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ABSTRACT

We study first-price auction mechanisms for auctioning flow be-
tween given nodes in a graph. A first-price auction is any auc-
tion in which links on winning paths are paid their bid amount;
the designer has flexibility in specifying remaining details. We as-
sume edges are independent agents with fixed capacities and costs,
and their objective is to maximize their profit. We characterize all
strong e-Nash equilibria of a first-price auction, and show that the
total payment is never significantly more than, and often less than,
the well known dominant strategy Vickrey-Clark-Groves mecha-
nism. We then present a randomized version of the first-price auc-
tion for which the equilibrium condition can be relaxed to e-Nash
equilibrium. We next consider a model in which the amount of
demand is uncertain, but its probability distribution is known. For
this model, we show that a simple ex ante first-price auction may
not have any e-Nash equilibria. We then present a modified mech-
anism with 2-parameter bids which does have an e-Nash equilib-
rium. For a randomized version of this 2-parameter mechanism we
characterize the set of all e-Nash equilibria and prove a bound on
the total payment in any e-Nash equilibrium.
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1. INTRODUCTION

In this paper, we study variants of the path auction problem. The
basic problem can be described as follows: We are given a directed
graph G with two distinguished vertices s and ¢. Each link in the
graph is a self-interested agent whom we assume to be risk-neutral.
All links have capacity 1, but each link 4 also has a cost ¢; that is
known only to the link itself. A customer wants to buy 1 (or more
generally, some integer k) paths from s to ¢. For this, she holds an
auction in which each link can bid; the auction should end with the
customer announcing a path, as well as the payments to each link.
The questions we are chiefly concerned with are: (1) What is the
form of bids, and how are the path and payments selected? (2) How
much does the customer end up paying, given that the links have an
informational advantage (the customer does not know the true link
costs)?

Previous work on path auctions has studied the Vickrey-Clarke-
Groves (VCG) mechanism [17, 12, 9, 2, 8]. Roughly speaking,
the VCG mechanism pays each edge on a winning path an amount
equal to the highest bid with which it could still have won, all other
bids being unchanged. The VCG mechanism has the attractive
property that each link’s dominant strategy is to bid exactly its cost.
Thus, no bargaining or communication between bidders is required
to stabilize on bids. Also the buyer does end up using the path of
lowest true cost, which can be seen as optimizing social utility.

On the negative side, the VCG mechanism can lead to the cus-
tomer paying far more than the true cost of the cheapest path. The
tendency to overpay is exaggerated in path auctions (as compared
to simple auctions) because a bonus needs to be paid to every agent
on the path. Thus, the payment to the lowest-cost path may even
greatly exceed the cost of the second-cheapest path. For example,
in Figure 1, VCG selects the bottom path and pays 4 to it, even
though the alternate path has cost 3. Archer and Tardos showed
that a more general class of dominant strategy mechanisms can be
forced to make arbitrarily high overpayments [2]. Their result was
strengthened to hold for every truthful mechanism by Elkind, Sahai
and Steiglitz [8].
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Figure 1. Any e-Nash equilibrium selects the lower path and
pays 3 — e while VCG pays4 for it.



In this paper, we are interested in finding techniques to rein in
the cost to the consumer, even when the information is completely
asymmetric—the links know the customer’s valuation, but the cus-
tomer does not know the links’ valuation. If we restrict ourselves
to dominant-strategy mechanisms, we cannot hope to do better than
the VCG mechanism. In this paper, we instead consider variants on
first-price auctions and less restrictive solution concepts. *

First-price auctions open the possibility of paying less than VCG
auctions, but they do so by sacrificing valuable properties of the
VCG mechanism. In particular, in a first-price auction, a risk-
neutral edge may have incentive to lie, bidding a price higher than
its cost. Also, in the absence of a dominant strategy, it may be nec-
essary for bidders to communicate and bargain to achieve a stable
set of bids.

1.1 Our Results

We begin by exploring the sets of bids that are stable under a
first-price auction mechanism. The most natural solution concept
is that of a Nash equilibrium. We want to retain the property that
agents can see each others’ bids, so that the bidding could be per-
formed through posted prices. Thus, mixed-strategy equilibria are
not very meaningful for us. Unfortunately, we will not necessarily
have a Nash Equilibrium in pure strategies, as the following simple
example shows. Consider a network of two parallel links, one of
cost 2 and another of cost 1. Also assume that ties are broken de-
terministically by assigning the flow to the link with cost 2. In this
case, the lower-cost edge would bid less than 2; however, for any
bid 2 — ¢, it could always do better by increasing its bid by a further
€/2. Hence there is no pure Nash equilibrium in this case.

This motivates us to use the solution concept of e-Nash equilib-
rium, in which no player can deviate in a way that improves his
payoff by at least e. Unfortunately, there is a drawback to this so-
lution concept as well. In Figure 2, we see that the winning path
may have a price higher than the cost of the best competitor. This
defeats our goal of reducing customer overpayment. \We might ar-
gue that this solution would not be sustained in practice, since the
edges on the second lowest-cost path are likely to each reduce their
price. This leads us to explore, in Section 3, the concept of a strong
e-Nash equilibrium, in which there is no group of agents who can
deviate in a way that improves the payoff of each member by at
least e. We prove that a strong e-Nash equilibrium always exists for
any e > 0. We then prove an upper bound on the payment of any
such equilibrium and show that the payment is essentially not more
that of the corresponding VCG payment, and often it is much less
as shown by Figure 1.

Although strong e-Nash equilibria may solve some of the over-
payment problem, we cannot guarantee that bidders will reach one.
In particular, in the absence of knowledge about other bidders costs,
neither losing bidder in the example of Figure 2 may be willing to
“blink first” and lower the price. Thus, in Section 4, we present a
modified, randomized, first-price auction that explicitly drives the
first-price auction towards a strong e-Nash equilibrium.

Another drawback of first-price auctions is that, unlike the VCG
mechanism, an edge’s preferred bid may depend on the demand
(e.g., if demand is high, an edge can bid higher and still hope to be
needed). It is unreasonable to expect edges to delay setting prices
until demands are made clear. Thus, in Section 5 we consider a
model in which bidders set prices according to a distribution of
possible demands. We show that, in this model, a simple first-price

1By “first-price auction” we refer to any auction in which the links
on the winning path (or paths) are paid their bid amount. The de-
signer still has considerable flexibility in designing the details of
the auction mechanism.

auction may not have an e-Nash equilibrium. However, we design a
first-price mechanism involving two-parameter bids that does have
an e-Nash equilibrium. We then sketch a mechanism that combines
this two-parameter mechanism with the randomized mechanism of
Section 4. For this combined mechanism, we can characterize the
set of all e-Nash equilibria, and thereby prove a bound on the total
payment in any e-Nash equilibrium.

In order to maintain continuity, most proofs have been deferred
to the Appendix.
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Figure 2. Costs (Ieft) and Prices (right) in an e-Nash equilib-
rium. The bottom edge wins and the price is higher than the
cost of the second best path.

