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Abstract

We consider generic optimization problems that can be ftated as minimizing the cost of a feasible solution
w’x over a combinatorial feasible s#&t C {0,1}". For these problems we describe a framework of risk-averse
stochastic problems where the cost vedérhas independent random components, unknown at the timéubicso
A natural and important objective that incorporates riskhis stochastic setting is to look for a feasible solution
whose stochastic cost has a small tail or a small convex amatibn of mean and standard deviation. Our models can
be equivalently reformulated as nonconvex programs fockwho efficient algorithms are known. In this paper, we
make progress on these hard problems.

Our results are several efficient general-purpose appuatiom schemes. They use as a black-box (exact or ap-
proximate) the solution to the underlying deterministiclgem and thus immediately apply to arbitrary combinatoria
problems. For example, from an availablapproximation algorithm to the linear problem, we constan (1 + ¢)-
approximation algorithm for the stochastic problem, whimiokes the linear algorithm only a logarithmic number
of times in the problem input (and polynomial %r) for any desired accuracy levet> 0. The algorithms are based
on a geometric analysis of the curvature and approximglafithe nonlinear level sets of the objective functions.

1 Introduction

Suppose we have to catch a flight and need to find a route toriarilf there is no traffic, this is an application of
the classical shortest path problem and can be solved wigiiety of existing algorithms such as Dijkstra’s shortest
path algorithm, etc. More often, however, not only is theadfic but also traffic conditions arencertain What then
do we mean by the shortest path to the airport? Such a quésilbposed. We may instead attempt definitions such
as the path with the shortestpectedravel time, although, when we have a flight to catch, thissdu® seem like an
appropriate objective. What we need instead is a definitiahdaptures our risk aversion.

The definition of the risk-averse model need not be uniqueeéd, the natural objectives may change depending
onwhenwe are submitting the route query: ahead of time, when we apatthg how much time to budget for our
trip, or at the start of our trip, when we want to maximize our chanocamefime arrival over the fixed time period we
now have to get to the destination. In the former setting, weld/typically want to allocate enough time to ensure
some confidence of on-time arrival, say 95%. In the latteegia deadline to reach our destination, we need to find
the route with which we will most likely reach by the deadliff®r example, this optimal route may give us 06y
chance of arriving on time if we have not allocated enougleftian the trip. A third objective, used for example by the
Federal Highway Administration [15] as a travel time relidpcriterion, is given by the mean plus standard deviatio
of a route. This third criterion has been considered in th#ged of stochastic minimum spanning trees as well [3],
and is sometimes referred to as mean-risk optimizataom ([3]).

In this paper, inspired by the route planning applicatioove) we consider generic combinatorial problems that
can be formulated as minimizing the cost of a feasible smiut” x over a combinatorial feasible sé&t c {0,1}"
and ask what happens when the associated costs are stochhstmost common approach in stochastic optimization
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is to find the solution of minimum expected cost. However, anyapplications such as the one above reliability con-
siderations are very important: risk-averse users neegueance regarding the level of risk, and not just the expect
cost of the provided solution. For example, the transpioriatommunity has recognized the importance of reliable
route plans€.g.,[9, 36, 33, 46, 14]). However, the algorithms for finding thesliable routes are typically inefficient
or heuristic with unknown approximation guarantee. Rig&raion is clearly very important as well in finance and
othercontinuousoptimization settings [42]. While risk models have a longtbity in the finance setting, their study
is much more recent inombinatorialoptimization settings and there are hardly any studies orege risk-averse
models and unified approaches for solving them from an apmpition algorithms perspective in the complexity the-
oretic sense. (We describe related work below.) One clgalevith such research is that incorporating risk-aversion
transforms the problems inttonconvexnes [42, 37] for which there are no known efficient algorisremd rigorous
approximative analysis is scarce. In addition, having tdquen nonconvex optimization overombinatorialfeasi-
ble sets adds an extra layer of difficulty and necessitategintethe traditionally distinctontinuousanddiscrete
optimization approaches.

In this paper, we provide a rigorous unified treatment of éfliisk-averse combinatorial optimization problems,
offering fully-polynomial approximation schemes (FPTABS) the following risk-averse models:

1. Mean-risk modelminimize (mean + ¢ - standard deviation) wherec > 0 is the risk-aversion coefficient.
2. Probability tail model:maximize Pr(solution cost < budget) for a givenbudget

3. Value-at-risk model:minimizebudget such thatPr(solution cost < budget) > p for a given confidence
probabilityp.

In contrast with the diversity in risk-averse model speatfiens above, we will show that the same approximation
algorithm design can simultaneously solve all. In our asialywe assume that the cost distributions are independent
although in Section 5 we show how our algorithms also extenithé case of correlations of neighboring edges in
a graph. For example, for shortest path problems, the gratthosrrelated edges is transformed into a slightly
larger graph with independent edges and thus all our reisutteediately carry through. A more in-depth analysis of
correlations in stochastic optimization is offered by Agahet al. [2].

To be precise, all our algorithms run aracle-polynomial time, in that they call an algorithm (oracley the
underlying deterministic problem polynomially many timashe problem input (and i@ for a givene > 0 in the
case of FPTAS). For simplicity, instead ofacleFPTAS, we shall simply refer to them as FPTAS, defined more
formally as follows:

Definition 1.1 A fully-polynomial approximation scheme (FPTAS) is an dthm for an optimization problem that,
given an input/ and desired accuracy > 0, finds in time polynomial ir% and the input size, a solution of value
OPT'(I) that satisfies

|OPT(I)— OPT'(I)| < eOPT(I),
for all inputs I, whereO PT'(I) is the optimal solution value on inpiit

In Section 4 we give approximation algorithms for the staticaversions of NP-hard combinatorial problems, for
whose deterministic versions there are availabbgpproximations. This notion of approximation is definedreno
formally below:

Definition 1.2 A §-approximation algorithm for a minimization problem is alypmomial-time algorithm that, given
an input instancd, finds a solution with valu® PT"(I), satisfying

OPT(I) < OPT'(I) < §OPT(I),

for all instancesl, whereOPT(I) is the optimal solution value on inpdt The definition of approximation for a
maximization problem is analogous.



Contributions. We start our discussion with the relatively simpler meak-rmodel, which is equivalent to mini-
mizing (mean +c- \/Uam'ance). We provide fully-polynomial approximation algorithmsttapply toarbitrary cost
distributions with given means and variances, and achissergially the same approximation factor as what is pos-
sible for the underlying deterministic problem. Our al¢foms use as a black-box an algorithm for the deterministic
problem. We summarize our results for this setting below:

Theorem 1.3 (See Theorems 3.1, 4.There is a fully-polynomial approximation scheme for theamesk stochastic
model, when there is an exact or fully-polynomial approstioraalgorithm for the underlying deterministic problem.

In addition, there is g1 + €)d-approximation for the stochastic model running in timeymamial in%, when there
is an availabled-approximation for the corresponding deterministic pierl.

A rigorous approximation-algorithmic analysis of the pabbity tail and value-at-risk models in the framework,
which involve optimization of the probability tails, nestates an assumption on the distribution: in the absence of
any knowledge on the distributions, the best one can do iadthe tails, for example using Chernoff or Chebyshev
bounds, and optimize those tail bounds instead—this wéldyia conservative overestimate of the probability of
exceeding the budget.

We provide strict approximation results under the commasiumed Gaussian distributions; we then show how
the same algorithmic techniques can apply to arbitraryidigions using tail bounds. In the Gaussian setting, min-
imizing the probability tail in the probability tail modes$ iequivalent to maximiziné% and we get the
following approximations:

Theorem 1.4 (See Theorems 3.1, 4.Z)here is a fully-polynomial approximation scheme for thalyability tail model,
when there is an exact or fully-polynomial approximatiogaithm for the underlying deterministic problem.
In addition, when there is an availabfeapproximation for the deterministic problem, there is a
1-— [%} -approximation for the corresponding stochastic modehiag in time polynomial ir%.
The value-at-risk model under Gaussian distributions isivedent to the mean-risk model, with risk-aversion

coefficientc = ®~*(p), where® () is the inverse cumulative distribution function of the stard normalv (0, 1).
For arbitrary distributions the value-at-risk model reduces to the mean-risk modelwlth a more conserva-

tive risk-aversion coefficient = l%p, which causes our algorithms to provide an overestimatbefitue error
probability of exceeding the budget.

Background and Challenges. Our algorithms build on the fact that the model formulatiomsur framework are

all instances of concave or quasi-concave minimizationwuaich it is known that the optimal solution is attained at
an extreme point of the feasible set (seg,, [5]). In addition, our objective functions depend only oe theans and
variances of feasible solutions. Thus, we can project thsiliée set on the plane spanned by the mean and variance
vectors and only consider extreme points on the projecsee (igure 1(a)). This greatly restricts the number of
relevant extreme points. For example, for minimum spaniviegs and matroids, we can efficiently enumerate the
polynomially many extreme points. Therefore, the corresling risk-averse stochastic spanning trees and matroids
can be found in polynomial time. We provide more of these gemknd details and a description of the algorithm
in Section 2. However, an arbitrary combinatorial problegmpically has too many extreme points, even on a two-
dimensional projection (for example, shortest paths hd¥" such points [38])hence our focus on approximation

in this paper.

