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Abstract

We present new complexity results and efficient algorithms
for optimal route planning in the presence of uncertainty. We
employ a decision theoretic framework for defining the op-
timal route: for a given source S and destination T in the
graph, we seek an ST -path of lowest expected cost where
the edge travel times are random variables and the cost is
a nonlinear function of total travel time. Although this is
a natural model for route-planning on real-world road net-
works, results are sparse due to the analytic difficulty of find-
ing closed form expressions for the expected cost (Fan, Kal-
aba & Moore), as well as the computational/combinatorial
difficulty of efficiently finding an optimal path which mini-
mizes the expected cost. We identify a family of appropri-
ate cost models and travel time distributions that are closed
under convolution and physically valid. We obtain hardness
results for routing problems with a given start time and cost
functions with a global minimum, in a variety of determin-
istic and stochastic settings. In general the global cost is not
separable into edge costs, precluding classic shortest-path ap-
proaches. However, using partial minimization techniques,
we exhibit an efficient solution via dynamic programming
with low polynomial complexity.

Keywords: route planning under uncertainty, non-linear ob-
jective, stochastic shortest path, complexity, algorithms.

Introduction
In this paper, we present new complexity results and effi-
cient algorithms for path planning under uncertainty. The
motivation for the problem comes from route planning in
road networks. Current navigation systems use information
about road lengths and speed limits to compute determinis-
tic shortest or fastest paths. When realized (driven), these
paths often turn out to be quite suboptimal, for the simple
reason that the deterministic solution ignores the inherent
stochasticity of traffic as well as changing traffic conditions.
The statistics of traffic flows are now estimable in real time
from road sensor networks, thus we ask how effectively and
efficiently such information can be exploited.

The static stochastic route planning problem asks for op-
timal routes on a graph where travel times on the edges
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are random variables with fixed distributions. In this set-
ting, one must optimize an objective that makes some trade-
off between the speediness (expected travel time) and re-
liability (variance) of a route. Optimizing one or the other,
though quite tractable, makes little sense. For example, find-
ing the route with the lowest expected travel time has little
value because a driver can only sample a single realization
of that drive in current traffic conditions; with variance un-
optimized, that realization could be quite far from the mean.
Optimizing a linear combination of the mean and variance is
another possibility, though it seems ad-hoc and not clearly
motivated, interestingly it turns out to be a special case of
our formulation.

Decision theory, the standard framework for making op-
timal plans and policies under uncertainty, expresses the
trade-off between speediness and reliability through a utility
or cost function C : R → R+. In our setting C(t) assesses
a reward or penalty for arriving at time t relative to a dead-
line. For example, a linear C(t) minimizes expected travel
time; quadratic C(t) minimizes variance; the minimizer of
their weighted sum takes a surprising form related to the cu-
mulant generating function of the travel time distributions
(see last Section), however it cannot tell us when to set out.

We will consider a variety of stochastic route planning
problems, with an emphasis on cost functions that value
timeliness without time-wasting. E.g. “What is the optimal
start time and route for a given deadline?” and “Now that I
am on the road, what is the optimal route for that deadline?”
Surprisingly, for some cost functions of interest, the former
question is tractable while the latter is NP-hard.

This highlights the dependence of stochastic solutions on
time. For example, imagine that we have a choice of two
routes and only care to arrive at the destination before a
given deadline. Maximizing the probability of doing so im-
plies that C(t) is a step function. If we set out close to the
deadline, a slower and highly variable route will actually
be preferable to a faster and highly reliable route, because
the less predictable route offers a greater chance of arriving
on time (see Figure 1). Note that this function is monotone
increasing and as such cannot be used to plan an optimal de-
parture time: it would imply that the best time to set out is
the dawn of time.
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Figure 1: The optimal route from S to T depends on the
start time. Route one is on average faster (µ1 < µ2) and
more reliable (σ1 < σ2), but if one starts less than 3 minutes
before the deadline, route two offers a higher (albeit small)
probability of avoiding lateness.

Related Work

Traditionally, the work on path planning in stochastic net-
works has focused on the notion of shortest paths in expecta-
tion (Papadimitriou & Yannakakis 1991), (Bertsekas & Tsit-
siklis 1991). Some models have added costs on the edges in
addition to travel times where the costs depend on the re-
alized travel times and in this way can capture a measure
of uncertainty (Chabini 2002), (Miller-Hooks & Mahmas-
sani 2000). However there has been little work on decision-
theoretic models which directly incorporate uncertainty and
output an optimal path on the basis of a comprehensive mea-
sure of user utility and all available distributional informa-
tion of the stochastic edge weights.

In particular, two lines of work most closely resemble
our setting. The first (Loui 1983) considers a similar de-
cision theoretic framework for optimal paths under uncer-
tainty, however the author only studies monotone increas-
ing costs. These are arguably easier since they admit ex-
act efficient solutions for a number of special cases, includ-
ing linear and exponential objectives (Loui 1983), as well
as arbitrary costs with identically distributed edge weights
(Nikolova 2005). Mirchandani and Soroush (1985) extend
Loui’s work to a quadratic cost function of the travel time,
however their algorithm is essentially an exhaustive search
over all potentially optimal paths, and thus exponential in
the worst case.