1.2 Related Work

Path auctions are an instance of the more general class of com-
binatorial auctions, in which buyers bid for different collections of
goods. In path auctions, sellers (in our case, graph edges) bid to
attract consumer flow and consumers seek to buy a path of edges
of lowest price between a specified source and destination. Finding
the winners in general combinatorial auctions is NP-hard [17, 1],
for this reason researchers often add restricting assumptions such
as symmetric bidders, etc. Path auctions provide one such simple-
structured form of combinatorial auctions, which arises naturally
in network routing and more generally in any problems with an
underlying network structure, such as task allocation to teams of
agents.

Our work is also related to the literature on strong Nash and
strong e-Nash implementation of the core. In particular, the deter-
ministic first-price path auction we consider is similar to the game
introduced by Young [19] in the context of cost-sharing. For the
random demand path auction introduced in section 5.2, we use
techniques based on Curiel [5] to show the existence of the core.
We also note that Kalai et al. [14] presented a strong Nash imple-
mentation of the core of any cooperative game. We could have
used this implementation in place of the 2-parameter auction in
Section 5.2; however, the method in [14] is more complex and
communication-intensive, and in our case it would essentially re-
quire each bidder to report an entire flow.

There has also been some previous work on non-dominant strat-
egy mechanisms for path auctions. Elkind et al. [8] present and
analyze an optimal Bayes-Nash mechanism. Garg et al. [7] use
the core concept from cooperative game theory to bound the pay-
ments of VCG mechanisms for a large class of problems that in-
cludes path auctions. Czumaj and Ronen [6] propose a mechanism
which combines dominant and non-dominant strategy mechanisms,
however they show that it has an arbitrary ratio between the pay-
ment of different equilibria and say that overall, “finding a natural
and tractable measure of [non-dominant strategy] protocols seems
challenging and important.”

2. PROBLEM STATEMENT

In the path auction game, there is a network G of strategic links,
each with a privately-known true cost. All links have unit capacity.



A customer wants to buy routes from a source s to a sink ¢ in the
network to guarantee that her integral amount of demand & can be
routed. In order to do this, she defines a set of rules, or mechanism,
that elicits bids from each agent and then allocates flow to each
agent in a way that satisfies some natural incentive properties.

One plausible mechanism for this problem is the Vickrey-Clark-
Groves (VCG) mechanism [18, 4, 11]. This mechanism is truthful
dominant strategy or strategyproof, i.e. the strategically best bid for
an agent is his true cost, independent of others’ bids. Thus the bids
solicited by the mechanism in an equilibrium are in fact the true
costs of the agents. This enables the mechanism to allocate flow
to the lowest true cost k-flow, a socially desirable goal in many
settings. However, in order to guarantee that this allocation rule
is truthful dominant strategy, the mechanism must pay a (possibly
large) premium to all edges on the selected k-flow. One side effect
of dominant strategies is that all bargaining between the strategic
agents (links, in our case) is eliminated, and the overpayment to
edges on the selected k-flow in the VCG mechanism can be thought
of as a side-effect of this fact.

We analyze approaches to reducing the total payment by using a
weaker solution concept of a pure strategy equilibrium, the strong
e-Nash equilibrium first introduced by Aumann [3] and used by
Young [19].

DEFINITION 1. An e-Nash equilibrium for a game is a set of
strategies, one for each player, such that no player can unilaterally
deviate in a way that improves her payoff by at least e.

A strong e-Nash equilibrium for a game is a set of strategies, one
for each player, such that no group of players can deviate in a way
that improves the payoff of each member by at least e.

In particular, we show that in our models, for any strong e-Nash
equilibrium set of bids, there is another strong e-Nash equilibrium
set of bids with the same allocation and payment scheme in which
each agent bids within e of his true cost unless he is allocated flow
(in expectation), and he never bids below his true cost.

Our mechanism is a simple first-price auction. It elicits bids from
each agent, computes the cheapest k-flow according to the bids, and
then allocates the demand to that k-flow. We further assume that we
have a deterministic tie-breaking rule so that if there is more than
one cheapest k-flow, we take the lexographically first integral one.

We consider two specific path auction games. In the determin-
istic path auction game, the user first announces &, his total de-
mand. Then the edges announce bids and the user runs a first price
auction to buy the necessary flow. It is easy to imagine that the
assumptions of this model might be unrealistic in practice. Does a
user really know his total demand at the time he begins the auction?
In our second model, the random path auction game, the user an-
nounces a probability distribution on k. Then the edges announce
bids. Finally, the user draws & according to this distribution and
buys flow accordingly. In the rest of this paper, we analyze upper
and lower bounds on the payments in strong e-Nash equilibria for
each of these games.

Notation: For a graph G, let ¢ be the vector of edge costs, let
b be the vector of edge bids, and let F\, (k, G) be the set of edges
in the minimum weight integral k-flow? in G with respect to edge
weights w (if there is more than one minimum weight k-flow in
G with respect to w, let Fyw (k,G) denote the set of edges in the
unique k-flow that wins the deterministic tie-breaking rule of the
mechanism). We will refer to F.(k, G) as the minimum cost k-
flow and Fy (k, G) as the minimum price k-flow with respect to bid

2The weight of this flow is equal to the weight of the minimum
weight k-flow, i.e., requiring integrality doesn’t change the value
of the optimal solution.

vector b. Finally, for any flow or edge set F', we define Wy, (F)
to be the weight of F with respect to edge weights w. We say
W (F) is the cost of flow F and Wy (F’) to be the price of flow F
with respect to bid vector b. When the bids, costs, or graph is clear
from the context, we will sometimes drop them from the notation.
As a shorthand, we sometimes write C(F') instead of W.(F"), as
well as C(k) for the (cost of the) lowest cost k-flow. Finally, we
denote the number of agents, or edges in G, by n.

3. DETERMINISTIC PATHAUCTION GAME

Recall that in the deterministic path auction game, the user first
announces k, his total demand. Then the edges announce bids and
the user runs a first price auction to buy the necessary flow. We
would like to analyze the payment properties of this mechanism.
First, we prove that this mechanism has a strong e-Nash equilib-
rium.

THEOREM 1. Any deterministic k-unit first price auction has a
strong e-Nash equilibrium.

PROOF. We construct a strong e-Nash equilibrium as follows.
Set the initial bid vector b! = ¢, i.e. each edge bids its true cost
initially. Order the edges in the graph in an arbitrary way. For
each edge e in this order, if e is part of the current lowest price
k-unit flow Fy(k, G), let e raise its bid until Wy (Fyr (k, G)) >
Wi (Fo(k,G — {e})) — €/2 (where G — {e} denotes the graph
G with edge e removed). Otherwise let e’s bid remain unchanged.
Call the final bid vector bf.