We can geometrically visualize the objective function imte of its level sets on the mean-variance plane. These
form parabolas, corresponding to higher objective fumctialues at greater mean and variance values. The optimal
solution is obtained at the lowest parabola touching thgepted feasible set. Figure 1(a) depicts these paraboths an
the challenge that arises with concave minimization prolstealong the convex hull boundary of the feasible set,
the objective function may fluctuate. In particular, manyreme points might be local optima and thus local search
algorithms can fail to find a good approximation.

Another technique, which might seem promising for obtagrarfully polynomial approximation algorithm for our
risk-averse framework, is parametric search: for a givaimidaon the variance, find the solution with smallest mean,
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Figure 1:(a) Level sets of the probability tail objective function ane ttonvex hull of the projected feasible set on
the mean-variance planf) Level sets and approximat®nlinear separation oraclen the mean-variance plane.

and then search for the variance bound yielding the bestemsihere are two problems with this approach. First,
finding the solution with smallest mean subject to a constia the variance is NP-hard and it is not always known
or even not always possible to approximate it [40]. Secowel &hen we know how to solve it, an approximation for

it would not necessarily yield a corresponding approxiorato our probability tail objective due to the presence of
the budget parameter in the objective.

Overview of Algorithms and Techniques. [For the case okasy deterministic problems.] A brief conceptual
description of our approach is as follows: The algorithmataorcts enonlinear separation oracléhat determines, for

a given function level sét,if there is a feasible solution below the level set (with aless than the given function
value) or the entire feasible set is above the given leve (®anma 3.2 for a more formal definition of the oracle).
Afterwards, a binary search on the optimum objective fuorctialue combined with the separation oracle finds the
desired approximate solution.

The separation oracle approximates a given level set cuniaderibing a (partial) polygon in it, as shown in
Figure 1(b). Each side of the polygon induces a linear oljeciver the feasible set, which we minimize via a black-
box call to the algorithm for the deterministic problem. hetresulting solution is below the current level set (more
precisely, its associated original objective functiorueals smaller thaiil + ¢) times the given level), the separation
oracle returns that solution. Else, if after minimizinglwiespect to all linear segments we do not find any solutions
below the level set, the separation oracle returns a negatiswer, namely that the entire feasible set is above the lev
set.

The subtlety arises in how to construct the polygonal segsrierensure a good and efficient approximation. To
get an efficient algorithm, we need to approximate the lesetarves with as few linear segments as possible. On
the other hand, to get a good approximation factor, we neatka fiolygon (with more and smaller sides), which is
sandwiched between the desired level set with functionevaland the level set with function valug1 + €) (See
Figure 1(b)). In the worst case, when the level sets toucls e case for the probability tail objective, a polygon
sandwiched between the two level sets will have infinitelynynsides. We resolve this problem by carefully bounding
the optimal solution so that we do not need all infinitely méngar segments from the polygon and, in particular, we
prove that it suffices to consider only polynomially manylsgegments.

To the best of our knowledge, our concept and use of the appadenonlinear separation oracléor the design
of approximation algorithms for nonconvex optimizatiorlpiems are novel. We believe that our approach would
be useful for approximating other low-rank concave minatian and possibly more general nonlinear or nonconvex

1The level set of a functiorf for value X is the subset of the domain on which the function equalsy = {x | f(x) = A}.



optimization problems beyond the ones considered here. eiiank that the method applies to both discrete and
continuous (non-polyhedral) constraint sets.

[Hard deterministic problems.] We could use the same algorithm design as above, by apptegnmaodifying
its analysis and approximation factors, when we haveagproximation rather than an exact algorithm for solving
the underlying deterministic problem. It turns out that flois case, a cruder and simpler algorithm gives the same
approximation factor. In particular, all we need to do herapply the algorithm for the deterministic problem on a
small sequence of linear cost functions of the forun + k - variance, for a geometric progression of coefficients
k.

However, even if we know what single choicekoivould find the optimal solution, the difficulty is to trangahe
approximation given by the deterministic black-box altfori for its associatelihear objectiveinto an approximation
for the original concave objectiveThe two functions have nothing in common (except that thenéy is a gradient
of the latter at some point), and, a priori, it is not cleart tn@approximation of the linear objective would at all yield
a meaningful approximation factor for the original noncexwbjective. This is the key technical challenge which
makes the analysis of this setting more mathematicallylieeb Fortunately, all objective functions in our framewor
admit such an approximation (the probability tail objeetis again more challenging due to the given budget and
requires us to know that there is a feasible solution at keastall distance away from the budget).

Related Work. A rich body of work in stochastic combinatorial optimizatifocuses on two-stage and multistage
optimization €.9.,[45, 22, 29, 21, 26]). The models there typically look forig@ns of minimumexpected cosind
thus do not incorporate risk. In 2006 Swamy and Shmoys resdatiat “it would be interesting to explore stochastic
models that incorporate risk” [49]. There are models thatehacorporated additional budget constraints [47] or
threshold constraints for specific problems such as kn&pksad balancing and others [10, 18, 31].

At the other end of the risk-aversion spectrum is the paradifjrobust optimization (see survey [6]), which pro-
vides completely reliable (robust) solutions, though fkisnly possible when the uncertainty is bounded, namely
the random variables have bounded support. Our frameworistcaverse optimization falls between the traditional
stochastic optimization approach, which minimizes expe&cbst, and robust optimization, which minimizes the max-
imum cost. Interestingly, part of our framework (the meahk-model) arises in robust discrete optimization under
ellipsoidal uncertainty sets [7]. Bertsimas and Sim preyideudopolynomial algorithms and an algorithm converg-
ing to a locally optimal solution, assuming that the undedydeterministic problem can be solved exactly. This
contrasts with our fully polynomial approximation schertfest work with both exact and approximate algorithms for
the deterministic problem.

Atamtlirk and Narayanan [3] also consider mean-risk mination in discrete optimization, giving a characteriza-
tion in terms of submodular minimization. Our feasible sedm arbitrary subset of the hypercube vertices, on which it
is not known how to do submodular minimization. As a curigsite mention here that the mean-risk objective is also
supermodular via the Lovasz extension [32]. However, sapdular minimization is even harder and this perspective
does not help our problem at hand.

The probability tail objective was previously consideradhie special context of stochastic shortest paths and an
exactalgorithm was given based on enumerating relevant extrerimegofrom the path polytope [38]. The same type
of algorithm readily extends to arbitrary combinatoriadiplems. However, in general the exact algorithm is inefficie
(superpolynomial or exponential in the problem size), éfene we provide approximation algorithms in this paper.

The value-at-risk objective in our framework can be clasgifinder research on probabilistic programming, or
optimization with probabilistic (chance) constraints. $#lof the existing literature concerns continuous optirihzra
settings €.9.,[37, 13]; see also Chapter 4 in Shapétaal. [44]) and concentrates on convergence to optimal solutions
rather than the design of approximation algorithms in theglexity theoretic sense. One example of work in the
discrete setting is on giving bounds for integer prograngmroblems with probabilistic constraints [12]. This work
considers a different problem formulation from ours, in @hihe uncertainty is in the demand, rather than the cost of
afeasible solution (that s, itis in the right-hand-sidgher than the left-hand-side of the inequality in the philixic
constraint) and the solution is via convexification of a cgeaeration method. In a separate line of research, Swamy
considers two-stage risk-averse optimization for coxgaind packing problems [48]. Other than the high-levelidea o
incorporating risk, his models (assuming sampling acaesisstributions) and techniques (LP-relaxation and convex
minimization) are entirely different from ours.



A comprehensive survey of models that incorporate riskantinuoussettings is provided by Rockafellar [42]
as well as in the recent book by Shapiro, Dentcheva and Ryszkiz[44]. A different framework that allows for
uncertainty in the assumed distributions and distribupiarameters is that of distributionally robust optimizat{eee,
e.g.,[11]). The solution concepts and continuous nature of thélpms make this line of research very different from
ours.

Additional related work on theombinatorialoptimization side includes research on multi-criteriaimatation
(e.g.,[40, 1, 43, 50]) and combinatorial optimization with a ratidinear objectives [35, 41]. Our models can also be
seen as instances of concave discrete minimization. Hawtineeexisting work in this area requires assumptions that
do not hold in our framework, such as restrictive propeieshe feasible set, strictly positive range of the objectiv
function, or boundedness/positivity of the objective fiimic gradient [39, 4, 30, 19].

2 Model definitions and preliminaries

In this section, we formally define the models in our risk+aeeoptimization framework and give the necessary
background for our algorithms in the next sections.

Suppose we have an arbitrary combinatorial set of feastilgisns 7 < {0, 1}", together with an oracle for
optimizing linear objectives over the set. In addition, wegiven nonnegative vectors of meang R" and variances
T € R” for the stochastic cost vect®, coming from independent distributions so that the meanvanidnce of a
solutionx € Fis u’x andr?x > 0 respectively. We are interested in finding a feasible sotutvith optimal cost,
where the notion of optimality incorporates risk.

1. Mean-risk modelA family of objectives that has been analyzed in continuquishization settings (mostly in
the context of finance [16, 34]) and in some discrete optitiinasettings (minimum spanning trees [3]), as well
as under an equivalent robust optimization framework Fthee family of convex combinations of mean and
standard deviation. Formally, this problem is to:

minimize  p'x+cV7Tx 1
subject to x e F,

where the constant> 0 parametrizes the degree of the user’s risk aversion.

