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ABSTRACT
Information markets, which are designed specifically to ag-
gregate traders’ information, are becoming increasingly pop-
ular as a means for predicting future events. Recent re-
search in information markets has resulted in two new de-
signs, market scoring rules and dynamic parimutuel mar-
kets. We develop an analytic method to guide the design
and strategic analysis of information markets. Our central
contribution is a new abstract betting game, the projection
game, that serves as a useful model for information mar-
kets. We demonstrate that this game can serve as a strategic
model of dynamic parimutuel markets, and also captures the
essence of the strategies in market scoring rules. The pro-
jection game is tractable to analyze, and has an attractive
geometric visualization that makes the strategic moves and
interactions more transparent. We use it to prove several
strategic properties about the dynamic parimutuel market.
We also prove that a special form of the projection game is
strategically equivalent to the spherical scoring rule, and it
is strategically similar to other scoring rules. Finally, we il-
lustrate two applications of the model to analysis of complex
strategic scenarios: we analyze the precision of a market in
which traders have inertia, and a market in which a trader
can profit by manipulating another trader’s beliefs.
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1. INTRODUCTION
Markets have long been used as a medium for trade. As

a side effect of trade, the participants in a market reveal
something about their preferences and beliefs. For example,
in a financial market, agents would buy shares which they
think are undervalued, and sell shares which they think are
overvalued. It has long been observed that, because the
market price is influenced by all the trades taking place, it
aggregates the private information of all the traders. Thus,
in a situation in which future events are uncertain, and each
trader might have a little information, the aggregated in-
formation contained in the market prices can be used to
predict future events. This has motivated the creation of
information markets, which are mechanisms for aggregating
the traders’ information about an uncertain event.

Information markets can be modeled as a game in which
the participants bet on a number of possible outcomes, such
as the results of a presidential election, by buying shares
of the outcomes and receiving payoffs when the outcome is
realized. As in financial markets, the participants aim to
maximize their profit by buying low and selling high. In
this way, the players’ behavior transmits their personal in-
formation and beliefs about the possible outcomes, and can
be used to predict the event more accurately. The benefit of
well-designed information markets goes beyond information
aggregation; they can also be used as a hedging instrument,
to allow traders to insure against risk.

Recently, researchers have turned to the problem of de-
signing market structures specifically to achieve better in-
formation aggregation properties than traditional markets.
Two designs for information markets have been proposed:
the Dynamic Parimutuel Market (DPM) by Pennock [10]
and the Market Scoring Rules (MSR) by Hanson [6]. Both
the DPM and the MSR were designed with the goal of giving
informed traders an incentive to trade, and to reveal their
information as soon as possible, while also controlling the
subsidy that the market designer needs to pump into the
market.

The DPM was created as a combination of a pari-mutuel
market (which is commonly used for betting on horses) and a
continuous double auction, in order to simultaneously obtain
the first one’s infinite buy-in liquidity and the latter’s abil-
ity to react continuously to new information. One version
of the DPM was implemented in the Yahoo! Buzz market
[8] to experimentally test the market’s prediction proper-
ties. The foundations of the MSR lie in the idea of a proper
scoring rule, which is a technique to reward forecasters in
a way that encourages them to give their best prediction.



The innovation in the MSR is to use these scoring rules as
instruments that can be traded, thus providing traders who
have new information an incentive to trade. The MSR was
to be used in a policy analysis market in the Middle East
[15], which was subsequently withdrawn.

Information markets rely on informed traders trading for
their own profit, so it is critical to understand the strategic
properties of these markets. This is not an easy task, be-
cause markets are complex, and traders can influence each
other’s beliefs through their trades, and hence, can poten-
tially achieve long term gains by manipulating the market.
For the MSR, it has been shown that, if we exclude the pos-
sibility of achieving gain through misleading other traders,
it is optimal for each trader to honestly reflect her private
belief in her trades. For the DPM, we are not aware of any
prior strategic analysis of this nature; in fact, a strategic
hole was discovered while testing the DPM in the Yahoo!
Buzz market [8].

1.1 Our Results
In this paper, we seek to develop an analytic method to

guide the design and strategic analysis of information mar-
kets. Our central contribution is a new abstract betting
game, the projection 1 game, that serves as a useful model
for information markets. The projection game is conceptu-
ally simpler than the MSR and DPM, and thus it is easier
to analyze. In addition it has an attractive geometric visu-
alization, which makes the strategic moves and interactions
more transparent. We present an analysis of the optimal
strategies and profits in this game.

We then undertake an analysis of traders’ costs and prof-
its in the dynamic parimutuel market. Remarkably, we find
that the cost of a sequence of trades in the DPM is identi-
cal to the cost of the corresponding moves in the projection
game. Further, if we assume that the traders beliefs at the
end of trading match the true probability of the event being
predicted, the traders’ payoffs and profits in the DPM are
identical to their payoffs and profits in a corresponding pro-
jection game. We use the equivalence between the DPM and
the projection game to prove that the DPM is arbitrage-free,
deduce profitable strategies in the DPM, and demonstrate
that constraints on the agents’ trades are necessary to pre-
vent a strategic breakdown.

We also prove an equivalence between the projection game
and the MSR: We show that play in the MSR is strategically
equivalent to play in a restricted projection game, at least
for myopic strategies and small trades. In particular, the
profitability of any move under the spherical scoring rule is
exactly proportional to the profitability of the corresponding
move in the projection game restricted to a circle, with slight
distortion of the prior probabilities. This allows us to use the
projection game as a conceptual model for market scoring
rules.

We note that while the MSR with the spherical scoring
rule somewhat resembles the projection game, due to the
mathematical similarity of their profit expressions, the DPM
model is markedly different and thus its equivalence to the
projection game is especially striking. Further, because the
restricted projection game corresponds to a DPM with a
natural trading constraint, this sheds light on an intriguing
connection between the MSR and the DPM.