We claim bf is a strong e-Nash equilibrium for the deterministic
k-unit first price auction. To show this, suppose the contrary, i.e.,
there is a coalition S of edges in which each edge can improve its
payoff by at least e by changing its bid. Note that for any bid vector
constructed during this process, the auction always selects the same
k-flow. Therefore, the edges which are not on the winning flow in
bf are bidding their true cost and cannot bid lower. Furthermore,
the edges which are on the winning flow will get smaller payoff if
they decrease their bid. Therefore no edge can benefit from lower-
ing its bid. Thus, the edges in the coalition S can only raise their
bids. Suppose the edges in SN Fy¢ increase their bids by a total of
2 units and the remaining edges in the coalition increase their bids
by a total of y units (note =,y > 0). Call the new bid vector b.
In order for all edges in S to increase their payoff, S C Fy. Thus
Wi (Fpe) = Wye(Fye) + = While Wy (Fb) = Wye(Fb) + + y.
But then Wy (Fb) > Wi (Fpr) since Wye(Fre) < Wye(Fb) by
optimality of Fy¢. This contradicts the optimality of Fy,. [

Given the existence of strong e-Nash equilibria, we can bound
the payments in any such equilibrium. In order to develop some
intuition for the proof, it is useful to first consider sending 1 unit
of flow in a graph consisting of just two parallel edges from the
source s to the sink ¢ of costs a and b, a > b + ¢. The lower true
cost edge must be allocated the flow in equilibrium since he can bid
just under the true cost of the higher cost edge and be guaranteed a
profit of at least e. Therefore, by the conditions of a strong e-Nash
equilibrium, we can assume that the bid of the higher cost edge is
at most e more than his true cost, and so the overpayment of any
equilibrium will be at most a+e—b. The crux of this argument was
to bound the bid of the winning path by the bid of an augmenting
path. Since the augmenting path does not receive flow, we could
show that without loss of generality the bid of this path should be
close to its true cost. This proof idea easily extends to k-flows in
general graphs as can be seen below.



THEOREM 2. The total payment of the deterministic k-unit first
price auction in a strong e-Nash equilibrium is at most
k[C(Fe(k + 1)) — C(Fc(k))] + kne,
where c is the vector of true edge costs.
PROOF. Fix a strong e-Nash equilibrium vector of bids b and
define edge sets
E,. = {e€F.(k+1)—-Fu(k)}
E, {e € Fe(k+1) N Fu(k)}
E_ {e € Fuv(k) — Fe(k + 1)}
E is the subset of edges on an augmenting path that are not in the
original flow Fy (k). We show that without loss of generality we

may assume that these edges are bidding close to their true cost. To
show this, consider a bid vector b’ such that

b — min{b;, ¢; + €} fori € E4,
T bi fori ¢ E4.

We want to argue that Wi, (Fyr (k)) = W (Fb(k)). First we show
F, (k) = Fyr (k). Suppose not. Let E', = E4 N Fy (k) be the set
of edges in the new lowest price flow that are also in E4. We have
only changed the bids of the edges in E, so if E’, is empty then
Fy, (k) = Fy (k) (this assumes some consistency properties of the
tie-breaking rule). If E’, is nonempty, then we can consider a bid
vector b” constructed from b in which we only decrease bids of
edges in B, :

b = min{b;, c; + €} fori e Eq_,
T b fori ¢ E',.

Since by our assumption the winning flow has changed, we must
have b] = ¢; + ¢ < b; for a non-empty subset E/{ of E/.. Un-
der this new bid vector, Wy (F) > Wy (F) for any flow F
since bi < by’ for all edges i. By construction, Wy (Fy: (k) =
Wi (Fw (K)) and so, by the consistency of the tie-breaking rule,
Fy (k) = Fpn (k). Thus, under the bid vector b the set of edges
E’! can form a coalition in which each member bids e above its
true cost and all members profit by e. This contradicts the fact the
b was a strong e-Nash equilibrium.

Now, noting that Wy (Fyr (k)) = Wiy (Fo (k) = We(Fe(k)),
it suffices to bound Wy, (Fyr (k)). Consider the (non-integral) flow
(k/(k+1))Fc(k+1), i.e. the flow which sends k/(k + 1) units of
flow along the flow paths determined by F.(k + 1). Since Fy (k)
is a lowest price k-flow,

(%) Wiy (Fa(k + 1)) — Wi (Fi (K)) > 0.
This reduces to
() W ) = (7 ) W (Bo) = W () 2 0
which, solving for Wy, (E,) + Wy (E_), gives
Wy (Fyr (k) = Wi (Eo) + Wi (E-) )
k(Wy (Ey) — Wer (E-)) &)
k(We(E+) + ne — We(E-)) ®)

k(We(Fe(k + 1)) — We(Fi (k) + ne)4)
where 3 follows from the fact that for any edge b; > ¢; and for all

i € E4, b, < ¢; + ¢ and 5 follows from the optimality of Fi(k)
with respecttoc. [
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In addition, it is easy to see that this bound is tight. Consider a
graph with (k + 1) parallel edges where the cost of the bottom &
edges is ¢ and the cost of the remaining top edge isc¢’ > c. Letall k
lower cost edges bid ¢’ —e for a small e > 0, so their bid is less than
the bid of the remaining higher cost edge (whose bid is at least ¢').
The minimum price k-flow with respect to this bid vector will use
the bottom & edges for a total price of k(¢’ — €) which approaches
k(C(Fe(k +1)) — C(Fc(k))).

Finally, we emphasize two properties of our mechanism. The
first property states that the total payment of our first price mecha-
nism in a strong e-Nash equilibrium is at most kne more than the
VCG payment for the same graph in a Nash equilibrium. The sec-
ond property states that the social welfare of the resulting solution
is an additive approximation to the optimum social welfare. The
proofs of these two theorems and of several of our later results are
deferred to an extended version of this paper, due to space limita-
tion.

THEOREM 3. Given a graph G with source S and sink T', the
VCG payment for & units of flow from S to T'is at least k(C (Fc (k+
1)) — C(Fe(k))).

THEOREM 4. In a strong e-Nash equilibrium b, C(Fs(k)) <
C(Fc(k)) + en (i.e. the strong e-Nash equilibria of the first price
auction are approximately efficient).

4. IMPLEMENTATION IN e-NASH

The simple first-price auction may have costly e-Nash equilibria,
as shown in the example in Figure 2. In Section 3 we used the e-
strong Nash solution concept to get around this problem. However,
assuming that the bidders will reach an e-strong Nash equilibrium
is perhaps too strong an assumption: it requires extensive coor-
dination between agents. In this section, we present a variant of
the mechanism in which every e-Nash equilibrium results in a low
price.

One idea to achieve this is to pay a bonus to edges that in-
creases as their bid decreases. This encourages edges to submit
low bids. However, this has the side-effect of incentivizing edges
to bid even below their true cost, as long as they remain off the
winning path. This would make the bargaining problem that links
must solve much more complex, as it would include bargains be-
tween off-path and on-path links. Alternatively, we could instead
send flow on each edge with some probability that increases as the
bid decreases. Thus an edge will not bid below its true cost, but
it might be incentivized to bid very high. Using a combination of
these two ideas, we can construct a payoff function such that an
edge will bid close to its true cost if it is not on the lowest true cost
flow. If the bonuses and probabilities are small enough, then these
bonus payments will not be very large, and we can prove a bound
on the total payment of the mechanism similar to that in Theorem 2.

