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Abstract. We embark on an agenda to investigate how stochastic delays and
risk aversion transform traditional models of routing games and the correspond-
ing equilibrium concepts. Moving from deterministic to stochastic delays with
risk-averse players introduces nonconvexities that make the network game more
difficult to analyze even if one assumes that the variabilityof delays is exogenous.
(For example, even computing players’ best responses has anunknown complex-
ity [24].) This paper focuses on equilibrium existence and characterization in the
different settings of atomic vs. nonatomic players and exogenous vs. endogenous
factors causing the variability of edge delays. We also showthat succinct repre-
sentations of equilibria always exist even though the game is non-additive, i.e.,
the cost along a path isnot a sum of costs over edges of the path as is typically
assumed in selfish routing problems. Finally, we investigate the inefficiencies
resulting from the stochastic nature of delays. We prove that under exogenous
stochastic delays, the price of anarchy is exactly the same as in the corresponding
game with deterministic delays. This implies that the stochastic delays and play-
ers’ risk aversion do not further degrade a system in the worst-case more than the
selfishness of players.

Keywords: Non-additive nonatomic congestion game, stochastic Nash equilib-
rium, stochastic Wardrop equilibrium, risk aversion.

1 Introduction

Heavy traffic and the uncertainty of traffic conditions exacerbate the daily lives of mil-
lions of people across the globe. According to the 2010 UrbanMobility Report [32],
“in 2009, congestion caused urban Americans to travel 4.8 billion hours more and to
purchase an extra 3.9 billion gallons of fuel for a congestion cost of $115 billion.” For a
comparison, that congestion cost was $85 billion in 1999. High and variable congestion
necessitates drivers tobuffer in extra timewhen planning important trips. The recom-
mendation in the report was to consider a buffer of approximately 30% (Los Angeles)
to 40% (Chicago) more than the average travel time, and around twice as long as the
travel time at night when traffic is light.

A common driver reaction in the face of heavy and uncertain traffic conditions is to
look for alternate, sometimes longer but less crowded and less variable routes [15]. With
the widespread use of ever-improving technologies for measuring traffic, one might
ask: is there a way to game the system? What route should be selected given other
drivers’ route choices? Considering routing games on networks where delay functions
are stochastic, we analyze the resulting equilibria when strategic, risk-averse commuters



take into account thevariability of delays. This approach generalizes the traditional
model of Wardrop competition [37] by incorporating uncertainty.

Risk aversion forces players to go beyond considering expected delays. Since it is
unlikely that they base their routing decisions on something as complicated as a full
distribution of delays along an exponential number of possible paths, it is reasonable
that considering expected delays and their standard deviations is a good first-order ap-
proximation on route selection. To incorporate the standard deviation of delays into the
players’ objectives, we consider the traditionalmean-standard deviation(mean-stdev)
objective [14, 18] whereby players minimize the cost on a path, defined as the path mean
plus a risk-aversion factor times the path standard deviation.3 By linearity of expecta-
tions, the mean of the path equals the sum of the means over allits edges. However, the
standard deviation along a path does not decompose as a sum over edges because of the
risk-diversification effect. Instead, it is given by the square root of the sum of squared
standard deviations on the edges of that path. Due to the complicating square root, a sin-
gle player’s subproblem—a shortest path problem with respect to stochastic costs—is a
nonconvex optimization problem for which no polynomial running-time algorithms are
known. This is in sharp contrast to the subproblem of the Wardrop network game—a
shortest path problem, which admits efficient solutions.

A compelling interpretation of this objective in the case ofnormally-distributed
uncertainty is that the mean-stdev of a path equals a percentile of delay along it. This
model is also related to typical quantifications of risk, most notably the value-at-risk
objective commonly used in finance, whereby one seeks to minimize commute time
subject to arriving on time to a destination with at least, say, 95% chance.

Our mean-stdev model works forarbitrary distributions with finite first and sec-
ond moment. To simplify the analysis, throughout this paperwe assume that delays of
different edges are uncorrelated. Nevertheless, a limitedamount of correlation is to be
expected in practice; for example, if there is an accident ina location, it causes ripple
effects upstream. We remark that local correlations can be addressed with a polyno-
mial graph transformation that encodes correlation explicitly in edges by modifying the
standard-deviation functions with correlation coefficients [23]. This results in a graph
with independent edge delays where all our results and algorithms carry through.