The second line of work (Fan, Kalaba & Moore) considers
a special monotone increasing cost (the probability of arriv-
ing late) and suggests that the Gamma distribution is natural
for modelling stochastic edge travel times.

There are also two related problems, one easier and one
harder. First, Markov decision theory most naturally leads to
the construction of on-line policies, thus the stochastic route
planning problem has been considered mainly in the context
of adaptive algorithms that compute the optimal next edge
in light of travel times already realized en route to the cur-
rent node (Fan, Kalaba & Moore), (Gao & Chabini 2002),
(Boyan & Mitzenmacher 2001). Some of the results pre-
sented below can be adapted to compute these policies in
closed form. Second, approximations for expected short-
est paths in stochastic networks with nonstationary (time-
varying) distributions have also been proposed, e.g., (Miller-
Hooks & Mahmassani 2000), (Fu & Rilett 1998), (Gao &
Chabini 2002), (Hall 1986). However most of the approx-
imations are based on heuristics with unknown approxima-
tion ratios. This is not surprising in light of a recent result
that the problem with time-varying distributions is in general
#P-hard (Nikolova 2005).

Our results
We give a variety of hardness results and algorithms for a
natural decision-theoretic framework for route planning un-
der uncertainty. A major obstacle for studying this frame-
work has been the difficulty of finding closed-form expres-
sions for the expected cost function, as well as the non-
separability of the cost function into the edges, precluding
standard dynamic programming techniques.

We identify a family of appropriate cost models for
drivers and uncertainty models for road networks. In a de-
parture from the stochastic path-planning literature, these
are continuous and closed under convolution, so that the ex-
pected cost of any one path can be computed analytically.
We survey a range of stochastic route-planning problems,
finding that some can be converted into classic determinis-
tic shortest-path. We prove hardness of approximability for
simple paths (which do not contain loops) and NP-hardness
for general paths for a very broad class of cost functions and
fixed start times. Our hardness results extend in particular
to stochastic (e.g., Gamma-distributed) travel times. This is
not generally implied by the hardness proofs for determinis-
tic travel times since there are known instances of problems
which are NP-hard in a deterministic setting, yet become
polynomially solvable in a stochastic setting (Bruno et al.
1981).

We consider a richer decision-theoretic framework than
(Loui 1983), by defining the objective both as a function of
the path and the departure time at the source. This allows
us to distinguish between two problems, finding the optimal
path for a fixed departure time, as well as planning an opti-
mal departure time. We show that for some cost functions
the latter problem (which optimizes over two variables, path
and departure time) reduces to deterministic shortest path
while the former (optimizing only over path) is NP-hard.
Focusing on the NP-hard instances, we exhibit pseudopoly-
nomial algorithms which have low polynomial complexity
in the size of the graph and the largest mean travel time of
an edge. The average travel times are almost certainly poly-
nomially bounded in real world roadway networks. With
this, our algorithm offers the first practical solution, which



is much more efficient than the previous exponential algo-
rithms based on exhaustive search.

In the last section, we show that our model admits as
a special case a standard objective in mean-risk analysis,
which aims to optimize a linear combination of the mean
and variance of the random variables.

Problem Statement & Preliminaries
Let G = {V, E} be a directed graph with a source node S
and destination node T . Assume that the time to traverse an
edge e ∈ E in the graph follows a distribution with prob-
ability density function fe(.) and the travel times on differ-
ent edges are independent. Suppose a driver needs to reach
the destination by a given deadline, denoted as time 0. The
penalty for arriving at time t is denoted by C(t); t is positive
for late arrivals and negative for early arrivals.

Let e be the last edge on a path to the destination. Then the
expected cost EC(t) of starting to traverse this edge at time t
is given by the convolution EC(t) =

∫ ∞

0
fe(y)C(t + y)dy.

By independence of the edge travel times, the expected cost
of traversing a path P = {e1, · · · , er} departing at time t is

ECP (t) =

∫ ∞

0

...

∫ ∞

0

[

fe1
(y1)...fer

(yr)

C(t + y1 + ... + yr)
]

dy1...dyr. (1)
We now distinguish two different problems:

1. Find the optimal path P and optimal start time t:
min
P,t

ECP (t). (2)

2. Find the optimal path for a given start time.

           
time

E
C
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)
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path2
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Figure 2: Each path has an associated expected penalty func-
tion EC(t) which takes as argument the start time t. If we
depart at the time marked by the vertical arrow, path 3 is op-
timal, however the globally optimal start time is located at
the minimum of path 2.

If we graph the expected cost of each path as a function
of start time, we obtain a family of curves, cartooned in
Figure 2. The best path for a given start time is indicated
by the lowest curve at that point. Note that each path may
be optimal over a different range of start times. The global
miminum of the lower envelope of all such curves indexes
the optimal time to start out.

