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Abstract

We consider generic optimization problems that can be formulated as minimizing the cost of a feasible solution
w

T
x over a combinatorial feasible setF ⊂ {0, 1}n. For these problems we describe a framework of risk-averse

stochastic problems where the cost vectorW has independent random components, unknown at the time of solution.
A natural and important objective that incorporates risk inthis stochastic setting is to look for a feasible solution
whose stochastic cost has a small tail or a small convex combination of mean and standard deviation. Our models can
be equivalently reformulated as nonconvex programs for which no efficient algorithms are known. In this paper, we
make progress on these hard problems.

Our results are several efficient general-purpose approximation schemes. They use as a black-box (exact or ap-
proximate) the solution to the underlying deterministic problem and thus immediately apply to arbitrary combinatorial
problems. For example, from an availableδ-approximation algorithm to the linear problem, we construct aδ(1 + ǫ)-
approximation algorithm for the stochastic problem, whichinvokes the linear algorithm only a logarithmic number
of times in the problem input (and polynomial in1

ǫ
), for any desired accuracy levelǫ > 0. The algorithms are based

on a geometric analysis of the curvature and approximability of the nonlinear level sets of the objective functions.

1 Introduction

Suppose we have to catch a flight and need to find a route to the airport. If there is no traffic, this is an application of
the classical shortest path problem and can be solved with a variety of existing algorithms such as Dijkstra’s shortest
path algorithm, etc. More often, however, not only is there traffic but also traffic conditions areuncertain. What then
do we mean by the shortest path to the airport? Such a questionis ill-posed. We may instead attempt definitions such
as the path with the shortestexpectedtravel time, although, when we have a flight to catch, this does not seem like an
appropriate objective. What we need instead is a definition that captures our risk aversion.

The definition of the risk-averse model need not be unique. Indeed, the natural objectives may change depending
on whenwe are submitting the route query: ahead of time, when we are debating how much time to budget for our
trip, or at the start of our trip, when we want to maximize our chance ofon-time arrival over the fixed time period we
now have to get to the destination. In the former setting, we would typically want to allocate enough time to ensure
some confidence of on-time arrival, say 95%. In the latter, given a deadline to reach our destination, we need to find
the route with which we will most likely reach by the deadline. For example, this optimal route may give us only60%
chance of arriving on time if we have not allocated enough time for the trip. A third objective, used for example by the
Federal Highway Administration [15] as a travel time reliability criterion, is given by the mean plus standard deviation
of a route. This third criterion has been considered in the context of stochastic minimum spanning trees as well [3],
and is sometimes referred to as mean-risk optimization (e.g., [3]).

In this paper, inspired by the route planning application above, we consider generic combinatorial problems that
can be formulated as minimizing the cost of a feasible solution wT x over a combinatorial feasible setF ⊂ {0, 1}n

and ask what happens when the associated costs are stochastic. The most common approach in stochastic optimization
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is to find the solution of minimum expected cost. However, in many applications such as the one above reliability con-
siderations are very important: risk-averse users need reassurance regarding the level of risk, and not just the expected
cost of the provided solution. For example, the transportation community has recognized the importance of reliable
route plans (e.g.,[9, 36, 33, 46, 14]). However, the algorithms for finding these reliable routes are typically inefficient
or heuristic with unknown approximation guarantee. Risk-aversion is clearly very important as well in finance and
othercontinuousoptimization settings [42]. While risk models have a long history in the finance setting, their study
is much more recent incombinatorialoptimization settings and there are hardly any studies on general risk-averse
models and unified approaches for solving them from an approximation algorithms perspective in the complexity the-
oretic sense. (We describe related work below.) One challenge with such research is that incorporating risk-aversion
transforms the problems intononconvexones [42, 37] for which there are no known efficient algorithms and rigorous
approximative analysis is scarce. In addition, having to perform nonconvex optimization overcombinatorialfeasi-
ble sets adds an extra layer of difficulty and necessitates merging the traditionally distinctcontinuousanddiscrete
optimization approaches.

In this paper, we provide a rigorous unified treatment of offline risk-averse combinatorial optimization problems,
offering fully-polynomial approximation schemes (FPTAS)for the following risk-averse models:

1. Mean-risk model:minimize (mean + c · standard deviation) wherec ≥ 0 is the risk-aversion coefficient.

2. Probability tail model:maximizePr(solution cost ≤ budget) for a givenbudget.

3. Value-at-risk model:minimizebudget such thatPr(solution cost ≤ budget) ≥ p for a given confidence
probabilityp.

In contrast with the diversity in risk-averse model specifications above, we will show that the same approximation
algorithm design can simultaneously solve all. In our analysis, we assume that the cost distributions are independent
although in Section 5 we show how our algorithms also extend to the case of correlations of neighboring edges in
a graph. For example, for shortest path problems, the graph with correlated edges is transformed into a slightly
larger graph with independent edges and thus all our resultsimmediately carry through. A more in-depth analysis of
correlations in stochastic optimization is offered by Agrawal et al. [2].

To be precise, all our algorithms run inoracle-polynomial time, in that they call an algorithm (oracle) for the
underlying deterministic problem polynomially many timesin the problem input (and in1ǫ for a givenǫ > 0 in the
case of FPTAS). For simplicity, instead oforacle-FPTAS, we shall simply refer to them as FPTAS, defined more
formally as follows:

Definition 1.1 A fully-polynomial approximation scheme (FPTAS) is an algorithm for an optimization problem that,
given an inputI and desired accuracyǫ > 0, finds in time polynomial in1ǫ and the input size, a solution of value
OPT ′(I) that satisfies

|OPT (I) − OPT ′(I)| ≤ ǫOPT (I),

for all inputsI, whereOPT (I) is the optimal solution value on inputI.

In Section 4 we give approximation algorithms for the stochastic versions of NP-hard combinatorial problems, for
whose deterministic versions there are availableδ-approximations. This notion of approximation is defined more
formally below:

Definition 1.2 A δ-approximation algorithm for a minimization problem is a polynomial-time algorithm that, given
an input instanceI, finds a solution with valueOPT ′(I), satisfying

OPT (I) ≤ OPT ′(I) ≤ δOPT (I),

for all instancesI, whereOPT (I) is the optimal solution value on inputI. The definition of approximation for a
maximization problem is analogous.
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Contributions. We start our discussion with the relatively simpler mean-risk model, which is equivalent to mini-
mizing

(

mean + c ·
√

variance
)

. We provide fully-polynomial approximation algorithms that apply toarbitrary cost
distributions with given means and variances, and achieve essentially the same approximation factor as what is pos-
sible for the underlying deterministic problem. Our algorithms use as a black-box an algorithm for the deterministic
problem. We summarize our results for this setting below:

Theorem 1.3 (See Theorems 3.1, 4.1)There is a fully-polynomial approximation scheme for the mean-risk stochastic
model, when there is an exact or fully-polynomial approximation algorithm for the underlying deterministic problem.

In addition, there is a(1+ǫ)δ-approximation for the stochastic model running in time polynomial in1
ǫ , when there

is an availableδ-approximation for the corresponding deterministic problem.

A rigorous approximation-algorithmic analysis of the probability tail and value-at-risk models in the framework,
which involve optimization of the probability tails, necessitates an assumption on the distribution: in the absence of
any knowledge on the distributions, the best one can do is bound the tails, for example using Chernoff or Chebyshev
bounds, and optimize those tail bounds instead—this will yield a conservative overestimate of the probability of
exceeding the budget.

We provide strict approximation results under the commonlyassumed Gaussian distributions; we then show how
the same algorithmic techniques can apply to arbitrary distributions using tail bounds. In the Gaussian setting, min-
imizing the probability tail in the probability tail model is equivalent to maximizingbudget−mean√

variance
and we get the

following approximations:

Theorem 1.4 (See Theorems 3.1, 4.2)There is a fully-polynomial approximation scheme for the probability tail model,
when there is an exact or fully-polynomial approximation algorithm for the underlying deterministic problem.

In addition, when there is an availableδ-approximation for the deterministic problem, there is a
√

1 −
[

δ−(1−ǫ2/4)
(2+ǫ)ǫ/4

]

-approximation for the corresponding stochastic model running in time polynomial in1ǫ .

The value-at-risk model under Gaussian distributions is equivalent to the mean-risk model, with risk-aversion
coefficientc = Φ−1(p), whereΦ−1(·) is the inverse cumulative distribution function of the standard normalN(0, 1).

For arbitrary distributions, the value-at-risk model reduces to the mean-risk model, but with a more conserva-

tive risk-aversion coefficientc =
√

p
1−p , which causes our algorithms to provide an overestimate of the true error

probability of exceeding the budget.

Background and Challenges. Our algorithms build on the fact that the model formulationsin our framework are
all instances of concave or quasi-concave minimization, for which it is known that the optimal solution is attained at
an extreme point of the feasible set (see,e.g., [5]). In addition, our objective functions depend only on the means and
variances of feasible solutions. Thus, we can project the feasible set on the plane spanned by the mean and variance
vectors and only consider extreme points on the projection (see Figure 1(a)). This greatly restricts the number of
relevant extreme points. For example, for minimum spanningtrees and matroids, we can efficiently enumerate the
polynomially many extreme points. Therefore, the corresponding risk-averse stochastic spanning trees and matroids
can be found in polynomial time. We provide more of these background details and a description of the algorithm
in Section 2. However, an arbitrary combinatorial problem typically has too many extreme points, even on a two-
dimensional projection (for example, shortest paths havenlog n such points [38]),hence our focus on approximation
in this paper.

We can geometrically visualize the objective function in terms of its level sets on the mean-variance plane. These
form parabolas, corresponding to higher objective function values at greater mean and variance values. The optimal
solution is obtained at the lowest parabola touching the projected feasible set. Figure 1(a) depicts these parabolas and
the challenge that arises with concave minimization problems: along the convex hull boundary of the feasible set,
the objective function may fluctuate. In particular, many extreme points might be local optima and thus local search
algorithms can fail to find a good approximation.

Another technique, which might seem promising for obtaining a fully polynomial approximation algorithm for our
risk-averse framework, is parametric search: for a given bound on the variance, find the solution with smallest mean,
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(b) Nonlinear separation oracle

Figure 1: (a) Level sets of the probability tail objective function and the convex hull of the projected feasible set on
the mean-variance plane.(b) Level sets and approximatenonlinear separation oracleon the mean-variance plane.

and then search for the variance bound yielding the best answer. There are two problems with this approach. First,
finding the solution with smallest mean subject to a constraint on the variance is NP-hard and it is not always known
or even not always possible to approximate it [40]. Second, even when we know how to solve it, an approximation for
it would not necessarily yield a corresponding approximation to our probability tail objective due to the presence of
the budget parameter in the objective.

