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Abstract. We embark on an agenda to investigate how stochastic defays a
risk aversion transform traditional models of routing garaad the correspond-
ing equilibrium concepts. Moving from deterministic to castic delays with
risk-averse players introduces nonconvexities that ma&enétwork game more
difficult to analyze even if one assumes that the variabilftgelays is exogenous.
(For example, even computing players’ best responses haskaown complex-
ity [24].) This paper focuses on equilibrium existence ahdracterization in the
different settings of atomic vs. nonatomic players and exogs vs. endogenous
factors causing the variability of edge delays. We also sti@at/ succinct repre-
sentations of equilibria always exist even though the gam®h-additive, i.e.,
the cost along a path it a sum of costs over edges of the path as is typically
assumed in selfish routing problems. Finally, we investighe inefficiencies
resulting from the stochastic nature of delays. We prové thder exogenous
stochastic delays, the price of anarchy is exactly the sanrethe corresponding
game with deterministic delays. This implies that the ststic delays and play-
ers’ risk aversion do not further degrade a system in thetwsase more than the
selfishness of players.

Keywords: Non-additive nonatomic congestion game, stochastic NgaHile-
rium, stochastic Wardrop equilibrium, risk aversion.

1 Introduction

Heavy traffic and the uncertainty of traffic conditions exéete the daily lives of mil-
lions of people across the globe. According to the 2010 UMability Report [32],
“in 2009, congestion caused urban Americans to travel 4ldmihours more and to
purchase an extra 3.9 billion gallons of fuel for a congestiost of $115 billion.” For a
comparison, that congestion cost was $85 billion in 199@htéind variable congestion
necessitates drivers tffer in extra timewvhen planning important trips. The recom-
mendation in the report was to consider a buffer of approteiga80% (Los Angeles)
to 40% (Chicago) more than the average travel time, and drbwice as long as the
travel time at night when traffic is light.

A common driver reaction in the face of heavy and uncertaiffitrconditions is to
look for alternate, sometimes longer but less crowded asxMariable routes [15]. With
the widespread use of ever-improving technologies for oméag traffic, one might
ask: is there a way to game the system? What route should éetestlgiven other
drivers’ route choices? Considering routing games on nétsvahere delay functions
are stochastic, we analyze the resulting equilibria whesteggic, risk-averse commuters



take into account theariability of delays. This approach generalizes the traditional
model of Wardrop competition [37] by incorporating uncerta

Risk aversion forces players to go beyond considering érgatelays. Since it is
unlikely that they base their routing decisions on somejl@a complicated as a full
distribution of delays along an exponential number of gaespaths, it is reasonable
that considering expected delays and their standard dmvsas a good first-order ap-
proximation on route selection. To incorporate the stashdawviation of delays into the
players’ objectives, we consider the traditionaan-standard deviatiofmean-stdev)
objective [14, 18] whereby players minimize the cost on & pdefined as the path mean
plus a risk-aversion factor times the path standard dewidtBy linearity of expecta-
tions, the mean of the path equals the sum of the means overediges. However, the
standard deviation along a path does not decompose as a suedges because of the
risk-diversification effectinstead, it is given by the square root of the sum of squared
standard deviations on the edges of that path. Due to thelmatipg square root, a sin-
gle player’s subproblem—a shortest path problem with retfpestochastic costs—is a
nonconvex optimization problem for which no polynomialnimg-time algorithms are
known. This is in sharp contrast to the subproblem of the Vgreshetwork game—a
shortest path problem, which admits efficient solutions.

A compelling interpretation of this objective in the casenmirmally-distributed
uncertainty is that the mean-stdev of a path equals a péecentelay along it. This
model is also related to typical quantifications of risk, moastably the value-at-risk
objective commonly used in finance, whereby one seeks tonmEri commute time
subject to arriving on time to a destination with at leasy, 88% chance.

Our mean-stdev model works farbitrary distributions with finite first and sec-
ond moment. To simplify the analysis, throughout this paperssume that delays of
different edges are uncorrelated. Nevertheless, a linasitedunt of correlation is to be
expected in practice; for example, if there is an accidet iocation, it causes ripple
effects upstream. We remark that local correlations candoeessed with a polyno-
mial graph transformation that encodes correlation eitfylim edges by modifying the
standard-deviation functions with correlation coeffi¢gef23]. This results in a graph
with independent edge delays where all our results andi¢igos carry through.