Calculating the Cost of a Single Path
In general, the expected cost expression in equation (1) may
be impossible to compute in a closed form. We will there-
fore focus on two families of cost functions for which the
integral can be computed exactly, and which are a sensible
model of user utility: polynomials and exponentials. We
assume that the driver values her time and does not want
to set out too early or arrive too early, thus the cost func-
tion should be expressive enough to (asymmetrically) pe-
nalize both lateness and earliness1. Although many of the
results of subsequent sections apply to general polynomial
functions (and our hardness results hold for arbitrary func-
tions with global minima), we will consider here quadratic
and quadratic+exponential cost functions for illustrative pur-
poses.
Quadratic Cost Suppose the cost of reaching the desti-
nation at time t is C(t) = t2. Suppose the path from the
source to the destination consists of a single edge with ran-
dom travel time Y of density f(.), mean µ and variance σ2.
Then the expected cost of departing the source at time t is

EC(t) =

∫ ∞

0

f(y)(t + y)2dy

= t2 + 2tE[Y ] + E[Y 2] = (t + µ)2 + σ2

If instead the path consists of r edges with random travel
times Yi having density fi(.), mean µi and variance σ2

i for
i = 1, ..., r, then iterating the above calculation r times gives

EC(t) =

∫ ∞

0

...

∫ ∞

0

[

f1(y1)...fr(yr)

C(t + y1 + ... + yr)
]

dy1...dyr

=
(

t +

r
∑

i=1

µi

)2

+

r
∑

i=1

σ2
i .

Therefore, the cost of a path is minimized at start time t =
−

∑r
i=1 µi, the (negative) average travel time for that path.

At this optimum, the expected cost value is the variance of
the path, ECmin =

∑r
i=1 σ2

i .
The quadratic cost function might not be regarded as real-

istic since it assigns the same penalty to being equally early
and late. As we saw above, this leads to preferring the most
certain route, without any care for the average travel time.
On the other hand, linear costs, which favor on average faster
paths, do not have any effect when added to the quadratic
cost other than shifting the effective deadline. Thus, we aug-
ment the quadratic cost function with an exponential term
which gives a higher penalty to being late.
Quadratic+Exponential Cost Consider cost function
C(t) = t2 + λekt, where again t is the time of arrival with

1It may make sense to penalize early arrival even when the
driver is on the road and requesting a new path, because, as in the
case of transportation depots, the destination may not have the ca-
pacity to accept early arrivals.



respect to deadline at time 0 and λ ≥ 0 and k are param-
eters which determine the strength of the penalty for being
late. The sign of k can be negative if one is more averse to
arriving early than late.

In this case, we can still get a closed form expression for
the expected cost of a path. For a path of one link with den-
sity f(Y ), mean µ and variance σ2, we get

EC(t) =

∫ ∞

0

f(y)
[

(t + y)2 + λek(t+y)
]

dy

= (t + µ)2 + σ2 + λektE[ekY ]

where E[ekY ] is the moment-generating function of the den-
sity of Y . When the path consists of r links with densities
fi(Yi), means µi and variances σ2

i , for i = 1, .., r, the ex-
pected cost of departing at time t is

EC(t) =
(

t +

r
∑

i=1

µi

)2

+

r
∑

i=1

σ2
i + λekt

r
∏

i=1

E[ekYi ].

Choice of Travel Time Distributions
Traditionally, the travel times on the edges have been mod-
eled by normal distributions. For a normally distributed ran-
dom variable Y ∼ N(µ, σ2), we have E[ekY ] = exp(kµ +
k2σ2/2). Thus, the expected cost of a path with r indepen-
dent normally distributed edge travel times is given by

EC(t) =
(

t +

r
∑

i=1

µi

)2

+

r
∑

i=1

σ2
i + λektek

P

i
(µi+kσ2

i /2).

(3)
However, the normal distribution is unrealistic as it as-

signs positive probability to negative travel times. A more
physically appropriate distribution is obtained by observing
that in ordinary (collision-free) traffic, car arrivals at any par-
ticular landmark can be viewed as a Poisson process, which
implies that travel times are Gamma distributed; Gamma
distributions are also proposed in (Fan, Kalaba & Moore).
We write te ∼ γ(ae, be) to indicate that the time to traverse
an edge e in the graph is Gamma distributed with shape pa-
rameter ae and width parameter be. The mean of this distri-
bution is given by µe = aebe and the variance is σ2

e = aeb
2
e.

The density of the gamma distribution is given by

γ(a, b, y) =
ya−1e−y/b

baΓ(a)
,

where Γ(a) =
∫ ∞

0 ta−1e−tdt is the gamma function. The
Gamma distribution has strictly nonnegative support and we
can additionally specify a minimum travel time by shifting
y. To keep notation uncluttered, we will use unshifted distri-
butions in this paper; the generalization to shifts is straight-
forward.

For a gamma random variable Y , E[ekY ] = (1 − kb)−a

so the expected cost of a path with independent gamma dis-
tributed edge travel times is given by
(

t +

r
∑

i=1

aibi

)2

+

r
∑

i=1

aib
2
i + λekt

[

r
∏

i=1

(1 − kbi)
−ai

]

, (4)

which no longer has a simple analytic expression for the
minimum.

Optimal Routing and Optimal Start Time
In this section we consider the subproblem of jointly op-
timizing for the path and start time. We show that the
quadratic cost function with general edge distributions, as
well as the quadratic+exponential cost with Gaussian dis-
tributions result in selecting the lowest variance path, and
thus admit a standard shortest path solution. On the other
hand, the quadratic+exponential cost with Gamma travel
distributions does not satisfy the sub-path optimality prop-
erty needed for a dynamic programming approach, and re-
mains an open problem.