2. Probability tail model:An alternative natural model maximizes the probabilityt tive stochastic solution cost
is within a desired budget or threshaldnaximizePr (W”x < t) subject tax € F. When the stochastic costs

W are Gaussian, we can directly compute the above probabﬂﬁ;(?%‘), where®(-) denotes the cumula-

tive distribution function of the standard normal randomafale N (0, 1). Since the functiom®(-) is monotone
increasing, the problem has the following equivalent faatian (which is also approximation-preserving by
Lemma C.1 in the Appendix):

. t— uTx
maximize —_— (2)
VrTx
subject to xe F.

When the stochastic cos®& come from arbitrary distributions, the maximum probapilg lower-bounded
T N2
by @_;EZL") (by the one-sided Chebyshev bound, also known as Cantekiguality [20], Pr(X <

x)2+(1t7x)
EX]+Eky/Var(X)) >1- ﬁ with k& = t\;fTT;‘). While maximizing a lower-bound will not yield a strict
approximation of the probability tail objective, it is thedt one can achieve in the absence of distributional
information other than the mean and variance—and our tgakesican strictly approximate this bound as well:

- (t — pT'x)?
maximize = pix)? 7% 3)
subject to x e F.



For both formulations of the probability tail model we assuthat there is a solution with mean that is within
the given threshold. This condition expresses that we are inisk-aversesituation and corresponds to the
assumption that the risk-aversion coefficient> 0 in the mean-risk model above. (From a mathematical
standpoint, if we suppose that'x > ¢ for all x € F, the maximum of problem (2) will be negative, therefore
solutions withhigher variance would be preferredorresponding to ask-lovingsituation.)

3. Value-at-risk modelfFinally, we may wish to minimize the budgesuch that the probability of not exceeding
it is at least a given confidence leyel

minimize t (4)
subjectto  Pr(Wlx <t)>p
x e F.

Depending on whether we have Gaussian or arbitrary disioibs, this problem is exactly equivalent to, or
its solution can be upper-bounded using Chebyshev’s boyrideomean-risk model (1) with = ®~1(p) or

c=, /ﬁ (See Ghaouet al. [17]; more details are provided in the next Section 2.1).

We should mention here that even when the random variablesarnhitrary independent distributions, normal
approximation for problems with probabilistic constraihts been suggested as a reasonable approach in the Lectures
on Stochastic Programming by Shapéial. [44] (See p. 141-144 in Chapter 4.4). In particular, from @entral
Limit Theorem, we have that when each variable has finite nagahfinite variance and satisfies a mild additional
condition (informally that the sum of third moments is smalative to sum of second moments), then the sum
of random variable3V 7 x converges to a normal distribution with mepafd'x and variancer”x as the number of
variables grows to infinity. In particular, for a fixed probiesize, the approximation would be reasonable when the
dimensionn is sufficiently large and the incidence vectohas sufficiently many nonzero components.

Our algorithms make oracle calls to aractor approximatealgorithm for solving the underlying deterministic
(linear) problem:

minimize  w’x (5)

subject to xeF.

We sometimes refer to the algorithm for solving the deterstimproblem as énear oracleafter its linear objective, in
contrast with the risk-averse stochastic problems thag haalinearobjectives. This is not to be confused with linear
programming (LP) or LP relaxation: the deterministic perhl(5) is an integer problem which might be polynomially
solvable or NP-hard.

We first establish that all models are instances of quasta@aminimization (equivalently, quasi-convex maxi-
mization) overx € F, consequently they attain their optima at extreme pointe@feasible set [5].

2.1 Quasi-concave properties of the objectives

Concave (convex) functions are special cases of quasiaver(quasi-convex) functions.

Definition 2.1 A functiong from a convex sef’ to R is quasi-convexf all its lower level setd, = {x | g(x) < A}
are convex.

Theorem 2.2 [25, 5] LetC ¢ R™ be a compact convex set. A quasi-convex funcfionC — R that attains a
maximum ove€, attains the maximum at some extreme poird.of

We next show that the models in our risk-averse frameworkealaoe instances of quasi-concave minimization.
The mean-risk objective in Eq. (1) is clearly concave. Thaim&ation objectives in Eq. (2) and (3) are quasiconvex
in the risk-averse settingand the proofs are routine; we provide one such proof for detapess.

T
2Quasi-convexity is lost on the negative range of the ohjegfix) = t\;%‘
T X
setting, which is mathematically different and is not theu® of this work.

. as explained before, this situation correspondsriskaloving



2.1.1 Probability tail model

Lemma 2.3 The functionf(x) = % is quasi-convex on its positive range.

Proof: From the definition of quasi-convexity, we have to show tbatll x,y € L, anda € [0,1], ax+ (1 —a)y €
Ly, when) > 0. To show this, we need to verify that

t—p'ox + (1 - a)y]
\/TT[ozx +(1-a)y]

& (t—ap’x—(1-a)uTy)? <aXrTx+ (1 —a)\27Ty.
o 24 (a,uTx)2 +((1 - 04)/LTy)2 —taptx — 2t(1 — a)uTy +2a(1 — a)(uTx)(,uTy) < ANarTx+ Narly

<A

Sincea € [0, 1], we haven(1 — «) > 0, hence

—a(1l — a)u? +2a(1 — a)uv — a(l — a)v? <0 Vu,v € R
= a*u? +2a(1 — a)uw + (1 — a)?v? < au? + (1 — a)v? Yu, v.

Applying the above inequality with = p”x, v = u”y, we get

(t—ap"x—(1-a)u’y)’
2 1 a2 (uT5)? + 20(1 — a)("X) (uTy) + (1 — 0) (uTy)? — 2tapT — 20(1 — a)uy

< P Ha™x)?+(1-a)(u'y)? —2tapx - 2t(1 — a)u'y

= at—p"x)?+ (1 -a)(t—pu"y)?

< aN7rTx + (1- a))\QTTy,
where the last inequality follows from the fact thaty € L. O
Lemma 2.4 The functionf(x) = (t_(;;ﬁ:% is quasi-convex on its entire range.

The formal proof of this lemma is analogous to above. It cao &k seen geometrically: the lower-level sets of this
function are the epigraphs (the areas above the graphsiafrdgfacing parabolas, and hence are convex.

2.1.2 Value-at-risk model

In this section we show how the value-at-risk objective muto the problem of minimizing a linear combination of
mean and standard deviation. We first establish the equiz@lender normal distributions, and then show a reduction
for arbitrary distributions using Chebyshev’s bound.

Lemma 2.5 The value-at-risk model
minimize t
subjectto  Pr(Wlx <t)>p
xeF

for a given probabilityp is equivalent to the mean-risk model

minimize  p’x+ cV7Tx
subject to xeF

with ¢ = ®~1(p), when the element costs come from independent normakdistns.



Proof: As before®(-) denotes the cumulative distribution function of the staddermal random variabl®’(0, 1),
and®~!(.) denotes its inverse. For normally distributed co8fsve have

Pr(Wix <t)>p

Ty _ T _ T
o Pr(WX ux<t Hx)Zp

vVrTx T VrTx
t—,uTx)
s O — Zp
< vVrTx
t—plx 1
s L 2> (p
Ve 2w

s t>uTx+ o7 p)VrTx.

Because the stochastic value-at-risk problem is minirgiower bothi andx, the smallest thresholdis equal to the

minimum of u”'x + c¢v'7Tx over the feasible set € F, where the constant= ®~1(p). O
For arbitrary distributions, we can apply the one-sidedi§sbev bound®r(W'x > u’x + cvV17x) < HlCQ,

or equivalentlyPr(W'x < p"x +cv7Tx) > 1 — 7. Takinge = /1% gives the inequalitPr(W'x <
uT'x + cvV/7Tx) > p. This yields the following lemma:

Lemma 2.6 The value-at-risk model with arbitrary distributions rezhs to:

minimize  p'x+ /| —V7Tx
I—p
subjectto xe F

In particular, the optimal value of the above concave miaation problem will provide an upper bound for the
minimum threshold in the value-at-risk problem with given probability

We remark that in the absence of more information on theildigtons, other than their means and standard deviations,
the best one can do is to upper-bound the probability tahénalue-at-risk problem.
For an illustration of the difference between the above lasmonsider the following shortest path application:

Example 2.7 Suppose we need to reach the airport by a certain time. We todirtd the minimum time (and route)
that we need to allocate for our trip so as to arrive on timehwgtrobability at leastp = .95. (That is, how close
can we cut it to the deadline and not be late?) If we know thatitavel times on the edges are normally distributed,
the minimum time equalsinge» pu?'x + 1.645v77%, since®~1(.95) = 1.645. On the other hand, if we had no
information about the distributions, we should insteadedite the upper bounthin,e r p”x + 4.5v77x, since

ﬁ ~ 4.5 (which still guarantees that we would arrive with probatyilat leasto5%).

2.2 Exact algorithms

In the previous section we established that all models inrislraverse framework reduce to instances of quasi-
concave minimization (or equivalently, quasi-convex maxation). In this section, we give exact algorithms based
on this property.

An exact algorithm of this nature was previously proposetitlie@ special case of the stochastic shortest path
problem [38]. This algorithm and its analysis readily extém general problems and all objectives in our risk-averse
framework. We include the generalized statement and aisdigge for completeness, and as a prelude to the approxi-
mation algorithms in the next sections.

Theorem 2.8 The optimal solution to all models in our risk-averse frarnekis an extreme point of the domindof
the projected feasible set onto the mean-variance piagne(u, 7).

3Thedominantof a setS is defined as the set of points that are coordinate-wise bibge points inS, namely{y | y > x for somex € S}.



variance

>
mean

Figure 2: Enumerating extreme points.