Related Work Our model is based on the traditional competitive networkgantro-
duced by Wardrop in the 1950’s where he postulated that tbeaping traffic condi-
tions can be determined from the assumption that playemfiyjaielect shortest routes
[37]. The game was formalized in an influential book by Beckmet al. that lays out
the mathematical foundations to analyze competitive nedsvpl]. These models find
applications in various domains such as transportatiopd38 telecommunication net-

% Another alternative would have been to consider the mesian@e objective. This approach
reduces to a deterministic Wardrop network game in whichetige delay functions already
incorporate the information on variability. However, thean and variance are measured in
different units so a combination of them is hard to interpieiaddition, under this objective
it may happen that players select routes that are stochlgtitominated by others. Although
this counterintuitive phenomenon may also happen undentren-stdev objective with some
artificially constructed distributions, it is guarantewat to happen under normal distributions.



works [1]. In the last decade, these games received rendtesdian with many studies
aimed at understanding under what conditions equilibristewhat uniqueness prop-
erties they satisfy, how to compute them efficiently, howengive they are in relation
to a centralized solution, and how to align incentives scetipgilibria become optimal.
For general references on these topics, we refer the retasosne recent surveys [9,
27].

In the majority of models used by theoreticians who studyptaperties of net-
work games, and by practitioners who compute solutionsabpi@blems, delays have
been considered deterministic. Although there are modelsihcorporate some form
of uncertainty [3,5, 16,17, 19, 36], none of these modelsbiea®me widely accepted
in practice, nor have they been extensively studied. Psrtfaonly exception is the
stochastic user equilibriumtmodel, introduced by Dial in the 1970’s [11], which has
been studied and used in practice (see, e.g., [34, 35]). Unhd#fferent playersper-
ceiveeach route differently, distributing demand in the netwadcording to a logit
model. To reduce route enumeration, the model just takesartount a subset of “effi-
cient routes.” In contrast, the objective of the playersie network game we consider
is to choose the path that minimizes the mean plus a multitteecstandard deviation
of delay. This problem belongs to the class of stochastictesbpath problems (see,
for instance, some classic references [2, 6] and some nevesr[®@2, 13, 25, 22]).

In the network games literature, the model most related towark is that of
Ordobiiez and Stier-Moses [28]. They introduce a game wiitettainty elements and
risk-averse users and study how the solutions provided tgritbe approximated nu-
merically by an efficient column-generation method thatdsdd on robust optimiza-
tion. The main conclusion is that the solutions computedgiiieir approach are good
approximations opercentile equilibriain practice. Here, a percentile equilibrium is a
solution in which percentiles of delays along flow-beariaths are minimal. The main
difference between their approach and ours is that theighits are based on compu-
tational experiments whereas the current work focuses eorétical analysis and also
considers the more general settings of endogenouslyrdieted standard deviations
and atomic games.

Next, we formally define our model and equilibrium concepid atudy the ex-
istence of equilibrium under exogenous (Section 3) and gedous (Section 4) vari-
ability of delays. We summarize these results in Table 1. Neéa prove that equilibria
that use polynomially-many paths—referred to as succinistg¢Section 5), and fi-
nally we analyze properties of the socially-optimal salotand study the inefficiency
of stochastic Wardrop equilibria (Section 6).

2 The Model

We consider a directed gragh = (V, E) with an aggregate demand @f units of
flow between source-destination pafeg, tx) for k € K. We letP; be the set of all
paths between;, andt, andP := U, x Pi. be the set of all paths. We encode players
decisions as a flow vectdr= (f;)rcp € R‘f‘ over all paths. Such a flow is feasible
when demands are satisfied, as given by const@mgpk fr=diforalk e K.
For simplicity, when we write the flow on an edgedepending on the full flovf, we



Exogenous Noise Endogenous Noise
Nonatomic Equilibrium exists; Equilibrium exists;
Users | Solves exponentially-large convex program  Solves variati inequality

Atomic Equilibrium exists; No pure strategy equilibrium
Users Potential game

Table 1. Equilibria in Stochastic Routing Games

referto) .. f=. When we need multiple flow variables, we use the analogotagion
X, Ty, Te.

