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Abstract

We consider th©ffline Ad Slot Schedulingroblem, where advertisers must be schedulexphtm-
sored searclslots during a given period of time. Advertisers specify ddet constraint, as well as
a maximum cost per click, and may not be assigned to more thaslot for a particular search.

We give a truthful mechanism under the utility model wherdders try to maximize their
clicks, subject to their personal constraints. In additie show that the revenue-maximizing
mechanism is not truthful, but has a Nash equilibrium whageame is identical to our mecha-
nism. As far as we can tell, this is the first treatment of spoed search that directly incorporates
both multiple slots and budget constraints into an analyfsiscentives.

Our mechanism employs a descending-price auction thattaiasna solution to a certain ma-
chine scheduling problem whose job lengths depend on tlee,ind hence is variable over the
auction. The price stops when the set of bidders that candatfiat price pack exactly into a block
of ad slots, at which point the mechanism allocates thalkddod continues on the remaining slots.

To prove our result on the equilibrium of the revenue-maxinmg mechanism, we first show that a
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greedy algorithm suffices to solve the revenue-maximizimggr program; we then use this insight
to prove that bidders allocated in the same block of our m@shahave no incentive to deviate

from bidding the fixed price of that block.

1. Introduction

Sponsored search is an increasingly important advertiegdjum, attracting a wide variety of
advertisers, large and small. When a user sends a query twchsngine, the advertisements are
placed intoslots usually arranged linearly down the page. These slots haeaeyeng degree of
exposure, often measured in terms of the probability treathwill be clicked; a common model
is that the higher ads tend to attract more clicks. The proldéallocating these slots to bidders
has been addressed in various ways. The most common mettwéliscate ads to each search
independently via generalized second prid€&SP) auction, where the ads are ranked by (some
function of) their bid, and placed into the slots in rank ard8ee Lahaie et al. [19] for a survey of
this area.)

There are several important aspects of sponsored seardaptoired by the original models.
Most advertisers are interested in getting many clicksughout the day on a variety of searches,
not just a specific slot on a particular search query. Alsoynaalvertisers have budget constraints,
where they do not allow the search engine to spend more tlearbiidget during the day. Finally,
search engines may have some knowledge about the distrlaftqueries that will occur during
the day, and so should be able to make more efficient allatdgoisions than just simple ranking.

The Offline Ad Slot Schedulingroblem is this: given a set of bidders with bids (per clickjla
budgets (per day), and a set of slots over the entire day wirerdenow the expected number of
clicks in each slot, find a schedule that places bidders ilots.sThe schedule must not place a
bidder into two different slots at the same time. In additime must find a price for each bidder
that does not exceed the bidder’s budget constraint, nargbeclick bid. (See Section 1.3 for a
formal statement of the problem.)

A good algorithm for this problem will have high revenue. @&lsve would like the algorithm
to betruthful; i.e., each bidder will be incented to report her true bid badget. In order to prove

something like this, we needuility functionfor the bidder that captures the degree to which she is
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happy with her allocation. Natural models in this contextlfvelicks, bids and budgets) actick-
maximizatior—where she wishes to maximize her number of clicks subjebtopersonal bid
and budget constraints, profit-maximizatior—where she wishes to maximize her profit (clicks
x profit per click). In this paper we focus on click-maximizatj see more detailed discussion on
our model choice below.

We present an efficient mechanism @ffline Ad Slot Schedulingnd prove that it is truthful.
We also prove that the revenue-optimal mechanisnOfifiine Ad Slot Schedulinig not truthful,
but has a Nash equilibrium (under the same utility model) sehoutcome is equivalent to our
mechanism; this result is strong evidence that our mechemis desirable revenue properties. Our
results generalize to a model where each bidder has a péddmkathrough-ratethat multiplies
her click probability.

Our utility function choice is in part motivated by the prase of budgets, which have a natural
interpretation in this application: if an overall adveirig campaign allocates a fixed portion of its
budget to online media, then the agent responsible for tdgét is incented to spend the entire
budget to maximize exposure. From a different perspectideertizers spread their Ad budget
across several media. In each medium they want to ensurdaancprice per eyeball (or click)
and thus would spread out the budget according to marketgaind viewing capacity. In contrast,
under the profit-maximizing utility, a weak motivation foudigets is a limit on liquidity. Also,
our choice of utility function is out of analytical necegsiBorgs et al. [5] show that under some
reasonable assumptions, truthful mechanisms are impessider a profit-maximizing utility.

The click-maximizing utility function also allows us to umwer appealing structural insights
and strategic properties about ad allocation. The single4sudgets-only case is equivalent to
an all-pay auction for a single divisible good. In this caser mechanism is equivalent to the
proportional sharing mechanism, where the good is dividegqgrtionally according to budget.
Truthfulness in the click-maximization model follows dgdrom monotonicity here, and Johari
and Tsitsiklis [16] analyze this case in the profit maximizasetting, giving a 3/4 price of anarchy
result. However, allocating all the clicks from multipl®t (even without per-click limits) while

respecting scheduling constraints requires allocatioatarenot proportional in budget, and thus



proving monotonicity is much more difficult. Our mechanisno\pdes such allocations, and we
prove click monotonicity via structural insights on fedsihallocations. Our mechanism also has
the property that it divides the bidders and slots into bdp@nd within each block the allocation
is proportional sharing. Thus we feel confident that thisma@ésm has desirable properties under
profit maximization as well, but this remains open.

As far as we can tell, this is the first treatment of sponsoeszdlch that directly incorporates
both multiple positions and budget constraints into anyaislbof incentives (see Section 1.2 for a
survey of related work). In its full generality, the problerhsponsored search is more complex
than our model; e.g., since the query distribution is nog®d allocation strategies need to be
online and adaptive. Also, our mechanism is designed fanglesquery type, whereas advertisers
are interested in enforcing their budget across multiprygtypes. However, the tools used in this

paper may be valuable for deriving more general mechanisiigifuture.

1.1. Methods and Results.

A natural mechanism faDffline Ad Slot Scheduling the following: find a feasible schedule
and a set of prices that maximizes revenue, subject to tlieisticonstraints. It is straightforward
to derive a linear program for this optimization problemt bafortunately this is not a truthful
mechanism (see Example 1 in Section 2). However, there iseatdruthful mechanism—the
price-settingnechanism we present in this paper—that results in the sabgerae as an equilib-
rium of the revenue-maximizing mechanism.