Proof: In all models the objective functions depend only on the mear and variance-"x of the feasible solution

x. Therefore, we can project the objectives and feasible rset the mean-variance plane given &yun(u, 7) and
work in this 2-dimensional subspace. The quasi-concaatyexity is retained in this projected space (this follows
immediately by Definition 2.1 and properties of projecti§bly, and moreover the optimizer in the projected space is
the projection of the optimizer in the original problem. Téiere, by Theorem 2.2, the optimal solution is an extreme
point of the projected feasible set. Furthermore, this iegpthat the optimal solution of the relaxed continuous
programs over the convex hull of the feasible 8& also optimal for the original discrete versions.

On the other hand, the risk-aversion in our models implias dhur objective functions are monotone in the mean
and variance so that the optimum is obtained at the Paretodaoy of smallest mean-variance combinations of the
feasible solutions. Therefore, the optimum to each of oudlei®is an extreme point on the dominant of the projected
feasible set. O

Theorem 2.8 establishes correctness of the exact algdigthinding the optimal risk-averse solution, presented in
Figure 3. The extreme point enumeration can be done in nfeiltipys via oracle calls to the underlying deterministic
problem, for a carefully selected sequence of weight veasrfollows: All extreme points on the dominant of the
projected feasible set minimize some linear objectivet+ y7)7 x over the feasible set, for some> 0. We first
find the two optimal solutions minimizing the mear x and variancer”x. We then compute the slope of the line
connecting their corresponding projectionsdnd B in Figure 2) on the mean-variance plane. This slope induces a
new linear objectivéy + v, 7)7 x for somey; (the punctuated line parallel tdB in Figure 2) and we find the new
optimal solution (represented by poiftin the figure) with respect to this objective. We continuaursively to find
the extreme points betweehandC and betweer and B. If the new returned extreme point is identical to one of
the endpoints, we know that there are no further extremetpairthe corresponding interval. The whole process will
terminate afteRk deterministic oracle calls whefeis the number of extreme points.

We remark that finding the extreme points in our risk-averaméwork is equivalent to finding the breakpoints
in a parametric optimization framework [23, 8], where footgiven weight vectorg andr, the goal is to find the
feasible solutions minimizing the parametric cpst 7, for all values of the parametere [0, c0). (A breakpoint
is a parameter value where the optimal solution change® patametric complexitgf this problem is defined as the
number of breakpoints, and it determines the complexityufexact algorithm. We summarize this in the following
theorem.

Theorem 2.9 There is an exact algorithm for our risk-averse optimizatfcamework whose running time is deter-
mined by the parametric complexity of the underlying deteistic problem. In particular, the algorithm run2k
oracle calls to the underlying deterministic problem, wakiis the number of parametric breakpoints with respect to
the parametric objective + y7, v € [0, ).

Corollary 2.10 The exact algorithm for risk-averse
1. minimum spanning trees and matroids is polynomial.

2. shortest paths ig@(log™)
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Problem: Maximize or minimizef (x) overx € F.
Output: Optimal solutionx € F
Algorithm:

1. Enumerate all extreme points on the domiAafthe projected feasible sgt onto the mean-variang¢e
planespan(u, 7).

2. Evaluate the objective functighat each extreme point.

3. Output the extreme point with optimal objective functi@ue.

Figure 3: Exact algorithm for risk-averse optimization.

The result about minimum spanning trees and matroids uh@enéan-risk modelwith a different line of rea-
soning through submodular minimization, appears in Atakitind Narayanan [3]. The result about shortest paths
under theprobability tail modelappears in Nikolovat al. [38]. For many other problems of interest, the parametric
complexity is exponential in the worst-case [8].

3 An FPTAS for the risk-averse framework for easy combinatoral prob-
lems

In this section, we present a general-purpose FPTAS delsggrapplies to all models in the risk-averse framework
defined in Section 2. The FPTAS uses as a black-box an exaxttalg for the underlying deterministic problem and
is based on a geometric analysis of the curvature and appadiiity of the level sets of the objective functions. The
black-box calls to the exact algorithm are made for a casefilosersmallset of linear objectivesr > 0. We remark
that, in general, such a set may not even exist. For exanty@adcessary number of linear objectives may be large
or even infinite if the objective function has unbounded ggatl(as is the case in the second model above). From
a complexity perspective, minimizing a concave functioerassome feasible set may be hard to approximate even if
minimizing a linear function over the same set can be donelypnomial time [30].

As in Section 2.2, all objectives (1)-(4) can be projectetbdhe mean-variance plangan(u, 7) and can be
thought of as functions on two dimensions. The projectedllsgts of the objective functions on the mean-variance
planespan(u, T) are parabolas. We construct an approximate separatiotepveich tells us whether for a given
function value\ there is a feasible solution below tkie — €)\-level set or else if the entire feasible set is above the
A-level set. We do this by inscribing a (partial) polygon beén these two level sets. Geometrically, the optimal
polygon choice (with fewest sides) is such that its vertareson one level set and its sides are tangent to the other, as
shown in Figure 1(b). The FPTAS template for a maximizatiowbfem is described more formally in Figure 4 (it is
analogous for a minimization problem).

Theorem 3.1 There is an oracle fully-polynomial time approximation scte for all problems in our risk-averse
stochastic framework, which uses as a black-box an exactittign for solving the underlying deterministic prob-
lem (5).

In the rest of this section we prove this theorem. The cruhefgroof is in establishing that the approximate
separation oracle can be constructed from polynomiallyyriaear segments as described in the following main
technical lemma. (Lemma 3.2 is stated for a stochastic maation problem as in Eq. (2); the analogous statement
holds for a stochastic minimization problem as in Eq. (1)heTargument for how Theorem 3.1 follows from the
Lemma is provided at the end of this section.

Lemma 3.2 (Approximate Nonlinear Separation Oracle) Suppose we have an exact algorithm for solving the de-
terministic problem (5). Then, we can construct an oracletvsolves the following approximate separation problem:
given a level\ ande € (0, 1), the oracle returns

11



Problem:Maximize f (x) overx € F.
Output: Solutionx’ such thatf (x’) > (1 — €) finaz(X)
Algorithm:

1. For appropriate lower and upper boundsf¢f), denotedf; and f,, respectively, applyapproximate
nonlinear separation oraclbelow withe’ = 1 — /1 — e successively on the function valugs (1 —

€) fu, (1 — €)?f., ... until we find a value, for which the separation oracle retwrrisasible solution

x'.

2. Run the available black-box algorithm for the determiaiproblem on subset of elements with z¢ro
mean, to find the smallest-variance solution among the isolsitvith mean zero. Compare with the
solution above and return the solution with better objectiwnction value.

Approximate Nonlinear Separation Oracle.
Input: Function value\, approximation factoe’ > 0; black-box access to algorithm for minimizing lingar
functions ovex € F.
Output:

(@) Asolutionx’ € F with f(x') > (1 —¢)A, or
(b) Ananswer thaf (x) < A forallx € F.
Algorithm:
1. Inscribe a polygon between the level sets correspondifigiction values\ and(1 — €') .
2. For each side of the polygon, minimize the induced lindgective.

3. Ifaresulting solutiorx’ satisfiesf (x’) > (1 — €)A, returnx’. Else return thaf (x) < A forallx € F.

Figure 4: FPTAS template for solving risk-averse stoclkgstbblems.

1. Asolutionx € F with f(x) > (1 —€)A, or
2. Ananswer thaf (x) < A forall x € F,

and the number of linear oracle calls it makes is polynorm'aﬂel iand the size of the input.

The proof-construction of the approximate nonlinear sefi@n oracle in Lemma 3.2 follows from a series of
lemmas about bounding the size and number of the linear segitiat approximate a level set and comprise the sep-
aration oracle. Since the level sets and their position reiipect to each other is different for the different objeagi
the actual computations of the size and number of linear satgrdiffers. We provide the proof for the probability
tail formulation (2), which is more subtle due to the buddeeshold and the fact the level sets are tangent to each
other. The proofs for the remaining objectives are analegfuur completeness we provide them in the appendix for
the mean-risk objective whose level sets, though still lpales, are differently situated with respect to each other.

Consider the lower level sefs, = {z | f(z) < A} of the projected probability tail objective functigitm, s) =
L wherem, s € R. DenoteLy = {z | f(z) = A}. We will prove that any level set boundary can be approxichate
by a small number of linear segments. The main work here wegtleriving a condition for a linear segment with
endpoints orL,, to have objective function values withiih — ¢) of A (See Fig. 5).

Lemma 3.3 Consider the pointéms, s1), (ms, s2) € Ly withs; > so > 0. The segment connecting these two points
is contained in the level set regidn\\ L, ; _.) wheneves; > (1 — €)*s1, for everye € (0,1).