The congestible network is modeled with stochastic delagtions?, (z.) +£&.(x.)
for each edge € E. Here,/.(z.) measures the expected delay when the edge has flow
x., and the random variablg (z.) represents the stochastic delay error. The function
£.(+) is assumed continuous and non-decreasing. The expeatdfof. ) is zero and
its standard deviation is.(z.), for a continuous and non-decreasing functiQi-).
Although the distribution may depend an, we will separately consider the simpli-
fied case in whiclr. (z.) = o, is a constant given exogenously, independent figm
We also assume that these random variables are all undede@h each other. Risk-
averse players choose paths according to the mean-stadelaation (mean-stdev) ob-
jective, which we also refer to as the cost along route

Qn(£) =D Le(fe) +7, D 0elfe)?, (1)

wherey > 0 quantifies the risk aversion of players, assumed homogesneou

Thenonatomioversion of the game considers the setting where infinitegukagon-
trol an insignificant amount of flow each so the path choice plager does not uni-
laterally affect the costs experienced by other playersr{éough the joint actions
of players affect other players). The following definitioaptures that at equilibrium
players route flow along paths with minimum cagt(-).

Definition 1. The stochastic Wardrop equilibriuraf a nonatomic routing game is a
flow f such that for every source-destination pairc K and for every pathr € Py,
with positive flow . (f) < Q. (f) for every pathr’ € Py .

Instead, theatomicversion of the game assumes that each player wishes to route
one unit of flow. Consequently, the path choice of even ongepldirectly affects the
costs experienced by others. There are two versions ofdheiaggame: in the splittable
case players can split their demands along multiple patitsjrathe unsplittable case
they are forced to choose a single path. In this paper we fonukeatomic unsplit-
table case, which we will sometimes refer to justatemic The natural extension of
Wardrop equilibrium to the atomic case only differs in thiayers need to anticipate the
effect of a player changing to another path. This game aladysits a mixed-strategy
equilibrium (under the standard expected payoffs with eesfo the mixing probabil-
ities) because it is a finite normal-form game [21], so we foon the existence of
pure-strategy equilibria.



Definition 2. A pure-strategystochastic Nash equilibriurof the atomic unsplittable
routing game is a flowf such that for every source-destination paire K and for
every pathr € P, with positive flow, we have th&,(f) < Q. (f + Z,, — Z,) for
everyn’ € Py . Here,Z, denotes a vector that contains a one for patland zeros
otherwise.

One of the goals of this work is to evaluate the performanegaflibria. Hence, we
define a social cost function that will allow us to comparéedént flows and determine
the inefficiency of solutions. The social cost function i thtal cost among players:

TEP

3 Exogenous Standard Deviations

In this section, we consider exogenous noise factors, wigishlt in constant standard
deviationsr.(z.) = o, that do not depend on the flow on the edge. In this case, the path
cost (1) can be written 8@, (f) = >°, . Le(fe) + 7(3 . 02)'/2. We investigate the
existence of equilibria and provide a characterizatiorstFive show that an equilibrium
always exists, despite the challenge posed by the nonhagldibst function. Due to

space restrictions, missing proofs can be found in the &ri$ion of this paper.

Theorem 1. A nonatomic routing game with exogenous standard deviataways
admits a stochastic Wardrop equilibrium.

The proof uses a path-based convex programming formulgti@n by Ordo6fiez and
Stier-Moses [28]:

min{ Z /Owe fe(z)dz—i—z Vfr /ZU? : such thate, = Z frforee E,
ecT

eckE TeP TEP: eET

dp= > fforkeK, f,rzoforwep}. (3)

TEPk

Besides proving existence, the formulation also providegag to compute this
equilibrium using column generation. We remark that thishuod typically will not use
many paths and hence, it is likely to be practical. In additibe formulation implies
that the equilibrium is unique, provided that the objecfiugction (3) is strictly convex:

Corollary 1. The equilibrium of the stochastic nonatomic routing ganté ekogenous
standard deviations is unique (in terms of edge loads) whenthe expected delay
functions are strictly increasing.