We derive this mechanism (and prove that it is truthful) krtstg with the single-slot case
in Section 2, where two extreme cases have natural, insteuiciterpretations. With only bids
(and unlimited budgets), a winner-take-all mechanism wpvkith only budgets (and unlimited
bids) the clicks are simply divided up in proportion to butige€€ombining these ideas in the right
way results in a natural descending-price mechanism, wherprice (per click) stops at the point
where the bidders who can afford that price have enough hudgerchase all of the clicks.

Generalizing to multiple slots requires understandingstiecture of feasible schedules, even
in the special budgets-only case. In Section 3 we solve thigdis-only case by characterizing

the allowable schedules in terms of the solution to a classiachine scheduling proble(to be



precise, the problen® | pmtn| Cy.x [13]). The difficulty that arises is that the lengths of the
jobs in the scheduling problem actually depend on the pri@gged. Thus, we incorporate the
scheduling algorithm into a descending-price mechanidmere/the price stops at the point where
the scheduling constraints are tight; at this point a bldaitads is allocated at a fixed uniform price
(dividing the clicks equally by budget) and the mechanigraites. We present the full mechanism
in Section 4 by incorporating bids analogously to the sirgite case: the price descends until the
set of bidders that can afford that price has enough budgeake the scheduling constraints tight.
A tricky case arises when a new bidder appears whose budgates the scheduling constraints;
in this case the budget of this “threshold” bidder is redutethake them tight again. Finally in
Section 4.2 we show that the revenue-optimal mechanism Nasla equilibrium whose outcome
is identical to our mechanism. This follows from the factttiiall the bidders in a block declare a
bid (roughly) equal to the price of the block, nobody has @entive to deviate, since every bidder

is charged exactly her bid, and the clicks are divided up gbg budget.

1.2. Related Work.

There are some papers on sponsored search that analygentelized second-prid&SP)
auction, which is the auction currently in use at Google aadoo. The equilibria of this auction
are characterized and compared with VCG [9, 18, 2, 26]. Heeeutility function is theprofit-
maximizingutility where each bidder attempts to maximize her cligkgrofit per click, and budget
constraints are generally not treated.

Borgs et al. [5] consider the problem of budget-constraibieldiers for multiple items of a
single type, with a utility function that is profit-maximiay, modulo being under the budget (being
over the budget gives an unbounded negative utility). Theg g truthful mechanism allocating
some portion of the items that is revenue-optimal, and ptioatin their model, under reasonable
assumptions, truthful mechanisms that allocate all théswarie impossible. Under an identical
profit-maximizing model, Hafalir et al. [14] give what thegrin a “semi-truthful” mechanism, in
which agents state their true budgets and do not undersigitevilues, and they prove that this
mechanism has an equilibrium that maximizes revenue oV@®aatto-optimal mechanisms. Our

work is different both because of the different utility fulom and the generalization to multiple



slots with a scheduling constraint. Using related methbtid)dian et al. [20] consider an online
setting where an unknown number of copies of an item arrilie@rand give a truthful mechanism
with a constant competitive ratio guarantee.

Our mechanism can be seen as a generalization of Kelly’sFaring mechanism [17, 16]
to the case of multiple slots with a scheduling constrainguyn and Tardos [23] generalize
the results of Johari and Tsitsiklis [16] to polyhedral doaisits, and also discuss the application
to sponsored search. Both their bidding language andyutilitction differ from ours, and in
their words their mechanism “is not a natural auction medmrfor this case.” Nguyen and
Vojnovic [24] extend the study of proportional sharing magisms by considering incentives of
providers in oligopolies. It would be interesting to exgdurther the connection between these
proportional sharing mechanisms and ours. We mention Ihatethie special case of our price-
setting mechanism for a single slot is reminiscent of the-sharing mechanism of Moulin and
Shenker [22]. We thus hope that our techniques and mechamismld be useful to mechanism
design and analysis beyond the sponsored search applithéibinspired this work.

There is some work on algorithms for allocating bidders virtllgets to keywords that arrive
online, where the bidders place (possibly different) bidsparticular keywords [21, 20]. The
application of this work is similar to ours, but their contés purely online optimization; they do
not consider the game-theoretic aspects of the allocatibrams et al. [1] derive a linear program
for the offline optimization problem of allocating biddeosqueries, and handle multiple positions
by using variables for “slates” of bidders. Their LP is rethto ours, but again they do not consider
game-theoretic aspects of their proposed allocations.

Bidder strategies for keyword auctions in the presence dfjbticonstraints have also been
considered [11, 25, 6, 4]. Generally these papers are naecoed with mechanism design, but
there could be some interesting relationships between tidels in these papers and the one we
study here.

In our setting one is tempted to applyFessher Marketmodel: herem divisible goods are
available ton buyers with moneyB;, andu;;(z) denotes’s utility of receivingz amount of good

j. Itis known [3, 10, 7] that under certain conditions a veabprices for goods exists such that



the market clearsin that there is no surplus of goods, and all the money istsgeamrthermore,
this price vector can be found efficiently [8]. The naturalywa apply a Fisher model to a slot
auction is to regard the slots as commodities and have tligestbe in proportion to the number
of clicks. However this becomes problematic because thees dot seem to be a way to encode
the scheduling constraints in the Fisher model; this camgtcould make an apparently “market-

clearing” equilibrium infeasible, and indeed plays a calrtole in our investigations.

1.3. Our Setting.

We define th@ffline Ad Slot Schedulingroblem as follows. We have > 1 bidders interested
in clicks. Each biddef has a budgeB; and a maximum cost-per-click (max-cpe),. Given a
number of clicks:;, and a price per click, the utility «; of bidderi is ¢; if both the true max-cpc
and the true budget are satisfied, ancb otherwise. In other wordsy; = ¢; if p < m; and
cip < By; andu; = —oo otherwise. We have’ advertising slots where sloétreceivesD; clicks
during the time interval0, 1]. We assumé); > Dy > - > D,,.

In a scheduleeach bidder is assigned to a set of (slot, time intervalsgai [, 3)), where
j <nand0 < a < # < 1. A feasible schedules one where no more than one bidder is
assigned to a slot at any given time, and no bidder is assigneobre than one slot at any given
time. (Formally, the intervals for a particular slot do needap, and the intervals for a particular
bidder do not overlap.) A feasible schedule can be appliddiEsvs: when a user query comes
at some timex € [0, 1], the schedule for that time instant is used to populate thelaid. If we
assume that clicks come at a constant rate throughout teevah{o0, 1], the number of clicks a
bidder is expected to receive from a schedule is the suf¥ ef a) D, over all pairs(j, [a, 3)) in
its schedulé.