Related Work Our model is based on the traditional competitive network game intro-
duced by Wardrop in the 1950’s where he postulated that the prevailing traffic condi-
tions can be determined from the assumption that players jointly select shortest routes
[37]. The game was formalized in an influential book by Beckmannet al. that lays out
the mathematical foundations to analyze competitive networks [4]. These models find
applications in various domains such as transportation [33] and telecommunication net-

3 Another alternative would have been to consider the mean-variance objective. This approach
reduces to a deterministic Wardrop network game in which theedge delay functions already
incorporate the information on variability. However, the mean and variance are measured in
different units so a combination of them is hard to interpret. In addition, under this objective
it may happen that players select routes that are stochastically dominated by others. Although
this counterintuitive phenomenon may also happen under themean-stdev objective with some
artificially constructed distributions, it is guaranteednot to happen under normal distributions.



works [1]. In the last decade, these games received renewed attention with many studies
aimed at understanding under what conditions equilibria exist, what uniqueness prop-
erties they satisfy, how to compute them efficiently, how expensive they are in relation
to a centralized solution, and how to align incentives so theequilibria become optimal.
For general references on these topics, we refer the readersto some recent surveys [9,
27].

In the majority of models used by theoreticians who study theproperties of net-
work games, and by practitioners who compute solutions to real problems, delays have
been considered deterministic. Although there are models that incorporate some form
of uncertainty [3, 5, 16, 17, 19, 36], none of these models hasbecome widely accepted
in practice, nor have they been extensively studied. Perhaps the only exception is the
stochastic user equilibriummodel, introduced by Dial in the 1970’s [11], which has
been studied and used in practice (see, e.g., [34, 35]). Under it, different playersper-
ceiveeach route differently, distributing demand in the networkaccording to a logit
model. To reduce route enumeration, the model just takes into account a subset of “effi-
cient routes.” In contrast, the objective of the players in the network game we consider
is to choose the path that minimizes the mean plus a multiple of the standard deviation
of delay. This problem belongs to the class of stochastic shortest path problems (see,
for instance, some classic references [2, 6] and some newer ones [12, 13, 25, 22]).

In the network games literature, the model most related to our work is that of
Ordóñez and Stier-Moses [28]. They introduce a game with uncertainty elements and
risk-averse users and study how the solutions provided by itcan be approximated nu-
merically by an efficient column-generation method that is based on robust optimiza-
tion. The main conclusion is that the solutions computed using their approach are good
approximations ofpercentile equilibriain practice. Here, a percentile equilibrium is a
solution in which percentiles of delays along flow-bearing paths are minimal. The main
difference between their approach and ours is that their insights are based on compu-
tational experiments whereas the current work focuses on theoretical analysis and also
considers the more general settings of endogenously-determined standard deviations
and atomic games.

Next, we formally define our model and equilibrium concepts and study the ex-
istence of equilibrium under exogenous (Section 3) and endogenous (Section 4) vari-
ability of delays. We summarize these results in Table 1. We then prove that equilibria
that use polynomially-many paths—referred to as succint—exist (Section 5), and fi-
nally we analyze properties of the socially-optimal solution and study the inefficiency
of stochastic Wardrop equilibria (Section 6).

2 The Model

We consider a directed graphG = (V, E) with an aggregate demand ofdk units of
flow between source-destination pairs(sk, tk) for k ∈ K. We letPk be the set of all
paths betweensk andtk, andP := ∪k∈KPk be the set of all paths. We encode players
decisions as a flow vectorf = (fπ)π∈P ∈ R

|P|
+ over all paths. Such a flow is feasible

when demands are satisfied, as given by constraints
∑

π∈Pk
fπ = dk for all k ∈ K.

For simplicity, when we write the flow on an edgefe depending on the full flowf , we



Exogenous Noise Endogenous Noise
Nonatomic Equilibrium exists; Equilibrium exists;

Users Solves exponentially-large convex program Solves variational inequality

Atomic Equilibrium exists; No pure strategy equilibrium
Users Potential game

Table 1.Equilibria in Stochastic Routing Games

refer to
∑

π∋e fπ. When we need multiple flow variables, we use the analogous notation
x, xπ , xe.