Proof:  Any point on the segmeri{m, s1), (ma2, s2)] can be written as a convex combination of its endpoints,
(amy + (1 — a)ma, as1 + (1 — a)s2), wherea € [0, 1]. Consider the function(a) = f(ami + (1 — a)me, as1 +

12
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Figure 5: The objective value along a segment is not too tanfthe objective value at the endpoints of the segment,
provideds; andss are not too farA andA(1 — ¢) are the objective function values along the drawn level sets

(1 — a)sa2). We have,

ha) = t—amy — (1 —a)my  t—almi —my) —mo
as1 + (1 —a)ss a(s1 — s2) + s2

We want to find the point on the segment with smallest objeatalue, so we minimize with respectdo

(ma —may)y/a(sy — s2) + 82 — [t — a(my — ma) — ma] * %(sl —82)/v/a(s1 — s2) + s2

W(a) = a(s) — $2) + 52

2(ma —my)[a(s1 — s2) + s2] — [t — a(mi —ma) — ma](s1 — s2)
2[a(s1 — s2) + s2)3/2

a(mg —my)(s1 — s2) 4+ 2(ma — mq)se2 — (t — ma)(s1 — s2)
2la(s1 — s2) + $2]3/2 '

Setting the derivative t6 is equivalent to setting the numerator aboveé tthus we get:

(t — mQ)(Sl — 52) — 2(m2 — m1)82 t— mao 252

Chmin = (ma —m1)(s1 — $2) T mg—m1 s — s

Note that the denominator @f («) is positive and its numerator is linear in with a positive slope, therefore the
derivative is negative fotv < a,;, and positive otherwise, s®,,;, is indeed a global minimum as desired. In fact,
h(«) is strictly decreasing faf < ami, and strictly increasing fat > auin, @and sincéi(0) = h(1) = f(mi, s;) = A
fori = 1,2, it must be thatv,i, € (0,1). (One can also check directly that{0) < 0 and?’(1) > 0.)

It remains to verify that(cumin) > (1 — €)A. Note thatt — m; = \/s; for i = 1,2 since(m;, s;) € Ly and
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consequentlyms —my = A(y/s1 — /52). We use this in the following expansion bfoumix ).

T t+ Qumin(ma —my) —mo t"’(,,f;f:f“ ——3]222)(7”2—7”1)—7”2
min - -
Vomin(s1 = s2) + 52 VGt = 22551 = 52) + 5

bt —my — 28, M2TI g 2(t — ) — 2y 2 VER)

51—S82 S1—S2

_ m_2egns VR it
- — 2)
Ve (Y51 + /53) — 3 J o5

\/E‘FSQ—SQ 2\ (8182)1/4

(s152)'/*(v/51 + /52) VL /s

We need to show that when the ratig/ s, is sufficiently close td, h(amin) > (1 — €)X, or equivalently

2(s159)1/4 1/4 /2, 1/2
— >1- = 2 > (1-— +
51+ o5 € (s182) > ( €)(s1 $5'")
s1\1/2 51\ 1/4
—o( L) o —o<
= (1 e)(SQ) 2(52) F(1-e)<0 6)

- . . . ) 1/4 L
The minimum of the last quadratic function above is attame(d;—;) = ﬁ and we can check that at this minimum
the quadratic function is indeed negative:

(1_6)(%)2_2( ! )—i—(l—e):(l—e)—ll

1—e¢ —€

<0,

forall 0 < ¢ < 1. The inequality (6) is satisfied & = 1, therefore it holds for al(%X) < [1, ﬁ]. Hence, a

sufficient condition forh (aumin) < (1 — €)X is sz > (1 — €)*s;, and we are done. O
Using Lemma 3.3, we next show that any level gtcan be approximated within a multiplicative factor(of- ¢)

via a small number of segments. L&}, ands,,.. be a lower and upper bound respectively for the varianceef th

optimal solution. For example, take,;,, to be the smallest positive coordinate of the variance veatas,,, .. the
variance of the feasible solution with smallest mean.

Lemma 3.4 The level setl, = {(m,s) € R? | % = )} can be approximated within a factor ¢f — ¢) by
H log (Ssm—az) /log ﬁw linear segments.

Proof: By definition ofs,,,;, ands,,...., the variance of the optimal solution ranges freg, t0 sy,a.x. By Lemma 3.3,
the segments connecting the pointsionwith variances max, smax (1 — €)%, smax(1 — €)8, ..., smin all lie in the level
set regionL,\L,;_,), that is they underestimate and approximate the leveL getithin a factor of(1 — ¢). The

number of these segments]islog (Z‘;:)/log L. |
The above lemma yields the approximate separation oracteddevel set’., and the feasible s, by applying

the black-box algorithm for the deterministic problem tcesiceectorsape + 7, for all possible slope$—a) of the

segments approximating the level set. This concludes thefjmonstruction for the separation oracle in Lemma 3.2.
We now show how to obtain a fully polynomial approximatiog@iithm for the nonconvex problems in our risk-

averse framework by using the nonlinear separation oramie femma 3.2.

Proof of Theorem 3.1We prove the theorem for a maximization problem; the proafialogous for a minimization

problem. We first need to bound the optimum vafyg of the objective functiorf. A lower boundyf; is provided by

the solutionx,,.., with smallest mean or the solution,,,- with smallest positive variance, whichever has a higher
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objective value:f; = max{f(Xmean), f(Xvar)}- On the other hangy”x > p % mean andr?x > 77x,,, for all
x € F, so an upper boung, for the objectivef is given by f evaluated ajs” x,,cq,, for the mean and’x,,,. for
the variance.

Now, apply the approximate separation oracle from Lemmav@2¢ = 1 — /1 — € successively on the levels
Fus (1 =€) fu,(1 —€)?fy, ... until we reach a leveN = (1 —€')if, > f; for which the oracle returns a feasible
solutionx’ with

FE) =2 A== (1= fu.

From running the oracle on the previous leyg(1l — ¢')*~!, we know thatf (x) < f(xep) < (vV1—€)" ! f, for all
x € F, wherex,,; denotes the optimal solution. Therefore,

(V1= f, < F(x) < f(Xopt) < (V1 =€) fu, and hence

(1 - E)f(xopt) < f(X/) S f(xopt)'

So the solutiorx’ gives a(1 — e)-approximation to the optimum,,,,. In the process, we run the approximate nonlinear
separation oracle at moste (%)/ log ﬁ times, which is polynomial ir% and the input size, and each separation
oracle call itself makes polynomially many black-box qesrio the algorithm for the deterministic problem, hence
the algorithm makes polynomially many black-box querieBPQ O

4 Approximating the risk-averse versions of hard combinatoial problems

In this section, we show thatlaapproximate oracle to the deterministic problem (5), ulvie@ sometimes call a linear
oracle, can be used to construct efficient approximatioardtgns for the risk-averse stochastic models. As in the
approximative analysis for easy combinatorial problernesfivet check whether the optimal solution has zero variance
and if not, proceed with the algorithm and analysis below.

We can use the same approximation algorithm template thagtieats a nonlinear separation oracle as in the
previous section, but it turns out that a cruder algorithniclisimply tests a geometric progression of mean-variance
tradeoffs provides the same approximation guarantees. nfdie technical challenge in the algorithm analysis is
that even if we know the optimal mean-variance tradeoff tergdrom the black-box algorithm for the deterministic
problem, it is not obvious and not intuitive what approxiioatfactor one can get for the risk-averse objectives from
ad-approximation factor for the deterministic one.

We obtain a sharp approximation result for the mean-riskathje—we can get essentially the same approximation
factor as the available one for the deterministic problem:

Theorem 4.1 Suppose we have &approximation oracle for solving the deterministic comtrial problem (5).
The mean-risk model (1) can be approximated to a multigireatactor of5(1 + €) by calling the oracle for the
deterministic problem polynomially many times in the ingiaé and%.

We can also get the following approximation for the prokgbihil formulation (2):

Theorem 4.2 Suppose we have &approximation oracle for solving the deterministic comddprial problem (5).

The probability tail model (2) has %/1 — [%)f/f)} -approximation algorithm that calls the algorithm for the

deterministic problem polynomially many times%irand the input size, assuming the optimal solution to (2s8at
T %
ptx* < (1—e)t.

The high-level analysis for these approximation algorghmthe same; it differs in the computation of the ap-
proximation factors. Below, we present the proofs for Tleeo#.2, which are technically more subtle. The proof of
Theorem 4.1 is provided in the appendix.

We first prove several geometric lemmas that enable us teedre approximation factor. The first lemma is key
for the transition from approximating a linear objectivg the algorithm for the deterministic problem) to approxi-
mating the nonconvex probability tail objective. See Fatifor visualizing the notation.
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Figure 6: Applying the approximate linear oracle on the mjlilinear objective (slope) gives an approximate value

b of the optimal linear objective valug. The resulting solution has nonlinear objective functiatue of at leash,
which is an equally good approximation for the optimal vakie

Lemma 4.3 (Geometric lemma)Consider two objective function valugs > X\ and pointm*, s*) € Ly-, (m, s) €
L, with positive coordinates, such that the tangents to thatsat the corresponding level sets are parallel. Then,
they-interceptsh*, b of the two tangent lines satisfy

v ()]

Proof: Suppose the slope of the tangent§-isi), wherea > 0. Then they-intercepts of the two tangent lines satisfy
b=s+am, b* = s* +am”.
In addition, since the pointsn, s) and(m*, s*) lie on the level setd., L, they satisfy
t—m = \/s, t—m* = \*Vs*.

Since the first line is tangent &, s) to the parabola = (’**T”)?, the slope equals the first derivative at this point,
A = S2em) — _2s . 2V5 50 the absolute value of the sloperis- 2%, Similarly the absolute

value of the slope also satisfies= 2;/5_ therefore

ES
VE=2 s
Note that for\* > A, this means that* > s. From here, we can represent the difference- m* as

m—m* = (t—m*)—(t—m)zx\*\/s_*—/\\/gzg\/g_)\\/g: K§)2_1})‘\/§'
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Substituting the slope = 2—{5 in the tangent line equations, we get

b—b" = s+2—\/§m—s* 2\/—

- S—(%)28+ )
- - () [(—)2—1}

SR el

= <[5 =l ()]

The next lemma shows that if we know the optimal linear olyjedb use with the availablé&approximate algo-
rithm for the deterministic problem (5), then we can appmatie the optimal solution well.