We now return briefly to the question of computation. The exprogram (3) con-
tains exponentially-many variables (the flows on all patir&) a polynomial number
of constraints. We will see in Section 5 that an equilibriumays has a succinct de-
composition that uses at mgdt| paths; unfortunately, since we do not know ahead



of time which paths these are, we cannot write a succinciomisf the convex pro-
gram. In the case of constant expected delays, the objé8)ieeincides with the social
cost, and both problems reduce to computing a stochastitestipath for each source-
destination pair. Thus, both the equilibrium and socialroptn computation are at least
as hard as the stochastic shortest path problem [26, 24].

Theorem 2. When the expected delays and standard deviations are curfetaeach
edge, the equilibrium and social optimum coincide and cafobad in timen®(°s™),

Now, we switch to the atomic unsplittable case and show Heastochastic routing
game admits a potential function. We prove this using theadtarization given by
Monderer and Shapley [20]. The potential game structurdié@mphat an equilibrium
always exists.

Theorem 3. An atomic unsplittable routing game with exogenous stathdawiations
is potential and, therefore, it always admits a pure-stggtstochastic Nash equilibrium.

In contrast to the uniqueness of equilibrium in the nonatayaime, the pure-strategy
equilibria in the atomic case need not be unique becauseatteey generalization of
those in deterministic games, which admit multiple equidib(For example, a game
with two players with a unit demand choosing among threelighegiges with/. (x.) =
z, ando. = 0 admits three equilibria.)

4 Endogenous Standard Deviations

In this section, we consider flow-dependent standard demsbf edge delays. This
makes the standard deviations endogenous to the game. Wetlsioequilibria exist
in the nonatomic game but they may not exist in the atomic game

The following example illustrates how an equilibrium cheaginder endogenous
standard deviations. Assume a demand/of 1 and consider a network consisting
of two parallel edges with delays (z) = x and/y>(x) = 1, followed by a chain of
k edges that players must traverse. This instance admits &t peach comprising
one of the two parallel edges and the chain. Wellelenote the expected delay along
the chain (a constant since the flow traversing it is fixed) asglme thatr.(z.) =
sx. for all edges, for some constamnt> 0. Although both the deterministic and the
exogenous standard-deviation games are equivalent taRigwstance [30, 31], the
equilibrium with endogenous standard deviations changgsfisantly. Indeed, it is
given by a root of the degree-4 polynomial-4s2)x* +4s22> + (4s* — 252 —4ks?) 2% —
4s*x + s* such thatr € [0, 1], which in principle might not exist (where denotes
the flow on one of the two paths). An insight with algorithmicplications arising
from this example is that an equilibrium in the stochastimgaloes not decompose to
equilibria in subgraphs of the given graph, and in fact it rhayguite different from the
equilibria in the subgraphs. Hence, it is not immediate hm@edcompose the problem
by partitioning a graph into smaller pieces.

We can show the existence of equilibrium in the general ramat setting via a
variational inequality. In fact, the following results albold in the much more general
setting where edge-delay functions depend on the full vesftlows, as long as this
dependence is continuous.



Theorem 4. The nonatomic game with endogenous standard deviationgsastochas-
tic Wardrop equilibrium.

In contrast to the case of exogenous standard deviatiomsgva, the game with
endogenous standard deviations is potential[20] and equilibria cannot be charac-
terized as the solution to a global optimization problem.

Proposition 1. The stochastic routing game with nonconstant variances doeadmit
a cardinal potential.

As in the deterministic case, the stochastic game may havgpheuedge-flow
equilibria when the delays and variances are not stricttyeiasing. An open ques-
tion that remains is whether the equilibrium is unique whHeméxpected delay and/or
standard-deviation functions are strictly increasinge $tandard approach to establish
the uniqueness of a solution to a variational inequalitpistiow the monotonicity of
the path-cost operator (the vector of path cost functionalfgpaths). However, neither
monotonicity, nor a weaker notion of pseudo-monotonicaidis for our problem.

Proposition 2. The path-cost operator of the nonatomic routing game wittogenous
standard deviations is not pseudo-monotone.

Although we were not able to prove uniqueness in general,avedo so in the
extreme cases of players’ risk attitudes. We do so by shottiagin those cases the
stochastic game resembles a deterministic one.