1In an earlier version of this paper, we called this the seg-
ment game.

Lastly, we illustrate how the projection game model can
be used to analyze the potential for manipulation of infor-
mation markets for long-term gain.2 We present an example
scenario in which such manipulation can occur, and suggest
additional rules that might mitigate the possibility of manip-
ulation. We also illustrate another application to analyzing
how a market maker can improve the prediction accuracy
of a market in which traders will not trade unless their ex-
pected profit is above a threshold.

1.2 Related Work
Numerous studies have demonstrated empirically that mar-

ket prices are good predictors of future events, and seem to
aggregate the collected wisdom of all the traders [2, 3, 12, 1,
5, 16]. This effect has also been demonstrated in laboratory
studies [13, 14], and has theoretical support in the literature
of rational expectations [9].

A number of recent studies have addressed the design of
the market structure and trading rules for information mar-
kets, as well as the incentive to participate and other strate-
gic issues. The two papers most closely related to our work
are the papers by Hanson [6] and Pennock [10]. However,
strategic issues in information markets have also been stud-
ied by Mangold et al. [8] and by Hanson, Oprea and
Porter [7]. An upcoming survey paper [11] discusses cost-
function formulations of automated market makers.

Organization of the paper The rest of this paper is
organized as follows: In Section 2, we describe the projec-
tion game, and analyze the players’ costs, profits, and op-
timal strategies in this game. In Section 3, we study the
dynamic parimutuel market, and show that trade in a DPM
is equivalent to a projection game. We establish a connec-
tion between the projection game and the MSR in Section 4.
In Section 5, we illustrate how the projection game can be
used to analyze non-myopic, and potentially manipulative,
actions. We present our conclusions, and suggestions for
future work, in Section 6.

2. THE PROJECTION GAME
In this section, we describe an abstract betting game, the

projection game; in the following sections, we will argue
that both the MSR and the DPM are strategically similar
to the projection game. The projection game is conceptually
simpler than MSR and DPM, and hence should prove easier
to analyze. For clarity of exposition, here and in the rest of
the paper we assume the space is two dimensional, i.e., there
are only two possible events. Our results easily generalize
to more than two dimensions. We also assume throughout
that players are risk-neutral.

Suppose there are two mutually exclusive and exhaustive
events, A and B. (In other words, B is the same as “not
A”.) There are n agents who may have information about
the likelihood of A and B, and we (the designers) would like
to aggregate their information. We invite them to play the
game described below:

At any point in the game, there is a current state de-
scribed by a pair of parameters, (x, y), which we sometimes
write in vector form as x. Intuitively, x corresponds to the

2Here, we are referring only to manipulation of the informa-
tion market for later gain from the market itself; we do not
consider the possibility of traders having vested interests in
the underlying events.



total holding of shares in A, and y corresponds to the hold-
ing of shares in B. In each move of the game, one player
(say i) plays an arrow (or segment) from (x, y) to (x′, y′).
We use the notation [(x, y) → (x′, y′)] or [x,x′] to de-
note this move. The game starts at (0, 0), but the market
maker makes the first move; without loss of generality, we
can assume the move is to (1, 1). All subsequent moves are
made by players, in an arbitrary (and potentially repeating)
sequence.

Each move has a cost associated with it, given by

C[x,x′] = |x′| − |x|,

where | · | denotes the Euclidean norm, |x| =
p

x2 + y2.
Note that none of the variables are constrained to be non-
negative, and hence, the cost of a move can be negative.

The cost can be expressed in an alternative form, that is
also useful. Suppose player i moves from (x, y) to (x′, y′).
We can write (x′, y′) as (x + lex, y + ley), such that l ≥ 0
and |ex|2 + |ey |2 = 1. We call l the volume of the move, and
(ex, ey) the direction of the move. At any point (x̂, ŷ), there
is an instantaneous price charged, defined as follows:

c((x̂, ŷ), (ex, ey)) =
x̂ex + ŷey

|(x̂, ŷ)| =
x̂ · e
|x̂| .

Note that the price depends only on the angle between the
line joining the vector (x̂, ŷ) and the segment [(x, y), (x′, y′)],
and not the lengths. The total cost of the move is the price
integrated over the segment [(x, y) → (x′, y′)], i.e.,

C[(x, y) → (x′, y′)] =

Z l

w=0

c((x+wex, y+wey), (ex, ey))dw

We assume that the game terminates after a finite number
of moves. At the end of the game, the true probability p of
event A is determined, and the agents receive payoffs for the

moves they made. Let q = (qx, qy) = (p,1−p)
|(p,1−p)|

. The payoff

to agent i for a segment [(x, y) → (x′, y′)] is given by:

P([(x, y) → (x′, y′)]) = qx(x′ − x)+ qy(y′ − y) = q.(x′ −x)

We call the line through the origin with slope (1 − p)/p =
qy/qx the p-line. Note that the payoff, too, may be negative.

One drawback of the definition of a projection game is
that implementing the payoffs requires us to know the ac-
tual probability p. This is feasible if the probability can
eventually be determined statistically, such as when pre-
dicting the relative frequency of different recurring events,
or vote shares. It is also feasible for one-off events in which
there is reason to believe that the true probability is either
0 or 1. For other one-off events, it cannot be implemented
directly (unlike scoring rules, which can be implemented in
expectation). However, we believe that even in these cases,
the projection game can be useful as a conceptual and ana-
lytical tool.

The moves, costs and payoffs have a natural geometric
representation, which is shown in Figure 1 for three play-
ers with one move each. The players append directed line
segments in turn, and the payoff player i finally receives for
a move is the projection of her segment onto the line with
slope (1− p)/p. Her cost is the difference of distances of the
endpoints of her move to the origin.