The congestible network is modeled with stochastic delay functionsℓe(xe)+ξe(xe)
for each edgee ∈ E. Here,ℓe(xe) measures the expected delay when the edge has flow
xe, and the random variableξe(xe) represents the stochastic delay error. The function
ℓe(·) is assumed continuous and non-decreasing. The expectationof ξe(xe) is zero and
its standard deviation isσe(xe), for a continuous and non-decreasing functionσe(·).
Although the distribution may depend onxe, we will separately consider the simpli-
fied case in whichσe(xe) = σe is a constant given exogenously, independent fromxe.
We also assume that these random variables are all uncorrelated with each other. Risk-
averse players choose paths according to the mean-standarddeviation (mean-stdev) ob-
jective, which we also refer to as the cost along routeπ:

Qπ(f) :=
∑

e∈π

ℓe(fe) + γ

√

∑

e∈π

σe(fe)2 , (1)

whereγ ≥ 0 quantifies the risk aversion of players, assumed homogeneous.
Thenonatomicversion of the game considers the setting where infinite players con-

trol an insignificant amount of flow each so the path choice of aplayer does not uni-
laterally affect the costs experienced by other players (even though the joint actions
of players affect other players). The following definition captures that at equilibrium
players route flow along paths with minimum costQπ(·).

Definition 1. The stochastic Wardrop equilibriumof a nonatomic routing game is a
flow f such that for every source-destination pairk ∈ K and for every pathπ ∈ Pk

with positive flow,Qπ(f) ≤ Qπ′(f) for every pathπ′ ∈ Pk .

Instead, theatomicversion of the game assumes that each player wishes to route
one unit of flow. Consequently, the path choice of even one player directly affects the
costs experienced by others. There are two versions of the atomic game: in the splittable
case players can split their demands along multiple paths, and in the unsplittable case
they are forced to choose a single path. In this paper we focuson theatomic unsplit-
tablecase, which we will sometimes refer to just asatomic. The natural extension of
Wardrop equilibrium to the atomic case only differs in that players need to anticipate the
effect of a player changing to another path. This game alwaysadmits a mixed-strategy
equilibrium (under the standard expected payoffs with respect to the mixing probabil-
ities) because it is a finite normal-form game [21], so we focus on the existence of
pure-strategy equilibria.



Definition 2. A pure-strategystochastic Nash equilibriumof the atomic unsplittable
routing game is a flowf such that for every source-destination pairk ∈ K and for
every pathπ ∈ Pk with positive flow, we have thatQπ(f) ≤ Qπ′(f + Iπ′ − Iπ) for
everyπ′ ∈ Pk . Here,Iπ denotes a vector that contains a one for pathπ and zeros
otherwise.

One of the goals of this work is to evaluate the performance ofequilibria. Hence, we
define a social cost function that will allow us to compare different flows and determine
the inefficiency of solutions. The social cost function is the total cost among players:

C(f) :=
∑

π∈P

fπQπ(f) . (2)

3 Exogenous Standard Deviations

In this section, we consider exogenous noise factors, whichresult in constant standard
deviationsσe(xe) = σe that do not depend on the flow on the edge. In this case, the path
cost (1) can be written asQπ(f) =

∑

e∈π ℓe(fe) + γ(
∑

e∈π σ2
e)1/2. We investigate the

existence of equilibria and provide a characterization. First, we show that an equilibrium
always exists, despite the challenge posed by the non-additive cost function. Due to
space restrictions, missing proofs can be found in the full version of this paper.

Theorem 1. A nonatomic routing game with exogenous standard deviations always
admits a stochastic Wardrop equilibrium.

The proof uses a path-based convex programming formulationgiven by Ordóñez and
Stier-Moses [28]:

min
{

∑

e∈E

∫ xe

0

ℓe(z)dz+
∑

π∈P

γfπ

√

∑

e∈π

σ2
e : such thatxe =

∑

π∈P: e∈π

fπ for e ∈ E,

dk =
∑

π∈Pk

fπ for k ∈ K, fπ ≥ 0 for π ∈ P
}

. (3)

Besides proving existence, the formulation also provides away to compute this
equilibrium using column generation. We remark that this method typically will not use
many paths and hence, it is likely to be practical. In addition, the formulation implies
that the equilibrium is unique, provided that the objectivefunction (3) is strictly convex:

Corollary 1. The equilibrium of the stochastic nonatomic routing game with exogenous
standard deviations is unique (in terms of edge loads) whenever the expected delay
functions are strictly increasing.