Proposition 3. In the two extreme settings where players are either riskisagor in-
finitely risk averse, the nonatomic routing game admits ajuaistochastic Wardrop
equilibrium, for strictly increasing expected edge delagd standard deviations.

In contrast to the existence of equilibria in nonatomic gatteere are atomic games
that do not admit a pure-strategy Nash equilibrium. Mixgdtegy equilibria always
exist because the game is finite [21].

Proposition 4. The atomic unsplittable routing game with endogenous stehdevi-
ations may not have pure-strategy Nash equilibria, evehéncase of a single source-
destination pair in a series-parallel network with affinggednean and standard-deviation
functions.

5 Succinct Representations of Equilibria

We now turn our attention to how one can decompose an equitibof the nonatomic
game represented as an edge-flow vector to a path-flow vectorto whether a suc-
cinct vector of path flows at equilibrium always exists. Thetfguestion is trivial in
the deterministic routing game: any path-flow decompasitiban edge flow at equi-
librium works since path costs are additive. Instead, pa#iiscof the stochastic game
are non-additive and different flow decompositions of th@eadge flow may incur
different path costs. In particular, for an edge flow at etiiim, some path-flow de-
compositions are at equilibrium and others are not. Thiajgwred by the next lemma
which illustrates that shortest paths with respect to pastscdo not need to satisfy
Bellman equations since a subpath of a shortest path nedxrshiortest.



Lemma 1. In a nonatomic game, not all path-flow decompositions of agedtbw at
equilibrium constitute an equilibrium.

The previous lemma prompts the question of how one can findvadg@omposition
of an equilibrium given as an edge flow. Does a succinct deositipn always exist
(namely one that assigns positive flow to only polynomialigny paths)? The next
few results provide positive answers to these questionssid@v that succinct flow
decompositions exist and they can be found in time sliglathgér than polynomial,
|V|©UoeVD) which is the best-known running time of an exact algoritton $olv-
ing the underlying stochastic shortest path problem [2@erAatively, using a fully-
polynomial approximation algorithm for the stochasticigst path problem [24], one
can find approximate flow decompositions of equilibria inyma@imial time. We first
provide a characterization of flow decompositions of ebuidi that will enable us to
show the existence of succinct decompositions.

Lemma 2. Consider a flow decompositid® of an edge-flow equilibrium with support
P C P (the set of paths with positive flow). Then, every flow decsitipp whose
support is a subset d? and whose resulting edge flow is the same as th&t'a$ also
at equilibrium.

Using the lemma above, we can prove the existence of suagjodibrium decom-
positions.

Theorem 5. For an equilibrium(f.).cr given as an edge flow, there existsuccinct
flow decomposition that uses at mpst paths. Furthermore, this decomposition can be
found in time|V|©(e VD) and ane-approximate equilibrium succinct decomposition
can be found in polynomial time.

It remains open whether finding an equilibrium can be doneoiyrpmial time.
This is related to the open question of whether the stoahsalstirtest path subproblem
isin P [26].

Corollary 2. Given an edge flow, we can verify thatitis at equilibrium inegj1/|©(es V1),

Analogously, we can verify that a given set of player streg@paths) in the atomic
setting forms an equilibrium in timg/|© (e V1)

6 Price of Anarchy

In this section we compute bounds for the price of anarchy\H@r stochastic Wardrop
equilibria of the nonatomic game. Recall that the price ddrahy is defined as the
supremum over all problem instances of the ratio of the diyium cost to the social
optimum cost [29]. In the case of exogenous standard demsitthe POA turns out to
be the same as in the corresponding deterministic game#3igor linear expected
delays and1 — 3)~! for general expected delays for an appropriate definitiof aé
in Correaet al.[7] for the corresponding deterministic routing game. Thartds result
from a modification of the bounding techniques of Coreeal.[7, 8].



In the case of endogenous standard deviations, an anafytsis price of anarchy
is more elusive and it remains open whether the equilibreimique. For this reason,
we focus our analysis to the limiting case of extreme risk'sioa (the other extreme
case, where users are risk neutral, is well-understoodicélave assume that path costs
are equal to the path standard deviatiohsf) = (3., oe(f.)?)'/2. Recall that in
this extreme case, Proposition 3 implies that there is auséguilibrium that can be
computed efficiently with a convex program.