A mechanisnior Offline Ad Slot Schedulingkes as input a declared buddgtand declared
max-cpc (the “bid”)h;, and returns a feasible schedule, as well as a price perglickb; for each

bidder. The schedule gives some numheof clicks to each biddei that must respect the budget

2All our results generalize to the setting where each bidéies a “click-through ratey; and receive$3 — a)v; D;

clicks (see Section 5). We leave this out for clarity.



at the given price; i.e., we hayec; < B;.

The revenueof a mechanism i, p;c;, We say a mechanism tsuthful if it is a weakly
dominant strategy to declare one’s true budget and maxktepgcfor any particular bidder, given
any set of bids and budgets declared by the other biddergrawrher true budgeB; and max-
cpcm; maximizes her utilityu;. A (pure strategyNash equilibriums a set of declared bids and
budgets such that no bidder wants to change her declardtimd or budget, given that all other
declarations stay fixed. AaNash equilibriumis a set of bids and budgets where no bidder can
increase her utility by more tharby changing her bid or budget.

Throughout the paper we assume some arbitrary lexicographering on the bidders, that
does not necessarily match the subscripts. When we comparitisb;, and b, we say that

b; = by iff either b; > b;/, orb; = by but: occurs first lexicographically.

2. One Slot Case

In this section we consider the calse= 1, where there is only one advertising slot, with some
numberD := D, of clicks. We will derive a truthful mechanism for this caseflist considering
the two extreme cases of infinite bids and infinite budgets.

Suppose all budgetB;, = oco. Then, our input amounts to bids = b, > ... = b,. Our
mechanism is simply to give all the clicks to the highest biddVe charge bidder 1 her full price
p1 = b;. We claim that reporting the truth is a weakly dominant siggtfor this mechanism.
Clearly all bidders will reporb; < m;, since the price is set g if they win. The losing bidders
cannot gain from decreasirtg The winning bidder can lower her price by lowerityg but this
will not gain her any more clicks, since she is already ggtéith D of them.

Now suppose all bidg = oco. In this case, our input is just a set of budgBts. . ., B,,, and we
need to allocat® clicks, with no ceiling on the per-click price. Here we apalgimple rule related
to pricing schemes for network bandwidth (see, e.g., [1]); 1@t 3 = >, B,. Now to each bidder
i, allocate(B;/B)D clicks. Set all prices the samg; = p = B/D. The mechanism guarantees
that each bidder exactly spends her budget, thus no bidtleeport B, > B;. Now suppose some
bidder reportsB; = B, — A, for A > 0. Then this bidder is allocateld(B; — A)/(B — A) clicks,
which is less tharD(B;/B), sincen > 1 and all B; > 0.
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2.1. Greedy First-Price Mechanism.

A natural mechanism for the general single-slot case islt@sbe associated “fractional knap-
sack” problem, and charge bidders their bid; i.e., startifity the highest bidder, greedily add
bidders to the allocation, charging them their bid, untitia clicks are allocated. We refer to this
as thegreedy first-pric€d GFP) mechanism. Though natural (and revenue-maximizrgfanction

of bids) this mechanism is easily seen to be not truthful:

Example 1. Suppose there are two bidders afid= 120 clicks. Bidder 1 hasre; = $2, B; = $100) and
bidder 2 has {2 = $1, By = $50). In the GFP mechanism, if both bidders tell the truth, thetdbr 1 gets
50 clicks for$2 each, and 50 of the remaining 70 clicks go to bidder 2¥breach. However, if bidder 1
instead declares; = $1 + ¢, then she gets (roughly) 100 clicks, and bidder 2 is left Withghly) 20 clicks.

The problem here is that the high bidders can get away wittibgdlower, thus getting a lower
price. The difference between this and the unlimited-btidgee above is that a lower price now
results in more clicks. It turns out that in equilibrium,glmechanism will result in an allocation
where a prefix of the top bidders are allocated, but theilgraxualize to (roughly) the lowest bid

in the prefix (as in the example above).

2.2. The Price-Setting Mechanism.

An equilibrium allocation of GFP can be computed directhp ¥he following mechanism,
which we refer to as therice-setting (PS) mechanisnEssentially this is a descending price
mechanism: the price stops descending when the biddeiagviti pay at that price have enough
budget to purchase all the clicks. We have to be careful atribvment a bidder is added to the
pool of the willing bidders; if this new bidder has a large egb budget, then suddenly the willing
bidders havemorethan enough budget to pay for all of the clicks. To compengae mecha-
nism decreases this “threshold” bidder’s effective budgpei the clicks are paid for exactly. We

formalize the mechanism as follows:



Price-Setting (PS) Mechanism (Single Slot)

e Assume wlog thak;, > b, > ... = b, > 0.

e Let £ be the first bidder such that,; < Ele B;/D. Compute
pricep = min{>_F | B;/D, b }.

e Allocate B;/p clicks to each < k — 1. AIIocateBk/p clicks to
bidderk, whereB;, = pD — Y1~ B,.

Example 2. Suppose there are three bidders with = $2, b, = $1, b3 = $0.25 and B; = $100,
By = $50, Bs = $80, and D = 300 clicks. Running the PS mechanism, we lget 2 sinceB;/D =
1/3 < by =81, but(By + B2)/D = $0.50 > b3 = $0.25. The price is set tmin{$0.50,$1} = $0.50, and
bidders 1 and 2 get 200 and 100 clicks at that price, respelstivi here is no threshold bidder.

Example 3. Suppose now bidder 2 changes her bichto= $0.40 (everything else remains the same
as Example 2). We still gét = 2 sinceB;/D = 1/3 < by = $0.40. But now the price is set to
min{$0.50, $0.40} = $0.40, and bidders 1 and 2 get 250 and 50 clicks at that price, rethpedg. Note that

bidder 2 is now a threshold bidder, does not use her entireybtjchnd gets fewer clicks.

Note that this mechanism reduces to the given mechanisrhg ispiecial cases of infinite bids

or budgets (with the proper treatment of infinite bids/budpe
Theorem 1. The price-setting mechanism (single slot) is truthful.

Proof. For the purposes of this proof, let bidddrs ..., n} be such thab;, > ... > b, = 0, and
consider a new bidder (call her Alice) with true max-ep@and true budgeB*.