We now return briefly to the question of computation. The convex program (3) con-
tains exponentially-many variables (the flows on all paths)and a polynomial number
of constraints. We will see in Section 5 that an equilibrium always has a succinct de-
composition that uses at most|E| paths; unfortunately, since we do not know ahead



of time which paths these are, we cannot write a succinct version of the convex pro-
gram. In the case of constant expected delays, the objective(3) coincides with the social
cost, and both problems reduce to computing a stochastic shortest path for each source-
destination pair. Thus, both the equilibrium and social optimum computation are at least
as hard as the stochastic shortest path problem [26, 24].

Theorem 2. When the expected delays and standard deviations are constant for each
edge, the equilibrium and social optimum coincide and can befound in timenO(log n).

Now, we switch to the atomic unsplittable case and show that the stochastic routing
game admits a potential function. We prove this using the characterization given by
Monderer and Shapley [20]. The potential game structure implies that an equilibrium
always exists.

Theorem 3. An atomic unsplittable routing game with exogenous standard deviations
is potential and, therefore, it always admits a pure-strategy stochastic Nash equilibrium.

In contrast to the uniqueness of equilibrium in the nonatomic game, the pure-strategy
equilibria in the atomic case need not be unique because theyare a generalization of
those in deterministic games, which admit multiple equilibria. (For example, a game
with two players with a unit demand choosing among three parallel edges withℓe(xe) =
xe andσe = 0 admits three equilibria.)

4 Endogenous Standard Deviations

In this section, we consider flow-dependent standard deviations of edge delays. This
makes the standard deviations endogenous to the game. We show that equilibria exist
in the nonatomic game but they may not exist in the atomic game.

The following example illustrates how an equilibrium changes under endogenous
standard deviations. Assume a demand ofd = 1 and consider a network consisting
of two parallel edges with delaysℓ1(x) = x andℓ2(x) = 1, followed by a chain of
k edges that players must traverse. This instance admits two paths, each comprising
one of the two parallel edges and the chain. We letL denote the expected delay along
the chain (a constant since the flow traversing it is fixed) andassume thatσe(xe) =
sxe for all edges, for some constants ≥ 0. Although both the deterministic and the
exogenous standard-deviation games are equivalent to Pigou’s instance [30, 31], the
equilibrium with endogenous standard deviations changes significantly. Indeed, it is
given by a root of the degree-4 polynomial(1−4s2)x4+4s2x3+(4s4−2s2−4ks2)x2−
4s4x + s4 such thatx ∈ [0, 1], which in principle might not exist (wherex denotes
the flow on one of the two paths). An insight with algorithmic implications arising
from this example is that an equilibrium in the stochastic game does not decompose to
equilibria in subgraphs of the given graph, and in fact it maybe quite different from the
equilibria in the subgraphs. Hence, it is not immediate how to decompose the problem
by partitioning a graph into smaller pieces.

We can show the existence of equilibrium in the general nonatomic setting via a
variational inequality. In fact, the following results also hold in the much more general
setting where edge-delay functions depend on the full vector of flows, as long as this
dependence is continuous.



Theorem 4. The nonatomic game with endogenous standard deviations admits a stochas-
tic Wardrop equilibrium.

In contrast to the case of exogenous standard deviations, however, the game with
endogenous standard deviations is notpotential[20] and equilibria cannot be charac-
terized as the solution to a global optimization problem.

Proposition 1. The stochastic routing game with nonconstant variances does not admit
a cardinal potential.

As in the deterministic case, the stochastic game may have multiple edge-flow
equilibria when the delays and variances are not strictly increasing. An open ques-
tion that remains is whether the equilibrium is unique when the expected delay and/or
standard-deviation functions are strictly increasing. The standard approach to establish
the uniqueness of a solution to a variational inequality is to show the monotonicity of
the path-cost operator (the vector of path cost functions for all paths). However, neither
monotonicity, nor a weaker notion of pseudo-monotonicity holds for our problem.

Proposition 2. The path-cost operator of the nonatomic routing game with endogenous
standard deviations is not pseudo-monotone.

Although we were not able to prove uniqueness in general, we can do so in the
extreme cases of players’ risk attitudes. We do so by showingthat in those cases the
stochastic game resembles a deterministic one.