We now show that the first order optimality conditions of thptimization problem
that defines socially-optimal solutions are satisfied ateipailibrium, when standard-
deviation delay functions are monomials of the same degte& that in the deter-
ministic case, it is known that the POA is exactly one prdgifar that class of delay
functions [10].

Theorem 6. Consider a nonatomic network game with endogenous stardiar-
tions of the fornv. (z.) = a.a® for some fixegh > 0. An equilibrium of the game is a
stationary point of the social-optimum (SO) problem

min{Zf,rQ,r(f): 3 f,T:dekeKandeZOVWeP}.

TEP TEPxk

As a corollary from the above theorem, whenever the SO prolilas a unique
stationary point, it would follow that equilibria and soloigtima coincide and, conse-
quently, the price of anarchy would be 1. Before we identdftings for which con-
vexity of the social cost holds, we show that despite the sdmémisleading square
root, the path costs are convex in the edge-flow variableswhestandard deviations
o.(x.) are convex functions.

Proposition 5. The path cost§).(x) = (.., oe(z.)?)'/? are convex whenever the
edge standard-deviation functioas(z. ) are convex.

As a corollary from Proposition 5 and from the fact that thexsaf convex functions
is convex, it follows that path costs are also convex in theegal case where the path
cost is a sum of the mean and standard deviation of the palbngss the edge mean
and standard-deviation functions are convex in the edge flow

Next, we identify sufficient conditions for the convexity thfe social cost, which
bear an intriguing resemblance to the sufficient conditfonshe uniqueness of equi-
librium mentioned earlier.

Proposition 6. The social cost’(x) = xQ(x) = > _.p -Qx(x) is convex whenever
the path-cost operata® is monotone and the path coss (x) are convex.

As established above, the path costs are convex (underxstesedard-deviation
functions), however the path-cost operator is not necidgsawnotone even in the basic
case of linear standard deviation functions equal.t@:) = =, and thus, the social cost
may not be convex as shown in Figure 1. Nevertheless, we itleshstv that the POA
is 1 in a network of, pairs of parallel edges connected in series.
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Fig. 1. Non-convex slice of the social cost function

Proposition 7. Consider a nonatomic game on a networkagbairs of parallel edges
connected in series with zero mean delays and standard ti@vitunctions equal to
o.(z) = z for all edges. In this case, socially-optimal flows and eiquié coincide.

Despite the limitation of the hypothesis, the proof reguimecareful analysis to bound
the social cost, in contrast to our results for exogenousistal deviations under gen-
eral graphs and costs. For the case of endogenous standaatiates, whether the

nonconvexity of the social cost can be circumvented to alydte of anarchy bounds
for more general graphs and delay functions remains open.

7 Conclusions and Open Problems

We have set out to extend the classical theory of Wardroplibgaiand congestion
games to the more realistic setting of uncertain delaysjsiog on the methodology
and questions of algorithmic game theory. The uncertaihyetays calls for models
that incorporate players’ attitudes towards risk. In traper, we have focused on the
model whereby players seek to minimize a linear combinatioithe expectation and
standard deviation of delays along their chosen route.

The directions pursued in this work have opened a varietyestjons which would
be interesting to explore in future studies. Some of thesstipns are:

— What is the complexity of computing an equilibrium when iistg (exogenous
standard deviations with atomic or nonatomic players; gedous standard devia-
tions with nonatomic players)?

— What is the complexity of computing the socially-optimalwgmn? What is the
complexity of computing the socially-optimal flow decomjtios if one knows
the edge flow that represents a socially-optimal solution?

— Can there be multiple equilibria in the nonatomic game witdagenous standard
deviations?



— What is the price of anarchy for stochastic Wardrop equdilin the setting of
nonatomic games with endogenous standard deviationsgfargl graphs and gen-
eral classes of cost functions?

— Ordobhez and Stier-Moses considered the case of playénsheterogenous atti-
tudes toward risk [28]. Can some of the results in this papeexiended to that
setting?

Of course, one could pursue other natural models and plaiiges and build on or
complement what we have developed here. In particular, atteirmight be enriched
by also considering stochastic demands to make the demadadnsire realistic.
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