2.1 Strategic properties of the projection game
We begin our strategic analysis of the projection game by

observing the following simple path-independence property.
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Figure 1: A projection game with three players

Lemma 1. [Path-Independence] Suppose there is a sequence
of moves leading from (x, y) to (x′, y′). Then, the total
cost of all the moves is equal to the cost of the single move
[(x, y) → (x′, y′)], and the total payoff of all the moves is
equal to the payoff of the single move [(x, y) → (x′, y′)].

Proof. The proof follows trivially from the definition of
the costs and payoffs: If we consider a path from point x to
point x′, both the net change in the vector lengths and the
net projection onto the p-line are completely determined by
x and x′.

Although simple, path independence of profits is vitally
important, because it implies (and is implied by) the ab-
sence of arbitrage in the market. In other words, there is no
sequence of moves that start and end at the same point, but
result in a positive profit. On the other hand, if there were
two paths from (x, y) to (x′, y′) with different profits, there
would be a cyclic path with positive profit.

For ease of reference, we summarize some more useful
properties of the cost and payoff functions in the projection
game.

Lemma 2.

1. The instantaneous price for moving along a line through
the origin is 1 or −1, when the move is away or toward
the origin respectively. The instantaneous price along
a circle centered at the origin is 0.

2. When x moves along a circle centered at the origin to
point x̄ on the positive p-line, the corresponding payoff
is P(x, x̄) = |x| − x · q, and the cost is C[x, x̄] = 0.

3. The two cost function formulations are equivalent:

C[x,x′] =

Z l

w=0

cos(x + we, e)dw = |x′|−|x| ∀x,x′,

where e is the unit vector giving the direction of move.
In addition, when x moves along the positive p-line,
the payoff is equal to the cost, P(x,x′) = |x′| − |x|.

Proof. 1. The instantaneous price is

c(x, e) = x · e/|x| = cos(x,e),

where e is the direction of movement, and the result
follows.

2. Since x̄ is on the positive p-line, q·x̄ = |x̄| = |x|, hence
P(x, x̄) = q · (x̄ − x) = |x| − x · q; the cost is 0 from
the definition.



3. From Part 1, the cost of moving from x to the origin
is

C[x, 0] =

Z l

w=0

cos(x + we, e)dw =

Z l

w=0

(−1)dw = −|x|,

where l = |x|, e = x/|x|. By the path-independence
property,

C[x,x′] = C[x, 0] + C[0, x′] = |x′| − |x|.

Finally, a point on the positive p-line gets projected
to itself, namely q · x = |x| so when the movement
is along the positive p-line, P(x,x′) = q · (x′ − x) =
|x′| − |x| = C[x,x′].

We now consider the question of which moves are prof-
itable in this game. The eventual profit of a move [x,x′],
where x′ = x + l.(ex, ey), is

profit[x,x′] = P [x,x′] − C[x,x′]

= lq.e − C[x,x′]

Differentiating with respect to l, we get

d(profit)

dl
= q.e − c(x + le, e)

= q.e − x + le

|x + le| .e

We observe that this is 0 if p(y + ley) = (1 − p)(x + lex),
in other words, when the vectors q and (x + le) are exactly
aligned. Further, we observe that the price is non-decreasing
with increasing l. Thus, along the direction e, the profit is
maximized at the point of intersection with the p-line.

By Lemma 2, there is always a path from x to the positive
p-line with 0 cost, which is given by an arc of the circle with
center at the origin and radius |x|. Also, any movement
along the p-line has 0 additional profit. Thus, for any point
x, we can define the profit potential φ(x, p) by

φ(x, p) = |x| − x · q.

Note, the potential is positive for x off the positive p-line
and zero for x on the line. Next we show that a move to a
lower potential is always profitable.

Lemma 3. The profit of a move [x,x′] is equal to the dif-
ference in potential φ(x, p) − φ(x′, p).

Proof. Denote z = |x|q and z′ = |x′|q, i.e., these are
the points of intersection of the positive p-line with the cir-
cles centered at the origin with radii |x| and |x′| respectively.
By the path-independence property and Lemma 2, the profit
of move [x,x′] is

profit(x,x′) = profit(x, z) + profit(z, z′) + profit(z′,x′)

= (|x| − x · q) + 0 + (x′ · q − |x′|)
= φ(x, p) − φ(x′, p).

Thus, the profit of the move is equal to the change in profit
potential between the endpoints.

This lemma offers another way of seeing that it is optimal to
move to the point of lowest potential, namely to the p-line.
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Figure 2: The profit of move [x,x′] is equal to the

change in profit potential from x to x′.

3. DYNAMIC PARIMUTUEL MARKETS
The dynamic parimutuel market (DPM) was introduced

by Pennock [10] as an information market structure that en-
courages informed traders to trade early, has guaranteed liq-
uidity, and requires a bounded subsidy. This market struc-
ture was used in the Yahoo! Buzz market [8]. In this sec-
tion, we show that the dynamic parimutuel market is also
remarkably similar to the projection game. Coupled with
section 4, this also demonstrates a strong connection be-
tween the DPM and MSR.

In a two-event DPM, users can place bets on either event
A or B at any time, by buying a share in the appropriate
event. The price of a share is variable, determined by the
total amount of money in the market and the number of
shares currently outstanding. Further, existing shares can
be sold at the current price. After it is determined which
event really happens, the shares are liquidated for cash. In
the ”total-money-redistributed” variant of DPM, which is
the variant used in the Yahoo! market, the total money
is divided equally among the shares of the winning event;
shares of the losing event are worthless. Note that the pay-
offs are undefined if the event has zero outstanding shares;
the DPM rules should preclude this possibility.