We first show that reporting the true budget is a weakly dontis&rategy for Alice, for any
fixed bidb > 0. Let? be the first bidder with = b,, s0by = ... = by_1 = b= by = ... = b,.
LetB = Zf;ll B;. If B> bD then the mechanism will not allocate any clicks to Alice aetiess
of the reported budget, since the price will stop beforemsagh. If B < bD, we will argue that

Alice’s clicks ¢ are non-increasing ir. DefineB = bD — B > 0.

e If Alice declaresB € [B, co|, then the price will stop ai. She will spendB and receive

¢ = B/b clicks.
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e If Alice declaresB € [0, B), then the price will be lower thal and she will spend all of
her budget. Her final number of clicks will he= (B/(B + B + R))D, whereR is the
total spend of bidder§(, . .., n}. SinceR is non-increasing itB, we can conclude thatis

non-decreasing ifs.

Putting together these intervals, we see thatnon-decreasing i overall, and since Alice’s total

spend isnin{ B, B}, we may conclude that it is weakly dominant to declBre- B*.

It remains to show that it is weakly dominant for Alice to dwel a bid) = m, given that she
declares a budgd® = B*. Let R(b) be the total spend of biddefd, ..., n} given that Alice
declares. Note thatR(b) is non-increasing in. Let p; be the price that would result i = oo,

and letp, be the price that would resultif= 0. Note thatp, < p;.
e If b € [0, p2) then the price stops at and Alice receives zero clicks.
e If b € (p1, 0], then the price stops at, and Alice receives3/p, clicks.

e If b € [p2, p1], then the price stops &t To see this, note that if Alice had bid zero, then the
price would have gone down g, so it certainly stops dtor lower. But at price, the set of
bidders that can afford this price consists of at least alliidders that could afford prige,
and sowe musthave + >, ,B; > B+, . B >pD>bD. Alice thus receives

maX{O,D— < Z Bi/b)} (2)
i:b;>b

clicks, and we may conclude that in this interval, clicks moa-decreasing with.

Note that in the expression (1), plugginggnfor b yieldsc = B/p;. Thus we have that in the
interval [py, o], clicks are non-decreasing withand the price is alwaysin{b, p; }. We conclude

that biddingb = m is a weakly dominant strategy. O

2.3. Price-Setting Mechanism Computes Nash EquilibriufaFep.
Consider the greedy first-price auction in which the highéddler received3; /b, clicks, the
secondB; /b, clicks and so on, until the supply @f clicks is exhausted. It is immediate that truth-

fully reporting budgets is a dominant strategy in this med$ra, since when a bidder is considered,
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her reported budget is exhausted as much as possible, atigpfige. However, reporting = m;
is nota dominant strategy. Nevertheless, it turns out that GFRihasjuilibrium whose outcome
is (roughly) the same as the PS mechanism. One cannot shuotlvéhais a plain Nash equilibrium

because of the way ties are resolved lexicographicallyfah@wving example illustrates why.

Example 4. Suppose we have the same instance as example 1: two biddets] 20 clicks, ¢n; = $2,

B; = $100) and (no = $1, By = $50). But now suppose that bidder 2 occurs first lexicograpiycah
GFP, if bidder 2 tells the truth, and bidder 1 declargs= $1, then bidder 2 will get chosen first (since she
is first lexicographically), and take 50 clicks. Bidder 2lv@hd up with the remaining 70 clicks. However,
if bidder 1 instead declarels, = $1 + ¢ for somee > 0, then she get$00/(1 + ¢€) clicks. But this is not a

best response, since she could big ¢/2 and get slightly more clicks.
Thus, we prove instead that the bidders reach-Blash equilibrium:

Theorem 2. Suppose the PS mechanism is run on the truthful input, reguit price p and clicks
c,- .., ¢, for each bidder. Then, for any > 0 there is a pure-strategy-Nash equilibrium of the

GFP mechanism where each bidder receiwes ¢ clicks.

Proof. We will show that for sufficiently smal’ > 0, if each bidder truthfully reports her budget
and bidsh; = min{m;, p + €} in the GFP mechanism, then the conditions in the theorem hold
There are two ways that the PS mechanism (under truthfuk)rgaun reach its last allocated
bidderk and final pricep: if m; > p > my,, and therpD = Zle B; (no threshold bidder), or if
p = my, (k is a threshold bidder).
In the first case, we have that bidders £ all havem; > p. Thus in the supposed equilibrium
of GFP, all these bidders are biddipg- ¢, and all bidders > k are biddingnm; < p. Therefore
in GFP, each < k will receive B;/(p + €¢') clicks, and the total number of clicks allocated by GFP
to biddersl...kis }_,., B;/(p + €) = (;£5)D. The remainingD’ = (1 — -2)D clicks, are

pte

allocated to bidders > k. Biddersl . .. k lose clicks by increasing their bid, and can gain at most
D’ clicks by lowering their bid. Bidders > & will never raise their bid (since they are bidding
m;), and cannot gain more clicks by lowering their bid. SidZecan be made arbitrarily small, we

have an:-Nash equilibrium.
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In the second case,= m,,. Letk’ < k be the last bidder bidding more thanin the supposed
GFP equilibrium, bidders. . . k" are biddingp+¢', and biddersk’+1, . . ., k) are biddingn; = p.
Thus GFP allocateB;/(p + €¢') clicks to bidderd ... £/, B;/p clicks to biddergs’ +1,...,k—1)

(if any such bidders exist) and the remaining clicks to biddeAs in the previous case, no bidder
can gain from raising her bid, the number of clicks that a biddk £’ can gain from lowering her

bid can be made arbitrarily small, and no other bidder can fyam lowering her bid. O

3. Multiple Slots: Bids or Budgets Only

Generalizing to multiple slots makes the scheduling cangtnontrivial. Now instead of split-
ting a pool of D clicks arbitrarily, we need to assign clicks that corregptina feasible schedule of
bidders to slots. The conditions under which this is possilold a complexity that we characterize
and incorporate into our mechanism in this section.

As in the single-slot case it will be instructive to considiest the cases of infinite bids or
budgets. Suppose all; = ~o. In this case, the input consists of bids ohly>~ b, = ... = b,.
Naturally, what we do here is rank by bid, and allocate thesgtmthe bidders in that order. Since
each budget is infinite, we can always set the prigesjual to the bids;. By the same logic as in
the single-slot case, this is easily seen to be truthfulhéndther case, whén = oo, there is a lot
more work to do, and we devote the remainder of the sectiomsaase.

Without loss of generality, we may assume the number of sigisils the number of bids (i.e.,
n' = n); if this is not the case, then we add dummy bidders Wdth= b, = 0, or dummy slots with

D; = 0, as appropriate. We keep this assumption for the remairfdae @aper.

3.1. Assigning slots using a classical scheduling algonith
First we give an important lemma that characterizes theitiond under which a set of bidders
can be allocated to a set of slots, which turns out to be jusstatement of a classical result [15]

from scheduling theory.