Overview of Algorithms and Techniques. [For the case ofeasy deterministic problems.] A brief conceptual
description of our approach is as follows: The algorithm constructs anonlinear separation oraclethat determines, for
a given function level set,1 if there is a feasible solution below the level set (with value less than the given function
value) or the entire feasible set is above the given level (see Lemma 3.2 for a more formal definition of the oracle).
Afterwards, a binary search on the optimum objective function value combined with the separation oracle finds the
desired approximate solution.

The separation oracle approximates a given level set curve by inscribing a (partial) polygon in it, as shown in
Figure 1(b). Each side of the polygon induces a linear objective over the feasible set, which we minimize via a black-
box call to the algorithm for the deterministic problem. If the resulting solution is below the current level set (more
precisely, its associated original objective function value is smaller than(1 + ǫ) times the given level), the separation
oracle returns that solution. Else, if after minimizing with respect to all linear segments we do not find any solutions
below the level set, the separation oracle returns a negative answer, namely that the entire feasible set is above the level
set.

The subtlety arises in how to construct the polygonal segments to ensure a good and efficient approximation. To
get an efficient algorithm, we need to approximate the level set curves with as few linear segments as possible. On
the other hand, to get a good approximation factor, we need a finer polygon (with more and smaller sides), which is
sandwiched between the desired level set with function value λ and the level set with function valueλ(1 + ǫ) (See
Figure 1(b)). In the worst case, when the level sets touch, asis the case for the probability tail objective, a polygon
sandwiched between the two level sets will have infinitely many sides. We resolve this problem by carefully bounding
the optimal solution so that we do not need all infinitely manylinear segments from the polygon and, in particular, we
prove that it suffices to consider only polynomially many such segments.

To the best of our knowledge, our concept and use of the approximatenonlinear separation oraclefor the design
of approximation algorithms for nonconvex optimization problems are novel. We believe that our approach would
be useful for approximating other low-rank concave minimization and possibly more general nonlinear or nonconvex

1The level set of a functionf for valueλ is the subset of the domain on which the function equalsλ, Lλ = {x | f(x) = λ}.
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optimization problems beyond the ones considered here. We remark that the method applies to both discrete and
continuous (non-polyhedral) constraint sets.

[Hard deterministic problems.] We could use the same algorithm design as above, by appropriately modifying
its analysis and approximation factors, when we have aδ-approximation rather than an exact algorithm for solving
the underlying deterministic problem. It turns out that forthis case, a cruder and simpler algorithm gives the same
approximation factor. In particular, all we need to do here is apply the algorithm for the deterministic problem on a
small sequence of linear cost functions of the formmean + k · variance, for a geometric progression of coefficients
k.

However, even if we know what single choice ofk would find the optimal solution, the difficulty is to translate the
approximation given by the deterministic black-box algorithm for its associatedlinear objectiveinto an approximation
for theoriginal concave objective. The two functions have nothing in common (except that the former is a gradient
of the latter at some point), and, a priori, it is not clear that an approximation of the linear objective would at all yield
a meaningful approximation factor for the original nonconvex objective. This is the key technical challenge which
makes the analysis of this setting more mathematically involved. Fortunately, all objective functions in our framework
admit such an approximation (the probability tail objective is again more challenging due to the given budget and
requires us to know that there is a feasible solution at leasta small distance away from the budget).

Related Work. A rich body of work in stochastic combinatorial optimization focuses on two-stage and multistage
optimization (e.g.,[45, 22, 29, 21, 26]). The models there typically look for solutions of minimumexpected costand
thus do not incorporate risk. In 2006 Swamy and Shmoys remarked that “it would be interesting to explore stochastic
models that incorporate risk” [49]. There are models that have incorporated additional budget constraints [47] or
threshold constraints for specific problems such as knapsack, load balancing and others [10, 18, 31].

At the other end of the risk-aversion spectrum is the paradigm of robust optimization (see survey [6]), which pro-
vides completely reliable (robust) solutions, though thisis only possible when the uncertainty is bounded, namely
the random variables have bounded support. Our framework for risk-averse optimization falls between the traditional
stochastic optimization approach, which minimizes expected cost, and robust optimization, which minimizes the max-
imum cost. Interestingly, part of our framework (the mean-risk model) arises in robust discrete optimization under
ellipsoidal uncertainty sets [7]. Bertsimas and Sim provide pseudopolynomial algorithms and an algorithm converg-
ing to a locally optimal solution, assuming that the underlying deterministic problem can be solved exactly. This
contrasts with our fully polynomial approximation schemesthat work with both exact and approximate algorithms for
the deterministic problem.

Atamtürk and Narayanan [3] also consider mean-risk minimization in discrete optimization, giving a characteriza-
tion in terms of submodular minimization. Our feasible set is an arbitrary subset of the hypercube vertices, on which it
is not known how to do submodular minimization. As a curiosity, we mention here that the mean-risk objective is also
supermodular via the Lovász extension [32]. However, supermodular minimization is even harder and this perspective
does not help our problem at hand.

The probability tail objective was previously considered in the special context of stochastic shortest paths and an
exactalgorithm was given based on enumerating relevant extreme points from the path polytope [38]. The same type
of algorithm readily extends to arbitrary combinatorial problems. However, in general the exact algorithm is inefficient
(superpolynomial or exponential in the problem size), therefore we provide approximation algorithms in this paper.

The value-at-risk objective in our framework can be classified under research on probabilistic programming, or
optimization with probabilistic (chance) constraints. Most of the existing literature concerns continuous optimization
settings (e.g.,[37, 13]; see also Chapter 4 in Shapiroet al. [44]) and concentrates on convergence to optimal solutions,
rather than the design of approximation algorithms in the complexity theoretic sense. One example of work in the
discrete setting is on giving bounds for integer programming problems with probabilistic constraints [12]. This work
considers a different problem formulation from ours, in which the uncertainty is in the demand, rather than the cost of
a feasible solution (that is, it is in the right-hand-side, rather than the left-hand-side of the inequality in the probabilistic
constraint) and the solution is via convexification of a conegeneration method. In a separate line of research, Swamy
considers two-stage risk-averse optimization for covering and packing problems [48]. Other than the high-level idea of
incorporating risk, his models (assuming sampling access to distributions) and techniques (LP-relaxation and convex
minimization) are entirely different from ours.
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A comprehensive survey of models that incorporate risk incontinuoussettings is provided by Rockafellar [42]
as well as in the recent book by Shapiro, Dentcheva and Ruszczyński [44]. A different framework that allows for
uncertainty in the assumed distributions and distributionparameters is that of distributionally robust optimization (see,
e.g.,[11]). The solution concepts and continuous nature of the problems make this line of research very different from
ours.

Additional related work on thecombinatorialoptimization side includes research on multi-criteria optimization
(e.g., [40, 1, 43, 50]) and combinatorial optimization with a ratioof linear objectives [35, 41]. Our models can also be
seen as instances of concave discrete minimization. However, the existing work in this area requires assumptions that
do not hold in our framework, such as restrictive propertieson the feasible set, strictly positive range of the objective
function, or boundedness/positivity of the objective function gradient [39, 4, 30, 19].

2 Model definitions and preliminaries

In this section, we formally define the models in our risk-averse optimization framework and give the necessary
background for our algorithms in the next sections.

Suppose we have an arbitrary combinatorial set of feasible solutionsF ⊂ {0, 1}n, together with an oracle for
optimizing linear objectives over the set. In addition, we are given nonnegative vectors of meansµ ∈ R

n and variances
τ ∈ R

n for the stochastic cost vectorW, coming from independent distributions so that the mean andvariance of a
solutionx ∈ F is µ

Tx andτ
Tx ≥ 0 respectively. We are interested in finding a feasible solution with optimal cost,

where the notion of optimality incorporates risk.

1. Mean-risk model:A family of objectives that has been analyzed in continuous optimization settings (mostly in
the context of finance [16, 34]) and in some discrete optimization settings (minimum spanning trees [3]), as well
as under an equivalent robust optimization framework [7], is the family of convex combinations of mean and
standard deviation. Formally, this problem is to:

minimize µ
Tx + c

√
τT x (1)

subject to x ∈ F ,

where the constantc ≥ 0 parametrizes the degree of the user’s risk aversion.

2. Probability tail model:An alternative natural model maximizes the probability that the stochastic solution cost
is within a desired budget or thresholdt: maximizePr

(

WTx ≤ t
)

subject tox ∈ F . When the stochastic costs

W are Gaussian, we can directly compute the above probabilityasΦ( t−µ
T
x√

τ T
x

), whereΦ(·) denotes the cumula-

tive distribution function of the standard normal random variableN(0, 1). Since the functionΦ(·) is monotone
increasing, the problem has the following equivalent formulation (which is also approximation-preserving by
Lemma C.1 in the Appendix):

maximize
t − µ

Tx√
τTx

(2)

subject to x ∈ F .

When the stochastic costsW come from arbitrary distributions, the maximum probability is lower-bounded

by (t−µ
T
x)2

(t−µT
x)2+(τT

x) (by the one-sided Chebyshev bound, also known as Cantelli’sinequality [20],Pr(X ≤
E[X ] + k

√

V ar(X)) ≥ 1 − 1
1+k2 , with k = t−µ

T
x√

τT
x

). While maximizing a lower-bound will not yield a strict
approximation of the probability tail objective, it is the best one can achieve in the absence of distributional
information other than the mean and variance—and our techniques can strictly approximate this bound as well:

maximize
(t − µ

Tx)2

(t − µTx)2 + τTx
(3)

subject to x ∈ F .
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For both formulations of the probability tail model we assume that there is a solution with mean that is within
the given thresholdt. This condition expresses that we are in arisk-aversesituation and corresponds to the
assumption that the risk-aversion coefficientc ≥ 0 in the mean-risk model above. (From a mathematical
standpoint, if we suppose thatµ

Tx > t for all x ∈ F , the maximum of problem (2) will be negative, therefore
solutions withhigher variance would be preferred, corresponding to arisk-lovingsituation.)

3. Value-at-risk model:Finally, we may wish to minimize the budgett such that the probability of not exceeding
it is at least a given confidence levelp:

minimize t (4)

subject to Pr(WTx ≤ t) ≥ p

x ∈ F .

Depending on whether we have Gaussian or arbitrary distributions, this problem is exactly equivalent to, or
its solution can be upper-bounded using Chebyshev’s bound by the mean-risk model (1) withc = Φ−1(p) or

c =
√

p
1−p (See Ghaouiet al. [17]; more details are provided in the next Section 2.1).