We use the following notation: Let x be the number of
outstanding shares of A (totalled over all traders), and y be
the number of outstanding shares in B. Let M denote the
total money currently in the market. Let cA and cB denote
the prices of shares in A and B respectively. The price of a
share in the Yahoo! DPM is determined by the “share-ratio”
principle:

cA

cB

=
x

y
(1)

The form of the prices can be fully determined by stipu-
lating that, for any given value of M , x, and y, there must
be some probability pA such that, if a trader believes that
pA is the probability that A will occur and the market will
liquidate in the current state, she cannot expect to profit
from either buying or selling either share. This gives us

cA = pA

hM

x

i

cB = pB

hM

y

i



Since pA + pB = 1, we have:

xcA + ycB = M (2)

Finally, combining Equations 1 and 2, we get

cA = x
M

x2 + y2

cB = y
M

x2 + y2

Cost of a trade in the DPM Consider a trader who
comes to a DPM in state (M, x, y), and buys or sells shares
such that the eventual state is (M ′, x′, y′). What is the net
cost, M ′ − M , of her move?

Theorem 4. The cost of the move from (x, y) to (x′, y′)
is

M ′ − M = M0[
p

x′2 + y′2 −
p

x2 + y2]

for some constant M0. In other words, it is a constant mul-
tiple of the corresponding cost in the projection game.

Proof. Consider the function G(x, y) = M0[
p

x2 + y2].
The function G is differentiable for all x, y 6= 0, and it’s
partial derivatives are:

∂G

∂x
= M0[

x
p

x2 + y2
] = x

G(x, y)

x2 + y2

∂G

∂y
= M0[

y
p

x2 + y2
] = y

G(x, y)

x2 + y2

Now, compare these equations to the prices in the DPM,
and observe that, as a trader buys or sells in the DPM,
the instantaneous price is the derivative of the money. It
follows that, if at any point of time the DPM is in a state
(M, x, y) such that M = G(x, y), then, at all subsequent
points of time, the state (M ′, x′, y′) of the DPM will satisfy
M ′ = G(x′, y′). Finally, note that we can pick the constant
M0 such that the equation is satisfied for the initial state of
the DPM, and hence, it will always be satisfied.

One important consequence of Theorem 4 is that the dy-
namic parimutuel market is arbitrage-free (using Lemma 1).
It is interesting to note that the original Yahoo! Buzz market
used a different pricing rule, which did permit arbitrage; the
price rule was changed to the share-ratio rule after traders
started exploiting the arbitrage opportunities [8]. Another
somewhat surprising consequence is that the numbers of out-
standing shares x, y completely determines the total capital-
ization M of the DPM.

Constraints in the DPM Although it might seem, based
on the costs, that any move in the projection game has an
equivalent move in the DPM, the DPM places some con-
straints on trades. Firstly, no trader is allowed to have a
net negative holding in either share. This is important, be-
cause it ensures that the total holdings in each share are
always positive. However, this is a boundary constraint,
and does not impact the strategic choices for a player with
a sufficiently large positive holding in each share. Thus, we
can ignore this constraint from a first-order strategic analy-
sis of the DPM. Secondly, for practical reasons a DPM will
probably have a minimum unit of trade, but we assume here
that arbitrarily small quantities can be traded.

Payoffs in the DPM At some point, trading in the DPM
ceases and shares are liquidated. We assume here that the

true probability becomes known at liquidation time, and de-
scribe the payoffs in terms of the probability; however, if the
probability is not revealed, only the event that actually oc-
curs, these payoffs can be implemented in expectation. Sup-
pose the DPM terminates in a state (M, x, y), and the true
probability of event A is p. When the dynamic parimutuel
market is liquidated, the shares are paid off in the follow-
ing way: Each owner of a share of A receives p M

x
, and each

owner of a share of B receives (1 − p)M
y

, for each share
owned.

The payoffs in the DPM, although given by a fairly sim-
ple form, are conceptually complex, because the payoff of
a move depends on the subsequent moves before the mar-
ket liquidates. Thus, a fully rational choice of move in the
DPM for player i should take into account the actions of
subsequent players, including player i himself.

Here, we restrict the analysis to myopic, infinitesimal strate-
gies: Given the market position is (M, x, y), in which direc-
tion should a player make an infinitesimal move in order to
maximize her profit? We show that the infinitesimal payoffs
and profits of a DPM with true probability p correspond
strategically to the infinitesimal payoffs and profits of a pro-
jection game with odds

p

p/(1 − p), in the following sense:

Lemma 5. Suppose player i is about to make a move in
a dynamic parimutuel market in a state (M, x, y), and the
true probability of event A is p. Then, assuming the market
is liquidated after i’s move,

• If x
y

<
q

p

1−p
, player i profits by buying shares in A ,

or selling shares in B.

• If x
y

>
q

p

1−p
, player i profits by selling shares in A,

or buying shares in B.

Proof. Consider the cost and payoff of buying a small
quantity ∆x of shares in A. The cost is C[(x, y) → (x +
∆x, y)] = ∆x · x M

x2+y2
, and the payoff is ∆x · p M

x
. Thus,

buying the shares is profitable iff

∆x · x M

x2 + y2
< ∆x · pM

x

⇔ x2

x2 + y2
< p

⇔ x2 + y2

x2
>

1

p

⇔ 1 + (
y

x
)2 >

1

p

⇔ y

x
>

r

1 − p

p

⇔ x

y
<

r

p

1 − p

Thus, buying A is profitable if x
y

<
q

p

1−p
, and selling A

is profitable if x
y

>
q

p

1−p
. The analysis for buying or selling

B is similar, with p and (1 − p) interchanged.