Lemma 1. Suppose we would like to assign an arbitrary §kt. . ., £} of bidders to a set of slots

{1,...,k}with D; > --- > Dy;. Then, a click allocatior; > ... > ¢ is feasible iff

o4ty <D +---+D, foralll=1,.. k. )
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Proof. In scheduling theory, we sayjab with service requirement is a task that needs/s units
of time to complete on aachinewith speeds. The question of whether there is a feasible allo-
cation is equivalent to the following scheduling problemvea & jobs with service requirements
x; = ¢, andk machines with speeds = D,, is there a schedule of jobs to machines (with
preemption allowed) that completes in one unit of time?

As shown in Horvath et al. [15], the optimal schedule for firisblem (a.k.aQ|pmtrC.,.,) can
be found efficiently by théevel algorithm? and the schedule completes in timengk{z:le xi/Zle Si}.
Thus, the conditions of the lemma are exactly the conditiorder which the schedule completes

in one unit of time. O O

3.2. A multiple-slot budgets-only mechanism.

Our mechanism will roughly be a descending-price mechamiere we decrease the price
until a prefix of budgets fits tightly into a prefix of positioasthat price, whereupon we allocate
that prefix, and continue to decrease the price for the rangalridders.

The following subroutine, which will be used in our mechami@nd later in the general mech-
anism), takes a set of budgets and determines a prefix ofgrusthat can be packed tightly with
the largest budgets at a uniform prige The routine ensures that all the clicks in those positions

are sold at price, and all the allocated bidders spend their budget exactly.

3In later work, Gonzalez and Sahni [12] give a faster (lintxae) algorithm.
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Routine “Find-Price-Block”

Input: Set ofn, bidders, set ofi slotswithD; > Dy > --- > D,,.
e Ifall D, = 0, assign bidders to slots arbitrarily and exit.

e Sort the bidders by budget and assume wlog Bat> B, >
.. > B,.

e Definer, = S| B;/S__, D;. Set pricep = max; ry.

e Let /* be the largest such that, = p. Allocate slots{1, ... ¢*}
to bidders{1,...,¢*} at pricep, using all of their budgets; i.e.,
C; = Bz/p

Note that in the last step the allocation is always possitvleesfor all ¢ < ¢*, we havep >
re = S0 Bi/S'_, Dy, which rewritten isy_, ¢; < S'_, D;, and so we can apply Lemma 1.
Now we are ready to give the mechanism in terms of this sulmeuan example run is shown in

Figure 1.

Price-Setting Mechanism (Multiple Slots, Budgets Only)

e Run “Find-Price-Block” on bidders, ..., n, and slotdl, . . ., n.

This gives an allocation of* bidders to the first* slots.

e Repeat on the remaining bidders and slots until all slotsiboe

cated.

Let p1,pe, ... be the prices used for each successive block assigned bygtrglam. We claim
thatp; > p, > ..., to see this, note then whenis set, we have, = r, andp, > r,forall ¢ > k,
wherek is the last bidder in the block. Thus for @lt> k, we havep, > _;, D; > > _,, B;, which
givespr D yoj<e Dj > D jice By UsSingpy = ri. This implies that when we apply Find-Price-
Block the second time, we get = >, .., B;/> i<, Dj < p1, and sap, < p;. This argument

applies to successive blocks to giwe> ps > . ...
Theorem 3. The price-setting mechanism (multiple slots, budgets)astyuthful.
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Bidder Budget Dy =100 ]
w2 $70 Dy =50 |

03 $20 ‘ ‘ ‘ Ds = 25
04 $1 - 20/2F————~ -y = $0.84
| 0 Di=0 |
Figure 1. An example of the PS mechanism (multiple slotsgetslonly). We have four slots with,, ..., Dy

clicks as shown, and four bidders with declared budgets@srshT he first application of Find-Price-Block computes
r1 = B1/Dy = 80/100,75 = (By+ Ba)/(D1+ D) = 150/150, 73 = (By + Ba+ B3) /(D1 + Do+ D3) = 170/175,

rg = (B1+ Ba + B3+ By)/(D1+ D2+ D3 + Dy) = 171/175. Sincer, is largest, the top two slots make up the
first price block with a price; = r» = $1; bidder 1 gets30 clicks and bidder 2 get&) clicks, using the schedule as
shown. In the second price block, we g&/Ds; = 20/25 and (B3 + By)/(Ds + Dy4) = 21/25. Thusps is set to
21/25 = $0.84, bidder3 gets500/21 clicks and bidde# gets25/21 clicks, using the schedule as shown.

In order to prove Theorem 3, we first need to establish thewetig Lemma:

Lemma 2. In Find-Price-Block, ifB; = B;,1, theni cannot be the last slot of the computed price

block.

Proof. Suppose the contrary, namely thas the last slot of the first price block aridl+ 1) is the
first slot in the second price block. Dendbe= B; +...+ B;_; andD = D, +...+ D,_;. Then the

price of the first price block satisfies (&) = 52 > £ and (2)p; = =2 > gigiigﬁ. The

first condition is equivalent t% > ByD and the second condition is equwalen% > By

The latter two inequalities impl;% > gi_—i, which is a contradiction to the fact th& = B,
andD; > D, ;. O

Proof. Theorem 3 Suppose bidders. . ., n declare budget®; > --- > B, and Alice declares
budgetB. Let/z be the rank of Alice by budget (and lexicographic order inecakties) if she
bids B. We will prove that the number of clicks Alice receives is Aonreasing as she lowers
her declared budge®, which immediately implies that truthful reporting of buetg is weakly
dominant in the PS mechanism.

Let P be the ratior; assuming Alice bids3; sorf = (B+ v B))/S v D; if {5 < k,
andr? = Zle Bi/Zle D; otherwise. For a declared budg®t let k5 be the last slot in the first
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price block chosen by the mechanism. 8g,= arg max,, r? (if there are multiple maxima, then
kg is the largest lexicographically).

For sufficiently largeB > B, we get that-? > rZ for all £ and sokz = 1. For any such
B Alice receivesD; clicks, the most possible. Now as we low@r two significant events could
occur; we could drop to another bidder’s budggtor we could have a changein, thus changing
the set of bidders in the first block. If neither of these esercur, then Alice remains in the first
price block, but gets a smaller share of the clicks. Thusitai@s to cover these two events.

If B = B, for somei, then note that by Lemma 2, Alice cannot be the last bidddrerbtock,
soi is in the same block as Alice. Therefore we may exchange tles id Alice and biddes
lexicographically (i.e., increase Alice’s rank by one) arudhing changes.