Lemma 4.4 (Optimal Linear Objective Lemma) Suppose we have &approximate linear oracle for optimizing
over the feasible seF and suppose that the optimal solution satisfi€sx* < (1 — ¢)t. If we can guess the slope of

the tangent to the corresponding level set at the optimaltpgi, then we can find §/ 1-— 52?

to the nonconvex problem (2).
In particular, settinge = /4 gives a(1 — v/d)-approximate solution.

-approximate solution

Proof: Denote the projection of the optimal poist on the plane bym*, s*) = (u?x*, 77x*). We apply the linear
oracle with respect to the slofe a) of the tangent to the level séf,- at (m*, s*). The value of the linear objective at
the optimum i9* = s* + am*, which is they-intercept of the tangent line. The linear oracle returdsspproximate
solution, that is a solution on a parallel line wigiintercepth < §b*. Suppose the original (nonlinear) objective value
at the returned solution is lower-boundedXythat is it lies on a line tangent tb, (See Figure 6). From Lemma 4.3,

we haveh — b* = s* {1 - (—) } therefore

A2 b—b* b—b"\ b* b*
) =1 =1- —>1-6—. 7
(/\*) s* < b* ) s* s* (7)
Recall that* = s* + m* 2% andm* < (1 — €)t, then
* 2m* 2m* 2m* 2l—¢) 2-—c¢
— = 1+ <1 —1 =3
5 e Tt s T = T T T :

Together with Eq. (7), this givesgl — 6%-approximation factor to the optimal.

On the other hand, setting= /5 gives the approximation factqyl — 6%3 =1-+0. O

Next, we prove a geometric lemma that will be needed to aedlyz approximation factor we get when applying
the linear oracle on an approximately optimal slope. (SgeFfor some of the notation.)

Lemma 4.5 Consider the level sdt, and points(m*, s*) and(m, s) on it, at which the tangents tb, have slopes
—a and —a(1 + &) respectively. Let thg-intercepts of the tangent line &in, s) and the line parallel to it through
(m*, s*) beb; andb respectively. Therl% < ﬁ

Proof: The equation of the level séty isy = (52 5”) so the slope at a poifitn, s) € L) is given by the derivative at
x = m, that |s—w = —%. So, the slope of the tangent to the level Bgtat point(m*, s*) is —a = 2‘§5_*.
Similarly the slope of the tangent &t, s) is —a(1 + &) = —Qf. Therefore,/s = (1 + £)V/s*, or equivalently

(t—m) = (1+&)(t—m").
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Figure 7. Applying the linear oracle with an approximateshn function (slope) still gives a solution with good
approximate objective function value.
Sinceb, b; are intercepts with thg-axis, of the lines with slopesa(l + &) = —QT\/E containing the points

(m*, s*), (m, s) respectively, we have

2 t2— 2
s+ \/gm— n

b = DU
2v/s* t—m*
b = s+ (149 \is_m*: /\;n (t+m" 4+ 2&m™).
Therefore
b (t=mN)E+m +26mY) 1 t+mF+26mt 1 t+ (1+25)m*
by (t —m)(t +m) S 1+¢ t+m I+ E1-Ot+ A+ m*
1 1 1
< =
B 1+§<1—§> 1—¢
where we usen =t — (1 + &)(t — m*) from above. O

We now show that we get a good approximation even when we uap@nximately optimal linear objective with
our linear oracle.

Lemma 4.6 Suppose that we use an approximately optimal linear ohjedtiith ad-approximate linear oracle for
solving the probability tail model (2). In particular, supge the linear objective (slope) that we use is wittlin- &)
of the slope of the tangent at the optimal solution. Thenwilillggive a solution to the probability tail model (2) with

value at Ieasl\/l — [% — 1} 2—< times the optimal, provided the optimal solution satisfiésc* < (1 — €)t.
Proof: Suppose the optimal solution(is:*, s*) and it lies on the optimal level sat (see Figure 8). Let the slope of
the tangent to the level set boundary at the optimal soldt&(r-a). We apply oun-approximation linear oracle with
respect to a slope that {$ + &) times the optimum slopé-a). Suppose the resulting black box solution lies on the
line with y-intercepth,, and the true optimum lies on the line wighintercepty’. We knowd’ € [by, b], whereb; and
b are they-intercepts of the lines with slope(1 + ¢)a that are tangent té - and pass throughn*, s*) respectively.
Then we havéz < 2 <.

Furthermore, by Lemma 4.5 we haye < #
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Figure 8: Approximating the objective value of the optimal solutior{m*, s*).

On the other hand, from Lemma 418, — b; = s[1 — (32)], where), is the smallest possible objective function
value along the line with slopea(1 + &) andy-interceptbs, in other words the smallest possible objective function
value that the solution returned by the approximate lineacle may have(m, s) is the tangent point of the line with
slope—(1 + £)a, tangent tal .

Therefore, applying the above inequalities, we get

Ao\ 2 by — by by — by by by b by 5 2 ¢
2) - —1- Ao (22 1) x> 1
()\*) s by s b by s = 1—¢2 e’

where% < % follows as in the proof of Lemma 4.4. The result follows. O
Finally, we are ready to give the approximation algorithrd &s analysis in the proof of our main theorem:

Proof of Theorem 4.Zhe algorithm applies the linear approximation oracle wéspect to a small number of linear
functions, and chooses the best resulting solution. Inquaatr, suppose the optimal slope (tangent to the correspon
ing level set at the optimal solution point) lies in the ivedi{ L, U] (for lower and upper bound). We find approximate
solutions with respect to the slopésL(1 + ¢), L(1 + ¢)?,..., L(1 + £)* > U, namely we apply the approximate
linear oraclellf)gg((lUfré)) times, wheret = 2(15—;3) With this, we are certain that the optimal slope will lie ionse
interval [L(1 + &), L(1 + ¢)**!] and by Lemma 4.6 the solution returned by the linear oracle veispect to slope

L(1+&)* will give a \/1 — {# — 1} 2—c. approximation to our nonlinear objective function valGince we are

€

free to choosé, setting it to¢ = ¢/2 gives the desired number of queries.

We conclude the proof by noting that we can takdo be the slope tangent to the corresponding level set at
(mr,sr) wheresy, is the minimum positive coordinate of the variance vectatan, = t(1 — ¢). Similarly letU be

the slope tangent &iny, s;) wheremy = 0 andsy is the sum of coordinate of the variance vector. O
Whené = 1, that is when we can solve the underlying linear problem @t polynomial time, the above
algorithm gives an approximation factor eri/? or equivalentlyl — ¢/, wheree = 2[(1_%)2 — 1]. While this

algorithmiis still an oracle-fully polynomial time approwation scheme, it gives a bi-criteria approximation: ituiees
that there is a small gap between the mean of the optimalisolahd the budgetso it is weaker than our previous
algorithm from Section 3, which had no such requirements Thexpected since, of course, this algorithm is cruder,
simply taking a geometric progression of linear functioather than tailoring the black-box algorithm calls for the
deterministic problem to the objective function value tih& searching for, as does the approximate separatioteorac
that the FPTAS from the previous section is based on.
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Figure 9: Solution with correlated adjacent edges.

5 Extensions: correlations

Our study of the risk-averse optimization framework présdrhere was motivated by route planning problems.

Clearly, in a route planning application, one cannot asstiraethe edge delays are independently distributed: for

example, an accidentin one edge would increase congestiba edges that follow it. On the other hand, it is reason-

able to assume that the delay on an edge affects and is @ffegiether nearby edges. In such situations, our results
can be readily extended with an appropriate graph transfiomused in belief-propagatidrior clarity, we describe

the transformation when only adjacent edges are pairwiselated; one can deduce the analogous transformation
when up to a constant number of consecutive edges can begaoarrelated.

Suppose there are pairwise correlations between adjadgasdthe first one incoming and the second outgoing
from their common node). Consider the following graph tfarmsation. For every nodé3 with incoming edges
(A, B) in the original graplz, create nodeB| A in the new grapltz’. An edge(A, B) in G yields edge$A| X, B|A)
in G’, for all nodesX that precede nodd in G. Denote the covariance between edgésB) and(B,T) in G by
Covapr, and their variances by, g andVpr respectively. Then in the transformed gragh define the variance of
edge(B|A, T|B) by Ver+ Covapr as in Figure 9. Notice that these definitions of variance dplethe correlations
so now the edge distributions are independent. We can thusuuexisting algorithms o’ and thus solve the
problems for correlated edges in the original gréahWe can apply this method of decoupling correlated edges for
not just correlations among two neighboring edges, but up ¢onstant number of consecutive edges (in order to
maintain polynomial size for the transformed gragh.

6 Conclusion

We have presented a framework for risk-averse stochastibictatorial optimization that includes mean-risk mini-
mization and models involving the probability tail of theshastic cost of a solution. Our algorithms are independent
of the feasible set structure and use solutions for the lyidgrdinear (deterministic) problems as oracles for sodyi

the corresponding stochastic models. As such, they apprenp general combinatorial settings for whiekactor
approximatdinear oracles are available.