We achieve this result by making the mechanism outcome a lot-
tery over paths instead of a single path: Every edge is on a selected
path with at least a small probability, and edges off the shortest
path are given an incentive to bid their true cost. This is known as
virtual implementation in the economics literature (see, eg. Jack-
son [13]). We assume that there is a value B such that no edge
bids more than B. (Alternatively, B can be the maximum amount
that the buyer is willing to pay.) Further, we assume that the edges
are risk-neutral. The mechanism is given in Figure 3. The mech-
anism starts by computing a collection of paths {P.}. We discuss
the computation of this collection in Section 4.1. The mechanism
then invites a bid b. from each edge e. The lowest-price path is
almost always picked; however, with a small probability, one of



multiple paths in P.

3. For each path P € P, compute

1. For each edge e, find P, a path from s to ¢ through e. Let P = {P.}.ce. Note that an edge e may appear in

2. Invite bids b = (b1, ..., be,. .., b,) from the edges.

<7p=oz—'r2:bfJ

4. Select each path P € P with probability o p; with probability (1 — >~ ., op), select the lowest price path. Call
the selected path P*. Pay each edge e € P* its bid b..

5. Pay each edge e € G'the sum fe(b) = > pcp ps. fF (b), where
£ (b) = (B —be) + b Y b — 7>

(This payment is in addition to any payment edge e may get in step 4.)

ecP

b2

jeP

Figure 3: Mechanism FP2. The parameters a and 7 are selected to be small positive constants such that @« < n 2B ! and r <

an~'B7L.

the paths from the collection is picked instead. In addition, each
edge is paid a small bonus that depends on the bids. The selec-
tion probability and bonus are chosen to ensure that it is optimal
for every edge, which is not on the lowest-price path to bid its true
cost. For simplicity, we present the mechanism and analysis for a
single unit flow; the results can easily be extended to any constant
k > 1 units of flow. First we note that e-Nash equilibria exist in this
mechanism; indeed the same construction as in Theorem 1 yields
an e-Nash equilibrium.

LEMMA 1. For any cost vector ¢ and any ¢ > 0, an e-Nash
equilibrium always exists.

Given the existence of e-Nash equilibria and total payoff func-
tion to each edge (sum of bonus and expected selection payoff),
we can bound the bid of the edges not on the lowest true-cost path
by examining their optimal bid. Note that the bonus increases as
the bid decreases, but the expected selection payment decreases as
the bid decreases. Intuitively, we design the bonus and selection
probabilities so that the total payoff function is maximized when
b; = c;. Note that if an edge is selected, it incurs its true cost.
In this way, the true cost automatically enters his expected payoff
function—the mechanism does not need to know the cost in order
to achieve the maximum at b; = ¢;.

By evaluating the expected payoff of an off-path link in mecha-
nism FP2, we can show:

LEMMA 2. Let b be an e-Nash equilibrium bid vector in the
mechanism FP2. Then, for any edge e not on the lowest-price path
with bids b, be € [ce — v/2€/T,ce + \/2¢/T].

Now, we observe that the values o and 7 can be chosen small
enough to make the probabilities {op} and bonuses £ (b) arbi-
trarily small. Thus, the total payment to edges not on the shortest
path is very small. The bound on the payment of mechanism FP2
is more sensitive to the value of e because edges not on the lowest-
price path get very small payments in expectation. However, we
can show that, in the limit as e — 0, the maximum expected pay-
ment in any Nash equilibrium is bounded by the same constant as
before.

Observing that as e — 0, 1/2¢/7 — 0, we get the following
result:

THEOREM 5. Choose any o < n 2B~ !, 7 < an™'*B™'. For
these values of o and ,
lim max {Total payments with bids b} — C(2)-C(1)+3an’B.

e—0e-N

4.1 Computing the set of covering flows {P.}

Recall that the mechanism FP2 needs to compute a set of paths
{P.}, where P, is a path from s to ¢ that uses edge e. If e is to
be relevant to the path auction, such a path must exist, however,
it is not always straightforward to compute. In particular, if the
network is a general directed graph, it is NP-hard to compute such
a path, since it reduces to the two disjoint paths problem, which is
NP-complete [10].

However, there are many interesting classes of graphs for which
it is possible to compute such a path P. in polynomial time, includ-
ing undirected graphs and directed acyclic or planar graphs [10].
We can also modify the mechanism to ask each bidder to exhibit
such a path, thus transferring the computational burden on to the
bidders. Also, these paths may be precomputed and used in many
executions of the mechanism—they do not depend on the costs or
bids.

Another possibility is to use a set of covering paths that do not
all terminate at t—this can be easily computed, even for general
directed graphs. Then, if the path is picked, some arbitrary traffic
is sent along this path. After this "audit” traffic has been delivered,
the lowest-price path is used for the intended traffic from s to ¢.
As long as the mechanism can verify that the traffic is correctly
delivered, the edges would still have an incentive to bid as specified.
Similarly, if we could verify the exact path that the traffic used, we
could use non-simple paths to cover the edges; again, a set of non-
simple covering paths can easily be found.

5. DISTRIBUTION ON DEMANDS

In the previous sections, we studied first-price auctions to meet
a known demand, we argued that they had stable Nash equilibria,
and showed how to adjust this mechanism so that the equilibria
chosen hy the user had relatively small overpayments. In practice,
however, it may not be possible to defer the setting of prices until
the demand is known. In this section, we examine the problem of



achieving stable prices without advance knowledge of the demand.
In particular, we assume that the edges know only of some proba-
bility distribution over the possible demands.

Ideally, we would like our results for first-price auctions with
known demand to carry over. For example, we proved in Section 3
that a first price auction for &k units of demand led to a payment of
ITy = k[C(F.(k+1)) — C(F.(k))]. Itis thus natural to hope that
the same mechanism operating over random % is also stable, with
expected payment E[IL;]. This turns out to be false—in fact, we
show in Section 5.1 that the simple first-price auction mechanism
described previously has no e-Nash equilibria. Intuitively, this is
because edges must tradeoff the probability of receiving flow with
the profit of receiving flow. With a high bid, the profit is large, but
the probability of winning the auction is low. If the other bids are
also high, an edge will prefer to lower its bid to win with a higher
probability. This will lead other edges to lower their bids so as
to restore their high winning probability. Now, however, the first
edge will increase its bid so as to increase its profit at the expense
of its winning probability, and so a cycle emerges in the bidding
strategies. So we need to turn to more complex mechanisms.

We exhibit a mechanism involving two-parameter bids that, un-
like the single-parameter first-price mechanism, does have e-Nash
equilibria. Intuitively, a two-parameter mechanism gets around the
problem of a single-parameter mechanism by letting the edges ex-
press their preferences over the entire price-probability space. The
mechanism allows an edge to bid a “price” that depends on its
winning probability; this prevents the bidding cycles that occur
with single-parameter bids. Furthermore, using an indifference-
breaking technique similar to that of Section 4, we are able to re-
strict the set of equilibria to ones with bounded user payments. The
bound is not quite the E};[II;] we hoped to achieve, but does bear
a clear resemblance to it.