Now supposeB reaches a point wherg changes becauseg max; 2 changes fronis to
k. We usek* = kg for the remainder of the proof for ease of notation. At the Bidve have
rZ = rB. We claim that eithek’ > k* or k' < 5. To see this note that for arybetweer/; and
k* we have that? decreases at a rate bf(Y"_, D;), which is faster than the rate of the highest
ratior?..

If ¥ > k* then Alice remains in the first block, but it expands from exgdat4* to ending at
k'. Both before and after the changerin Alice is spending her entire budget at prigg = r2,
so her clicks remain the same.

If ¥ < ¢ then Alice would remain in a block ending at slot, sincer,fi remains maximum
amongr,. , ..., (by the same reasoning about “rate” as above). Sifice- /; we have that the
price of Alice’s block and the first block will be the same. &rAlice is spending her entire budget
before and after the changeripat the same price, her clicks remain the same. As we continue t
decrease&3 beyond this point, we simply remove the bidders and slots ftiee first price block,

and imagine that we are again in the first price block of a redustance. O

4. Main Results

In this section we give our main results, presenting ourepsietting mechanism in the gen-

eral case, building on the ideas in the previous two sectivis begin in Section 4.1 by stating
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the mechanism and showing some examples, then provinghaanechanism is truthful. In
Section 4.2 we analyze the revenue-optimal schedule, amd 8fat it can be computed with a
generalization of thgreedy first-price (GFPmechanism. We then show that GFP hag-dash

equilibrium whose outcome is identical to the general PShaeism.

4.1. The Price-Setting Mechanism (General Case).

The generalization of the PS mechanism combines the ideastfre bids-and-budgets version
of the single slot mechanism with the budgets-only versibthe multiple-slot mechanism. As
our price descends, we maintain a set of “active” bidderh Widls at or above this price, as in the
single-slot mechanism. These active bidders are kept damkbudget and when the price reaches
the point where a prefix of bidders fits into a prefix of slotsifathe budgets-only mechanism)
we allocate them and repeat. As in the single-slot case, we tabe careful when a bidder
enters the active set and suddenly causes an over-fit; indbeswe again reduce the budget of this

“threshold” bidder until it fits. We formalize this as foll@ay

Price-Setting Mechanism (General Case)

(i) Assume wlog thab, > b, > ... > b, = 0.

(ii) Let & be the first bidder such that running Find-Price-Block on

biddersl, ...,k would result in a pricg > by 1.

(iif) ReduceB;, until running Find-Price-Block on biddets. . . | &
would result in a pricew < b,. Apply this allocation, which for
somel* < k gives the first* slots to the/* bidders among ... k

with the largest budgets.

(iv) Repeat on the remaining bidders and slots.

An example run of this mechanism is shown in Figure 2. SineeP8 mechanism sets prices per
slot, it is natural to ask if these prices constitute someadimarket-clearing” equilibrium in the
spirit of a Fisher market. The quick answer is no: since theepper click increases for higher

slots, and each bidder values clicks at each slot equadiy, idders will always prefer the bottom
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BiddeBudget Bid S D: — 10 p: — $0.50

m1l $30 $3

m2 $70 $0.75 %: Dy = 50} G0
m 3 $20 $1 = / o D2 = oU.
04 $1 $0.50‘ BN Ds =25

| | Dy=0 }ps =90

Figure 2: Consider the same bidders and slots as in Figunaet hdw add bids as shown. Running Find-Price-Block
on only bidder 1 gives a price of = 80/100, which is less than the next bid 1. So, we run Find-Price-Block on
bidders 1 and 3 (the next-highest bid), giving= 80/100 andr, = 100/150. We still get a price 080.80, but now
this is more than the next-highest bid&if.75, so we allocate the first bidder to the first slot at a pric8®m80. We
are left with bidders 2-4 and slots 2-4. With just bidder 3(tighest bidder) and slot 2, we get a price= 20/50
which is less than the next-highest bid$%of 75, so we consider bidders 2 and 3 on slots 2 and 3. This givesa pfi
max{70/50,90/75} = $1.40, which is more thar$0.50. Since this is also more th&®.75, we must lowerB; until

the price is exactly$0.75, which makesB, = $36.25. With this setting ofB), Find-Price-Block allocates bidders
2 and 3 to slots 2 and 3, givirigh(36.25/56.25) and75(20/56.25) clicks respectively, at a price .75 per click.

Bidder 4 is allocated to slot 4, receiving zero clicks.

slot. Note that by the same logic as the budgets-only meshmarthe price®, po,... for each

price block strictly decrease.

4.1.1. Efficiency.

So far we have been largely ignoring the efficiency of conmquutihe allocation in the PS mech-
anism. It is immediately clear that the general PS mechao@nbe executed in time polynomial
in n andlog(1/¢) to some precision using binary search and linear programming.

In fact, a purely combinatoriaD(n?) time algorithm is possible. As bidders get added in
step (ii), maintaining a sorted list of bidders and budgets loe done in timé)(nlogn). Thus it
remains to show that running Find-Price-Block (and commquthe reduced budget) can be done
in O(n) time given these sorted lists. In Find-Price-Block, conmmthe ratiosr, can be done
in linear time. Finding the allocation from Lemma 1 can algdwone in linear time using the
Gonzalez-Sahni algorithm [12] for scheduling related f@ranachines (in fact the total time for
scheduling can be made(n) since each slot is scheduled only once). Finally, computiregy
reduced budget is a simple calculation on each relevamt ratialso doable in linear time. We

suspect that there is@(n - polylog(n)) algorithm using a more elaborate data structure; we leave
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this open.
Theorem 4. The price-setting mechanism (general case) is truthful.

Proof. We split the proof into two lemmas, showing that clicks ar@-gecreasing in both bids
and budgets. This immediately implies the theorem. Firstn@ed a small observation about

Find-Price-Block:

Lemma 3. Suppose Find-Price-Block is run on a set of budgets> --- > B, and produces a
block1, ..., ¢* with pricep. Then if a bidder is added to the set with budgkgtand Find-Price-

Block still produces price, we must have thad < By-.

Proof. Suppose not. The® > B, and we have thatB + >\ ,' B,)/>._, D; < p. This

=1

contradicty = 3.7, B,/ ", Dy, sinceB > Bi.. O 0
Lemma 4. The number of clicks a bidder is allocated is non-decreasirtter declared budget.