Recall that when C(t) = t2, the expected cost of a single
path is minimized at start time t = −

∑r
i=1 µi, the negative

average travel time for the path, and at this optimum, the ex-
pected penalty is the sum of the variances over the individual
links, ECmin =

∑r
i=1 σ2

i . Therefore, we can find the opti-
mal path—the one of smallest total variance, with a simple
application of Dijkstra’s shortest path algorithm, where each
edge e is labelled with its variance σ2

e . Consequently, the op-
timal departure time would be given by the mean travel time
of that path. Thus, the optimal path and optimal departure
time problem turns out easy in the case of quadratic cost.
The second problem of finding the optimal path for a given
departure time does not benefit from the simple form of the
expected cost function, we show in the following section that
it is NP-hard.

If we add an exponential penalty for being late by tak-
ing C(t) = t2 + λekt, the expected cost for a path under
Gamma distributions still has a simple closed form, given
by Equation (4). However, we lose the separability property
of the quadratic cost functions, which allows for a dynamic
programming solution.
Theorem 1. Finding the optimal path and optimal start time

(i) under quadratic cost and general distributions can be
solved exactly with a deterministic shortest path algo-
rithm.

(ii) under quadratic+exponential cost and normal distribu-
tions can be solved exactly with a deterministic shortest
path algorithm.

(iii) under quadratic+exponential cost and general distribu-
tions, may not satisfy subpath optimality for any subpath
and thus precludes standard dynamic programming tech-
niques.

Proof: Part (i) follows from the discussion above. We
show part (iii) via a counterexample in which suboptimality
does not hold for any subpath. Consider the graph with two
parallel pairs of edges in Table 1. All edges are Gamma-
distributed with mean-variance pairs (12.5, 10) on the top
and (26.8, 15) on the bottom. The optimal path from A to
C consists of the lower two edges, with optimal start time
74.79 units before the deadline (hence the negative sign in
the table) and minimum cost 522.65. However, the best
paths from A to B and from B to C both consist of the top
edges, with departure time 22.18 before the deadline and
minimum cost 123.14. Thus, no subpath of the optimal path
from A to C is optimal.

Curiously, the same cost function with normally dis-
tributed edge travel times admits dynamic programming. In
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CA

γ(µ = 12.5, σ
2 = 10)

γ(µ = 26.79, σ
2 = 15)

Path A → B A → C
Top edges (−22.2, 123.1) (−46.5, 526.7)
Bottom & Top - (−60.7, 524.6)
Bottom edges (−36.3, 125.0) (−74.8, 522.7)

Table 1: In the network above, the top edges are identical and Gamma distributed, and so are the bottom edges. When the cost
of arriving at time t is C(t) = t2 + et, the optimal path from A to C uses the bottom edges while the optimal paths from A to B
and from B to C use the top edges. The table entries give the values of the optimal start time and expected cost at the minimum
for each path.

part (ii), the cost of leaving path P at time t given by Equa-
tion (3), can be written as

EC(t̃) = t̃2 + s + ekt̃ek2s/2, (5)

after the change of variables t̃ = t +
∑

e∈P µe and s =
∑

e∈P σ2
e . In particular, a path with a higher total variance

will have an expected cost function strictly above that of a
path with a lower variance, because for s1 < s2, k 6= 0

and for any fixed t̃, ekt̃ek2s1/2 < ekt̃ek2s2/2. Hence the path
of lowest variance will have the lowest minimum expected
cost, and we can find it via any shortest path algorithm with
edge weights equal to the variances. Thus, when travel times
are normally distributed, both the quadratic and quadratic
plus exponential cost functions will choose the same opti-
mal path, although the optimal start time would naturally be
earlier under the second family of cost functions.

The problem of finding the optimal path at a given de-
parture time is again NP-hard, as in the quadratic cost case.
However, we shall see that dynamic programming there is
more promising when combined with partial minimization.

Optimal Routing with a Given Start Time
In this section, we show NP-hardness and hardness of ap-
proximation results for arbitrary cost functions with global
minima. We then give pseudopolynomial algorithms for the
quadratic and quadratic+exponential cost functions, which
generalize to polynomial (plus exponential) cost functions.

We may be interested in the optimal route and optimal de-
parture time to a destination, while planning ahead of time.
Once we start our journey, it is natural to ask for an up-
date given that current traffic conditions may have changed.
Now, we are really posing a new problem: to find the path
of lowest expected cost, EC(tstart), for a given departure
time tstart. This may sound like a simpler question than the
one of finding optimal route and optimal start time though it
turns out to be NP-hard for a very broad class of cost func-
tions.

Complexity of Costs with Global Minimum
Let C(t), the penalty for arriving at the destination at time t,
be any function with a global minimum at tmin. In case of
several global minima, let tmin be the smallest one. Denote
the number of nodes in the graph by n.
Theorem 2. The problem of finding a lowest-cost simple
ST -path is NP-hard.

Proof: Suppose all edges have deterministic unit edge
lengths. Then the cost of departing at time t along a path
with total length L is simply C(t + L).

Consider departure time t = tmin − (n − nε). If there
exists a path of length n − nε, it would be optimal since its
cost would be

C(t + n − nε) = C(tmin) ≤ C(t + L) (6)
for all other paths of any length L. In particular, since tmin

is the leftmost global minimum, we have a strict inequality
for paths of length L < n − nε. Now suppose the optimal
path is of length L∗. We have three possibilities:

1. L∗ < n − nε. Then by above, there is no path of length
n − nε.

2. L∗ = n−nε. Then we have found a path of length n−nε.
3. L∗ > n − nε. Then by removing edges, we can obtain a

path of length exactly n − nε.
Therefore, the problem of finding an optimal path reduces

to the problem of finding a path of length n−nε where ε < 1.
Since the latter problem is NP-complete (Karger, Motwani
& Ramkumar 1997), our problem is NP-hard.