5.1 No equilibrium with 1-parameter bidding

In this section, we analyze the scenario in which the demand
is random with a known distribution, and the bidders (links) have
to commit to a price before the demand is revealed, and there is
deterministic tie-breaking. Subsequently, the demand is revealed
to be k, and the k& lowest-priced paths are picked. We show that
there is in general no e-Nash equilibrium in pure strategies for this
game.

Consider a graph with four parallel links W, X, Y, and Z be-
tween the source and the sink, with true costs w, z,y, and z re-
spectively. The demand is either 1, 2 or 3; for simplicity, let the
probability of each demand value be % Assign the costs such that
w—+50e<x+42¢ =y + 12¢ = 2.

THEOREM 6. There is no pure-strategy e-Nash equilibrium for
this game.

The proof repeatedly uses the e-Nash conditions to show that, at
any bid vector, one of the following must hold: (1) There is an
agent who would gain by raising its bid, or, (2) There is an agent
who would gain by undercutting another agent to win with a higher
probability. The full proof will appear in an extended version of
this paper.

5.2 Equilibrium with 2-parameter bidding

In section 5.1, we saw that when the demand is a random vari-
able with a known distribution, a simple first-price auction may not
have an e-Nash equilibrium. In this section, we present a different
auction model, in which agents’ bids are pairs of values, and show
that it has a nonempty set of e-Nash equilibria.

To prove that the bidding game induced by this auction has a
strong e-Nash equilibrium, we construct a cooperative game model

of the auction. We show that the cooperative game has a nonempty
core. We then connect the cooperative game to the actual bidding
game, and show that the path auction has an e-Nash equilibrium
corresponding to any core element.

The model is as follows: The demand can take any integral value
in the range [1, r], where r is a positive integer. Further, there is a
known prior distribution on the demand values; say that the demand
is k with probability pg, for k = 1,2...,r. We assume for sim-
plicity that py, > 0 for all &; our results easily extend to a situation
in which p, = 0 for some values of £ € {1,...,7}. The agents’
bids are pairs of numbers: each agent 4 bids a pair a = (&;, @),
where ¢&; is interpreted as ’s reported cost, and @; is interpreted as
1’s demanded profit.

The mechanism receives the bids, and announces flows Fi, Fs,
..., F, for each possible demand value. We call the collection F =
{F1, F>...,F,} acandidate solution or simply a flow. We also
identify a flow F with the set of links in the union F; UF,U- - -UF,,
and say that ¢ € F ifi € F}, for some k.

For each i € F, the mechanism calculates the probability that
¢ is in the winning flow, p; = E{klieFk}pk' Later, the actual
demand transpires; suppose that the demand turns out to be k. The
mechanism uses the links in F to route the flow, and pays each link
1 € Fy asumof ¢; + j;— Consider any link 7 selected in some flow.
If & = ¢ (i.e., if ¢ bid its true cost), her expected profit would be
;. Given the input bid pairs, the mechanism selects a set of flows
F, F»,...,F, that minimizes the total expected payments. This
can be expressed in terms of solving an integer program.

As before, we use W, (F) or C(F) for short, to denote the total
expected cost of a solution F = (F1,.. ., F;) when the individual
link costs are ¢, and W; (F) to denote the price of the flow F when
the bids are a. We denote the mechanism output (i.e., the min-price
flow) by F(a).

5.2.1 The cooperative game ¢

In this section, we define a cooperative game based on any spe-
cific instance of our 2-parameter mechanism, and prove that it has
a non-empty core. This cooperative game is introduced only for
strategic analysis of the mechanism. It is not explicitly played by
the agents, but helps to shed light on the agents’ strategies in the
two-parameter auction.

DEFINITION 2. Given a set of players P, a cooperative game is
defined by a characteristic function v : 2F — R0, with v(#) = 0.
Forany S C P, v(S) is called the value of the set S.

Given a directed graph G with distinguished source and sink, and
a true cost ¢; for each link ¢« € G, we define the cooperative game
G as follows:

The set of players in the game G is P = {0,1,--- ,n}, where
each i > 0 is the player corresponding to link 4, and 0 is a special
player corresponding to the customer. Let Z be the customer’s bud-
get, and assume that Z is large enough to be irrelevant; Z > rx
cost of minimum-cost (r + 1)-flow is sufficient. For each set S C
P, S # 0, define the value v(S) of S in G as follows:

If S does not contain a r-unit flow from s to ¢, v(S) = 0. If S
contains the customer 0 as well as all edges on a k-unit flow from
the source to the sink, v(.S) is defined to be the optimal value of the
linear program given below:

Define d;,5 to be the indicator of 7 in S, i.e,, d;,s = 0ifi ¢ S
and é;,s = 1ifi € S. Also, for any node « in the network, we use
the notation In(«) to denote the set of incoming edges, and Out(«)



to denote the set of outgoing edges. Then,

v(S) = max {Z = k=t [pk 2iso clm”ﬂ]}

Subject to:

EieOut(a) Tik — Eiem(a) Tk =0 VkVa # s,t

EieOut(s) Tik — Zieln(s) rik —k =0 Vk

zik < 04,8 VE,Vi >0

ik, >0 Vk,Vi >0
(6)

This linear program is interpreted as follows: For any link 4, and
any demand value k, the variable z; indicates the flow along 7 in
F}. Intutitively, the value of a set S is related to the net surplus that
is created when only the agents in set S are involved in the flow. If
S does not contain the customer and a r-unit flow, v(.S) is defined
to be 0. Thus, only sets that contain at least one candidate solution
are assigned a positive value.

We also note that if S = P, then the linear program has an
integral optimal solution, corresponding to an integral min-cost k-
flow for each k. In other words, there is a solution in which z;; is
either 0 or 1 for all 7 and k. It is also clear that v(S) < v(P) for
all S C P.

Thus, the function v(.S) defines a finite, nonnegative value for
each coalition set .S, and hence it is the characteristic function of a
valid cooperative game G.

Our analysis is centered on the concept of the core of a coop-
erative game. Loosely speaking, the core of a cooperative game
consists of all ways to divide up the overall value v(P) among the
agents such that no group S has reason to be unhappy - i.e., S
attains a combined utility of at least v(.S). Formally, the core is
defined as follows:

DEFINITION 3. Avector u = (uo, u1,. . ., uy) is in the core of
the game G iff it satifies all of the following:
Vi u; >0 ,and
Yiepui =v(P) ,and
VSCP Y cqu >v(S).

In general, the core of a cooperative game might be the empty
set. However, we can prove that this is not the case for the game G:

LEMMA 3. The game G has a nonempty core.

