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Abstract. We consider a stochastic routing model in which the goal
is to find the optimal route that incorporates a measure of risk. The
problem arises in traffic engineering, transportation and even more ab-
stract settings such as task planning (where the time to execute tasks is
uncertain), etc. The stochasticity is specified in terms of arbitrary edge
length distributions with given mean and variance values in a graph.
The objective function is a positive linear combination of the mean and
standard deviation of the route. Both the nonconvex objective and ex-
ponentially sized feasible set of available routes present a challenging op-
timization problem for which no efficient algorithms are known. In this
paper we evaluate the practical performance of algorithms and heuristic
approaches which show very promising results in terms of both running
time and solution accuracy.

1 Introduction

Consider the problem one faces every day to go to work: Find the best route
between two points in a complex network of exponentially many routes, filled
with uncertainty. In the absence of uncertainty, there are known polynomial-
time algorithms, as well as numerous metaheuristics developed to yield very fast
and practical running times for shortest path computations. However, the case
of uncertainty still leaves unresolved theoretical problems and calls for practical
metaheuristic methods. Note that with uncertainty it is not even clear how to
define the optimal route: is it the route that minimizes the expected travel time?
Or its variance, or some other metric?

In this paper we consider the natural definition of an optimal route to mini-
mize a convex combination of mean and standard deviation. As it turns out, the
solution approaches for finding the optimal route under this metric also yield
solutions to the related problem of arriving ontime (in which the optimal path
maximizes the probability that the route travel time does not exceed a given
deadline). The stochasticity is defined in terms of given mean and variance val-
ues for each edge in the network, under arbitrary distributions.

With this definition of an optimal route, traditional methods of solving short-
est path problems fail (the problem no longer has the property that a subpath of



an optimal path is optimal and thus one cannot use dynamic programming tech-
niques to solve it). The structure of the problem allows us to reduce the number
of local optima so that we do not need to examine all exponentially many routes.
However in the worst case, the local optima are still superpolynomially many.

In the current paper we evaluate the performance of several algorithms and
heuristic approaches. First, for a class of grid graphs, we provide experimental re-
sults that the number of local optima is sublinear and thus examining all of them
can be done efficiently and yield the exact optimum. Second, for the purpose of
practical implementation, it is preferable to examine only a small (constant or
logarithmic) number of local optima. To this end, we examine heuristics that
pick a small subset of the local optima, and provide bounds and experimental
evaluation on the quality of the resulting solution.

2 Problem statement and preliminaries

We are given a graph G with n nodes and m edges and are interested in finding
a route between a specified source node S and a destination node T'. The edge
lengths in the graph are stochastic and come from arbitrary independent! distri-
butions with given mean p; and variance 7; (which can be different for different
edges 7). Our goal is to find the optimal route that incorporates a measure of risk.
As such we define the optimal route via a natural family of objectives, namely
to minimize a convex combination of the route’s mean and standard deviation:

minimize aZui +(1—-a) Zﬂ' (1)
i€P i€P

such that P is an S7T-path.

The summations above are over the edges i in a given ST-route and the min-
imization is over all valid ST-routes P. The parameter o € [0, 1] specifies the
objective function (convex combination) of choice.

It will be helpful to consider a continuous formulation of the above discrete
problem, by denoting an ST-route by its corresponding incidence vector x =
(1, ..., Ty ) where x; = 1 if edge i is present in the route and x; = 0 otherwise.
Denote also the vector of means of all edges by p = (i1, ..., ttm) and the vector
of variances by 7 = (71, ..., 7m ). The set of all feasible routes is represented by
{01}-vectors x € R™, which are a subset of the vertices of the unit hypercube
in m dimensions. The convexr hull of these feasible vectors is called the path
polytope. Thus, the continuous formulation of the routing problem is:

minimize ap’x + (1 —a)V7Tx (2)

such that x € path polytope.

! The results here generalize to dependent distributions, however we focus this presen-
tation on the independent case for clarify and brevity of the mathematical exposition.



This objective function is concave for all values of the parameter « € [0, 1],
so it attains its minimum at an extreme point? of the feasible set [2]. This is
a key property of the objective which establishes that the optimal solution of
the continuous problem (which is a superset of the original feasible set) will be
a valid path and thus will coincide with the optimal solution of the discrete
problem. We emphasize this important observation in the following proposition.

Proposition 1. The optimal solution of the continuous formulation (2) is the
same as the optimal solution of the discrete problem (1).

Furthermore the objective function is monotone increasing in the route mean
and variance, thus its optimum also minimizes some convex combination of the
mean and variance (as opposed to the mean and standard deviation!).

Proposition 2. The optimal solution of the nonconvex problem (2) minimizes
the linear objective fuTx + (1 — B)1Tx for some 3 € [0,1].

This second observation is critical for yielding a subexponential exact algo-
rithm for the stochastic routing problem. The exact algorithm enumerates the
candidate set of extreme points or paths (which is a small subset of all extreme
points) in time linear in the number of such paths, which is at most nOUogn) jn
the worst case.