Intuitively, if we incur a higher cost for earlier arrivals and
depart early enough, the problem of finding an optimal path
becomes equivalent to the problem of finding the longest
path. Further, if the cost function is not too flat on the left
of its minimum, we can see that an approximation of the
min-cost path automatically gives a corresponding approxi-
mation on the longest path, hence a corollary to the above is
that the optimal path is hard to approximate.
Corollary 1. For any cost function which is strictly decreas-
ing and positive with slope of absolute value at least λ > 0
on an interval [−∞, tmin], there does not exist a polynomial
constant factor approximation algorithm for finding a sim-
ple path of lowest expected cost at a given departure time
prior to tmin, unless P = NP .

Proof. Suppose the contrary, namely that we can find a path
of cost C = (1 + α)Copt where Copt is the cost of the opti-
mal path, and α > 0 is a constant.

Assume as in the theorem above that we have an n ver-
tex graph with unit length edges and consider departure
time t = tmin − (n − 1) at the source. Let Lopt be the
length of the optimal path and let L be the length of the
path that we find. Then L ≤ Lopt so Lopt is the longest
path between the source and destination and C−Copt

Lopt−L ≥ λ,



otherwise there would be a point in [−∞, tmin] of abso-
lute slope less than λ. Hence Lopt − L ≤ λαCopt and
so Lopt/L ≤ 1 + (λαCopt/L) ≤ 1 + λαCopt, where
Copt = C(tmin) is constant, so this would give a polyno-
mial constant factor approximation algorithm for the longest
path problem, which does not exist unless P = NP (Karger,
Motwani & Ramkumar 1997).

Remark 1. We can obtain a stronger inapproximability re-
sult, based on the fact that finding a path of length n − nε

is NP-complete, for any ε < 1 (Karger, Motwani & Ramku-
mar 1997). However, our goal is simply to show the connec-
tion between the inapproximability of our problem to that
of the longest path problem and show the need to settle for
non-simple paths in the algorithms of the following section.

The NP-hardness result in Theorem 2 crucially relies
on simple paths, and it makes optimal paths equivalent to
longest paths (due to a very early departure time), which is
not usually the case. We can show that finding optimal paths
is NP-hard even for more reasonable start times and non-
simple paths, via a reduction from the subset-sum problem,
for any cost function with a unique global minimum.
Theorem 3. Suppose we have a cost function C(t̃) with a
unique minimum at tmin, which gives the penalty of arriving
at the destination at time t̃. Then for a start time t at the
source, it is NP-complete to determine if there is a path P to
the destination of expected cost ECP (t) ≤ K, where

ECP (t) =

∫ ∞

0

fP (y)C(t + y)dy,

and fP (y) is the travel time distribution on path P .

Proof. The problem is in NP since there is a short certificate
for it, given by the actual path if it exists.

To show NP-hardness, we reduce from the Subset Sum
problem, namely given a set of integers {x1, ..., xn} and
a target integer t, is there a subset which sums exactly to
t? The subset sum problem, which is a special case of
the knapsack problem, is NP-complete (Chvatal 1980). Set

........

x1 x2 xn

00 0

S T

Figure 3: If we can solve for the optimal path with a given
start time t in this graph, then we can solve the subset sum
problem with integers x1, ..., xn and target t.

K = C(tmin). Consider the graph in Figure 3 with deter-
ministic edge travel times x1, ..., xn on the bottom and 0 on
the top. Any path P from S to T in this graph has travel time
∑

i∈P xi and cost C(t′ +
∑

i∈P xi) if we leave the source
at time t′ = tmin − t. Since the cost function C(t) has a
unique global minimum at tmin, there is a path of cost at
most K = C(tmin) if and only if there is a path with travel

time satisfying t′+
∑

i∈P xi = tmin, i.e., if and only if there
is a subset of the xi’s summing exactly to t.

Remark 2. Note that Theorem 2 only shows that it is NP-
hard to find a simple optimal path. Theorem 3 on the other
hand applies to non-simple paths as well since the subset
sum problem is NP-complete even if it allows for repetitions
(Chvatal 1980).

Complexity of Stochastic Travel Times
The theorems in the preceding section show that the stochas-
tic routing problem contains instances with deterministic
subgraphs that make routing NP-hard, though we do not
know whether the class of purely stochastic routing prob-
lems (with non-zero variances) is also NP-hard with general
cost objectives and travel time distributions. Indeed, there
are known problems in scheduling where the scenario with
deterministic processing times is NP-hard, while its variant
with stochastic, exponentially distributed processing times
can be solved in polynomial time (Bruno et al. 1981).

It may be difficult to extend Theorems 2 and 3 to the non-
zero variance case partly because the integral defining the
expected cost will likely not have a closed form for most cost
functions. However, we can prove NP-hardness similarly to
Theorem 3 for stochastic instances and the function classes
we considered earlier, for which we know the form of the
expected costs functions.