It follows from Lemma 5 that it is myopically profitable

for players to move towards the line with slope
q

1−p

p
. Note

that there is a one-to-one mapping between 1−p

p
and

q

1−p

p



in their respective ranges, so this line is uniquely defined,
and each such line also corresponds to a unique p. How-
ever, because the actual payoff of a move depends on the fu-
ture moves, players must base their decisions on some belief
about the final state of the market. In the light of Lemma 5,
one natural, rational-expectation style assumption is that

the final state (M, x∗, y∗) will satisfy x∗

y∗ =
q

p

1−p
. (In other

words, one might assume that the traders’ beliefs will ulti-
mately converge to the true probability p; knowing p, the

traders will drive the market state to satisfy x
y

=
q

p

1−p
.)

This is very plausible in markets (such as the Yahoo! Buzz
market) in which trading is permitted right until the market
is liquidated, at which point there is no remaining uncer-
tainty about the relevant frequencies. Under this assump-
tion, we can prove an even tighter connection between pay-
offs in the DPM (where the true probability is p) and payoffs

in the projection game, with odds
q

p

1−p
:

Theorem 6. Suppose that the DPM ultimately terminates

in a state (M, X, Y ) satisfying X
Y

=
q

p

1−p
. Assume with-

out loss of generality that the constant M0 = 1, so M =√
X2 + Y 2. Then, the final payoff for any move [x → x′]

made in the course of trading is (x′ −x) · (√p,
√

1 − p), i.e.,
it is the same as the payoff in the projection game with odds
q

p

1−p
.

Proof. First, observe that X
M

=
√

p and Y
M

=
√

1 − p.
The final payoff is the liquidation value of (x′ − x) shares of
A and (y′ − y) shares of B, which is

PayoffDPM [x′ − x] = p
M

X
(x′ − x) + (1 − p)

M

Y
(y′ − y)

= p
1√
p
(x′ − x) + (1 − p)

1√
1 − p

(y′ − y)

=
√

p(x′ − x) +
p

1 − p(y′ − y).

Strategic Analysis for the DPM Theorems 4 and 6
give us a very strong equivalence between the projection
game and the dynamic parimutuel market, under the as-
sumption that the DPM converges to the optimal value for
the true probability. A player playing in a DPM with true
odds p/(1 − p), can imagine himself playing in the projec-

tion game with odds
q

p

1−p
, because both the costs and the

payoffs of any given move are identical.
Using this equivalence, we can transfer all the strategic

properties proven for the projection game directly to the
analysis of the dynamic parimutuel market. One particu-
larly interesting conclusion we can draw is as follows: In
the absence of any constraint that disallows it, it is always
profitable for an agent to move towards the origin, by selling
shares in both A and B while maintaining the ratio x/y. In
the DPM, this is limited by forbidding short sales, so play-
ers can never have negative holdings in either share. As a
result, when their holding in one share (say A) is 0, they
can’t use the strategy of moving towards the origin. We can
conclude that a rational player should never hold shares of
both A and B simultaneously, regardless of her beliefs and
the market position.

This discussion leads us to consider a modified DPM, in
which this strategic loophole is addressed directly: Instead

of disallowing all short sales, we place a constraint that no
agent ever reduce the total market capitalization M (or, al-
ternatively, that any agent’s total investment in the market
is always non-negative). We call this the “nondecreasing
market capitalization” constraint for the DPM. This corre-
sponds to a restriction that no move in the projection game
reduces the radius. However, we can conclude from the pre-
ceding discussion that players have no incentive to ever in-
crease the radius. Thus, the moves of the projection game
would all lie on the quarter circle in the positive quadrant,
with radius determined by the market maker’s move. In
section 4, we show that the projection game on this quar-
ter circle is strategically equivalent (at least myopically) to
trade in a Market Scoring Rule. Thus, the DPM and MSR
appear to be deeply connected to each other, like different
interfaces to the same underlying game.

4. MARKET SCORING RULES
The Market Scoring Rule (MSR) was introduced by Han-

son [6]. It is based on the concept of a proper scoring rule, a
technique which rewards forecasters to give their best predic-
tion. Hanson’s innovation was to turn the scoring rules into
instruments that can be traded, thereby providing traders
who have new information an incentive to trade. One pos-
itive effect of this design is that a single trader would still
have incentive to trade, which is equivalent to updating the
scoring rule report to reflect her information, thereby elim-
inating the problem of thin markets and illiquidity. In this
section, we show that, when the scoring rule used is the
spherical scoring rule [4], there is a strong strategic equiva-
lence between the projection game and the market scoring
rule.

Proper scoring rules are tools used to reward forecasters
who predict the probability distribution of an event. We
describe this in the simple setting of two exhaustive, mu-
tually exclusive events A and B. In the simple setting of
two exhaustive, mutually exclusive events A and B, proper
scoring rules are defined as follows. Suppose the forecaster
predicts that the probabilities of the events are r = (rA, rB),
with rA + rB = 1. The scoring rule is specified by functions
sA(rA, rB) and sB(rA, rB), which are applied as follows: If
the event A occurs, the forecaster is paid sA(rA, rB), and if
the event B occurs, the forecaster is paid sB(rA, rB). The
key property that a proper scoring rule satisfies is that the
expected payment is maximized when the report is identical
to the true probability distribution.

4.1 Equivalence with Spherical Scoring Rule
In this section, we focus on one specific scoring rule: the

spherical scoring rule [4].

Definition 1. The spherical scoring rule [4] is defined
by

si(r)
def
= ri/||r||. For two events, this can be written as:

sA(rA, rB) =
rA

p

r2
A + r2

B

; sB(rA, rB) =
rB

p

r2
A + r2

B

The spherical scoring rule is known to be a proper scoring
rule. The definition generalizes naturally to higher dimen-
sions.

We now demonstrate a close connection between the pro-
jection game restricted to a circular arc and a market scoring
rule that uses the spherical scoring rule. At this point, it is



convenient to use vector notation. Let x = (x, y) denote a
position in the projection game. We consider the projection
game restricted to the circle |x| = 1.