Our primary motivation for this work was to design an appnaation algorithm for finding the most reliable route
in a network with uncertain edge delays (in the sense thatadbhe maximizes the probability of arriving on time
under a given deadline), which consequently extended tadhelass of problems and risk-averse models considered
here. An implementation of our approximation algorithmhie tontext of finding risk-averse routes reveals that they

4We thank Alexander Hartemink [24] for pointing this out aetlihg us the transformation.
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are also very practical: for example, they achieve 99.9%tHacy with only up to 6 iterations of an algorithm for the
deterministic problem.

In future work, it would be interesting to extend our offlitechastic models to online models, as has previously
been done with offline linear to online linear problems [28]. 2t would be also useful to consider adaptive stochastic
models, building on the framework of multistage stochaggitmization.

Other open directions include considering convex risk-gneas such as the ones described in Rockafellar [42]
that have been analyzed in continuous settings. We notalthatugh the models in this paper are nonconvex, this
nonconvexity (concavity) is beneficial because it preseimeegrality of the desired solution. This is not true for
convex objectives: convediscreteoptimization is yet another challenging and exciting are@search.
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A Proof of Theorem 3.1 for mean-risk objective (FPTAS for eag combina-
torial problems)

Similarly to the probability tail objective, we construchanlinear separation oracle by approximating a level st wi
a polygon whose sides induce linear objectives. Geoméiritlae optimal choice of linear objectives is determined
by drawing segments starting from one endpoint of the lestLg and repeatedly drawing tangents to the level set
Liiyon-

In order to establish that the resulting linear segmentseavewe first show that the tangent-segmenté to, )
starting at the endpoints d@f, are sufficiently long.

Lemma A.1 Consider pointgm;, s1) and(ms, s2) on Ly with 0 < m; < mg < A such that the segment with these
endpoints is tangent th ;) at the pointa(my, s1) + (1 — a)(ms, s2). Then,a = ¢ _si=ss 82 gndthe

I (mgfml)z S81—82

objective value at the tangent point{i%2 S syt + m2:| .

mo—m §1—82

Proof: Letf : R? — R, f(m,s) = m + ¢/s be the projection of the objectivé(x) = u’x + cv7Tx. The
objective values along the segment with endpa(nts, s1), (ma2, s2) are given by

h(a) = f(a(ml, s1) + (1 — a)(ma, 32)) = a(m1 —ma) +ma + c\/a(s1 — s2) + Sa,

for o € [0, 1]. The point along the segment with maximum objective valbet(is, the tangent point to the minimum
level set bounding the segment) is found by setting the devizh' (o) = my — mo + c——2=2__ {0 zero:

2y/c(s1—s2)+s2

S1 — 82
2/ a(s1 — s2) + s2

= 1/a(31—32)+3220281;82

(ma —m1)

Mo —MMyp = C

2 (81 — 82)2
= — + — e KA—

04(81 82) 59 C (m2 m1)2
2 (81 — 82)2

& asy—s2)=c Tma —mi)?

— S9

& a=c 72 %
4(m2 — m1)2 S1 — S92

This is a maximum, since the derivatikg«) is decreasing . The objective value at the maximum is

M(Otmax) =  Omax(m1 — ma) + ma + c\/cmax (51 — s2) + $2
S1— S S S1— S
2 1 2 2 2 1 2
= |c 5 — (my —ma) +mo+c——"—
4(m2 — ml) S1 — 82 2(m2 — ml)
2 _ _ 2 _
c™ 51 S92 mq mo c” 51 59
= —= ) +my + ——————
4m2—m1 S1 — S2 2m2—m1
C2 S1 — 89 mo — My
= — + S2 + mo.
4 mo — My S1 — S2

Further, since; = (2=1)2 ands, = (2=22)2, their difference satisfies; — s2 = & (ma — m1)(2A — mq — ma),
so-1=52 — 2”“;{’” and the above expression for the maximum function value es¢gment becomes

m2—mi

2\ —my —mas 259 2\ —mq — ma (A —mg2)?
4 c? +2)\—m1—m2+m2_ 4 +2)\_m1_m2+m2.

h(amax) —
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Now we can show that the tangent segments at the ends of #les&tv. , are long.

Lemma A.2 Consider the endpointms, s2) = (),0) of Ly. Then either the single segment connecting the two
endpoints ofL, is entirely below the level st ., or the other endpoint of the segment tangenLto, ), is

(ma,51) = (A(1 = 4e), (12)?).

Proof: Since0 < m; < \, we can writem; = S for someg € [0,1). Consequentlys; = (k‘c’”l)2 = A2(1C§ﬁ)2
and Wi;frfl = ;\jﬁl’_ﬁgj = (1 B) . By Lemma A.1, the objective value at the tangent point is

A1 -B) -8

— A=A |——+4+1)=(1 A

12 T ( Y ) (1+e¢)

The last equality follows by our assumption that the tangeit lies on thel,(; ) level set. Hence3 = 1 — 4, so
= (1 —4e))ands; = (A%)2 (4”) . O
Next we characterize the segments with endpointg pthat are tangent to the level sef ;).

Lemma A.3 Consider two point§my, s1), (ma, s2) on Ly with0 < m; < ms < A such that the segment connecting
the two points is tangent tb(; 4 (). Then,z—; > (14 2¢)2.

Proof: Let point(mn, s) on the segment with endpoir{ts.1, s1), (m2, m2) be the tangent point to the level dgt, .
Then the slopem of the segment is equal to the derivative of the funcijoa (W)2 atz = m, which is

2M = Q‘f . Since 1= = o= = fi ) = (\/%’_5\2/@ = —‘/EJCF‘/E. equating the two expressions
for the slope we get\/_ V52 + /51

On the other hand, sinden, s) € L(14)x, We have

(O —eyie (4ep- RS g gy AzmatAom 0 dmy

=€
2 2 2
1 [ 1 [
andm = a(mq — ma) + mo for somea € (0,1). Thereforex = 5 — —<— = 7 — VeI
Next,
- |1 2\ 81— 82 €A
s = alnmm)te =g - ooy (T ) e = T VYR
S1 + So €A
= T (VA V)

therefore usin@./s = /s3> + /51 from above, we get two equivalent expressionsifar

de
2(81 + 82) — T(\/Sl + \/52) =81+ S9 + 2\/5152
4e
= 81+82—L(\/Sl+\/52)—2\/818220

N 31 de \/E B 2\/§_ 0
32 52 52

Denote for simplicityz = , /2 andw = 22 then we have to solve the following quadratic equatior:for terms

cy/52”
of w:

2Z24+1-2w(z+1)—-22=0
e 22-2z(w+1)+1-2w=0.
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The discriminant of this quadratic expressionis= (w + 1) — 1 + 2w = w? + 4w and its roots are; » =
1+wtvw? + 4w, Sincej—; > 1, we choose the bigger roet = 1+w++vw? + 4w. Therefore sincey = % >0
we have

2e\ 2e\
D ltwt VRt Ao T bw =14 —=— > 142 =142
52 cy/s2 s
where the last inequality follows from the fact thab, < /51 < % This concludes the proof. O

The previous lemma shows that each segment is sufficientty $o that overall the number of tangent segments
approximating the level sdt) is small. In particular, the number of segments is polynd)'miéé (and does not depend
on the problem sizex). This gives us the desired approximate nonlinear separatiacle for the level sets of the
objective function.

Lemma A.4 A nonlinear(1 + ¢)-approximate separation oracle to any level set of the namer objectivef (x) in

log(15-2)

problem (1) can be found witfl + m) queries to the available linear oracle for solving proble).(

The nonlinear oracle takes as inputse and returns either a feasible solutiene F with f(x) < (1 4+ ¢€)A oran
answer thatf(x) > A forall x in F.

Proof: Apply the available linear oracle to the slopes of the segmeith endpoints on the specified level set, say
Ly, and which are tangent to the level gt , ). By Lemma A.3 and Lemma A.2, thecoordinates of endpoints of
these segments are given by

A2
s1 = (E)v
< 51
s _ 5
2 (1420
< 51
s 5
P (4207
) S
= (Tt 20261
Sp+1 = 0,

wheres;, = (222, sok = 1+ log (o= )/2log(1 + 2¢), which is precisely the number of segments we use and the
result follows. O
Finally, applying the approximate nonlinear separatiacta from Lemma A.4 on a suitable geometric progression
of function values gives an approximation algorithm for thean-standard deviation model (1). We can use the
following boundsf;, f,, for the function values in the algorithm. For a lower bounet, § = s,,,;,, the smallest
positive variance coordinate, and for an upper bound fake nmmaz + ¢\/NSmaz, Wherem,, ., ands,,,, are the
largest coordinates of the mean and variance vectors ridgggcAdditionally, run the linear oracle once with weigh
vector equal to the vector of means, over the subset of coates with zero variances and return that solution if it is

better. In particular, we can solve the problem even if thinogd objective value is zero.