Recall that under quadratic cost, the expected cost of
departing at time t, along a path P with general edge
travel time distributions, is ECP (t) =

(

t +
∑

e∈P µe

)2

+
∑

e∈P σ2
e , where µe and σe are the mean and variance of

edge e. Define Stochastic Cost Routing to be the
problem of deciding whether, for a fixed departure time t,
there is a path of expected cost less than K for some con-
stant K.
Corollary 2. Stochastic Cost Routing is NP-hard
for quadratic cost with general edge distributions and
quadratic+exponential cost with Gamma distributions.

Proof Sketch: In both cases, the proof reduces to that of
Theorem 3, by choosing the means and variances on the top
and bottom edges carefully so that the parts of the expected
cost function which contain the variances become equal for
each path.

For the quadratic cost case, this is straightforward
by choosing the same variance σ2

i to each pair i =
1, ..., n of top and bottom edges in Figure 3. The
quadratic+exponential cost with Gamma travel times takes
a little more work since the means and variances are not so
well separated in the exponential term. The full proof for
this case is given in the appendix.

Algorithms for the Optimal Path with Fixed Start
Time
We have shown that finding simple optimal paths with a
given departure time is hard to approximate within a con-
stant factor, as it is similar to finding the longest path. When
we remove the restriction to simple paths, we can give a



// Initialize paths out of source S with mean 1
path variance Φ(S, 0) := 0; predecessor node π(S, 0) := S
for each vertex v

if v is a neighbor of S and µsv = 1
Φ(v, 0) := σsv; π(v, 0) := S

else
Φ(v, 0) :=null ; π(v, 0) :=null

// Fill in the rest of the table
for m = 1 to M

for each vertex v with neighbors v′

Φ(v, m) := minv′∼v

[

Φ(v′, m − µv′v) + σ2
v′v

]

π(v, m) := arg minv′∼v

[

Φ(v′, m − µv′v) + σ2
v′v

]

// Find the lowest cost path from S to T at departure time t
mopt = argminm∈{0,...,M}{(t + m)2 + Φ(T, m)}
πopt = π(T, mopt)
ECmin(t) = (t + mopt)

2 + Φ(T, mopt)

Figure 4: Pseudopolynomial Algorithm for Quadratic cost and fixed departure time. M is the upper bound on the mean travel
time of a path.

pseudopolynomial dynamic programming algorithm, which
depends polynomially on the largest mean travel time of a
path M (or equivalently on the maximum expected travel
time of a link). For real world applications such as car nav-
igation, M will likely be polynomial in the size of the net-
work, hence this algorithm would be efficient in practice,
and significantly better than the previous algorithms based
on exhaustive search (Mirchandani & Soroush 1985).

For clarity, we present in detail algorithms for the
quadratic and quadratic+exponential cost function families
under general travel time distributions, for which we de-
rived simple closed form expressions, however the algo-
rithms can readily extend to general polynomials and poly-
nomials+exponentials.

Quadratic Costs
First, consider the case of quadratic cost, where the expected
cost of a path P is ECP (t) =

(

t+
∑

e∈P µe

)2
+

∑

e∈P σ2
e .

We are interested in finding the path of smallest ECP (t),
for a fixed t. Denote by π(v, m) the predecessor of node v
on the path from the source S to v of mean m and small-
est variance. Denote by Φ(v, m) the variance of this path.
Then we can find π(v, m) and Φ(v, m) for all v and all
m = 0, 1, ..., M by considering the neighbors v′ of v (de-
noted v′ ∼ v) and choosing the predecessor leading to
smallest variance of the path from s to v:

Φ(v, m) = min
v′∼v

[

Φ(v′, m − µv′v) + σ2
v′v

]

,

π(v, m) = arg min
v′∼v

[

Φ(v′, m − µv′v) + σ2
v′v

]

,

where µv′v and σ2
v′v denote the mean and variance of the

travel time on the link (v′, v). Note that by our assumption
of independence of the travel times, the variance of each path

is given by the sum of variances of the edges, hence subop-
timality holds—the path of smallest variance from S to v
through v′ must be using a path of smallest variance from S
to v′.

Suppose the maximum degree in the graph is d. Then
computing the paths of smallest variance above for each ver-
tex and each possible expected travel time from 0 to M can
be done in time O(Mdn). Finally, we find the path from S to
destination T by taking the minimum of (t+m)2+Φ(T, m)
over all m = 0, 1, ..., M , so that the total running time of
the algorithm is O(Mdn). If instead of integer, the travel
time means are discrete with discrete step ε, the running time
would be O(Mdn/ε) for small degrees d, or O(Mn2/ε) in
general. The algorithm is summarized in Figure 4.