Restricted projection game Consider a move in this
restricted projection game from x to x′. Recall that q =
( p√

p2+(1−p)2
, 1−p√

p2+(1−p)2
), where p is the true probability

of the event. Then, the projection game profit of a move
[x,x′] is q · [x′ − x] (noting that |x| = |x′|).

We can extend this to an arbitrary collection3 of (not
necessarily contiguous) moves
X = {[x1,x

′
1], [x2,x

′
2], · · · , [xl,x

′
l]}.

SEG-PROFITp(X ) =
X

[x,x′]∈X

q · [x′ − x]

= q ·

2

4

X

[x,x′]∈X

[x′ − x]

3

5

Spherical scoring rule profit We now turn our atten-
tion to the MSR with the spherical scoring rule (SSR). Con-
sider a player who changes the report from r to r′. Then, if
the true probability of A is p, her expected profit is

SSR-PROFIT([r, r′]) = p(sA(r′)−sA(r))+(1−p)(sB(r′)−sB(r))

Now, let us represent the initial and final position in terms
of circular coordinates. For r = (rA, rB), define the corre-
sponding coordinates x = ( rA√

r2

A
+r2

B

, rB√
r2

A
+r2

B

). Note that

the coordinates satisfy |x| = 1, and thus correspond to valid
coordinates for the restricted projection game.

Now, let p denote the vector [p, 1 − p]. Then, expand-
ing the spherical scoring functions sA, sB, the player’s profit
for a move from r to r′ can be rewritten in terms of the
corresponding coordinates x,x′ as:

SSR-PROFIT([x,x′]) = p · (x′ − x)

For any collection X of moves, the total payoff in the SSR
market is given by:

SSR-PROFITp(X ) =
X

[x,x′]∈X

p · [x′ − x]

= p ·

2

4

X

[x,x′]∈X

[x′ − x]

3

5

Finally, we note that p and q are related by q = µpp,

where µp = 1/
p

p2 + (1 − p)2 is a scalar that depends only
on p. This immediately gives us the following strong strate-
gic equivalence for the restricted projection game and the
SSR market:

Theorem 7. Any collection of moves X yields a posi-
tive (negative) payoff in the restricted projection game iff X
yields a positive (negative) payoff in the Spherical Scoring
Rule market.

Proof. As derived above,

SEG-PROFITp(X ) = µpSSR-PROFITp(X ).

For all p, 1 ≤ µp ≤
√

2, (or more generally for an n-
dimensional probability vector p, 1 ≤ µp = 1

|p|
≤ √

n, by

the arithmetic mean-root mean square inequality), and the
result follows immediately.
3We allow the collection to contain repeated moves, i.e., it
is a multiset.

Although theorem 7 is stated in terms of the sign of the
payoff, it extends to relative payoffs of two collections of
moves:

Corollary 8. Consider any two collections of moves X ,
X ′. Then, X yields a greater payoff than X ′ in the projection
game iff X yields a greater payment than X ′ in the SSR
market.

Proof. Every move [x,x′] has a corresponding inverse
move [x′,x]. In both the projection game and the SSR, the
inverse move profit is simply the negative profit of the move
(the moves are reversible). We can define a collection of
moves X ′′ = X −X ′ by adding the inverse of X ′ to X . Note
that

SEG-PROFITp(X ′′) = SEG-PROFITp(X )−SEG-PROFITp(X ′)

and

SSR-PROFITp(X ′′) = SSR-PROFITp(X )−SSR-PROFITp(X ′);

applying theorem 7 completes the proof.

It follows that the ex post optimality of a move (or set of
moves) is the same in both the projection game and the SSR
market. On its own, this strong ex post equivalence is not
completely satisfying, because in any non-trivial game there
is uncertainty about the value of p, and the different scaling
ratios for different p could lead to different ex ante optimal
behavior. We can extend the correspondence to settings
with uncertain p, as follows:

Theorem 9. Consider the restricted projection game with
some prior probability distribution F over possible values of
p. Then, there is a probability distribution G with the same
support as F , and a strictly positive constant c that depends
only on F such that:

• (i) For any collection X of moves, the expected profits
are related by:

EF (SEG-PROFIT(X )) = cEG(SSR-PROFIT(X ))

• (ii) For any collection X , and any measurable infor-
mation set I ⊆ [0, 1], the expected profits conditioned
on knowing that p ∈ I satisfy

EF (SEG-PROFIT(X )|p ∈ I) = cEG(SSR-PROFIT(X )|p ∈ I)

The converse also holds: For any probability distribution G,
there is a distribution F such that both these statements are
true.

Proof. For simplicity, assume that F has a density func-
tion f . (The result holds even for non-continuous distri-

butions). Then, let c =
R 1

0
µpf(p)dp. Define the density

function g of distribution G by

g(p) =
µpf(p)

c

Now, for a collection of moves X ,

EF (SEG-PROFIT(X )) =

Z

SEG-PROFITp(X )f(p)dp

=

Z

SSR-PROFITp(X )µpf(p)dp

=

Z

SSR-PROFITp(X )cg(p)dp

= cEG(SSR-PROFIT(X ))
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Figure 3: Sample score curves for the log scoring

rule si(r) = ai + b log ri and the quadratic scoring rule

si(r) = ai + b(2ri −
P

k
r2

k).

To prove part (ii), we simply restrict the integral to values
in I . The converse follows similarly by constructing F from
G.

Analysis of MSR strategies Theorem 9 provides the
foundation for analysis of strategies in scoring rule markets.
To the extent that strategies in these markets are indepen-
dent of the specific scoring rule used, we can use the spher-
ical scoring rule as the market instrument. Then, analysis
of strategies in the projection game with a slightly distorted
distribution over p can be used to understand the strategic
properties of the original market situation.