In this paper, we seek to reduce this superpolynomial complexity.

Related Work. Our work is most closely related to the work of Nikolova et al.
[10] who propose and analyze the worst-case running time of the exact algorithm

. . . . .. . . tprx
for a related objective (in the above notation, to maximize the objective e

which arises in maximizing one’s probability of arriving ontime, that is arriving
within a specified time frame ¢, under normally distributed edge lengths).

Our problem is also related to the parametric shortest path problem [3],
in which the edge lengths, instead of being stochastic, are deterministic linear
functions of a variable A and the question is to enumerate all shortest paths over
all values of the variable A € [0, 00).

The literature on stochastic route planning and traffic engineering is vast,
though most commonly, the different models minimize the expected route cost
or length (e.g., [12,11,8]. As such, the work in this domain is typically based on
stochastic routing formulations of very different nature and solutions. A sample
of work that is closest to the problem we consider is [9,7,5,1]. In particular,
Loui [7] considers monotone increasing cost functions, however, the algorithms
proposed have exponential worst-case running time. On the other hand, Fan
et al. [5] provide heuristics for different model of adaptive routing, of unknown
approximation guarantee. Nikolova et al. [9] prove hardness results for a broad
class of objective functions and provide pseudopolynomial algorithms. Lim et al.
[6] provide empirical results showing that the independence assumption of edge
distributions does not affect the accuracy of the answer by too much.

2 An extreme point of a set C is a point that cannot be represented as a convex
combination of two other points in the set C.



path variance

P,

path mean
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3 Performance of exact algorithm

The exact algorithm for solving the problem can be thought of as a seach algo-
rithm on the values of the parameter 8 from Proposition 2. For a given 3 and a
path P with incidence vector x, the linear objective SuTx + (1 — 3)77x can be
separated as a sum of edge weights ) . p(Bp; + (1 — §)7;) (note, the variance
of the path P equals the sum of variances of the edges along the path, by the
independence of the edge length distributions). Thus, finding the ST-route that
minimizes the linear objective can be done with any deterministic shortest path
algorithm such as Dijkstra, Bellman-Ford, etc. [4] with respect to edge weights
(Bui + (1 - B)m).

Both the exact and heuristic algorithms we consider will consist of a num-
ber of calls to a deterministic shortest path algorithm of the user’s choice, for
appropriately chosen values 3: this makes our approach very flexible since differ-
ent implementations of shortest paths algorithms are more efficient for different
types of networks and one can thus take advantage of the most efficient im-
plementations available. We thus characterize the running time performance in
terms of the number of such calls or iterations to an underlying shortest path
algorithm.

The exact stochastic routing algorithm first sets 3 = 1 and 3 = 0 and solves
the resulting deterministic shortest paths problems (namely it finds the route
with smallest mean and the route with smallest variance). Denote the mean and
variance of the resulting routes P, and P by (mq, s1) and (ma, s2) respectively.
We next set 0 so that the slope of the linear objective is the same as the slope
of the line connecting the points P; and P, (see Figure 1). Denote the resulting
path, if any, by P;. We continue similarly to find a path between P; and Pj
and between P; and Ps, etc, until no further paths are found. If there are k
extreme points (paths) minimizing some positive linear objective of the mean
and variance, then this algorithm finds all of them with 2k applications of a
deterministic shortest path algorithm.
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Fig. 2. Number of local optima (extreme point paths) in grids of size 10x 10 to 250x 250,
with edge mean length p. < Uniform[0,1] and variance 7. < Uniform|0, .

In the worst case the number of extreme points k can be n'*1°8” [10]—that
is superpolynomial (albeit subexponential) and too large to yield an efficient
algorithm. However, in most networks and mean-variance values of interest, this
number seems to be much lower, thus implying that the exact algorithm may
have a good performance in practice.

We thus investigate the performance of the algorithm in a class of networks
that are the standard first test set for indicating performance on realistic traffic
networks. We consider grid networks of size ranging from 10 x 10 (100 nodes)
to 250 x 250 (62,500 nodes) in additive increments of 10 x 10. For each network
size type 10z x 10z (where z = 1, ...,25), we run 100 instances of the stochastic
routing problem. In a single instance, we generate the mean values uniformly
at random from [0,1], and the variance values uniformly at random from the
interval [0, mean] for a corresponding edge with an already generated mean
value. (By scaling all edge means if necessary, we can assume without loss of
generality that the maximum mean has value 1.) Out of these 100 simulations
per network size, we record the minimum and the maximum number of extreme
points and plot them against the square root of the network size (i.e., the square
root of the number of nodes in the network). The resulting plots are shown in
Figure 2.

To put these empirical results in context: The maximum number of extreme
points on a network with 10,000 nodes found from the simulations, is k = 45
(meaning the exact algorithm consisted of only 2k = 90 iterations of a determin-
istic shortest path algorithm to find the optimal stochastic route) as opposed to
the predicted worst case value of 10,000 710810000 ~ 10571 Similarly, the high-
est number of extreme points found in graphs of 40,000 and 62,500 nodes is
k = 75 and k = 92 respectively as opposed to the theoretical worst-case val-
ues of 40,0001110840,000 ~ 1075 apd 62, 5001110862,500 ~ 1031 In other words,
despite the pessimistic theoretical worst-case bound of the exact stochastic rout-
ing algorithm, it has a good performance in practice that is orders of magnitude
smaller.
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Fig. 3. Number of local optima in grids with n nodes vs n®* (left) and n®5 (right).