Proposition 3. In the two extreme settings where players are either risk-neutral or in-
finitely risk averse, the nonatomic routing game admits a unique stochastic Wardrop
equilibrium, for strictly increasing expected edge delaysand standard deviations.

In contrast to the existence of equilibria in nonatomic games, there are atomic games
that do not admit a pure-strategy Nash equilibrium. Mixed-strategy equilibria always
exist because the game is finite [21].

Proposition 4. The atomic unsplittable routing game with endogenous standard devi-
ations may not have pure-strategy Nash equilibria, even in the case of a single source-
destination pair in a series-parallel network with affine edge mean and standard-deviation
functions.

5 Succinct Representations of Equilibria

We now turn our attention to how one can decompose an equilibrium of the nonatomic
game represented as an edge-flow vector to a path-flow vector,and to whether a suc-
cinct vector of path flows at equilibrium always exists. The first question is trivial in
the deterministic routing game: any path-flow decomposition of an edge flow at equi-
librium works since path costs are additive. Instead, path costs of the stochastic game
are non-additive and different flow decompositions of the same edge flow may incur
different path costs. In particular, for an edge flow at equilibrium, some path-flow de-
compositions are at equilibrium and others are not. This is captured by the next lemma
which illustrates that shortest paths with respect to path costs do not need to satisfy
Bellman equations since a subpath of a shortest path need notbe shortest.



Lemma 1. In a nonatomic game, not all path-flow decompositions of an edge flow at
equilibrium constitute an equilibrium.

The previous lemma prompts the question of how one can find a flow decomposition
of an equilibrium given as an edge flow. Does a succinct decomposition always exist
(namely one that assigns positive flow to only polynomially-many paths)? The next
few results provide positive answers to these questions. Weshow that succinct flow
decompositions exist and they can be found in time slightly larger than polynomial,
|V |O(log |V |), which is the best-known running time of an exact algorithm for solv-
ing the underlying stochastic shortest path problem [26]. Alternatively, using a fully-
polynomial approximation algorithm for the stochastic shortest path problem [24], one
can find approximate flow decompositions of equilibria in polynomial time. We first
provide a characterization of flow decompositions of equilibria that will enable us to
show the existence of succinct decompositions.

Lemma 2. Consider a flow decompositionfP of an edge-flow equilibrium with support
P ⊂ P (the set of paths with positive flow). Then, every flow decomposition whose
support is a subset ofP and whose resulting edge flow is the same as that off

P is also
at equilibrium.

Using the lemma above, we can prove the existence of succinctequilibrium decom-
positions.

Theorem 5. For an equilibrium(fe)e∈E given as an edge flow, there exists asuccinct
flow decomposition that uses at most|E| paths. Furthermore, this decomposition can be
found in time|V |O(log |V |), and anǫ-approximate equilibrium succinct decomposition
can be found in polynomial time.

It remains open whether finding an equilibrium can be done in polynomial time.
This is related to the open question of whether the stochastic shortest path subproblem
is in P [26].

Corollary 2. Given an edge flow, we can verify that it is at equilibrium in time|V |O(log |V |).

Analogously, we can verify that a given set of player strategies (paths) in the atomic
setting forms an equilibrium in time|V |O(log |V |).

6 Price of Anarchy

In this section we compute bounds for the price of anarchy (POA) for stochastic Wardrop
equilibria of the nonatomic game. Recall that the price of anarchy is defined as the
supremum over all problem instances of the ratio of the equilibrium cost to the social
optimum cost [29]. In the case of exogenous standard deviations, the POA turns out to
be the same as in the corresponding deterministic game: it is4/3 for linear expected
delays and(1 − β)−1 for general expected delays for an appropriate definition ofβ as
in Correaet al.[7] for the corresponding deterministic routing game. The bounds result
from a modification of the bounding techniques of Correaet al. [7, 8].



In the case of endogenous standard deviations, an analysis of the price of anarchy
is more elusive and it remains open whether the equilibrium is unique. For this reason,
we focus our analysis to the limiting case of extreme risk aversion (the other extreme
case, where users are risk neutral, is well-understood). Hence, we assume that path costs
are equal to the path standard deviationsQπ(f) = (

∑

e∈π σe(fe)
2)1/2. Recall that in

this extreme case, Proposition 3 implies that there is a unique equilibrium that can be
computed efficiently with a convex program.