Implementation in expectation Another important
consequence of Theorem 9 is that the restricted projection
game can be implemented with a small distortion in the
probability distribution over values of p, by using a Spherical
Scoring Rule to implement the payoffs. This makes the pro-
jection game valuable as a design tool; for example, we can
analyze new constraints and rules in the projection game,
and then implement them via the SSR. Unfortunately, the
result does not extend to unrestricted projection games, be-
cause the relative profit of moving along the circle versus
changing radius is not preserved through this transforma-
tion. However, it is possible to extend the transformation
to projection games in which the radius ri after the ith move
is a fixed function of i (not necessarily constant), so that it
is not within the strategic control of the player making the
move; such games can also be strategically implemented via
the spherical scoring rule (with distortion of priors).

4.2 Connection to other scoring rules
In this section, we show a weaker similarity between the

projection game and the MSR with other scoring rules. We
prove an infinitesimal similarity between the restricted pro-
jection game and the MSR with log scoring rule; the result
generalizes to all proper scoring rules that have a unique
local and global maximum.

A geometric visualization of some common scoring rules in
two dimensions is depicted in Figure 3. The score curves in
the figure are defined by {(s1(r), s2(r)) | r = (r, 1 − r), r ∈
[0, 1]}. Similarly to the projection game, define the profit

potential of a probability r in MSR to be the change in
profit for moving from r to the optimum p, φMSR(s(r),p) =
profitMSR[s(r), s(p)]. We will show that the profit poten-
tials in the two games have analogous roles for analyzing
the optimal strategies, in particular both potential functions
have a global minimum 0 at r = p.

Theorem 10. Consider the projection game restricted to
the non-negative unit circle where strategies x have the nat-
ural one-to-one correspondence to probability distributions
r = (r, 1− r) given by x = ( r

|r|
, 1−r

|r|
). Trade in a log market

scoring rule is strategically similar to trade in the projection
game on the quarter-circle, in that

d

dr
φ(s(r),p) < 0 for r < p

d

dr
φ(s(r),p) > 0 for r > p,

both for the projection game and MSR potentials φ(.).

Proof. (sketch) The derivative of the MSR potential is

d

dr
φ(s(r),p) = −p · d

dr
s(r) = −

X

i

pis
′
i(r).

For the log scoring rule si(r) = ai + b log ri with b > 0,

d

dr
φMSR(s(r),p) = −p ·

“ b

r
,− b

1 − r

”

= −b
“p

r
− 1 − p

1 − r

”

= b
r − p

r(1 − r)
.

Since r = (r, 1− r) is a probability distribution, this expres-
sion is positive for r > p and negative for r < p as desired.

Now, consider the projection game on the non-negative
unit circle. The potential for any x = ( r

|r|
, 1−r

|r|
) is given by

φ(x(r),p) = |x| − q · x(r),

It is easy to show that d
dr

φ(x(r),p) < 0 for r < p and the
derivative is positive for r > p, so the potential function
along the circle is decreasing and then increasing with r
similarly to an energy function, with a global minimum at
r = p, as desired.

Theorem 10 establishes that the market log-scoring rule
is strategically similar to the projection game played on a
circle, in the sense that the optimal direction of movement at
the current state is the same in both games. For example,
if the current state is r < p, it is profitable to move to
r+dr since the effective profit of that move is profit(r, r′) =
φ(s(r),p) − φ(s(r + dr),p) > 0. Although stated for log-
scoring rules, the theorem holds for any scoring rules that
induce a potential with a unique local and global minimum
at p, such as the quadratic scoring rule and others.

5. USING THE PROJECTION-GAME MODEL
The chief advantages of the projection game are that it

is analytically tractable, and also easy to visualize. In Sec-
tion 3, we used the projection-game model of the DPM to
prove the absence of arbitrage, and to infer strategic prop-
erties that might have been difficult to deduce otherwise.
In this section, we provide two examples that illustrate the
power of projection-game analysis for gaining insight about
more complex strategic settings.



5.1 Traders with inertia
The standard analysis of the trader behavior in any of the

market forms we have studied asserts that traders who dis-
agree with the market probabilities will expect to gain from
changing the probability, and thus have a strict incentive to
trade in the market. The expected gain may, however, be
very small. A plausible model of real trader behavior might
include some form of inertia or ǫ-optimality: We assume
that traders will trade if their expected profit is greater than
some constant ǫ. We do not attempt to justify this model
here; rather, we illustrate how the projection game may be
used to analyze such situations, and shed some light on how
to modify the trading rules to alleviate this problem.

Consider the simple projection game restricted to a cir-
cular arc with unit radius; as we have seen, this corre-
sponds closely to the spherical market scoring rule, and
to the dynamic parimutuel market under a reasonable con-
straint. Now, suppose the market probability is p, and a
trader believes the true probability is p′. Then, his expected
gain can be calculated, as follows: Let q and q′ be the unit
vectors in the directions of p and p′ respectively. The ex-
pected profit is given by E = φ(q, p′) = 1−q ·q′. Thus, the
trader will trade only if 1−q·q′ > ǫ. If we let θ and θ′ be the
angles of the p-line and p′-line respectively (from the x-axis),
we get E = 1 − cos(θ − θ′); when θ is close to θ′, a Taylor
series approximation gives us that E ≈ (θ − θ′)2/2. Thus,
we can derive a bound on the limit of the market accuracy:
The market price will not change as long as (θ − θ′)2 ≤ 2ǫ.

Now, suppose a market operator faced with this situation
wanted to sharpen the accuracy of the market. One natural
approach is simply to multiply all payoffs by a constant.
This corresponds to using a larger circle in the projection
game, and would indeed improve the accuracy. However, it
will also increase the market-maker’s exposure to loss: the
market-maker would have to pump in more money to achieve
this.