We should mention here that even when the random variables have arbitrary independent distributions, normal
approximation for problems with probabilistic constraints has been suggested as a reasonable approach in the Lectures
on Stochastic Programming by Shapiroet al. [44] (See p. 141-144 in Chapter 4.4). In particular, from theCentral
Limit Theorem, we have that when each variable has finite meanand finite variance and satisfies a mild additional
condition (informally that the sum of third moments is smallrelative to sum of second moments), then the sum
of random variablesWTx converges to a normal distribution with meanµ

T x and varianceτTx as the number of
variables grows to infinity. In particular, for a fixed problem size, the approximation would be reasonable when the
dimensionn is sufficiently large and the incidence vectorx has sufficiently many nonzero components.

Our algorithms make oracle calls to anexactor approximatealgorithm for solving the underlying deterministic
(linear) problem:

minimize wT x (5)

subject to x ∈ F .

We sometimes refer to the algorithm for solving the deterministic problem as alinear oracleafter its linear objective, in
contrast with the risk-averse stochastic problems that havenonlinearobjectives. This is not to be confused with linear
programming (LP) or LP relaxation: the deterministic problem (5) is an integer problem which might be polynomially
solvable or NP-hard.

We first establish that all models are instances of quasi-concave minimization (equivalently, quasi-convex maxi-
mization) overx ∈ F , consequently they attain their optima at extreme points ofthe feasible set [5].

2.1 Quasi-concave properties of the objectives

Concave (convex) functions are special cases of quasi-concave (quasi-convex) functions.

Definition 2.1 A functiong from a convex setC to R is quasi-convexif all its lower level setsLλ = {x | g(x) ≤ λ}
are convex.

Theorem 2.2 [25, 5] Let C ⊂ R
n be a compact convex set. A quasi-convex functionf : C → R that attains a

maximum overC, attains the maximum at some extreme point ofC.

We next show that the models in our risk-averse framework above are instances of quasi-concave minimization.
The mean-risk objective in Eq. (1) is clearly concave. The maximization objectives in Eq. (2) and (3) are quasiconvex
in the risk-averse settings2 and the proofs are routine; we provide one such proof for completeness.

2Quasi-convexity is lost on the negative range of the objective f(x) = t−µ
T
x

√
τ T

x

: as explained before, this situation corresponds to arisk-loving

setting, which is mathematically different and is not the focus of this work.
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2.1.1 Probability tail model

Lemma 2.3 The functionf(x) = t−µ
T
x√

τT
x

is quasi-convex on its positive range.

Proof: From the definition of quasi-convexity, we have to show that for allx,y ∈ Lλ andα ∈ [0, 1], αx+(1−α)y ∈
Lλ, whenλ > 0. To show this, we need to verify that

t − µ
T [αx + (1 − α)y]

√

τT [αx + (1 − α)y]
≤ λ

⇔ (t − αµ
Tx − (1 − α)µTy)2 ≤ αλ2

τ
Tx + (1 − α)λ2

τ
Ty.

⇔ t2 + (αµT x)2 + ((1 − α)µT y)2 − 2tαµT x − 2t(1 − α)µT y + 2α(1 − α)(µT x)(µT y) ≤ λ2ατT x + λ2ατT y

Sinceα ∈ [0, 1], we haveα(1 − α) ≥ 0, hence

−α(1 − α)u2 + 2α(1 − α)uv − α(1 − α)v2 ≤ 0 ∀u, v ∈ R

⇒ α2u2 + 2α(1 − α)uv + (1 − α)2v2 ≤ αu2 + (1 − α)v2 ∀u, v.

Applying the above inequality withu = µ
T x, v = µ

T y, we get

(t − αµ
Tx − (1 − α)µTy)2

= t2 + α2(µTx)2 + 2α(1 − α)(µT x)(µT y) + (1 − α)2(µT y)2 − 2tαµ
Tx − 2t(1 − α)µT y

≤ t2 + α(µT x)2 + (1 − α)(µT y)2 − 2tαµ
Tx − 2t(1 − α)µTy

= α(t − µ
Tx)2 + (1 − α)(t − µ

T y)2

≤ αλ2
τ

Tx + (1 − α)λ2
τ

Ty,

where the last inequality follows from the fact thatx,y ∈ Lλ. 2

Lemma 2.4 The functionf(x) = (t−µ
T
x)2

(t−µT
x)2+τT

x
is quasi-convex on its entire range.

The formal proof of this lemma is analogous to above. It can also be seen geometrically: the lower-level sets of this
function are the epigraphs (the areas above the graphs) of upward-facing parabolas, and hence are convex.

2.1.2 Value-at-risk model

In this section we show how the value-at-risk objective reduces to the problem of minimizing a linear combination of
mean and standard deviation. We first establish the equivalence under normal distributions, and then show a reduction
for arbitrary distributions using Chebyshev’s bound.

Lemma 2.5 The value-at-risk model

minimize t

subject to Pr(WT x ≤ t) ≥ p

x ∈ F

for a given probabilityp is equivalent to the mean-risk model

minimize µ
Tx + c

√
τTx

subject to x ∈ F

with c = Φ−1(p), when the element costs come from independent normal distributions.
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Proof: As before,Φ(·) denotes the cumulative distribution function of the standard normal random variableN(0, 1),
andΦ−1(·) denotes its inverse. For normally distributed costsW we have

Pr(WT x ≤ t) ≥ p

⇔ Pr

(

WTx − µ
Tx√

τT x
≤ t − µ

Tx√
τT x

)

≥ p

⇔ Φ

(

t − µ
T x√

τTx

)

≥ p

⇔ t − µ
T x√

τTx
≥ Φ−1(p)

⇔ t ≥ µ
Tx + Φ−1(p)

√
τTx.

Because the stochastic value-at-risk problem is minimizing over botht andx, the smallest thresholdt is equal to the
minimum ofµT x + c

√
τTx over the feasible setx ∈ F , where the constantc = Φ−1(p). 2

For arbitrary distributions, we can apply the one-sided Chebyshev boundPr(WTx ≥ µ
Tx + c

√
τTx) ≤ 1

1+c2 ,

or equivalentlyPr(WT x < µ
Tx + c

√
τT x) > 1 − 1

1+c2 . Taking c =
√

p
1−p gives the inequalityPr(WTx <

µ
Tx + c

√
τT x) > p. This yields the following lemma:

Lemma 2.6 The value-at-risk model with arbitrary distributions reduces to:

minimize µ
Tx +

√

p

1 − p

√
τTx

subject to x ∈ F

In particular, the optimal value of the above concave minimization problem will provide an upper bound for the
minimum thresholdt in the value-at-risk problem with given probabilityp.

We remark that in the absence of more information on the distributions, other than their means and standard deviations,
the best one can do is to upper-bound the probability tail in the value-at-risk problem.

For an illustration of the difference between the above lemmas, consider the following shortest path application:

Example 2.7 Suppose we need to reach the airport by a certain time. We wantto find the minimum time (and route)
that we need to allocate for our trip so as to arrive on time with probability at leastp = .95. (That is, how close
can we cut it to the deadline and not be late?) If we know that the travel times on the edges are normally distributed,
the minimum time equalsminx∈F µ

Tx + 1.645
√

τT x, sinceΦ−1(.95) = 1.645. On the other hand, if we had no
information about the distributions, we should instead allocate the upper boundminx∈F µ

Tx + 4.5
√

τTx, since
1√

1−0.95
≈ 4.5 (which still guarantees that we would arrive with probability at least95%).

2.2 Exact algorithms

In the previous section we established that all models in ourrisk-averse framework reduce to instances of quasi-
concave minimization (or equivalently, quasi-convex maximization). In this section, we give exact algorithms based
on this property.

An exact algorithm of this nature was previously proposed for the special case of the stochastic shortest path
problem [38]. This algorithm and its analysis readily extend to general problems and all objectives in our risk-averse
framework. We include the generalized statement and analysis here for completeness, and as a prelude to the approxi-
mation algorithms in the next sections.

Theorem 2.8 The optimal solution to all models in our risk-averse framework is an extreme point of the dominant3 of
the projected feasible set onto the mean-variance planespan(µ, τ ).

3Thedominantof a setS is defined as the set of points that are coordinate-wise bigger than points inS, namely{y | y ≥ x for somex ∈ S}.
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Figure 2: Enumerating extreme points.

Proof: In all models the objective functions depend only on the meanµ
T x and varianceτTx of the feasible solution

x. Therefore, we can project the objectives and feasible set onto the mean-variance plane given byspan(µ, τ ) and
work in this 2-dimensional subspace. The quasi-concavity/convexity is retained in this projected space (this follows
immediately by Definition 2.1 and properties of projections[5]), and moreover the optimizer in the projected space is
the projection of the optimizer in the original problem. Therefore, by Theorem 2.2, the optimal solution is an extreme
point of the projected feasible set. Furthermore, this implies that the optimal solution of the relaxed continuous
programs over the convex hull of the feasible setF is also optimal for the original discrete versions.

On the other hand, the risk-aversion in our models implies that our objective functions are monotone in the mean
and variance so that the optimum is obtained at the Pareto boundary of smallest mean-variance combinations of the
feasible solutions. Therefore, the optimum to each of our models is an extreme point on the dominant of the projected
feasible set. 2

Theorem 2.8 establishes correctness of the exact algorithmfor finding the optimal risk-averse solution, presented in
Figure 3. The extreme point enumeration can be done in multiple ways via oracle calls to the underlying deterministic
problem, for a carefully selected sequence of weight vectors as follows: All extreme points on the dominant of the
projected feasible set minimize some linear objective(µ + γτ )T x over the feasible set, for someγ ≥ 0. We first
find the two optimal solutions minimizing the meanµ

Tx and varianceτTx. We then compute the slope of the line
connecting their corresponding projections (A andB in Figure 2) on the mean-variance plane. This slope induces a
new linear objective(µ + γ1τ )T x for someγ1 (the punctuated line parallel toAB in Figure 2) and we find the new
optimal solution (represented by pointC in the figure) with respect to this objective. We continue recursively to find
the extreme points betweenA andC and betweenC andB. If the new returned extreme point is identical to one of
the endpoints, we know that there are no further extreme points in the corresponding interval. The whole process will
terminate after2k deterministic oracle calls wherek is the number of extreme points.

We remark that finding the extreme points in our risk-averse framework is equivalent to finding the breakpoints
in a parametric optimization framework [23, 8], where for two given weight vectorsµ andτ , the goal is to find the
feasible solutions minimizing the parametric costµ + γτ , for all values of the parameterγ ∈ [0,∞). (A breakpoint
is a parameter value where the optimal solution changes.) Theparametric complexityof this problem is defined as the
number of breakpoints, and it determines the complexity of our exact algorithm. We summarize this in the following
theorem.