Proof sketch:Let bidders{1,...,n} be such that, >~ ... >~ b,, and consider a new bidder
Alice with bid b,_; = b = b,. We will argue that the number of clicks that Alice receives i
non-increasing as she reduces her declared busglget

Suppose Alice declards = ~o and letB be the amount she would spend (Alice would always
be a threshold bidder if she declarBd= ~). Any declared budgeB € [B, oo would result in
the same number of clicks, becaués reduced by the mechanism in step (iii)/o

Now asB decreases from, two different events could occur: (a) Alice’s price blobkeshold
¢* could change (because Find-Price-Block outputs a diftetgror (b) the lowest biddet could
change (because running Find-Price-BlockIon. . k£ gave a price less thah..,). For event
(a), and between these events, the arguments from Theoremly that Alice’s clicks are non-
increasing.

For event (b), when the price of the Alice’s block is exadfly,, if bidderk + 1 is added, the
resulting price output by Find-Price-Block in step (ii) igllsat leastb, 1, since adding a bidder
cannot reduce the price. Also Lemmas 3 and 2 together implyAlce is still in the price block

chosen in step (iii). Thus Alice’s clicks do not increase. O
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Lemma 5. The number of clicks a bidder is allocated is non-decreasirtter declared bid.

Proof sketchFor the purposes of this proof, let biddd#s . .., n} be such that, - ... > b,, and
consider a new bidder (call her Alice) with declared budgete will argue that the number of
clicks that Alice receives in non-increasing with her destbbidb.

Let p; be the price that Alice would pay #f = co, and suppose Alice is in thgh price block
when she bidso. Note that for any bid € (p;, oc], Alice is still in thejth price block and receives
the same number of click$3(/p;). Let p, be the minimum bid required to keep Alice in thin
price block.

We claim thatifb € [po, p1], the price will always be exactly no allocation is made until Alice
is considered in step (ii), and when she’s considered, Pinck-Block returns a price > pq,
since the set of bidders considered contains all the biddleosproduced price;. Thus Alice is a
threshold bidder, and in stépii) Alice’s budget is reduced so that the price is exattly

Let k, be the number of bidders with big - b. Let B? be theith largest budget among bidders
with bid b; > b. We claim that ifb € [p, p1], we haved ", BY/S¢_ D, < bforall ¢ < k,, since
otherwise Alice would not be in thgh block.

Let B, be Alice’s reduced budget when she bidg [p.,p:], and lete, = B,/b denote the
number of clicks she receives. To satisfy the price being @t in step (iii), we must have
that for all/ < k,, B, < BY + A, whereA > 0 satisfies(A + >\, BY)/S>_, D; = b. In
addition, we must haveB, + S BY)/S>%*! D, < b. Putting these constraints together we get
By = ming<y, {031, Di — 32, B!} and so

. 4 1 /-1
¢ = By/b= min {; Di—3 ;Bf} .
As b decreases, if the set of bidders with bidsh does not change, then tti#’s don't change,
and so this expression implies thgtalso decreases. #fdecreases to the point where- b for
some new biddel’, then we claim that, also cannot increase. To see this note that fof,dhe

/—

1=

¢y IS non-increasing in the intervale [ps, p].

expressior | i B? can only increase or stay the same if a new bidder is added ovéduzie that

Whenb decreases tp,, we transition from Alice being in thg¢th price block to the + 1st
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price block. As in Theorem 3, at the point of transition jitie price block will have the same price

as thej + 1st price block, and in both scenarios Alice spends exdé}tgy Thus her clicks do not

change. We can iterate these arguments foyj thel st price block, and so the theorem is proven.
O

Lemmas 4 and 5 immediately imply Theorem 4. 0J

4.2. Greedy First-Price Mechanism for Multiple Slots.

In the general case, as in the single-slot case, there isuaahgteedy first-pricenechanism

when the bidding language includes both bids and budgetder@ne bidders by bid;, - b, >
. = b,. Starting from the highest bidder, for each biddezompute the maximum possible

number of clicksc; that one could allocate to biddért priceb;, given the budget constrairit;
and the commitments to previous biddeys. . ., c;_;. This reduces to the “fractional knapsack”
problem in the single-slot case, and so one would hope thabimizes revenue for the given bids
and budgets, as in the single-slot case. This is not immaddialear, but does turn out to be true,
as we will prove in this section.

As in the single-slot case, the greedy mechanism is not hAftdunechanism. However, we
show that it does have a pure-strategy equilibrium, anddqatiibrium has prices and allocation

equivalent to the price setting mechanism.

4.2.1. Greedy is Revenue-Maximizing.

Consider a revenue-maximizing schedule that respectdimdgland budgets. In this allocation,
we can assume wlog that each bidfisrcharged exactly; per click, since otherwise the allocation
can increase the price for biddereduce:; and remain feasible. Thus, by Lemma 1, we can find a
revenue-maximizing schedut¢ = (cf, ..., ¢}) by maximizing) _, b;c; subject toc; < B;/b; and

ai+- 4+ <Dy+---+D,foralll=1,...n.
Theorem 5. The greedy first-price auction gives a revenue-maximizthgdule.

Proof. Note that an equivalent statement of the constraint - -- + ¢, < Dy + --- + D, for all
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> ¢ <Di+..+ Dy forallsubsetss C {1,...,n}. (3)
ies
Suppose bids arfg > b, > ... = b, and the corresponding clicks given to bidders in the greedy
allocation arec = (cy, ..., c,). Letc* = (], ..., ¢;) be the revenue-maximizing solution with the
closest prefito c, meaning that the firstsuch that; # c; is maximized, and modulo that, — ¢}
iS minimized.
We shall prove that the greedygives a revenue-maximizing schedule. Suppose the contrary
and let; be the first index on which differs fromc*. Note that; > ¢; (by the definition of greedy,
¢; is the maximum possible given, ..., ¢;_1). Letc),,, = max{c/ ,...,c;}. LetJ = {j > i:

ci = ¢ .. }. Consider an arbitrary tight constraint ohof the form (3), defined by the sét We

7 max
claim thatif; € S, then allj € J are also inS.

Proof of claim: Suppose the contrary, namely that S andj ¢ S for somej € J. Applying (3),
we get

Y ;=Y D (4)

tes e<|S]|
One of the bidders i must have indexn > i, otherwise (3) would be violated ferand S by

D otescii, iy € > Dpescp..iy & = 2u<is) Do If m ¢ J, then we would violate (3) for the set
S'=SU{Nm}: Do cs €@ > D ies b = D i<is= |5 De- Thereforem € J.