In Figure 2, we have fitted the maximum number of extreme points to a linear
function of y/n: the extreme points for a graph with n nodes are always strictly
less than /n and asymptotically less than 0.44/n. To ensure that /n is the right
function to bound the asymptotics, we have also plotted the number of extreme
points with respect to n%* and n%%, in Figure 3. The latter two plots confirm
that the rate of growth of extreme points is faster than 6(n%*) and slower than
0(n0-6).

On the basis of these empirical results, we conclude that a strict upper bound
on the number of iterations of the exact algorithm for any grid graph with n
nodes is \/n. We leave as an intriguing open problem to give a theoretical proof
of this performance bound.

4 High-performance heuristics

In this section we present a heuristic for finding the optimal stochastic route,
which dramatically reduces the running time of the exact algorithm above. In-
stead of enumerating all extreme points, we select a very small subset of them,
leading to high practical performance of the algorithm.

Remarkably, the big reduction of extreme points does not lead to a big sac-
rifice in the quality of the resulting solution. Our experiments show that even
on the large networks of 40,000 nodes, the heuristic examines only 3 to 6 ex-
treme point paths (compare to the experimental 75 and the theoretical worst
bound of 40,000!*10840:000 ~ 1075 points of the exact algorithm above), and in
all our simulations the value of the solution is within a multiplicative factor of
0.0001 = 0.01% of the optimum.

The heuristic again utilizes Proposition 2, but instead of searching all pos-
sible parameter values  that yield a different extreme point (path), it tests an
appropriate geometric progression of values and selects the best of the resulting
small set of paths.

We illustrate the details of the heuristic through Figure 4(left). This figure
plots all extreme point-paths for a 10, 000-node network (with mean and variance
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Fig. 4. (left) Plot of all extreme point paths of a 10, 000-node network. The optimal
path is marked with a circle and labelled ‘OPT’. The heuristic algorithm minimizes a
small number of linear functions as shown, each yielding one extreme point. It then
outputs the extreme point (path) with smallest objective function value. (right) Num-
ber of iterations in the heuristic vs the exact algorithm, in 10x10 up to 200x200 grid
networks. Recall that the number of iterations to find all extreme points in the exact
algorithm is two times the number of extreme points, where each iteration is a call to
a deterministic shortest path algorithm of the user’s choice.

values of its edges generated as explained in the previous section). Each point
in the figure corresponds to one path in the network with mean equal to the
z-coordinate of the point, and variance equal to the y-coordinate of the point.
In this mean-variance plot, the optimum happens to be a path with mean 49.83
and variance 21.77 (marked by a circle in the figure). By Proposition 2 and as
depicted on the figure, the optimal path minimizes the linear objective Su”x +
(1 — B)7Tx (this corresponds to a line with slope b = —%) for some range of
parameter values 8 or equivalently for some range of slopes.

If we could guess the optimal slope, then we would find the optimal route
with a single iteration of a deterministic shortest path algorithm with respect to
edge weights Bu; + (1 — 8)7;. Instead, we test a geometric progression of slopes
with a multiplicative step a. The smaller the step a, the more linear objectives
we end up testing, which increases the accuracy but also increases the running
time of the algorithm.

In our simulations, we experiment with different multiplicative steps. It turns
out that using a multiplicative step of 1.01 results in very high accuracy of
99.99%, and also very few extreme point tests and iterations (up to 6 for all
graphs with 2,500 to 40,000 nodes).

We compare the running time of the heuristic with that of the exact algorithm
in Figure 4(right). This plot gives the highest number of deterministic shortest
path iterations that each algorithm has run over 100 simulations per network size.
Recall again that the exact algorithm needs to run two times as many iterations
as the total number of extreme points. The plot shows that the high performance
and accuracy of the heuristic makes it a very practical and promising approach
for the stochastic routing problem.



5 Conclusion

We investigated the practical performance of exact and heuristic algorithms for
the stochastic routing problem in which the goal is to find the route minimizing a
positive linear combination of the route mean and standard deviation. The latter
is nonconvex integer optimization problem, for which no efficient algorithms
are known. Our experimental results showed that the exact algorithm which is
based on enumerating all paths that are potential local optima (extreme points
of the feasible set), has surprisingly good running time performance O(v/n)R
on networks of practical interest compared to its predicted theoretical worst-
case performance n©1°¢(") R where R is the running time of any deterministic
shortest path algorithm of the user’s choice. We also showed that a heuristic
that appropriately selects a small subset of the potentially optimal paths, has
very high performance, using a small constant number of deterministic shortest
path iterations and returning a solution that has a 99.99% accuracy. Heuristics
of this type are thus a very promising practical approach.
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