Theorem 2.9 There is an exact algorithm for our risk-averse optimization framework whose running time is deter-
mined by the parametric complexity of the underlying deterministic problem. In particular, the algorithm runs2k
oracle calls to the underlying deterministic problem, wherek is the number of parametric breakpoints with respect to
the parametric objectiveµ + γτ , γ ∈ [0,∞).

Corollary 2.10 The exact algorithm for risk-averse

1. minimum spanning trees and matroids is polynomial.

2. shortest paths isnO(log n).

10



Problem:Maximize or minimizef(x) overx ∈ F .
Output:Optimal solutionx ∈ F
Algorithm:

1. Enumerate all extreme points on the dominant3 of the projected feasible setF onto the mean-variance
planespan(µ, τ ).

2. Evaluate the objective functionf at each extreme point.

3. Output the extreme point with optimal objective functionvalue.

Figure 3: Exact algorithm for risk-averse optimization.

The result about minimum spanning trees and matroids under the mean-risk model, with a different line of rea-
soning through submodular minimization, appears in Atamt¨urk and Narayanan [3]. The result about shortest paths
under theprobability tail modelappears in Nikolovaet al. [38]. For many other problems of interest, the parametric
complexity is exponential in the worst-case [8].

3 An FPTAS for the risk-averse framework for easy combinatorial prob-
lems

In this section, we present a general-purpose FPTAS design that applies to all models in the risk-averse framework
defined in Section 2. The FPTAS uses as a black-box an exact algorithm for the underlying deterministic problem and
is based on a geometric analysis of the curvature and approximability of the level sets of the objective functions. The
black-box calls to the exact algorithm are made for a carefully chosensmallset of linear objectivesw ≥ 0. We remark
that, in general, such a set may not even exist. For example, the necessary number of linear objectives may be large
or even infinite if the objective function has unbounded gradient (as is the case in the second model above). From
a complexity perspective, minimizing a concave function over some feasible set may be hard to approximate even if
minimizing a linear function over the same set can be done in polynomial time [30].

As in Section 2.2, all objectives (1)-(4) can be projected onto the mean-variance planespan(µ, τ ) and can be
thought of as functions on two dimensions. The projected level sets of the objective functions on the mean-variance
planespan(µ, τ ) are parabolas. We construct an approximate separation oracle, which tells us whether for a given
function valueλ there is a feasible solution below the(1 − ǫ)λ-level set or else if the entire feasible set is above the
λ-level set. We do this by inscribing a (partial) polygon between these two level sets. Geometrically, the optimal
polygon choice (with fewest sides) is such that its verticesare on one level set and its sides are tangent to the other, as
shown in Figure 1(b). The FPTAS template for a maximization problem is described more formally in Figure 4 (it is
analogous for a minimization problem).

Theorem 3.1 There is an oracle fully-polynomial time approximation scheme for all problems in our risk-averse
stochastic framework, which uses as a black-box an exact algorithm for solving the underlying deterministic prob-
lem (5).

In the rest of this section we prove this theorem. The crux of the proof is in establishing that the approximate
separation oracle can be constructed from polynomially many linear segments as described in the following main
technical lemma. (Lemma 3.2 is stated for a stochastic maximization problem as in Eq. (2); the analogous statement
holds for a stochastic minimization problem as in Eq. (1).) The argument for how Theorem 3.1 follows from the
Lemma is provided at the end of this section.

Lemma 3.2 (Approximate Nonlinear Separation Oracle)Suppose we have an exact algorithm for solving the de-
terministic problem (5). Then, we can construct an oracle which solves the following approximate separation problem:
given a levelλ andǫ ∈ (0, 1), the oracle returns

11



Problem:Maximizef(x) overx ∈ F .
Output:Solutionx′ such thatf(x′) ≥ (1 − ǫ)fmax(x)
Algorithm:

1. For appropriate lower and upper bounds off(·), denotedfl andfu respectively, applyapproximate
nonlinear separation oraclebelow withǫ′ = 1 −

√
1 − ǫ successively on the function valuesfu, (1 −

ǫ′)fu, (1 − ǫ′)2fu, ... until we find a value, for which the separation oracle returnsa feasible solution
x′.

2. Run the available black-box algorithm for the deterministic problem on subset of elements with zero
mean, to find the smallest-variance solution among the solutions with mean zero. Compare with the
solution above and return the solution with better objective function value.

Approximate Nonlinear Separation Oracle.
Input: Function valueλ, approximation factorǫ′ > 0; black-box access to algorithm for minimizing linear
functions overx ∈ F .
Output:

(a) A solutionx′ ∈ F with f(x′) ≥ (1 − ǫ′)λ, or

(b) An answer thatf(x) < λ for all x ∈ F .

Algorithm:

1. Inscribe a polygon between the level sets corresponding to function valuesλ and(1 − ǫ′)λ.

2. For each side of the polygon, minimize the induced linear objective.

3. If a resulting solutionx′ satisfiesf(x′) ≥ (1− ǫ)λ, returnx′. Else return thatf(x) < λ for all x ∈ F .

Figure 4: FPTAS template for solving risk-averse stochastic problems.

1. A solutionx ∈ F with f(x) ≥ (1 − ǫ)λ, or

2. An answer thatf(x) < λ for all x ∈ F ,

and the number of linear oracle calls it makes is polynomial in 1
ǫ and the size of the input.

The proof-construction of the approximate nonlinear separation oracle in Lemma 3.2 follows from a series of
lemmas about bounding the size and number of the linear segments that approximate a level set and comprise the sep-
aration oracle. Since the level sets and their position withrespect to each other is different for the different objectives,
the actual computations of the size and number of linear segments differs. We provide the proof for the probability
tail formulation (2), which is more subtle due to the budget threshold and the fact the level sets are tangent to each
other. The proofs for the remaining objectives are analogous; for completeness we provide them in the appendix for
the mean-risk objective whose level sets, though still parabolas, are differently situated with respect to each other.

Consider the lower level setsLλ = {z | f(z) ≤ λ} of the projected probability tail objective functionf(m, s) =
t−m√

s
, wherem, s ∈ R. DenoteLλ = {z | f(z) = λ}. We will prove that any level set boundary can be approximated

by a small number of linear segments. The main work here involves deriving a condition for a linear segment with
endpoints onLλ, to have objective function values within(1 − ǫ) of λ (See Fig. 5).

Lemma 3.3 Consider the points(m1, s1), (m2, s2) ∈ Lλ with s1 > s2 > 0. The segment connecting these two points
is contained in the level set regionLλ\Lλ(1−ǫ) whenevers2 ≥ (1 − ǫ)4s1, for everyǫ ∈ (0, 1).

Proof: Any point on the segment[(m1, s1), (m2, s2)] can be written as a convex combination of its endpoints,
(αm1 + (1 − α)m2, αs1 + (1 − α)s2), whereα ∈ [0, 1]. Consider the functionh(α) = f(αm1 + (1 − α)m2, αs1 +
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Figure 5: The objective value along a segment is not too far from the objective value at the endpoints of the segment,
provideds1 ands2 are not too far.λ andλ(1 − ǫ) are the objective function values along the drawn level sets.

(1 − α)s2). We have,

h(α) =
t − αm1 − (1 − α)m2

√

αs1 + (1 − α)s2

=
t − α(m1 − m2) − m2

√

α(s1 − s2) + s2

We want to find the point on the segment with smallest objective value, so we minimize with respect toα.

h′(α) =
(m2 − m1)

√

α(s1 − s2) + s2 − [t − α(m1 − m2) − m2] ∗ 1
2 (s1 − s2)/

√

α(s1 − s2) + s2

α(s1 − s2) + s2

=
2(m2 − m1)[α(s1 − s2) + s2] − [t − α(m1 − m2) − m2](s1 − s2)

2[α(s1 − s2) + s2]3/2

=
α(m2 − m1)(s1 − s2) + 2(m2 − m1)s2 − (t − m2)(s1 − s2)

2[α(s1 − s2) + s2]3/2
.

Setting the derivative to0 is equivalent to setting the numerator above to0, thus we get:

αmin =
(t − m2)(s1 − s2) − 2(m2 − m1)s2

(m2 − m1)(s1 − s2)
=

t − m2

m2 − m1
− 2s2

s1 − s2
.

Note that the denominator ofh′(α) is positive and its numerator is linear inα, with a positive slope, therefore the
derivative is negative forα < αmin and positive otherwise, soαmin is indeed a global minimum as desired. In fact,
h(α) is strictly decreasing forα < αmin and strictly increasing forα > αmin, and sinceh(0) = h(1) = f(mi, si) = λ
for i = 1, 2, it must be thatαmin ∈ (0, 1). (One can also check directly thath′(0) < 0 andh′(1) > 0.)

It remains to verify thath(αmin) ≥ (1 − ǫ)λ. Note thatt − mi = λ
√

si for i = 1, 2 since(mi, si) ∈ Lλ and
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consequently,m2 − m1 = λ(
√

s1 −
√

s2). We use this in the following expansion ofh(αmin).

h(αmin) =
t + αmin(m2 − m1) − m2

√

αmin(s1 − s2) + s2

=
t + ( t−m2

m2−m1

− 2s2

s1−s2

)(m2 − m1) − m2
√

( t−m2

m2−m1

− 2s2

s1−s2

)(s1 − s2) + s2

=
t + t − m2 − 2s2

m2−m1

s1−s2

− m2
√

(t − m2)
s1−s2

m2−m1

− 2s2 + s2

=
2(t − m2) − 2s2

λ(
√

s1−
√

s2)
s1−s2

√

λ
√

s2
s1−s2

λ(
√

s1−
√

s2) − s2

=
2λ

√
s2 − 2s2

λ√
s1+

√
s2

√√
s2(

√
s1 +

√
s2) − s2

= 2λ

√
s2 − s2√

s1+
√

s2

√√
s1s2

= 2λ

√
s1s2 + s2 − s2

(s1s2)1/4(
√

s1 +
√

s2)
= 2λ

(s1s2)
1/4

√
s1 +

√
s2

.