Theorem A.5 There is an oracle-polynomial time approximation schemetfe stochastic problem (1), which uses
an exact oracle for solving the underlying deterministioldem (5). This algorithm returns @ + ¢)-approximate

log( 162 6152 )

. 2 Ju
;ol;mon and make§l + £ log (%)) (1 + 5753855
inl,

) oracle queries, namely logarithmic in the input and polyiedm

Proof: Apply the (1 + ¢)-approximate nonlinear oracle successively on the seguehfunction values;, (1 +
Ofi, A+ 82f;, ... for € = /1 +¢e— 1, until we reach a levek = (1 + €)' f; < f, for which the oracle returns a
feasible solutionx’ with

JE)<SA+OA=Q0+)" ' f
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From running the oracle on the previous legek €)'~ f;, we know thatf (x) > f(xop:) > (1 + &)1 f; forall x in
the feasible set, whete,,; denotes the optimal solution. Therefore,

1+ i < flxopt) < fF(X) < (1 + A, and hence

Jf(Xopt) < f(xl) <(1+ 5)2f(X0pt) =1+ 6)f(xopt)-

So the solutionx’ gives an(1 + €)-approximation to the optimum,,;. In the process, we run the approximate
nonlinear separation oracle at mdﬂbg(%)/log(l + ¢€) times. In addition, we run the linear oracle once more
with linear objective given by the vector of means, over thieset of components with zero variances and return that
solution if it is better than the above. O

B Proof of Theorem 4.1 (Approximation of mean-risk model forhard com-
binatorial problems)

Suppose we havesdapproximate linear oracle for solving the deterministialgem (5). We will provide an algorithm
for the stochastic problem (1) with approximation facior + ¢), which invokes the linear oracle a small number of
times that is logarithmic in the problem input and polynolrilia%.

First, we show that if we can guess the optimal linear objectgiven by the slope of the tangent to the corre-
sponding level set at the optimal solution, then applyirgapproximate linear oracle returns an approximate salutio
with the same multiplicative approximation factorThe above statement reduces to showing the following ggame
fact.

Lemma B.1 Consider level® < A\; < A2 and two parallel lines tangent to the corresponding levés g, and L),
at points(mq, s1) and(ms, so) respectively. Further, suppose the correspondinigtercepts of these lines abg and
by. Thenlz = Jadmz > a0

1

= Ntmi & g
Proof: The function defining a level sét, has the formy = (’\;2””)2, and thus the slope of the tangent to the level set
at a point(m, s) € L, is given by the first derivative at the point,Q(Ac;””) loem = —w = —Q—\f. Therefore the

equation of the tangent line is= —%g:v + b, where

2 2 A— 2 A+
b=s+ 2 = Va(vE+ 20 = AT L B AL,
C C C C C
Since the two tangents from the lemma are parallel, thepesare equal:—@ = —Q—\ﬁg, therefores; = sg

and equivalently\; — mq) = (A2 — ma).
Therefore they-intercepts of the two tangents satisfy

b _ V(A2 _detme A
b AR A T A

The last inequality follows from the fact that > A\ andA; — m; = Ay — ms (and equality is achieved when
mi = M andmg = /\2) O

Corollary B.2 Suppose the optimal solution to the nonconvex problem (&ris s1) with objective value\;. If we
can guess the slopea of the tangent to the level sé},, at the optimal solution, then applying the approximatedine
oracle for solving problem (5) with respect to that slopd gile ad-approximate solution to problem (1).

Proof: The approximate linear oracle will return a solutiom’, s’) with valuebs = s’ + am’ < 6by, where
b1 = s1 +amy. The objective function value d@in’, s) is at most\,, which is the value at the level set tangent to the
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liney = —ax + bs. By LemmaB.1, AZ < ”f < 4, therefore the approximation solution has objective fiomcvalue
at most times the optimal value, QED O
If we cannot guess the slope at the optimal solution, we rmapproximate it. Lemma B.3 proves that if we apply

the approximate linear oracle to a slope that is witflin:- of the optimal slope, we would still get a good
approximate solution with approximation factgil + ).

1+e)

Lemma B.3 Consider the level sdt, and points(m*, s*) and (m, s) on it, at which the tangents tb, have slopes

—aand—a(1+ /1) respectively. Let thg-intercepts of the tangentline &, s) and the line parallel to it through

(m*, s*) beb; andb respectively. Therl% <l+e
Proof: Let{ = /1. As established in the proof of Lemma B.1, the slope of thgeanto the level seL
at point(m*, s*) is —a = —@. Similarly the slope of the tangent ét, s) is —a(1 4+ &) = —2—‘0/5. Therefore,
V5 = (14 €)V/s*, or equivalently A — m) = (1 + £)(A — m*).

Sinceb, b; are intercepts with thg-axis, of the lines with slopesa(l + &) = —Q—f containing the points
(m*, s*), (m, s) respectively, we have

+2\/§m:)\2—m2

by = =
24/ 5% A—m*
b = s"+(1+¢) \és_m*: ch (A+m* +2&m*).
Therefore
b (A=m*)(A+m*+2&m*) 1 /\+m*+2§m*< 1 ( 1 > 1 1+
— = = = = 6’
by A=m)(A+m) 1+¢ A+m —1+¢ 13 1—¢&2
where the last inequality follows by Lemma B.4. O

Lemma B.4 Following the notation of Lemma B.87t26m" < L,

Proof: Recall from the proof of Lemma B.3 théx —m) = (1 +&)(A—m™), thereforen = A\ — (14+&)(A—m*) =
=N+ (14 &m*. Hence,

A+m*+26m* A+ (1 +20m* a+2) _ 1
A+m A=A+ A+ M (1-H) N+ (1+E T 1-¢&
since 12 < 1 for¢ € [0,1). O

A corollary from Lemma B.1 and Lemma B.3 is that applying tihear oracle with respect to a slope that is within
(1 +,/15) times of the optimal slope yields an approximate solutiothwbjective value withir{1 + ¢)d times of
the optimal.

Lemma B.5 Suppose the optimal solution to the nonconvex problem ((k).is s*) with objective value\ and the
slope of the tangent to the level det at it is —a. Then running thé-approximate oracle for solving problem (5) with

respect to a slope thatis [r-a, —a(1+ returns a solution to (1) with objective function value neater than
(14 €)dA.

1+5)]

Proof: Suppose the optimal solution with respect to the linearabje specified by slope-a(1 + , /1) has value

b € [b1,b], whereby, b are they-intercepts of the lines with that slope, tangenftpand passing throughm™*, s*)
respectively (See Figure 8). Then applying éh@pproximate linear oracle to the same linear objectivanstsolution
with valueb, > 5b'. Hencel < 2 <.
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On the other hand, the approximate solution returned byitteal oracle has value of our original objective
function equal to at mosty, whereL,, is the level set tangent to the line on which the approximeligti®n lies. By
LemmaB.1,32 < 2 = %22 < §(1 + €), where the last inequality follows by Lemma B.3 and the akimwend on
ba, O

Finally, we are ready to state our theorem for solving thelststic model (1). The theorem says that there
is an algorithm for this problem with essentially the sampragimation factor as for the underlying deterministic
combinatorial problem (5), which makes only logarithmigahany calls to the latter.

Theorem B.6 (Theorem 4.1 in main body of paper.)Suppose we havedapproximation oracle for solving the de-
terministic combinatorial problem (5). The mean-risk mlodg can be approximated to a multiplicative factor of
d(1 + €) by calling the oracle logarithmically many times in the inparameters and polynomially many timesi—in

Proof: We use the same type of algorithm as in Theorem 4.2: applyvhitable approximate linear oracle on
a geometric progression of cost vectors (slopes), detewdny the lemmas above. In particular, apply it to slopes

U, (1+9U,...,(1+ &)U = L, wheref = 112 L is alower bound for the optimal slope afidis an upper bound

for it. For each approximate feasible solution obtaineangote its objective function value and return the solution
with minimum objective function value. By Lemma B.5, thewalof the returned solution would be withiil + ¢)
of the optimal.

Note that it is possible for the optimal slope tohehis would happen when the optimal solution satisfies= \
ands* = 0. We have to handle this case differently: run the linearlerpst over the subset of coordinates with zero
variance-values, to find the approximate solution with $&sain. Return this solution if its value is better than the
best solution among the above.

It remains to bound the valudsandU. We established earlier that the optimal slope is giveﬁ@, wheres* is
the variance of the optimal solution. Among the solutionhwibnzero variance, the variance of a feasible solutioh is a
leasts, i, the smallest possible nonzero variance of a single elerapdtat most\,,.q.)? < (MMmas +c\/m)2,
wherem,,,.. IS the largest possible mean of a single elementgng. is the largest possible variance of a single
element (assuming that a feasible solution uses each elémtbe ground set at most once). Thus,Bet —@
and[ = — 2(marteyiSmes) .

C Gap-preserving approximation lemma for probability tail objective

Lemma C.1 A é-approximation for the nonconvex threshold objective (@)dg ad-approximation for the stochastic
threshold objective (t\/%) where® denotes the cumulative distribution function of the stadaermal random
variable N (0, 1).

Proof: Denote the approximate and the optimal solutionshy,,: respectively. Aj-approximation for maximizing
the nonconvex threshold objective means that

t— HTX 1 — IJ/Txopt
VrTx — /TTxop .
Denotef = t&%‘ and fopr = t’:‘;ﬁ Since by assumptiory,,; > 0, a line going through 0 and between the
points(f, (f)), (fopt, ®(fopt)) 0N the graph of the functio® will cross the vertical lines through this points below
the graph and above the graph respectively (at the pdingsd B’ in Figure 10). Using the notation from Figure 10,
we thus have thab(f) > y (the y-coordinate ofA’) and®( fo,:) < yop:e. On the other hand, since the lindsl’ and
BB’ are parallel, we have the equality below:

fo_y o(f)
fopt yopt cI)(fopt) ’

therefored(f) > dP(fopt), QED. O

0 <




yopt B’

o)

oM~ —

Figure 10: A plot of the stochastic threshold objective @henulative distribution functiod® of the standard normal
random variable).
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