PROOF. Consider any division of v(P) among the players. We
show that there is at least one such division that satisfies all the
core constraints. For any set S with v(.S) = 0, the core constraint
is trivially satisfied. Now, consider a set set S with v(S) > 0.
The linear program defining v(S) can be summarized in the form
max{z - [} subject to  H = 0,zA < b5, and z > 0, where z is a
vector of all the variables, H and A are matrices independent of S,
and b° is a 0-1 vector representing the capacity constraints for set
S. Then, the dual of the linear program (6) is the following linear
program:

v(S) = min {»° - y}
Subject to: %
Ay+Hz >1
y=>0

Now, consider the dual program that defines v(P), i.e., the value
of the set containing the customer and all the links. Let (7, 2) de-
note an optimal solution to this problem. Now, define u; = (%} - §
for all 4. Recall that ° is a 0-1 vector, with 1s in precisely those
equations that involve some i € S; thus, b5 = 3, s b}, Then,

asy > 0, we have u; > 0, and

> ui =b" - =w(P).
ieP
Next, observe that for any set S C P, the solution (g, 2) is also
feasible in the dual of the program (7) defining v(S). Thus, we
have

Zw =b°-§>v(S).

=
Thus, the vector w is in the core of the game G. [

5.2.2 Existence of an e-Nash equilibrium

We now show that given any point « in the core of this game,
we can perturb it slightly to get a vector of bid pairs & that is an e-
Nash equilibrium of the bidding game. We use the game G to draw
conclusions about the bidding game induced by the mechanism.

THEOREM 7. Let u be any vector in the core of G that mini-
mizes the value of ug. Then, for any e > 0, the bid profile defined

by

= (ci,ui = max{0,u; — ~—})

@i 2n

3

for each link 7 is an e-Nash equilibrium.

PROOF. (Sketch) Suppose a~ is not an e-Nash equilibrium. Then,
there is some ¢ such that 4 can change her bid to increase her payoff
by e. Let (¢',u’) be i’s successful strategy, and let a’ denote the
bid profile given by a; = (¢',u') and a} = a; forall j # i. Let
F' = F(a'); it must be the case thati € F".

In the appendix, we show that there is a near-optimal flow F"
such that F" does not use 4 (Lemmas 5,7). More specifically,
Wo— (F") < W, - (F') +¢/2. Asi ¢ F"', we have W, (F") =
W,,— (F"). However, i € F', and s0 W/ (F') > W,—(F') +e.
Thus, we get W, (F’) > W,/ (F""), which contradicts the assump-
tion that 7' = F(a'). O

We are working on strengthening Theorem 7 to show that this bid
profile is indeed a strong e-Nash equilibrium. This seems plausible
given the results of Young [19]; however, the strategy space in our
2-parameter game is richer than the strategy space in Young [19].

5.3 Randomized 2-parameter Auction

The mechanism presented in Section 5.2 has an e-Nash equilib-
rium corresponding to every core allocation, but we cannot guar-
antee that there are no other e-Nash equilibria. As a result, it was
not possible to bound the total payoff to the edges. In this sec-
tion, we consider a slightly modified mechanism in which we add
a small random payment, as in Section 4. We prove that, with this
modification, it is possible to bound the total payment.

The Randomized 2-parameter Auction is constructed as follows.
As earlier, the edges’ bids are pairs a; = (&;, 4;). The mechanism
has two components:

1. The2-parameter mechanism. This mechanism is conducted
exactly as described in Section 5.2 with parameters «, 7, and
B set as before.

2. The randomized audit. For edges on a random source-
destination path, the payoff is based entirely on the &; com-
ponent of the bid, and is constructed as in Section 4. The
parameters a, 7, and B are as defined in Section 4. To sim-
plify the analysis, we assume that the randomized component
results in a payoff function of the following form: If an edge



has true cost ¢; and bids (&, i;), its expected payoff from

this component is ¢(&;) = 7[cié; — é]. The exact form
of the payoff was derived in the proof of Lemma 2, and has
the same shape; the key aspect for us is that this function is
maximized at é; = ¢;.

We also need to ensure that, for all edges ¢ not in the winning
solution, i; is 0 (or close to zero). We assume that the mechanism
simply rejects bid profiles that do not meet this condition. Alterna-
tively, we could impose a small tax on the i; component of the bid.
We can now prove a useful lemma, which shows that all edges are
nearly truthful about their costs in equilibrium:

LEMMA 4. Leta = (¢, u) be an e-Nash equilibrium of the Ran-
domized 2-parameter Auction. Then, for all s,

ci — A/ 2e]T7 < & < ci +/2€]T.
Using the fact that the costs are nearly truthful, we can show that
their utility values are nearly in the core, and hence, derive the fol-
lowing bound on the total payment.

THEOREM 8. Leta = (¢, @) be any e-Nash equilibrium of the
Randomized 2-parameter Auction. Let F be a lowest-cost flow, and
let F.41 be a lowest-cost (r + 1)-flow. Then, the total price paid
by the customer in the randomized 2-parameter auction is at most

[ijjC(FrJ,_l)] —rC(F) +nry/2¢/7 + 3an’B.
j=1

The result of Theorem 8 stands in an interesting relation to that
of Theorem 2. We do not achieve the intuitively appealing bound of
the expectation of the bounds on the deterministic auction in Sec-
tion 3, i.e., B;[I1;] = 37, jp; (C(Fj41) — C(Fy)) (proving this
stronger bound is an interesting problem for future work). Instead
we achieve 377, rp;(C(Fr+1)(j/r) — C(F;)). In other words,
the external multiplier j is replaced by r (a larger quantity), while in
the first term the quantity C(Fj41) is replaced by C(Fr41)(j/7).
which can also be larger because the cost of j units of flow is a
convex function of j. Our Theorem 8 is therefore weaker in two
important respects than Theorem 2, but it does have a similar over-
all structure.

6. CONCLUSION

The results in Section 3 show that for a fixed &-unit path auction,
the upper bound on total payments in strong e-equilibria is almost
the same as the lower bound on the VCG mechanism payments;
further, the bounds are the same in the limit as e tends to 0. It is
apparent from the simple example in Section 1 and results in [2, 8]
that the VCG mechanism will often require payments considerably
higher than this lower bound (and hence, considerably higher than
the strong e-equilibria of the first-price auction).

In Section 5.1 and 5.2 we considered a model in which the de-
mand is a variable with a known distribution, and we need to select
paths ex ante. We showed that a simple first-price auction may not
even have an e-Nash equilibrium. However, we proved that a vari-
ant of the auction with 2-parameter bids induces a surplus-sharing
game with a nonempty core, and that every core element can be
perturbed slightly to get an e-Nash equilibrium. We also proved
a bound on the total payment to links in a core allocation, which
suggests that in this domain too it may be possible to prove that the
VCG mechanism has higher expected payments.

This leads us to a comparison between first-price and VCG path
auctions similar to the comparison between the cost-sharing mech-
anisms considered by Young [19]. First-price auctions entail po-
tentially lower payments, and have greater collusion resistance than

VCG mechanisms. However, they suffer from one major drawback,
in that the solution concept (strong e-Nash equilibrium) requires
agents to know all costs, and coordinate on the choice of equilib-
rium. This is much more demanding than the dominant-strategy
mechanisms and can lead to inefficiency in practice. Thus, the auc-
tion models analyzed here are not completely satisfying, as there is
no mechanism prescribed for the agents bids’ to reach equilibrium.
This is true even for the weaker concept of e-Nash equilibrium.