We need to show that when the ratios1/s2 is sufficiently close to1, h(αmin) ≥ (1 − ǫ)λ, or equivalently

2(s1s2)
1/4

√
s1 +

√
s2

≥ 1 − ǫ ⇔ 2(s1s2)
1/4 ≥ (1 − ǫ)(s

1/2
1 + s

1/2
2 )

⇔ (1 − ǫ)
(s1

s2

)1/2

− 2
(s1

s2

)1/4

+ (1 − ǫ) ≤ 0 (6)

The minimum of the last quadratic function above is attainedat
(

s1

s2

)1/4

= 1
1−ǫ and we can check that at this minimum

the quadratic function is indeed negative:

(1 − ǫ)
( 1

1 − ǫ

)2

− 2
( 1

1 − ǫ

)

+ (1 − ǫ) = (1 − ǫ) − 1

1 − ǫ
< 0,

for all 0 < ǫ < 1. The inequality (6) is satisfied ats1

s2

= 1, therefore it holds for all
(

s1

s2

)

∈ [1, 1
(1−ǫ)4 ]. Hence, a

sufficient condition forh(αmin) ≤ (1 − ǫ)λ is s2 ≥ (1 − ǫ)4s1, and we are done. 2

Using Lemma 3.3, we next show that any level setLλ can be approximated within a multiplicative factor of(1− ǫ)
via a small number of segments. Letsmin andsmax be a lower and upper bound respectively for the variance of the
optimal solution. For example, takesmin to be the smallest positive coordinate of the variance vector, andsmax the
variance of the feasible solution with smallest mean.

Lemma 3.4 The level setLλ = {(m, s) ∈ R
2 | t−m√

s
= λ} can be approximated within a factor of(1 − ǫ) by

⌈

1
4 log

(

smax

smin

)

/ log 1
1−ǫ

⌉

linear segments.

Proof: By definition ofsmin andsmax, the variance of the optimal solution ranges fromsmin to smax. By Lemma 3.3,
the segments connecting the points onLλ with variancessmax, smax(1− ǫ)4, smax(1− ǫ)8, ..., smin all lie in the level
set regionLλ\Lλ(1−ǫ), that is they underestimate and approximate the level setLλ within a factor of(1 − ǫ). The

number of these segments is⌈ 1
4 log

(

smax

smin

)

/ log 1
1−ǫ⌉. 2

The above lemma yields the approximate separation oracle for the level setLλ and the feasible setF , by applying
the black-box algorithm for the deterministic problem to cost vectorsaµ + τ , for all possible slopes(−a) of the
segments approximating the level set. This concludes the proof-construction for the separation oracle in Lemma 3.2.

We now show how to obtain a fully polynomial approximation algorithm for the nonconvex problems in our risk-
averse framework by using the nonlinear separation oracle from Lemma 3.2.
Proof of Theorem 3.1:We prove the theorem for a maximization problem; the proof isanalogous for a minimization
problem. We first need to bound the optimum valuefopt of the objective functionf . A lower boundfl is provided by
the solutionxmean with smallest mean or the solutionxvar with smallest positive variance, whichever has a higher
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objective value:fl = max{f(xmean), f(xvar)}. On the other hand,µT x ≥ µ
Txmean andτ

Tx ≥ τ
Txvar for all

x ∈ F , so an upper boundfu for the objectivef is given byf evaluated atµTxmean for the mean andτT xvar for
the variance.

Now, apply the approximate separation oracle from Lemma 3.2with ǫ′ = 1 −
√

1 − ǫ successively on the levels
fu, (1 − ǫ′)fu, (1 − ǫ′)2fu, ... until we reach a levelλ = (1 − ǫ′)ifu ≥ fl for which the oracle returns a feasible
solutionx′ with

f(x′) ≥ (1 − ǫ′)λ = (
√

1 − ǫ)i+1fu.

From running the oracle on the previous levelfu(1 − ǫ′)i−1, we know thatf(x) ≤ f(xopt) < (
√

1 − ǫ)i−1fu for all
x ∈ F , wherexopt denotes the optimal solution. Therefore,

(
√

1 − ǫ)i+1fu ≤ f(x′) ≤ f(xopt) < (
√

1 − ǫ)i−1fu, and hence

(1 − ǫ)f(xopt) < f(x′) ≤ f(xopt).

So the solutionx′ gives a(1−ǫ)-approximation to the optimumxopt. In the process, we run the approximate nonlinear
separation oracle at mostlog

(

fu

fl

)

/ log 1
1−ǫ′ times, which is polynomial in1ǫ and the input size, and each separation

oracle call itself makes polynomially many black-box queries to the algorithm for the deterministic problem, hence
the algorithm makes polynomially many black-box queries, QED. 2

4 Approximating the risk-averse versions of hard combinatorial problems

In this section, we show that aδ-approximate oracle to the deterministic problem (5), which we sometimes call a linear
oracle, can be used to construct efficient approximation algorithms for the risk-averse stochastic models. As in the
approximative analysis for easy combinatorial problems, we first check whether the optimal solution has zero variance
and if not, proceed with the algorithm and analysis below.

We can use the same approximation algorithm template that constructs a nonlinear separation oracle as in the
previous section, but it turns out that a cruder algorithm which simply tests a geometric progression of mean-variance
tradeoffs provides the same approximation guarantees. Themain technical challenge in the algorithm analysis is
that even if we know the optimal mean-variance tradeoff to query from the black-box algorithm for the deterministic
problem, it is not obvious and not intuitive what approximation factor one can get for the risk-averse objectives from
a δ-approximation factor for the deterministic one.

We obtain a sharp approximation result for the mean-risk objective—we can get essentially the same approximation
factor as the available one for the deterministic problem:

Theorem 4.1 Suppose we have aδ-approximation oracle for solving the deterministic combinatorial problem (5).
The mean-risk model (1) can be approximated to a multiplicative factor ofδ(1 + ǫ) by calling the oracle for the
deterministic problem polynomially many times in the inputsize and1

ǫ .

We can also get the following approximation for the probability tail formulation (2):

Theorem 4.2 Suppose we have aδ-approximation oracle for solving the deterministic combinatorial problem (5).

The probability tail model (2) has a

√

1 −
[

δ−(1−ǫ2/4)
(2+ǫ)ǫ/4

]

-approximation algorithm that calls the algorithm for the

deterministic problem polynomially many times in1
ǫ and the input size, assuming the optimal solution to (2) satisfies

µ
Tx∗ ≤ (1 − ǫ)t.

The high-level analysis for these approximation algorithms is the same; it differs in the computation of the ap-
proximation factors. Below, we present the proofs for Theorem 4.2, which are technically more subtle. The proof of
Theorem 4.1 is provided in the appendix.

We first prove several geometric lemmas that enable us to derive the approximation factor. The first lemma is key
for the transition from approximating a linear objective (by the algorithm for the deterministic problem) to approxi-
mating the nonconvex probability tail objective. See Figure 6 for visualizing the notation.
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Figure 6: Applying the approximate linear oracle on the optimal linear objective (slope) gives an approximate value
b of the optimal linear objective valueb∗. The resulting solution has nonlinear objective function value of at leastλ,
which is an equally good approximation for the optimal valueλ∗.

Lemma 4.3 (Geometric lemma)Consider two objective function valuesλ∗ > λ and points(m∗, s∗) ∈ Lλ∗ , (m, s) ∈
Lλ with positive coordinates, such that the tangents to the points at the corresponding level sets are parallel. Then,
they-interceptsb∗, b of the two tangent lines satisfy

b − b∗ = s∗
[

1 −
( λ

λ∗

)2]

.

Proof: Suppose the slope of the tangents is(−a), wherea > 0. Then they-intercepts of the two tangent lines satisfy

b = s + am, b∗ = s∗ + am∗.

In addition, since the points(m, s) and(m∗, s∗) lie on the level setsLλ, Lλ∗ , they satisfy

t − m = λ
√

s, t − m∗ = λ∗√s∗.

Since the first line is tangent at(m, s) to the parabolay = ( t−x
λ )2, the slope equals the first derivative at this point,

− 2(t−x)
λ2 |x=m = − 2(t−m)

λ2 = − 2λ
√

s
λ2 = − 2

√
s

λ , so the absolute value of the slope isa = 2
√

s
λ . Similarly the absolute

value of the slope also satisfiesa = 2
√

s∗

λ∗
, therefore

√
s∗ =

λ∗

λ

√
s.

Note that forλ∗ > λ, this means thats∗ > s. From here, we can represent the differencem − m∗ as

m − m∗ = (t − m∗) − (t − m) = λ∗√s∗ − λ
√

s =
(λ∗)2

λ

√
s − λ

√
s =

[(λ∗

λ

)2

− 1
]

λ
√

s.
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Substituting the slopea = 2
√

s
λ in the tangent line equations, we get

b − b∗ = s +
2
√

s

λ
m − s∗ − 2

√
s

λ
m∗

= s −
(λ∗

λ

)2

s +
2
√

s

λ
(m − m∗)

= s −
(λ∗

λ

)2

s +
2
√

s

λ
λ
√

s
[(λ∗

λ

)2

− 1
]

= s −
(λ∗

λ

)2

s + 2s
[(λ∗

λ

)2

− 1
]

= s
[(λ∗

λ

)2

− 1
]

= s∗
[

1 −
( λ

λ∗

)2]

,

as desired. 2

The next lemma shows that if we know the optimal linear objective to use with the availableδ-approximate algo-
rithm for the deterministic problem (5), then we can approximate the optimal solution well.

Lemma 4.4 (Optimal Linear Objective Lemma) Suppose we have aδ-approximate linear oracle for optimizing
over the feasible setF and suppose that the optimal solution satisfiesµ

Tx∗ ≤ (1 − ǫ)t. If we can guess the slope of

the tangent to the corresponding level set at the optimal pointx∗, then we can find a
√

1 − δ 2−ǫ
ǫ -approximate solution

to the nonconvex problem (2).
In particular, settingǫ =

√
δ gives a(1 −

√
δ)-approximate solution.

Proof: Denote the projection of the optimal pointx∗ on the plane by(m∗, s∗) = (µTx∗, τTx∗). We apply the linear
oracle with respect to the slope(−a) of the tangent to the level setLλ∗ at(m∗, s∗). The value of the linear objective at
the optimum isb∗ = s∗ + am∗, which is they-intercept of the tangent line. The linear oracle returns aδ-approximate
solution, that is a solution on a parallel line withy-interceptb ≤ δb∗. Suppose the original (nonlinear) objective value
at the returned solution is lower-bounded byλ, that is it lies on a line tangent toLλ (See Figure 6). From Lemma 4.3,

we haveb − b∗ = s∗
[

1 −
(

λ
λ∗

)2
]

, therefore

( λ

λ∗

)2

= 1 − b − b∗

s∗
= 1 −

(

b − b∗

b∗

)

b∗

s∗
≥ 1 − δ

b∗

s∗
. (7)

Recall thatb∗ = s∗ + m∗ 2
√

s∗

λ∗
andm∗ ≤ (1 − ǫ)t, then

b∗

s∗
= 1 +

2m∗

λ∗
√

s∗
= 1 +

2m∗

t − m∗ ≤ 1 +
2m∗

ǫ
1−ǫm

∗ = 1 +
2(1 − ǫ)

ǫ
=

2 − ǫ

ǫ
.