We now show that the first order optimality conditions of the optimization problem
that defines socially-optimal solutions are satisfied at theequilibrium, when standard-
deviation delay functions are monomials of the same degree.Note that in the deter-
ministic case, it is known that the POA is exactly one precisely for that class of delay
functions [10].

Theorem 6. Consider a nonatomic network game with endogenous standarddevia-
tions of the formσe(xe) = aex

p
e for some fixedp ≥ 0. An equilibrium of the game is a

stationary point of the social-optimum (SO) problem

min
{

∑

π∈P

fπQπ(f) :
∑

π∈Pk

fπ = dk ∀k ∈ K andfπ ≥ 0 ∀π ∈ P
}

.

As a corollary from the above theorem, whenever the SO problem has a unique
stationary point, it would follow that equilibria and social optima coincide and, conse-
quently, the price of anarchy would be 1. Before we identify settings for which con-
vexity of the social cost holds, we show that despite the somewhat misleading square
root, the path costs are convex in the edge-flow variables when the standard deviations
σe(xe) are convex functions.

Proposition 5. The path costsQπ(x) = (
∑

e∈π σe(xe)
2)1/2 are convex whenever the

edge standard-deviation functionsσe(xe) are convex.

As a corollary from Proposition 5 and from the fact that the sum of convex functions
is convex, it follows that path costs are also convex in the general case where the path
cost is a sum of the mean and standard deviation of the path, aslong as the edge mean
and standard-deviation functions are convex in the edge flow.

Next, we identify sufficient conditions for the convexity ofthe social cost, which
bear an intriguing resemblance to the sufficient conditionsfor the uniqueness of equi-
librium mentioned earlier.

Proposition 6. The social costC(x) = xQ(x) =
∑

π∈P xπQπ(x) is convex whenever
the path-cost operatorQ is monotone and the path costsQπ(x) are convex.

As established above, the path costs are convex (under convex standard-deviation
functions), however the path-cost operator is not necessarily monotone even in the basic
case of linear standard deviation functions equal toσe(x) = x, and thus, the social cost
may not be convex as shown in Figure 1. Nevertheless, we can still show that the POA
is 1 in a network ofn pairs of parallel edges connected in series.
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Fig. 1. Non-convex slice of the social cost function

Proposition 7. Consider a nonatomic game on a network ofn pairs of parallel edges
connected in series with zero mean delays and standard deviation functions equal to
σe(x) = x for all edges. In this case, socially-optimal flows and equilibria coincide.

Despite the limitation of the hypothesis, the proof requires a careful analysis to bound
the social cost, in contrast to our results for exogenous standard deviations under gen-
eral graphs and costs. For the case of endogenous standard deviations, whether the
nonconvexity of the social cost can be circumvented to obtain price of anarchy bounds
for more general graphs and delay functions remains open.

7 Conclusions and Open Problems

We have set out to extend the classical theory of Wardrop equilibria and congestion
games to the more realistic setting of uncertain delays, focusing on the methodology
and questions of algorithmic game theory. The uncertainty of delays calls for models
that incorporate players’ attitudes towards risk. In this paper, we have focused on the
model whereby players seek to minimize a linear combinationof the expectation and
standard deviation of delays along their chosen route.

The directions pursued in this work have opened a variety of questions which would
be interesting to explore in future studies. Some of these questions are:

– What is the complexity of computing an equilibrium when it exists (exogenous
standard deviations with atomic or nonatomic players; endogenous standard devia-
tions with nonatomic players)?

– What is the complexity of computing the socially-optimal solution? What is the
complexity of computing the socially-optimal flow decomposition if one knows
the edge flow that represents a socially-optimal solution?

– Can there be multiple equilibria in the nonatomic game with endogenous standard
deviations?



– What is the price of anarchy for stochastic Wardrop equilibria in the setting of
nonatomic games with endogenous standard deviations, for general graphs and gen-
eral classes of cost functions?

– Ordóñez and Stier-Moses considered the case of players with heterogenous atti-
tudes toward risk [28]. Can some of the results in this paper be extended to that
setting?

Of course, one could pursue other natural models and player utilities and build on or
complement what we have developed here. In particular, our model might be enriched
by also considering stochastic demands to make the demand side more realistic.
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