However, the results in this paper shed new light on the func-
tions of overpayment in VCG mechanisms. We can identify three
distinct functions of overpayment:

1. Cheaper paths have a competitive advantage and can thus
command a surplus.

2. The surplus paid to links eliminates the need for negotiation
between links, leading to a simple mechanism without delays
or expensive reasoning.

3. The surplus eliminates the externalities of one agent’s strat-
egy on other agents, leading to a mechanism that is fair in
the sense that uninformed agents can do as well as informed
agents.

The first source of overpayment is common to the first-price auction
and the VCG mechanism. However, our results show that for path
auctions, the VCG mechanism often winds up paying a premium
for functions 2 and 3. (In contrast, for single-item auctions, the
first-price auction always pays as much in the worst case as the
VCG mechanism.)

This premium can be viewed as the “cost of implementation”
of the dominant-strategy mechanism, particularly in situations in
which this form of fairness is not compelling. We believe that a
promising direction for future research is to find bargaining mech-
anisms to enable the bidders to converge to an equilibrium. When
the edges all know each others’ costs, an n-party bargaining pro-
tocol, such as the one in [15], could be used; when there is uncer-
tainty, the situation is more complex. Such a mechanism may be
subsidized; for example, the links may be given an additional pay-
ment that decays with time, to incentivize them to quickly reach an
agreement. As long as the subsidy is smaller than the VCG pre-
mium, it may be a better alternative.

Acknowledgment

We would like to thank Eva Tardos for suggesting the bound C'(2)—
C(1) on the payment in a 1-unit auction. We also thank Joan
Feigenbaum for helpful comments on an earlier version.

7. REFERENCES

[1] A. Archer, C. Papadimitriou, K. Talwar and E. Tardos. An
approximate truthful mechanism for combinatorial auctions
with single parameter agents. Internet Mathematics 1(2):
129-150, 2003.

[2] A. Archer and E. Tardos. Frugal Path Mechanisms. In
Proceeding of the 13th ACM Symposium on Discrete
Algorithms 2002, pp. 991-999.

[3] R.J. Aumann. Acceptable points in general cooperative
n-person games. In: A.W. Tucker, R.D.Luce (Eds.),
Contributions to the Theory of Games, Annals of
Mathematical Studies 40, Princeton University Press,
Princeton, New Jersey, 1959.

[4] E. Clarke. Multipart pricing of public goods. Public Choice
11:17-33, 1971.



[5] Imma Curiel. Cooperative Game Theory and Applications.
Kluwer Academic Publishers, 1997.

[6] A.Czumaj, and A. Ronen. On the Expected Payment of
Mechanisms for Task Allocation. In Proceedings of the 23rd
ACM Symposium on Principles of Distributed Computing,
2004, pp. 98-106.

[7] Rahul Garg, Vijay Kumar, Atri Rudra, Akshat Verma.
Coalitional games on graphs: core structure, substitutes and
frugality. In Proceedings of the 4th ACM conference on
Electronic commerce, 2003, pp. 248-249.

[8] E. Elkind, A. Sahai and K. Steiglitz. Frugality in Path
Auctions. In Proceedings of 15th ACM Symposium on
Discrete Algorithms, 2004, pp. 701-709.

[9] J. Feigenbaum, C. Papadimitriou, R. Sami and S. Shenker. A
BGP-based Mechanism for Lowest-Cost Routing. In
Proceedings of the 21st Symposium on Principles of
Distributed Computing, 2002, pp. 173-182.

[10] M. Garey, and D. Johnson. Computers and Intractability.
Freeman Press, New York, 1979.

[11] T. Groves. Incentives in teams. Econometrica 41:617-663,
1973.

[12] J. Hershberger and S. Suri. Vickrey prices and shortest paths:
What is an edge worth? In Proceedings of the 42nd IEEE
Symposium on the Foundations of Computer Science, 2001,
pp. 129-140.

[13] M. Jackson. A Crash Course in Implementation Theory.
Social Choice and Welfare, 18(4):655-708, 2001.

[14] E. Kalai, A. Postlewaite, and J. Roberts. A group incentive
compatible mechanism yielding core allocations. Journal of
Economic Theory 20:13-22, 1979.

[15] V. Krishna and R. Serrano. Multilateral Bargaining. Review
of Economic Studies 63:61-80, 1998.

[16] M. Mihail, C. H. Papadimitriou, A. Saberi. On Certain
Connectivity Properties of the Internet Topology. In
Proceedings of the 44th IEEE Symposium on the Foundations
of Computer Science, 2001, pp. 28-35.

[17] N. Nisan and A. Ronen. Algorithmic Mechanism Design.
Games and Economic Behavior 35:166-196, 2001.

[18] W. Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. Journal of Finance 16:8-37, 1961.

[19] H. Peyton Young. Cost Allocation, Demand Revelation, and
Core Implementation. Mathematical Social Sciences
36:213-228, 1998.

8. APPENDIX
8.1 Proof of Lemma 2

PROOF. With the bid vector b, e’s expected payoff is

fe®) + Y opbe—ce) = D [fF(b)+op(be —co)]

P>e P>e
b2
Z [aB — Tt ij — ace]
P>e jeEP
Let g(be) = [a(B —ce) — T— +7¢e 3;¢p bj]- Then, g(be) is
a quadratic function of b.. Observe that 25} = —rb, + rc. =0
when b. = ce; at this point, ‘9—%@ = —7 < 0. This is true for

all paths P containing e, and thus be = ce is the optimal bid for

player e. Further, for A > 0,
g(Ce) - g(Ce + A) = TCeA + TA2/2 — TCEA = TA2/2

Similarly, g(ce) — g(ce — A) = TA2/2. Thus, by the condition of
e-Nash equilibrium, A < /2¢/7.

8.2 Proof of Lemma 1

PROOF. Construct a bid vector b as in Theorem 1. By this con-
struction we have b, = c. for any edge e that is not on the lowest-
price path. Then, following the analysis of g(b.) expected payoff
in Lemma 2, b maximizes e’s payoff. (Note that e can only get
onto the lowest-price path by bidding below its cost, which would
result in a loss.)

It remains to show that every edge 7 on the lowest-price path
would not significantly benefit by changing it’s bid. Note that if
1 increased its bid by more than /2, it would no longer be on the
lowest-price path. Further, because of the shape of the bonus payoff
function, i’s expected gains g(b.) from the bonus and probability
of off-path selection would also drop. Thus, ¢ cannot possibly gain
more than e by raising its bid.

Finally, consider the possibility that 7 lowers its bid by z. Then,
¢ would still be on the lowest-price path. It would lose at least
(1 — na)z in profits from being on the lowest-price path, and gain
at most r Bz in ge(be ); thus, it could not gain overall. [

8.3 Proof of Theorem 5

PROOF. Let b be an e-Nash equilibrium bid vector, for suffi-
ciently small e. The total probability that the mechanism picks a
path other than the lowest-price path is bounded by na. Any such
path can have at most n edges on it, each with price at most B.
Thgs, the expected payment for using one of these paths is at most
an”B.