Together with Eq. (7), this gives a
√

1 − δ 2−ǫ
ǫ -approximation factor to the optimal.

On the other hand, settingǫ =
√

δ gives the approximation factor
√

1 − δ 2−
√

δ√
δ

= 1 −
√

δ. 2

Next, we prove a geometric lemma that will be needed to analyze the approximation factor we get when applying
the linear oracle on an approximately optimal slope. (See Fig. 7 for some of the notation.)

Lemma 4.5 Consider the level setLλ and points(m∗, s∗) and(m, s) on it, at which the tangents toLλ have slopes
−a and−a(1 + ξ) respectively. Let they-intercepts of the tangent line at(m, s) and the line parallel to it through
(m∗, s∗) beb1 andb respectively. Thenbb1 ≤ 1

1−ξ2 .

Proof: The equation of the level setLλ is y = ( t−x
λ )2 so the slope at a point(m, s) ∈ Lλ is given by the derivative at

x = m, that is− 2(t−m)
λ2 = − 2

√
s

λ . So, the slope of the tangent to the level setLλ at point(m∗, s∗) is −a = − 2
√

s∗

λ .

Similarly the slope of the tangent at(m, s) is −a(1 + ξ) = − 2
√

s
λ . Therefore,

√
s = (1 + ξ)

√
s∗, or equivalently

(t − m) = (1 + ξ)(t − m∗).
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Figure 7: Applying the linear oracle with an approximate linear function (slope) still gives a solution with good
approximate objective function value.

Sinceb, b1 are intercepts with they-axis, of the lines with slopes−a(1 + ξ) = − 2
√

s
λ containing the points

(m∗, s∗), (m, s) respectively, we have

b1 = s +
2
√

s

λ
m =

t2 − m2

λ2

b = s∗ + (1 + ξ)
2
√

s∗

λ
m∗ =

t − m∗

λ2
(t + m∗ + 2ξm∗).

Therefore

b

b1
=

(t − m∗)(t + m∗ + 2ξm∗)

(t − m)(t + m)
=

1

1 + ξ

t + m∗ + 2ξm∗

t + m
=

1

1 + ξ

t + (1 + 2ξ)m∗

(1 − ξ)t + (1 + ξ)m∗

≤ 1

1 + ξ

(

1

1 − ξ

)

=
1

1 − ξ2
,

where we usem = t − (1 + ξ)(t − m∗) from above. 2

We now show that we get a good approximation even when we use anapproximately optimal linear objective with
our linear oracle.

Lemma 4.6 Suppose that we use an approximately optimal linear objective with aδ-approximate linear oracle for
solving the probability tail model (2). In particular, suppose the linear objective (slope) that we use is within(1 + ξ)
of the slope of the tangent at the optimal solution. Then thiswill give a solution to the probability tail model (2) with

value at least

√

1 −
[

δ
1−ξ2 − 1

]

2−ǫ
ǫ times the optimal, provided the optimal solution satisfiesµ

Tx∗ ≤ (1 − ǫ)t.

Proof: Suppose the optimal solution is(m∗, s∗) and it lies on the optimal level setλ∗ (see Figure 8). Let the slope of
the tangent to the level set boundary at the optimal solutionbe(−a). We apply ourδ-approximation linear oracle with
respect to a slope that is(1 + ξ) times the optimum slope(−a). Suppose the resulting black box solution lies on the
line with y-interceptb2, and the true optimum lies on the line withy-interceptb′. We knowb′ ∈ [b1, b], whereb1 and
b are they-intercepts of the lines with slope−(1 + ξ)a that are tangent toLλ∗ and pass through(m∗, s∗) respectively.
Then we haveb2b ≤ b2

b′ ≤ δ.
Furthermore, by Lemma 4.5 we havebb1 ≤ 1

1−ξ2 .
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Figure 8: Approximating the objective valueλ1 of the optimal solution(m∗, s∗).

On the other hand, from Lemma 4.3,b2 − b1 = s[1 − (λ2

λ∗
)], whereλ2 is the smallest possible objective function

value along the line with slope−a(1 + ξ) andy-interceptb2, in other words the smallest possible objective function
value that the solution returned by the approximate linear oracle may have;(m, s) is the tangent point of the line with
slope−(1 + ξ)a, tangent toLλ∗ .

Therefore, applying the above inequalities, we get

(

λ2

λ∗

)2

= 1 − b2 − b1

s
= 1 − b2 − b1

b1

b1

s
= 1 −

(

b2

b

b

b1
− 1

)

b1

s
≥ 1 −

(

δ

1 − ξ2
− 1

)

2 − ǫ

ǫ
,

whereb1
s ≤ 2−ǫ

ǫ follows as in the proof of Lemma 4.4. The result follows. 2

Finally, we are ready to give the approximation algorithm and its analysis in the proof of our main theorem:

Proof of Theorem 4.2:The algorithm applies the linear approximation oracle withrespect to a small number of linear
functions, and chooses the best resulting solution. In particular, suppose the optimal slope (tangent to the correspond-
ing level set at the optimal solution point) lies in the interval [L, U ] (for lower and upper bound). We find approximate
solutions with respect to the slopesL, L(1 + ξ), L(1 + ξ)2, ..., L(1 + ξ)k ≥ U , namely we apply the approximate
linear oraclelog(U/L)

log(1+ξ) times, whereξ = ǫ3

2(1+ǫ3) . With this, we are certain that the optimal slope will lie in some

interval [L(1 + ξ)i, L(1 + ξ)i+1] and by Lemma 4.6 the solution returned by the linear oracle with respect to slope

L(1+ ξ)i+1 will give a

√

1 −
[

δ
1−ξ2 − 1

]

2−ǫ
ǫ - approximation to our nonlinear objective function value.Since we are

free to chooseξ, setting it toξ = ǫ/2 gives the desired number of queries.

We conclude the proof by noting that we can takeL to be the slope tangent to the corresponding level set at
(mL, sL) wheresL is the minimum positive coordinate of the variance vector and mL = t(1 − ǫ). Similarly letU be
the slope tangent at(mU , sU ) wheremU = 0 andsU is the sum of coordinate of the variance vector. 2

Whenδ = 1, that is when we can solve the underlying linear problem exactly in polynomial time, the above

algorithm gives an approximation factor of
√

1
1+ǫ/2 , or equivalently1 − ǫ′, whereǫ = 2[ 1

(1−ǫ′)2 − 1]. While this

algorithm is still an oracle-fully polynomial time approximation scheme, it gives a bi-criteria approximation: it requires
that there is a small gap between the mean of the optimal solution and the budgett so it is weaker than our previous
algorithm from Section 3, which had no such requirement. This is expected since, of course, this algorithm is cruder,
simply taking a geometric progression of linear functions rather than tailoring the black-box algorithm calls for the
deterministic problem to the objective function value thatit is searching for, as does the approximate separation oracle
that the FPTAS from the previous section is based on.
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Figure 9: Solution with correlated adjacent edges.

5 Extensions: correlations

Our study of the risk-averse optimization framework presented here was motivated by route planning problems.
Clearly, in a route planning application, one cannot assumethat the edge delays are independently distributed: for
example, an accident in one edge would increase congestion in the edges that follow it. On the other hand, it is reason-
able to assume that the delay on an edge affects and is affected by other nearby edges. In such situations, our results
can be readily extended with an appropriate graph transformation used in belief-propagation.4 For clarity, we describe
the transformation when only adjacent edges are pairwise correlated; one can deduce the analogous transformation
when up to a constant number of consecutive edges can be pairwise correlated.

Suppose there are pairwise correlations between adjacent edges (the first one incoming and the second outgoing
from their common node). Consider the following graph transformation. For every nodeB with incoming edges
(A, B) in the original graphG, create nodesB|A in the new graphG′. An edge(A, B) in G yields edges(A|X, B|A)
in G′, for all nodesX that precede nodeA in G. Denote the covariance between edges(A, B) and(B, T ) in G by
CovABT , and their variances byVAB andVBT respectively. Then in the transformed graphG′, define the variance of
edge(B|A, T |B) by VBT +CovABT as in Figure 9. Notice that these definitions of variance decouple the correlations
so now the edge distributions are independent. We can thus run our existing algorithms onG′ and thus solve the
problems for correlated edges in the original graphG. We can apply this method of decoupling correlated edges for
not just correlations among two neighboring edges, but up toa constant number of consecutive edges (in order to
maintain polynomial size for the transformed graphG′).

6 Conclusion

We have presented a framework for risk-averse stochastic combinatorial optimization that includes mean-risk mini-
mization and models involving the probability tail of the stochastic cost of a solution. Our algorithms are independent
of the feasible set structure and use solutions for the underlying linear (deterministic) problems as oracles for solving
the corresponding stochastic models. As such, they apply tovery general combinatorial settings for whichexactor
approximatelinear oracles are available.

Our primary motivation for this work was to design an approximation algorithm for finding the most reliable route
in a network with uncertain edge delays (in the sense that theroute maximizes the probability of arriving on time
under a given deadline), which consequently extended to therich class of problems and risk-averse models considered
here. An implementation of our approximation algorithm in the context of finding risk-averse routes reveals that they

4We thank Alexander Hartemink [24] for pointing this out and telling us the transformation.
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are also very practical: for example, they achieve 99.9%-accuracy with only up to 6 iterations of an algorithm for the
deterministic problem.

In future work, it would be interesting to extend our offline stochastic models to online models, as has previously
been done with offline linear to online linear problems [28, 27]. It would be also useful to consider adaptive stochastic
models, building on the framework of multistage stochasticoptimization.

Other open directions include considering convex risk-measures such as the ones described in Rockafellar [42]
that have been analyzed in continuous settings. We note thatalthough the models in this paper are nonconvex, this
nonconvexity (concavity) is beneficial because it preserves integrality of the desired solution. This is not true for
convex objectives: convexdiscreteoptimization is yet another challenging and exciting area of research.
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A Proof of Theorem 3.1 for mean-risk objective (FPTAS for easy combina-
torial problems)

Similarly to the probability tail objective, we construct anonlinear separation oracle by approximating a level set with
a polygon whose sides induce linear objectives. Geometrically, the optimal choice of linear objectives is determined
by drawing segments starting from one endpoint of the level set Lλ and repeatedly drawing tangents to the level set
L(1+ǫ)λ.

In order to establish that the resulting linear segments arefew, we first show that the tangent-segments toL(1+ǫ)λ

starting at the endpoints ofLλ are sufficiently long.

