general non-
additive over edges so that traditional dynamic programming
approaches fail. Our policy approximation scheme is based
on adaptive nonuniform discretization of time guided by the
utility function and our experiments confirm that the algo-
rithm implementation runs in time polynomial in the size
of the graph, as we also show theoretically. Our algorithmic
technique may extend to more general risk-averse MDP for-
mulations and other stochastic problems where a risk-averse
solution is needed.

Acknowledgements. This work was supported in part
by NSF CCF grants 1350823,1216103,1331863 and by a
Google Faculty Research Award.

50 100 150 200
0

50

100

150

200

Graph size (vertices)

Ti
m

e
(s

)

Adaptive
Uniform

Figure 5: Policy generation time by number of vertices in graph for
ε = 1/8.

References
Bäuerle, N., and Rieder, U. 2014. More risk-sensitive
markov decision processes. Mathematics of Operations Re-
search 39(1):105–120.
Dean, T.; Kaelbling, L. P.; Kirman, J.; and Nicholson, A.
1993. Planning with deadlines in stochastic domains. In In
Proceedings of the Eleventh National Conference on Artifi-
cial Intelligence, 574–579.
Ermon, S.; Conrad, J.; Gomes, C. P.; and Selman, B. 2011.
Risk-sensitive policies for sustainable renewable resource
allocation. In Walsh, T., ed., IJCAI, 1942–1948. IJ-
CAI/AAAI.
Ermon, S.; Gomes, C. P.; Selman, B.; and Vladimirsky, A.
2012. Probabilistic planning with non-linear utility func-
tions and worst-case guarantees. In van der Hoek, W.;
Padgham, L.; Conitzer, V.; and Winikoff, M., eds., AAMAS,
965–972. IFAAMAS.
Fan, Y., and Nie, Y. 2006. Optimal Routing for Maximiz-
ing the Travel Time Reliability. Networks and Spatial Eco-
nomics 6(3-4):333–344.
Fried, D.; Shimony, S. E.; Benbassat, A.; and Wenner, C.
2013. Complexity of Canadian traveler problem variants.
Theor. Comput. Sci. 487:1–16.
Howard, R. A., and Matheson, J. E. 1972. Risk-
sensitive markov decision processes. Management Science
18(7):356–369.
Le Tallec, Y. 2007. Robust, Risk-Sensitive, and Data-driven
Control of Markov Decision Processes. Ph.D. Dissertation,
MIT.
Li, L., and Littman, M. L. 2005. Lazy approximation for
solving continuous finite-horizon mdps. In Veloso, M. M.,
and Kambhampati, S., eds., AAAI, 1175–1180. AAAI Press
/ The MIT Press.
Liu, Y., and Koenig, S. 2005. Risk-sensitive planning
with one-switch utility functions: Value iteration. In Veloso,
M. M., and Kambhampati, S., eds., AAAI, 993–999. AAAI
Press / The MIT Press.
Liu, Y., and Koenig, S. 2006. Functional value iteration for
decision-theoretic planning with general utility functions. In
AAAI, 1186–1193. AAAI Press.
Liu, Y., and Koenig, S. 2008. An exact algorithm for solv-
ing mdps under risk-sensitive planning objectives with one-
switch utility functions. In Padgham, L.; Parkes, D. C.;
Mller, J. P.; and Parsons, S., eds., AAMAS (1), 453–460.
IFAAMAS.
Mannor, S., and Tsitsiklis, J. N. 2011. Mean-variance opti-
mization in markov decision processes. In ICML.
Nie, Y., and Fan, Y. 2006. Arriving-on-time problem: dis-
crete algorithm that ensures convergence. Transportation
Research Record 1964(1):193–200.
Nie, Y. M.; Wu, X.; Dillenburg, J. F.; and Nelson, P. C. 2012.
Reliable route guidance: A case study from Chicago. Trans-
portation Research Part A: Policy and Practice 46(2):403–
419.

Nikolova, E., and Karger, D. 2008. Route planning un-
der uncertainty: The Canadian Traveller problem. In Pro-
ceedings of the Twenty-Third Conference on Artificial Intel-
ligence (AAAI).
Osogami, T. 2011. Iterated risk measures for risk-sensitive
markov decision processes with discounted cost. In UAI
2011.
Papadimitriou, C., and Yannakakis, M. 1991. Shortest paths
without a map. Theoretical Computer Science 84:127–150.
Ruszczyński, A. 2010. Risk-averse dynamic programming
for markov decision processes. Math. Program. 125(2):235–
261.
Samaranayake, S.; Blandin, S.; and Bayen, a. 2011. A
tractable class of algorithms for reliable routing in stochas-
tic networks. Procedia - Social and Behavioral Sciences
17:341–363.
Samaranayake, S.; Blandin, S.; and Bayen, A. 2012.
Speedup techniques for the stochastic on-time arrival prob-
lem. In ATMOS, 1–12.
Wu, C., and Lin, Y. 1999. Minimizing risk models in
markov decision processes with policies depending on target
values. Journal of Mathematical Analysis and Applications
231(1):47 – 67.
Xu, H., and Mannor, S. 2011. Probabilistic goal markov de-
cision processes. In International Joint Conference on Arti-
ficial Intelligence, volume 3, 2046–2052.