Quadratic+Exponential Costs
We can solve the case of quadratic+exponential penalty sim-
ilarly, only this time our dynamic programming table would
have an extra dimension for possible values of the vari-
ance of a path and the table entries would contain the path
with smallest exponential term

∏

e∈P E[eYe ]. Denote by
π(v, m, σ2) the predecessor of node v on the path from
the source s to v of total mean travel time m, total vari-
ance σ2 and smallest value of

∏

e∈P E[eYe ]. Further de-
note by Φ(v, m, σ2) the value of

∏

e∈P E[eYe ] on this path.
Then as before, once we have computed Φ(v, µ, σ2) and
π(v, µ, σ2) for all nodes v, path means µ ≤ m− 1 and vari-
ances σ2 = 0, 1, ..., M , we can compute Φ(v, m, σ2) and
π(v, m, σ2) for all v and σ2 = 0, 1, ..., M by setting

Φ(v, m, σ2) = min
v′∼v

[

Φ(v′, m−µv′v, σ
2−σ2

v′v)∗E[eYv′v ]
]

,

π(v, m, σ2) = arg min
v′∼v

[

Φ(v′, m−µv′v, σ
2−σ2

v′v)∗E[eYv′v ]
]

,
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Figure 5: Minimum-cost envelopes for the same network un-
der quadratic (top left) and quadratic+exponential (top right)
cost functions. The envelopes are superimposed in the bot-
tom graph in a neighborhood of their global optima.

where Yv′v is the random variable representing the travel
time on link (v′, v) and we assume that the variance of a path
is upper bounded by its expected travel time, so it is at most
M . Correctness follows as above by noting that the subpath-
optimality property holds for

∏

e∈P E[eYe ]. Similarly, we
find the path of lowest expected cost from the source to the
destination T by taking the minimum over m = 0, 1, ..., M
and σ2 = 0, 1, ..., M of (t + m)2 + σ2 + λe−tΦ(T, m, σ2).
The running time is now O((M/ε)2dn) for discrete travel
times with discrete step ε.

The standard technique of scaling, which turns a pseu-
dopolynomial algorithm into a fully polynomial approx-
imation scheme such as in the knapsack problem (Vazi-
rani 2001) would work here if the ratio of the maximum
mean of an edge to the cost of the optimal solution is poly-
nomially bounded and it would fail otherwise. If we do not
have a bound on this ratio, we cannot achieve a polynomial
approximation scheme, either. Note that the ratio can be
arbitrarily large if the optimal path has arbitrarily small vari-
ance, say under a quadratic cost function. Even if we lift the
cost function by a constant so as to avoid zero values as part
of its definition, we may still have a constant optimum cost
compared to large mean travel times of edges so we cannot
eliminate the dependance of the running times above on the

−70 −65 −60 −55 −50 −45 −40
10

20

30

40

50

60

70

80

90

100

Departure time

C
os

t

Opt Quad+Exp Cost

Min Variance Path

Min Mean Path

Min Mean+Var Path

maximum path mean M .

General Polynomial plus Exponential Costs

The above dynamic programming algorithms extend to the
case when the expected cost is a general polynomial (plus
exponential) with a constant number of terms. Since it is not
clear how the various terms trade-off, we would have to keep
track of each term individually in a separate dimension of the
dynamic programming table, and the running time would
scale as M to the power of the number of terms. Scenar-
ios which would fall in this category include general poly-
nomial (plus exponential) cost functions and additive edge
distributions, such as Gaussian, Gamma with a fixed width
parameter, etc. Under these distributions, the expected cost
of path travel time Y would depend only on the distribu-
tion of Y as opposed to that of each individual link on the
path, and would therefore have a constant number of terms.
For example, when the cost C(Y ) is a polynomial of de-
gree l, the expected cost E[C(Y )] is a linear combination of
the random variable Y ’s first l moments, as noted by Loui
(Loui 1983), and in this case the dynamic programming al-
gorithm would have running time proportional to M l if each
moment is bounded by M .

Experimental Evaluation

We ran the pseudopolynomial algorithms on grid graphs
with up to 1600 nodes for the quadratic objective and up to
100 nodes for quadratic+exponential objective. The former
graph instances can be viewed as the problem of navigating
from one corner of Manhattan to another; the latter as find-
ing a path around a city through a highway network. Run-
times were typically a few seconds, while memory turned
out to be limiting factor: In the case of quadratic objec-
tive the dynamic programming table is two-dimensional, and
in the quadratic+exponential objective the table is three-
dimensional, i.e., cubic in the size of the graph. Given
the memory constraint we had the largest edge mean set
to 10 on the graphs with 1600 nodes and 4 on the graphs
with 100 nodes. The edge means and variances were gen-
erated uniformly at random. The memory usage of the
algorithms was not optimized; it could be made an order
of magnitude smaller (linear for C(t) = t2, quadratic for



C(t) = t2 + λekt) if one only wanted to compute the objec-
tive function values without outputting the actual paths.

For the sake of comparison, Figure 5 shows the result-
ing optimal cost for the same graph with 100 nodes under
both quadratic and quadratic+exponential objectives with
Gamma distributed travel times. Recall that the optimal cost
envelope for a graph under a given objective is the infimum
of the cost functions of each path in the graph. Each plot
on the top shows the min-cost envelope and the expected
cost function of three paths—those having smallest variance,
smallest mean, and smallest mean+variance. As predicted,
the path with smallest variance yields the globally optimal
cost in the quadratic case but this is not necessarily true in
the quadratic+exponential case.

We note that the basic quadratic+exponential objective
(

t +

r
∑

i=1

aibi

)2

+

r
∑

i=1

aib
2
i + et

[

r
∏

i=1

(1 − bi)
−ai

]

,

tends to be dominated by the quadratic term near the func-
tion’s minimum so that its plot is almost identical to the plot
of the quadratic objective case for the interval of departure
times around the global minimum. However, a bigger posi-
tive coefficient in front of the exponential term (featured at
the top right of Figure 5) balances the quadratic and expo-
nential influence and illustrates a situation where the small-
est variance path is not globally optimal and the smallest
mean or mean+variance paths are not even locally optimal,
i.e., do not participate in the min-cost envelope.