Similarly, we can bound the bonus f.(b) paid to any edge e:
f(b) < n[aB + rnB2]. This is always less than 2an.B.

Finally, using Lemma 2, we know that any edge not on the lowest-
price path bids at most ¢ + 4/2¢/7. Combining this with a similar
argument to Theorem 2, we can bound the total payment to edges
on the lowest-price path by

Wy(F(1)) < C(2) —

C(1) + ny/2¢/7

In the limit as e — 0, the last term is negligible. Adding up all
three sources of payment, we get the required result. [

8.4 Proofs for the 2-parameter mechanism

8.4.1 Positive payoffs in the core

LEMMA 5. Let F be a lowest-cost solution, and F,41 be a
lowest-cost (r + 1)-flow. For any vector w in the core of G, we
have uo > Z — [C(Fy41) 37, jp; — rC(F)].

PROOF. Let F be a minimum-cost flow. Then, v(P) = Z —
C(F), and hence, by the core condition, 3., u; = Z — C(F).
Consider a lowest-cost integral (r+1)-flow F;. 1. Then, F;.41 con-
sists of (r + 1) disjoint paths from s to ¢; call them Py, - - - |, Pry1.
Foreach k € {1,2,--- ,r,r + 1}, define F% = Fo. 1\ Py, ie.,
, the r-flow obtained by dropping the kth path. Extend F,=* to a
collection of flows 7~ * = (Fy*, Fy*,--- ,F, %), where F;*
consists of the j lowest-priced paths in £, %. Then, as F~* can



meet the demand, we have: v(F~* U {0}) > Z — C(F~F). Fur-
ther, noting that F]f’“ has cost at most £ that of F7F we get:

_ ke ]
CFEMSCE Y pir;

=1

Further, as w is in the core, we have uo+3", -1 ui > v(F~*U
{0}). Now, adding over all k, we get:

r41 r+1

SeFFufoy > S [z-cF )

k=1 k=1

r41 r+1 r :
;v(r’“ u{o}) > (r+1)z- ; [C(FT’“) ;pj%]

Note that the left hand side includes each element of F,4; exactly
r times. Similarly, the flows F,~¥ in the right hand side cover Fy 44
exactly r times. Thus,

.0
(r+1uo+r 'E; u; > (r+1)Z—rC(Fri1) Z;pj .
i 1 J=

Noting that 3 o, ui <3 e pui = Z — C(F), we get:
w +r(Z—C(F) > (r+1)Z—C(F1) Y jp;
j=1
w > Z-[C(Fy1)Y jps —rC(F)] O

j=1

LEMMA 6. Given a network and a cost vector c, and some ele-
ment w in the core of G, define the bid profile a by

a; = (ci,u;) Vi>0
Then, the lowest-price flow output by the mechanism with input a

has a total price of Z —wg. Further, any minimum-cost flow F is an
optimal (minimum-price) flow, and includes all links z with u; > 0.

PROOF. First, let F be an optimal integral solution to the lin-
ear program defining v(P). Then, an examination of the objective
function of LP 6 shows that C(F) = Z —w(P) = Z — 37, wi
Now,

Wi (F) < C(F)+ Y ui=Z —uo (8)
i=1
We now show that this is also a lower bound on the cost. Suppose
there was some flow &' such that W5 (F') < Z—uo. It follows that
C(F)Y< Z—uo — > i wi- Now, consider the linear program
determining the value of the coalition S = F’ U {0}. The flow F’
is a feasible solution for this set, and hence

v(S)>Z —C(F) >uo+ Zui=2ui
ieF! i€S
But this contradicts the assumption that w is in the core of G. Hence
every flow (including ) has price at least Z —wuo. Thus, W5 (F) =
Z — uo and F includes all 4 such that w; > 0. [

8.4.2 Optimal flow without using player i

LEMMA 7. Letu be avector in the core of G that minimizes the
value of ug, and define the bid vector @ by a; = (¢i,u;) Vi > 0.
Then, if uo > 0, for any 4 there is a flow Z such that W; (F?) =
Wz (F(a)), i.e., 4 is an optimal solution.

PROOF. Let F = F(a). Assume there is an i such that the
statement is not true. Let () be the lowest-price flow that does
not include ¢, and assume that W5 (F)) = D > W5 (F) + & for
some § > 0. Define a vector v’ by ug = uo — &, u; = u; + 9,
and u; = u;Vj # 0,4. We now claim that «' is in the core. If not,
there would be some set S such that v(S) > 37,5 uj. We must
have 0 € S, or else v(S) would be 0. Similarly, S must contain
a k-flow, or else it’s value would be 0. It follows that : ¢ S, or
else we would have 37, s uj = 35 g u; > v(S). Let ' be the
lowest-cost flow in S. Then, v(S) = Z — W.(F") and so we get

s Ui :Z—Wc(}"’)—E uj + 8
JES
0< Z—u+0—Wz(F") <Z—uo—Ws(F)

0< v(S) —

But, using Lemma 6, Z — ug — W, (F) = 0 because F is a
minimum-price flow with bids a, and so this is a contradiction.
Thus, «’ must be in the core; but this contradicts the assumption
that « is an element of the core that minimized uo. [

8.4.3 Proof of Lemma 4

PROOF. We argue that player 7 can always do better by bidding
his true cost; the bounds follow from the e-Nash equilibrium con-
dition and the expected-payoff graph of the randomized path audit.
Let p; be the probability of 4 being included in the lowest price
solution in the e-Nash equilibrium &. If p; = 0, then 4’s entire ex-
pected payoff is due to her expectation of winning in the random-
ized path audit, and the bounds on &; follow directly. The same
argument holds if p; > 0 but ¢ receives a negative expected payoff
from the 2-parameter auction (because her bid &; was too low).

Now, suppose p; > 0, and, further, 7 receives a positive payoff
from the 2-parameter auction in the e-Nash equilibrium. Consider
the strategy a; = (c;, uj) with u} = @; + p;[é — ¢;]. (i received a
non-negative profit under @, so it follows that u} is non-negative.)
Let F be the solution chosen in the 2-parameter part of the mech-
anism when the bids are a. Note that if 7 were to deviate from
a; to a}, the price of F would not change: the change in the utility
component would exactly cancel the change in the cost component.
Also, for any other flow F” that did not use %, the price of ' would
not change with 4’s deviation; thus, using the consistency of the
tie-breaking rule, 7’ would not be chosen above F. Thus, we con-
clude that 4 remains in the winning solution (which need not be F)
under the bids a;.

Next, observe that z’s expected payoff from the 2-parameter auc-
tion (with bid a}) is uj, because ¢ bids her cost truthfully and is
in the winning solution. This is exactly the same as i’s payoff
pilé — c;] + 4; from the 2-parameter auction in the e-Nash equi-
librium a.

To prove the bounds on é;, we compare i’s payoff from the ran-
domized part of the mechanism with bids &@; and a;. The bounds
follow directly from the form of the randomized audit payoffs. [