Now by the feasibility ofc* and the fact thaf ¢ S, we also havej + >, qc; < D41 +
ZKW D, which implies, together with (4), that < Ds/,,. Again by feasibility, we also have
D tes\m € < Doi<s)-1 De and this, together with (4), gives, > Ds. Putting these last two
observations together yieldss| < c,, = ¢} = ¢§ < Dis41. Unlesse,, = ¢, = ¢; = 0, this
violates the distinctness of the non-z€vg's. But if ¢} ., = 0, it means that alt, for £ > i have
¢, = 0, which means that gives strictly more clicks thaa*, a contradiction. 0J

Let ;7 be an arbitrary member of. By the claim, there is an > 0 such that if we set’ = c*
exceptc; = ¢ + e andc; = ¢; — ¢, we get a feasible allocatiati, since;j appears in every tight
constraint in whichi appears. This allocation has revenue at least that,afinced; > b;. But, it

has a closer prefix to thanc*, a contradiction. O
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4.2.2. Price-Setting Mechanism is a Nash Equilibrium of@needy First Price Mechanism.

We note that truthfully reporting one’s budget is a weaklynilwant strategy in GFP, since
when a bidder is considered for allocation, their budgekisaested at a fixed price, subject to a
cap on the number of clicks they can get. Reporting one’srbttifully is not a dominant strategy,
but we can still show that there is afNash equilibrium whose outcome is arbitrarily close to the

PS mechanism.

Theorem 6. Suppose the PS mechanism is run on the truthful input, regutt clickscy, ..., ¢,
for each bidder. Then, for any > 0 there is a pure-strategy-Nash equilibrium of the GFP

mechanism where each bidder receives ¢ clicks.

Proof. Theorem 6 We will abuse notation and ¢étlenote any positive quantity that can be made
arbitrarily close to zero. When the PS mechanism is run onrthiful input, letp; > ps > ...
denote the prices of each block. We will show that if in GFPhelaidder: truthfully reports her
budget and bids;, = min{m;,p; + €'}, wherej is the price block of in the PS mechanism, we
meet the conditions of the theorem.

Suppose the first price block is determined when biddsiconsidered, and ends at stot< k.
The pricep, satisfiesm;,; < p; < my. Let P C [k] denote the bidders in the first block (the
ones in[k] with the ¢* highest budgets). Also, we have thatialf P spend their entire budget in
the PS mechanism, except possiblywho may spend less than her budgetif = p;. We now
argue that GFP will produce the same allocation as the PSanesh for this price block. For
all i € P we haveb; = min{m;,p; + €} > min{my,p:} = p1. All biddersi € ([k] \ P) have
b; < ps + € < p;. All biddersi ¢ [k] havem; < m;, and so sincé; < m; we getb; < b; for all
i € P. We conclude that the bidders inare the first to be considered by the GFP mechanism.
Furthermore, it € P, and B, is reduced in the PS mechanism (becausea threshold bidder),
then we must have, = m, = p;, and sd, < b; forall i € P,i # k. Thus in this case biddéris
the last bidder inP to be considered by GFP. From here it is straightforward tovdihat GFP will
assign the first* slots to the bidders i® (almost) exactly like the PS mechanism does, with at
leastc; — €’ clicks to each € P; the mechanism will havé clicks left over, which will be assigned

to bidders not inP. Applying this same argument to subsequent price blocks;omelude that
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GFP will assigrne; = ¢; + ¢ clicks to all bidders.

To show this is an equilibrium, consider a bidder Alice (¢t “biddera”) that was assigned
to price block;* and received), = ¢, + ¢ clicks. If Alice spent withine’ of her entire budget,
it means she would not want to raise her bid, since she coulgassibly receive more tha
additional clicks. If she did not spend her budget, then ftbenobservations above we know that
she is bidding her true max-cpe,, and therefore also does not want to raise her bid.

It remains to show that Alice does not want to lower her bidt 4;edenote the last slot in
price blockj. Let P; denote the set of bidders in price blogkAlice’s current bidb, is at least
p;, and if she keeps her bid aboye her clicks will remainc, + ¢ from the arguments above.
Let S = U,<;-P;. If Alice lowers her bid tob, < p;, then all bidders € S besides Alice
will have b; > b/. Thus when Alice is considered by the greedy algorithm, ieks will be
constrained by the commitments to these bidders. Furthermach of these bidders will still
receive at least; clicks. For all price blockg, we have}_, , ¢ > Zfizj,lﬂ D; — €. Thus
> iesiza Ci 2 (Effl D;)—€ —c,. SinceS has siz€;«, this implies that the constraint (3) restricts

Alice’s clicks to at most/, + €. O

5. Conclusions

In this paper we have given a truthful mechanism for assghidders to click-generating slots
that respects budget and per-click price constraints. Téehamism also respects a scheduling
constraint on the slots, using a classical result from salggitheory to characterize (and compute)
the possible allocations. We have also proved that the te+amaximizing mechanism has an
Nash equilibrium whose outcome is arbitrarily close to o@chmanism. This final result in some
way suggests that our mechanism is the right one for this imtdeould interesting to make this

more formal; we conjecture that a general truthful mechamiannot do better in terms of revenue.

5.1. Extensions.

There are several natural generalizations of@méine Ad Slot Schedulingroblem where it
would be interesting to extend our results or apply the keodge gained in this paper. We mention

a few here.
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Click-through rates.In sponsored search (e.g. [9]) it is common for each biddbat@ a personal
click-through-ratey;; in our model this would mean that a biddeassigned to slof for a time
period of length would receiveny; D; clicks. All our results can be generalized to this setting by
simply scaling the bids using = b;;. However, our mechanism in this case does not necessarily
prefer moreefficientsolutions; i.e., ones that generate more overall clickaolild be interesting

to analyze a possible tradeoff between efficiency and revanthis setting.

Multiple Keywords.To model multiple keywords in our model, we could say thatheqaeryq

had its own set of click total®,; ... D, ,, and each bidder is interested in a subset of queries.
The greedy first-price mechanism is easily generalizeditocdise: maximally allocate clicks to
bidders in order of their bidl; (at priceb;) while respecting the budgets, the query preferences, and
the click commitments to previous bidders. It would not bgosiging if there was an equilibrium

of this extension of the greedy mechanism that could be coedpdirectly with a generalization

of the PS mechanism.

Online queries, uncertain supplyn sponsored search, allocations must be made online in re-
sponse to user queries, and some of the previous literaaisréolbused on this aspect of the prob-
lem (e.g., [21, 20]). Perhaps the ideas in this paper couldsied to help make online allocation
decisions using (unreliable) estimates of the supply, tngetonsidered by Mahdian et al. [20],

with game-theoretic considerations.
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