Lemma A.1 Consider points(m1, s1) and(m2, s2) onLλ with 0 ≤ m1 < m2 ≤ λ such that the segment with these
endpoints is tangent toL(1+ǫ)λ at the pointα(m1, s1) + (1 − α)(m2, s2). Then,α = c2

4
s1−s2

(m2−m1)2 − s2

s1−s2

and the

objective value at the tangent point is
[

c2

4
s1−s2

m2−m1

+ s2
m2−m1

s1−s2

+ m2

]

.

Proof: Let f̄ : R
2 → R, f̄(m, s) = m + c

√
s be the projection of the objectivef(x) = µ

Tx + c
√

τTx. The
objective values along the segment with endpoints(m1, s1), (m2, s2) are given by

h(α) = f̄
(

α(m1, s1) + (1 − α)(m2, s2)
)

= α(m1 − m2) + m2 + c
√

α(s1 − s2) + s2,

for α ∈ [0, 1]. The point along the segment with maximum objective value (that is, the tangent point to the minimum
level set bounding the segment) is found by setting the derivativeh′(α) = m1 − m2 + c s1−s2

2
√

α(s1−s2)+s2

, to zero:

m2 − m1 = c
s1 − s2

2
√

α(s1 − s2) + s2

⇔
√

α(s1 − s2) + s2 = c
s1 − s2

2(m2 − m1)

⇔ α(s1 − s2) + s2 = c2 (s1 − s2)
2

4(m2 − m1)2

⇔ α(s1 − s2) = c2 (s1 − s2)
2

4(m2 − m1)2
− s2

⇔ α = c2 s1 − s2

4(m2 − m1)2
− s2

s1 − s2
.

This is a maximum, since the derivativeh′(α) is decreasing inα. The objective value at the maximum is

h(αmax) = αmax(m1 − m2) + m2 + c
√

αmax(s1 − s2) + s2

=

[

c2 s1 − s2

4(m2 − m1)2
− s2

s1 − s2

]

(m1 − m2) + m2 + c2 s1 − s2

2(m2 − m1)

= −c2

4

s1 − s2

m2 − m1
− s2

m1 − m2

s1 − s2
+ m2 +

c2

2

s1 − s2

m2 − m1

=
c2

4

s1 − s2

m2 − m1
+ s2

m2 − m1

s1 − s2
+ m2.

Further, sinces1 = (λ−m1

c )2 ands2 = (λ−m2

c )2, their difference satisfiess1 − s2 = 1
c2 (m2 − m1)(2λ − m1 − m2),

so s1−s2

m2−m1

= 2λ−m1−m2

c2 and the above expression for the maximum function value on the segment becomes

h(αmax) =
c2

4

2λ − m1 − m2

c2
+

c2s2

2λ − m1 − m2
+ m2 =

2λ − m1 − m2

4
+

(λ − m2)
2

2λ − m1 − m2
+ m2.
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2

Now we can show that the tangent segments at the ends of the level setLλ are long.

Lemma A.2 Consider the endpoint(m2, s2) = (λ, 0) of Lλ. Then either the single segment connecting the two
endpoints ofLλ is entirely below the level setL(1+ǫ)λ, or the other endpoint of the segment tangent toL(1+ǫ)λ is
(m1, s1) = (λ(1 − 4ǫ), (4ǫλ

c )2).

Proof: Since0 ≤ m1 < λ, we can writem1 = βλ for someβ ∈ [0, 1). Consequently,s1 = (λ−m1

c )2 = λ2(1−β)2

c2

and s1−s2

m2−m1

= λ2(1−β)2

c2λ(1−β) = λ(1−β)
c2 . By Lemma A.1, the objective value at the tangent point is

c2

4

λ(1 − β)

c2
+ λ = λ

(

1 − β

4
+ 1

)

= (1 + ǫ)λ.

The last equality follows by our assumption that the tangentpoint lies on theL(1+ǫ)λ level set. Hence,β = 1− 4ǫ, so
m1 = (1 − 4ǫ)λ ands1 = (λ−m1

c )2 = (4ǫλ
c )2. 2

Next, we characterize the segments with endpoints onLλ that are tangent to the level setLλ(1+ǫ).

Lemma A.3 Consider two points(m1, s1), (m2, s2) onLλ with 0 ≤ m1 < m2 ≤ λ such that the segment connecting
the two points is tangent toL(1+ǫ)λ. Then,s1

s2

≥ (1 + 2ǫ)2.

Proof: Let point(m, s) on the segment with endpoints(m1, s1), (m2, m2) be the tangent point to the level setL(1+ǫ)λ.

Then the slopes1−s2

m1−m2

of the segment is equal to the derivative of the functiony = ( (1+ǫ)λ−x
c )2 atx = m, which is

−2 (1+ǫ)λ−m
c2 = − 2

√
s

c . Since s1−s2

m1−m2

= s1−s2

(λ−m2)−(λ−m1) = s1−s2

c(
√

s2−
√

s1) = −
√

s2+
√

s1

c , equating the two expressions

for the slope we get2
√

s =
√

s2 +
√

s1.
On the other hand, since(m, s) ∈ L(1+ǫ)λ, we have

m = (1 + ǫ)λ − c
√

s = (1 + ǫ)λ − c
√

s2 + c
√

s1

2
= (1 + ǫ)λ − λ − m2 + λ − m1

2
= ǫλ +

m1 + m2

2

andm = α(m1 − m2) + m2 for someα ∈ (0, 1). Thereforeα = 1
2 − ǫλ

m2−m1

= 1
2 − ǫλ

c(
√

s1−
√

s2) .

Next,

s = α(s1 − s2) + s2 =

[

1

2
− ǫλ

c(
√

s1 −
√

s2)

]

(s1 − s2) + s2 =
s1 − s2

2
− ǫλ

c
(
√

s1 +
√

s2) + s2

=
s1 + s2

2
− ǫλ

c
(
√

s1 +
√

s2)

therefore using2
√

s =
√

s2 +
√

s1 from above, we get two equivalent expressions for4s:

2(s1 + s2) −
4ǫλ

c
(
√

s1 +
√

s2) = s1 + s2 + 2
√

s1s2

⇔ s1 + s2 −
4ǫλ

c
(
√

s1 +
√

s2) − 2
√

s1s2 = 0

⇔ s1

s2
+ 1 − 4ǫλ

c
√

s2
(

√

s1

s2
+ 1) − 2

√

s1

s2
= 0

Denote for simplicityz =
√

s1

s2

andw = 2ǫλ
c
√

s2

, then we have to solve the following quadratic equation forz in terms

of w:

z2 + 1 − 2w(z + 1) − 2z = 0

⇔ z2 − 2z(w + 1) + 1 − 2w = 0.
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The discriminant of this quadratic expression isD = (w + 1)2 − 1 + 2w = w2 + 4w and its roots arez1,2 =
1+w±

√
w2 + 4w, Sinces1

s2
> 1, we choose the bigger rootz2 = 1+w+

√
w2 + 4w. Therefore sincew = 2ǫλ

c
√

s2
≥ 0

we have
√

s1

s2
= 1 + w +

√

w2 + 4w ≥ 1 + w = 1 +
2ǫλ

c
√

s2
≥ 1 +

2ǫλ

cλ
c

= 1 + 2ǫ,

where the last inequality follows from the fact that
√

s2 <
√

s1 ≤ λ
c . This concludes the proof. 2

The previous lemma shows that each segment is sufficiently long so that overall the number of tangent segments
approximating the level setLλ is small. In particular, the number of segments is polynomial in 1

ǫ (and does not depend
on the problem sizen). This gives us the desired approximate nonlinear separation oracle for the level sets of the
objective function.

Lemma A.4 A nonlinear(1 + ǫ)-approximate separation oracle to any level set of the nonconvex objectivef(x) in

problem (1) can be found with(1 +
log( 1

16ǫ2
)

2 log(1+2ǫ) ) queries to the available linear oracle for solving problem (5).
The nonlinear oracle takes as inputsλ, ǫ and returns either a feasible solutionx ∈ F with f(x) ≤ (1 + ǫ)λ or an

answer thatf(x) > λ for all x in F .

Proof: Apply the available linear oracle to the slopes of the segments with endpoints on the specified level set, say
Lλ, and which are tangent to the level setL(1+ǫ)λ. By Lemma A.3 and Lemma A.2, they-coordinates of endpoints of
these segments are given by

s1 = (
λ

c
)2,

s2 ≤ s1

(1 + 2ǫ)2
,

s3 ≤ s1

(1 + 2ǫ)4
,

...

sk ≤ s1

(1 + 2ǫ)2(k−1)
,

sk+1 = 0,

wheresk = (4ǫλ
c )2, sok = 1 + log( 1

16ǫ2 )/2 log(1 + 2ǫ), which is precisely the number of segments we use and the
result follows. 2

Finally, applying the approximate nonlinear separation oracle from Lemma A.4 on a suitable geometric progression
of function values gives an approximation algorithm for themean-standard deviation model (1). We can use the
following boundsfl, fu for the function values in the algorithm. For a lower bound, set fl = smin, the smallest
positive variance coordinate, and for an upper bound takefu = nmmax + c

√
nsmax, wheremmax andsmax are the

largest coordinates of the mean and variance vectors respectively. Additionally, run the linear oracle once with weight
vector equal to the vector of means, over the subset of coordinates with zero variances and return that solution if it is
better. In particular, we can solve the problem even if the optimal objective value is zero.

Theorem A.5 There is an oracle-polynomial time approximation scheme for the stochastic problem (1), which uses
an exact oracle for solving the underlying deterministic problem (5). This algorithm returns a(1 + ǫ)-approximate

solution and makes(1 + 2
ǫ log(fu

fl
))(1 +

log( 1

16ǫ2
)

2 log(1+2ǫ) ) oracle queries, namely logarithmic in the input and polynomial

in 1
ǫ .

Proof: Apply the (1 + ξ)-approximate nonlinear oracle successively on the sequence of function valuesfl, (1 +
ξ)fl, (1 + ξ)2fl, ... for ξ =

√
1 + ǫ − 1, until we reach a levelλ = (1 + ξ)ifl ≤ fu for which the oracle returns a

feasible solutionx′ with

f(x′) ≤ (1 + ξ)λ = (1 + ξ)i+1fl.
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From running the oracle on the previous level(1 + ξ)i−1fl, we know thatf(x) ≥ f(xopt) > (1 + ξ)i−1fl for all x in
the feasible set, wherexopt denotes the optimal solution. Therefore,

(1 + ξ)i−1fl < f(xopt) ≤ f(x′) ≤ (1 + ξ)i+1fl, and hence

f(xopt) ≤ f(x′) < (1 + ξ)2f(xopt) = (1 + ǫ)f(xopt).