The projection game model suggests a natural approach
to improving the accuracy while retaining the same bounds
on the market maker’s loss. The idea is that, instead of
restricting all moves to being on the unit circle, we force
each move to have a slightly larger radius than the previous
move. Suppose we insist that, if the current radius is r,
the next trader has to move to r + 1. Then, the trader’s
expected profit would be E = r(1 − cos(θ − θ′)). Using
the same approximation as above, the trader would trade
as long as (θ − θ′)2 > 2ǫ/r. Now, even if the market maker
seeded the market with r = 1, it would increase with each
trade, and the incentives to sharpen the estimate increase
with every trade.

5.2 Analyzing long-term strategies
Up to this point, our analysis has been restricted to trader

strategies that are myopic in the sense that traders do not
consider the impact of their trades on other traders’ be-
liefs. In practice, an informed trader can potentially profit
by playing a suboptimal strategy to mislead other traders,
in a way that allows her to profit later. In this section, we
illustrate how the projection game can be used to analyze
an instance of this phenomenon, and to design market rules
that mitigate this effect.

The scenario we consider is as follows. There are two
traders speculating on the probability of an event E, who
each get a 1-bit signal. The optimal probability for each 2-

bit signal pair is as follows. If trader 1 gets the signal 0, and
trader 2 gets signal 0, the optimal probability is 0.3. If trader
1 got a 0, but trader 2 got a 1, the optimal probability is
0.9. If trader 1 gets 1, and trader 2 gets signal 0, the optimal
probability is 0.7. If trader 1 got a 0, but trader 2 got a 1, the
optimal probability is 0.1. (Note that the impact of trader
2’s signal is in a different direction, depending on trader 1’s
signal). Suppose that the prior distribution of the signals is
that trader 1 is equally likely to get a 0 or a 1, but trader 2
gets a 0 with probability 0.55 and a 1 with probability 0.45.
The traders are playing the projection game restricted to a
circular arc. This setup is depicted in Figure 4.
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Figure 4: Example illustrating non-myopic decep-

tion

Suppose that, for some exogenous reason, trader 1 has the
opportunity to trade, followed by trader 2. Then, trader 1
has the option of placing a last-minute trade just before
the market closes. If traders were playing their myopically
optimal strategies, here is how the market should run: If
trader 1 sees a 0, he would move to some point Y that is
between A and C, but closer to C. Trader 2 would then
infer that trader 1 received a 0 signal and move to A or C if
she got 1 or 0 respectively. Trader 1 has no reason to move
again. If trader 1 had got a 1, he would move to a different
point X instead, and trader 2 would move to D if she saw 1
and B if she saw 0. Again, trader 1 would not want to move
again.

Using the projection game, it is easy to show that, if
traders consider non-myopic strategies, this set of strate-
gies is not an equilibrium. The exact position of the points
does not matter; all we need is the relative position, and the
observation that, because of the perfect symmetry in the
setup, segments XY, BC, and AD are all parallel to each
other. Now, suppose trader 1 got a 0. He could move to
X instead of Y , to mislead trader 2 into thinking he got a
1. Then, when trader 2 moved to, say, D, trader 1 could
correct the rating to A. To show that this is a profitable
deviation, observe that this strategy is equivalent to play-
ing two additional moves over trader 1’s myopic strategy of
moving to Y . The first move, Y X may either move toward
or away from the optimal final position. The second move,
DA or BC, is always in the correct direction. Further, be-
cause DA and BC are longer than XY , and parallel to XY ,
their projection on the final p-line will always be greater



in absolute value than the projection of XY , regardless of
what the true p-line is! Thus, the deception would result in
a strictly higher expected profit for trader 1. Note that this
problem is not specific to the projection game form: Our
equivalence results show that it could arise in the MSR or
DPM (perhaps with a different prior distribution and differ-
ent numerical values). Observe also that a strategy profile
in which neither trader moved in the first two rounds, and
trader 1 moved to either X or Y would be a subgame-perfect
equilibrium in this setup.

We suggest that one approach to mitigating this problem
might be by reducing the radius at every move. This essen-
tially provides a form of discounting that motivates trader 1
to take his profit early rather than mislead trader 2. Graph-
ically, the right reduction factor would make the segments
AD and BC shorter than XY (as they are chords on a
smaller circle), thus making the myopic strategy optimal.

6. CONCLUSIONS AND FUTURE WORK
We have presented a simple geometric game, the projec-

tion game, that can serve as a model for strategic behavior
in information markets, as well as a tool to guide the de-
sign of new information markets. We have used this model
to analyze the cost, profit, and strategies of a trader in a
dynamic parimutuel market, and shown that both the dy-
namic parimutuel market and the spherical market scoring
rule are strategically equivalent to the restricted projection
game under slight distortion of the prior probabilities.

The general analysis was based on the assumption that
traders do not actively try to mislead other traders for future
profit. In section 5, however, we analyze a small example
market without this assumption. We demonstrate that the
projection game can be used to analyze traders’ strategies
in this scenario, and potentially to help design markets with
better strategic properties.

Our results raise several very interesting open questions.
Firstly, the payoffs of the projection game cannot be directly
implemented in situations in which the true probability is
not ultimately revealed. It would be very useful to have an
automatic transformation of a given projection game into
another game in which the payoffs can be implemented in
expectation without knowing the probability, and preserves
the strategic properties of the projection game. Second,
given the tight connection between the projection game and
the spherical market scoring rule, it is natural to ask if we
can find as strong a connection to other scoring rules or if
not, to understand what strategic differences are implied by
the form of the scoring rule used in the market. Finally, the
existence of long-range manipulative strategies in informa-
tion markets is of great interest. The example we studied
in section 5 merely scratches the surface of this area. A
general study of this class of manipulations, together with a
characterization of markets in which it can or cannot arise,
would be very useful for the design of information markets.
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