The third plot in the Figure superimposes the two differ-
ent objectives and zooms into their global minima. The plot
demonstrates clearly the qualitative difference between the
two objective costs, not only in the fact that the global op-
timum is attained on different paths but also in that differ-
ent paths may be locally optimal at the same fixed depar-
ture time. For example, at departure 51 minutes (units) be-
fore the deadline a quadratic objective would recommend
the smallest variance path while the quadratic+exponential
objective would recommend some other path. We see simi-
lar differences of recommendation at time a little over 52.5
minutes before the deadline. Naturally, since the expo-
nential term assigns a more severe penalty for being late,
the quadratic+exponential objective recommends an earlier
globally optimal departure time.

Monotone Increasing Costs
The optimal path problem becomes significantly easier if we
consider some natural monotone increasing costs, such as
linear and exponential, for which the global cost is separable
into edge costs. As noted above linear cost with a given
start time translates to minimizing the expected travel time, a
basically uninteresting quantity in this stochastic setting. An
exponential cost C(t) = ekt on the other hand, is interesting
because it gives rise to the expected path cost

ECP (t) = ekt
∏

e∈P

E[ekYe ].

where Ye is the travel-time random variable at edge e. We
make this separable by moving into the log domain, where

finding the path of lowest expected cost starting from the
source at time t turns out to be equivalent to finding the
shortest path on the same graph with edge weights set to the
cumulant-generating function K(k) = log

(

E[ekYe ]
)

. The
cumulant-generating function is a series sum over cumulants
that is dominated by the lowest central moments of the dis-
tribution; for many distributions it is effectively a weighted
sum of mean and variance, a common objective in portfo-
lio selection and mean-risk analysis in general. For gamma-
distributed travel times, K(k) = a log(1/(1−kb)); compare
with the more familiar K(k) = kµ + k2σ2/2 for normally
distributed variables.

Discussion
We have obtained complexity results and algorithms for two
problems of route planning under uncertainty in a decision-
theoretic framework: planning an optimal path for a given
departure time as well as planning an optimal departure
time. Path and start time are jointly optimizable because
there are penalties for both late and early arrivals. Surpris-
ingly, some instances of the joint optimization are reducible
to classic shortest path algorithms, while the seemingly eas-
ier problem of finding an optimal path for a given start time
is NP-hard, and it is hard even to approximate for simple
paths. For fixed start times and non-simple paths, we have
presented pseudopolynomial algorithms, which are polyno-
mial in the number of nodes in the graph and the largest
mean travel time of an edge. These will likely perform very
well in practice since the average travel times on edges in
real world networks are relatively small. We would like to
extend the full analysis to the case of dynamic networks,
where both topology and distributions change in time. Other
open questions include comparing the optimal non-adaptive
to the optimal adaptive solution, under both static and dy-
namic travel time distributions, and modeling correlations
between the edge travel times.
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Appendix
Corollary. 2. Stochastic Cost Routing is NP-
hard for quadratic+exponential cost with Gamma distribu-
tions.

Proof: Recall that when the penalty of arriving at the des-
tination t minutes before the deadline is C(t) = t2 + et, the
expected cost of a path at start time t before the deadline is
given by
(

t +

n
∑

i=1

aibi

)2

+

n
∑

i=1

aib
2
i +

[

n
∏

i=1

(1 − bi)
−ai

]

et.

Consider the chain graph in Figure 3 with distributions
Γ(ai, bi) on the bottom edges and Γ(a′

i, b
′
i) on the top ones.

It suffices to show that there exist positive ai, bi, a
′
i, b

′
i such

that

aibi = zi + qi

a′
ib

′
i = qi

aib
2
i = a′

ib
′2
i

(1 − bi)
−ai = (1 − b′i)

−a′

i

for all i = 1, ..., n. Note also because of the last equation,
we need to restrict the domain of bi and b′i to (0, 1). From
the first two equations, ai = zi+qi

bi
and a′

i = qi

b′

i

. If zi +

qi, qi, bi, b
′
i are all positive, then ai and a′

i will be positive as
well. Recall also that qi is a positive constant of our choice
such that zi + qi > 0. Henceforth, we drop the indexes
to ease notation. Then, it suffices to show that there exist
b, b′ ∈ (0, 1) such that

b(z + q) = b′q

(1 − b)(z+q)/b = (1 − b′)q/b′

.

From the first equation in (7), b′ = b z+q
q = b(1+ z

q ) = bk

and recall that q is a constant of our choice which we can set
as high as we want. Substituting in the second equation in
(7), we get

(1 − b)1/b = (1 − kb)1/(k2b). (7)

If z > 0, we can pick for example k = 1/0.9 > 1 and
this immediately yields a solution b = .676948. With this,
b′ = b/0.9 = .752165 and we can find the corresponding a
and a′. Note that this b and b′ will work for all pairs of links
for which z > 0. Similarly, if z < 0, we have k < 1 in
Equation (7) and picking k = 0.9 gives the same values for
b and b′ but reversed: b = .752165, b′ = .676948.