So the solutionx′ gives an(1 + ǫ)-approximation to the optimumxopt. In the process, we run the approximate
nonlinear separation oracle at most2 log(fu

fl
)/ log (1 + ǫ) times. In addition, we run the linear oracle once more

with linear objective given by the vector of means, over the subset of components with zero variances and return that
solution if it is better than the above. 2

B Proof of Theorem 4.1 (Approximation of mean-risk model forhard com-
binatorial problems)

Suppose we have aδ-approximate linear oracle for solving the deterministic problem (5). We will provide an algorithm
for the stochastic problem (1) with approximation factorδ(1 + ǫ), which invokes the linear oracle a small number of
times that is logarithmic in the problem input and polynomial in 1

ǫ .
First, we show that if we can guess the optimal linear objective, given by the slope of the tangent to the corre-

sponding level set at the optimal solution, then applying the approximate linear oracle returns an approximate solution
with the same multiplicative approximation factorδ. The above statement reduces to showing the following geometric
fact.

Lemma B.1 Consider levels0 ≤ λ1 < λ2 and two parallel lines tangent to the corresponding level setsLλ1
andLλ2

at points(m1, s1) and(m2, s2) respectively. Further, suppose the correspondingy-intercepts of these lines areb1 and
b2. Thenb2

b1
= λ2+m2

λ1+m1

≥ λ2

λ1

.

Proof: The function defining a level setLλ has the formy = (λ−x)2

c2 , and thus the slope of the tangent to the level set

at a point(m, s) ∈ Lλ is given by the first derivative at the point,− 2(λ−x)
c2 |x=m = − 2(λ−m)

c2 = − 2
√

s
c . Therefore the

equation of the tangent line isy = − 2
√

s
c x + b, where

b = s +
2
√

s

c
m =

√
s(
√

s +
2m

c
) =

√
s(

λ − m

c
+

2m

c
) =

√
s(

λ + m

c
)

Since the two tangents from the lemma are parallel, their slopes are equal:− 2
√

s1

c = − 2
√

s2

c , therefores1 = s2

and equivalently(λ1 − m1) = (λ2 − m2).
Therefore they-intercepts of the two tangents satisfy

b2

b1
=

√
s2(

λ2+m2

c )
√

s1(
λ1+m1

c )
=

λ2 + m2

λ1 + m1
≥ λ1

λ2
.

The last inequality follows from the fact thatλ2 > λ1 andλ1 − m1 = λ2 − m2 (and equality is achieved when
m1 = λ1 andm2 = λ2). 2

Corollary B.2 Suppose the optimal solution to the nonconvex problem (1) is(m1, s1) with objective valueλ1. If we
can guess the slope−a of the tangent to the level setLλ1

at the optimal solution, then applying the approximate linear
oracle for solving problem (5) with respect to that slope will give aδ-approximate solution to problem (1).

Proof: The approximate linear oracle will return a solution(m′, s′) with value b2 = s′ + am′ ≤ δb1, where
b1 = s1 + am1. The objective function value of(m′, s′) is at mostλ2, which is the value at the level set tangent to the
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line y = −ax + b2. By Lemma B.1,λ2

λ1

≤ b2
b1

≤ δ, therefore the approximation solution has objective function value
at mostδ times the optimal value, QED. 2

If we cannot guess the slope at the optimal solution, we have to approximate it. Lemma B.3 proves that if we apply

the approximate linear oracle to a slope that is within(1 +
√

ǫ
1+ǫ ) of the optimal slope, we would still get a good

approximate solution with approximation factorδ(1 + ǫ).

Lemma B.3 Consider the level setLλ and points(m∗, s∗) and(m, s) on it, at which the tangents toLλ have slopes

−a and−a(1+
√

ǫ
1+ǫ ) respectively. Let they-intercepts of the tangent line at(m, s) and the line parallel to it through

(m∗, s∗) beb1 andb respectively. Thenbb1 ≤ 1 + ǫ.

Proof: Let ξ =
√

ǫ
1+ǫ . As established in the proof of Lemma B.1, the slope of the tangent to the level setLλ

at point(m∗, s∗) is −a = − 2
√

s∗

c . Similarly the slope of the tangent at(m, s) is −a(1 + ξ) = − 2
√

s
c . Therefore,√

s = (1 + ξ)
√

s∗, or equivalently(λ − m) = (1 + ξ)(λ − m∗).

Sinceb, b1 are intercepts with they-axis, of the lines with slopes−a(1 + ξ) = − 2
√

s
c containing the points

(m∗, s∗), (m, s) respectively, we have

b1 = s +
2
√

s

c
m =

λ2 − m2

c2

b = s∗ + (1 + ξ)
2
√

s∗

c
m∗ =

λ − m∗

c2
(λ + m∗ + 2ξm∗).

Therefore

b

b1
=

(λ − m∗)(λ + m∗ + 2ξm∗)

(λ − m)(λ + m)
=

1

1 + ξ

λ + m∗ + 2ξm∗

λ + m
≤ 1

1 + ξ

(

1

1 − ξ

)

=
1

1 − ξ2
= 1 + ǫ,

where the last inequality follows by Lemma B.4. 2

Lemma B.4 Following the notation of Lemma B.3,λ+m∗+2ξm∗

λ+m ≤ 1
1−ξ .

Proof: Recall from the proof of Lemma B.3 that(λ−m) = (1+ ξ)(λ−m∗), thereforem = λ− (1+ ξ)(λ−m∗) =
−ξλ + (1 + ξ)m∗. Hence,

λ + m∗ + 2ξm∗

λ + m
=

λ + (1 + 2ξ)m∗

(1 − ξ)λ + (1 + ξ)m∗ =
λ

m∗
+ (1 + 2ξ)

(1 − ξ) λ
m∗

+ (1 + ξ)
≤ 1

1 − ξ
,

since1+2ξ
1+ξ ≤ 1

1−ξ for ξ ∈ [0, 1). 2

A corollary from Lemma B.1 and Lemma B.3 is that applying the linear oracle with respect to a slope that is within

(1 +
√

ǫ
1+ǫ ) times of the optimal slope yields an approximate solution with objective value within(1 + ǫ)δ times of

the optimal.

Lemma B.5 Suppose the optimal solution to the nonconvex problem (1) is(m∗, s∗) with objective valueλ and the
slope of the tangent to the level setLλ at it is−a. Then running theδ-approximate oracle for solving problem (5) with

respect to a slope that is in[−a,−a(1+
√

ǫ
1+ǫ )] returns a solution to (1) with objective function value no greater than

(1 + ǫ)δλ.

Proof: Suppose the optimal solution with respect to the linear objective specified by slope−a(1 +
√

ǫ
1+ǫ ) has value

b′ ∈ [b1, b], whereb1, b are they-intercepts of the lines with that slope, tangent toLλ and passing through(m∗, s∗)
respectively (See Figure 8). Then applying theδ-approximate linear oracle to the same linear objective returns solution
with valueb2 ≥ δb′. Henceb2

b ≤ b2
b′ ≤ δ.
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On the other hand, the approximate solution returned by the linear oracle has value of our original objective
function equal to at mostλ2, whereLλ2

is the level set tangent to the line on which the approximate solution lies. By
Lemma B.1,λ2

λ ≤ b2
b1

= b2
b

b
b1

≤ δ(1 + ǫ), where the last inequality follows by Lemma B.3 and the abovebound on
b2
b . 2

Finally, we are ready to state our theorem for solving the stochastic model (1). The theorem says that there
is an algorithm for this problem with essentially the same approximation factor as for the underlying deterministic
combinatorial problem (5), which makes only logarithmically many calls to the latter.

Theorem B.6 (Theorem 4.1 in main body of paper.)Suppose we have aδ-approximation oracle for solving the de-
terministic combinatorial problem (5). The mean-risk model (1) can be approximated to a multiplicative factor of
δ(1 + ǫ) by calling the oracle logarithmically many times in the input parameters and polynomially many times in1

ǫ .

Proof: We use the same type of algorithm as in Theorem 4.2: apply the available approximate linear oracle on
a geometric progression of cost vectors (slopes), determined by the lemmas above. In particular, apply it to slopes

U, (1 + ξ)U, ..., (1 + ξ)iU = L, whereξ =
√

ǫ
1+ǫ , L is a lower bound for the optimal slope andU is an upper bound

for it. For each approximate feasible solution obtained, compute its objective function value and return the solution
with minimum objective function value. By Lemma B.5, the value of the returned solution would be withinδ(1 + ǫ)
of the optimal.

Note that it is possible for the optimal slope to be0: this would happen when the optimal solution satisfiesm∗ = λ
ands∗ = 0. We have to handle this case differently: run the linear oracle just over the subset of coordinates with zero
variance-values, to find the approximate solution with smallestm. Return this solution if its value is better than the
best solution among the above.

It remains to bound the valuesL andU . We established earlier that the optimal slope is given by2
√

s∗

c , wheres∗ is
the variance of the optimal solution. Among the solutions with nonzero variance, the variance of a feasible solution is at
leastsmin, the smallest possible nonzero variance of a single element, and at most(λmax)2 ≤ (nmmax+c

√
nsmax)2,

wheremmax is the largest possible mean of a single element andsmax is the largest possible variance of a single
element (assuming that a feasible solution uses each element in the ground set at most once). Thus, setU = − 2

√
smin

c

andL = − 2(nmmax+c
√

nsmax)
c 2

C Gap-preserving approximation lemma for probability tail objective

Lemma C.1 A δ-approximation for the nonconvex threshold objective (2) yields aδ-approximation for the stochastic

threshold objectiveΦ
(

t−µ
T
x√

τT
x

)

, whereΦ denotes the cumulative distribution function of the standard normal random

variableN(0, 1).

Proof: Denote the approximate and the optimal solutions byx,xopt respectively. Aδ-approximation for maximizing
the nonconvex threshold objective means that

t − µ
T x√

τTx
≥ δ

t − µ
Txopt

√

τT xopt

.

Denotef = t−µ
T
x√

τT
x

andfopt =
t−µ

T
xopt√

τT
xopt

. Since by assumption,fopt ≥ 0, a line going through 0 and between the

points(f, Φ(f)), (fopt, Φ(fopt)) on the graph of the functionΦ will cross the vertical lines through this points below
the graph and above the graph respectively (at the pointsA′ andB′ in Figure 10). Using the notation from Figure 10,
we thus have thatΦ(f) ≥ y (the y-coordinate ofA′) andΦ(fopt) ≤ yopt. On the other hand, since the linesAA′ and
BB′ are parallel, we have the equality below:

δ ≤ f

fopt
=

y

yopt
≤ Φ(f)

Φ(fopt)
,

thereforeΦ(f) ≥ δΦ(fopt), QED. 2
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Figure 10: A plot of the stochastic threshold objective (thecumulative distribution functionΦ of the standard normal
random variable).
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