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Abstract

We consider theOffline Ad Slot Schedulingproblem, where advertisers must be scheduled tospon-

sored searchslots during a given period of time. Advertisers specify a budget constraint, as well as

a maximum cost per click, and may not be assigned to more than one slot for a particular search.

We give a truthful mechanism under the utility model where bidders try to maximize their

clicks, subject to their personal constraints. In addition, we show that the revenue-maximizing

mechanism is not truthful, but has a Nash equilibrium whose outcome is identical to our mecha-

nism. As far as we can tell, this is the first treatment of sponsored search that directly incorporates

both multiple slots and budget constraints into an analysisof incentives.

Our mechanism employs a descending-price auction that maintains a solution to a certain ma-

chine scheduling problem whose job lengths depend on the price, and hence is variable over the

auction. The price stops when the set of bidders that can afford that price pack exactly into a block

of ad slots, at which point the mechanism allocates that block and continues on the remaining slots.

To prove our result on the equilibrium of the revenue-maximizing mechanism, we first show that a
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greedy algorithm suffices to solve the revenue-maximizing linear program; we then use this insight

to prove that bidders allocated in the same block of our mechanism have no incentive to deviate

from bidding the fixed price of that block.

1. Introduction

Sponsored search is an increasingly important advertisingmedium, attracting a wide variety of

advertisers, large and small. When a user sends a query to a search engine, the advertisements are

placed intoslots, usually arranged linearly down the page. These slots have avarying degree of

exposure, often measured in terms of the probability that the ad will be clicked; a common model

is that the higher ads tend to attract more clicks. The problem of allocating these slots to bidders

has been addressed in various ways. The most common method isto allocate ads to each search

independently via ageneralized second price(GSP) auction, where the ads are ranked by (some

function of) their bid, and placed into the slots in rank order. (See Lahaie et al. [19] for a survey of

this area.)

There are several important aspects of sponsored search notcaptured by the original models.

Most advertisers are interested in getting many clicks throughout the day on a variety of searches,

not just a specific slot on a particular search query. Also, many advertisers have budget constraints,

where they do not allow the search engine to spend more than their budget during the day. Finally,

search engines may have some knowledge about the distribution of queries that will occur during

the day, and so should be able to make more efficient allocation decisions than just simple ranking.

TheOffline Ad Slot Schedulingproblem is this: given a set of bidders with bids (per click) and

budgets (per day), and a set of slots over the entire day wherewe know the expected number of

clicks in each slot, find a schedule that places bidders into slots. The schedule must not place a

bidder into two different slots at the same time. In addition, we must find a price for each bidder

that does not exceed the bidder’s budget constraint, nor their per-click bid. (See Section 1.3 for a

formal statement of the problem.)

A good algorithm for this problem will have high revenue. Also, we would like the algorithm

to betruthful; i.e., each bidder will be incented to report her true bid andbudget. In order to prove

something like this, we need autility functionfor the bidder that captures the degree to which she is
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happy with her allocation. Natural models in this context (with clicks, bids and budgets) areclick-

maximization—where she wishes to maximize her number of clicks subject toher personal bid

and budget constraints, orprofit-maximization—where she wishes to maximize her profit (clicks

× profit per click). In this paper we focus on click-maximization; see more detailed discussion on

our model choice below.

We present an efficient mechanism forOffline Ad Slot Schedulingand prove that it is truthful.

We also prove that the revenue-optimal mechanism forOffline Ad Slot Schedulingis not truthful,

but has a Nash equilibrium (under the same utility model) whose outcome is equivalent to our

mechanism; this result is strong evidence that our mechanism has desirable revenue properties. Our

results generalize to a model where each bidder has a personal click-through-ratethat multiplies

her click probability.

Our utility function choice is in part motivated by the presence of budgets, which have a natural

interpretation in this application: if an overall advertising campaign allocates a fixed portion of its

budget to online media, then the agent responsible for that budget is incented to spend the entire

budget to maximize exposure. From a different perspective,advertizers spread their Ad budget

across several media. In each medium they want to ensure a certain price per eyeball (or click)

and thus would spread out the budget according to market prices and viewing capacity. In contrast,

under the profit-maximizing utility, a weak motivation for budgets is a limit on liquidity. Also,

our choice of utility function is out of analytical necessity: Borgs et al. [5] show that under some

reasonable assumptions, truthful mechanisms are impossible under a profit-maximizing utility.

The click-maximizing utility function also allows us to uncover appealing structural insights

and strategic properties about ad allocation. The single-slot, budgets-only case is equivalent to

an all-pay auction for a single divisible good. In this case,our mechanism is equivalent to the

proportional sharing mechanism, where the good is divided proportionally according to budget.

Truthfulness in the click-maximization model follows easily from monotonicity here, and Johari

and Tsitsiklis [16] analyze this case in the profit maximization setting, giving a 3/4 price of anarchy

result. However, allocating all the clicks from multiple slots (even without per-click limits) while

respecting scheduling constraints requires allocations that arenotproportional in budget, and thus
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proving monotonicity is much more difficult. Our mechanism provides such allocations, and we

prove click monotonicity via structural insights on feasible allocations. Our mechanism also has

the property that it divides the bidders and slots into blocks, and within each block the allocation

is proportional sharing. Thus we feel confident that this mechanism has desirable properties under

profit maximization as well, but this remains open.

As far as we can tell, this is the first treatment of sponsored search that directly incorporates

both multiple positions and budget constraints into an analysis of incentives (see Section 1.2 for a

survey of related work). In its full generality, the problemof sponsored search is more complex

than our model; e.g., since the query distribution is noisy,good allocation strategies need to be

online and adaptive. Also, our mechanism is designed for a single query type, whereas advertisers

are interested in enforcing their budget across multiple query types. However, the tools used in this

paper may be valuable for deriving more general mechanisms in the future.

1.1. Methods and Results.

A natural mechanism forOffline Ad Slot Schedulingis the following: find a feasible schedule

and a set of prices that maximizes revenue, subject to the bidders’ constraints. It is straightforward

to derive a linear program for this optimization problem, but unfortunately this is not a truthful

mechanism (see Example 1 in Section 2). However, there is a direct truthful mechanism—the

price-settingmechanism we present in this paper—that results in the same outcome as an equilib-

rium of the revenue-maximizing mechanism.

We derive this mechanism (and prove that it is truthful) by starting with the single-slot case

in Section 2, where two extreme cases have natural, instructive interpretations. With only bids

(and unlimited budgets), a winner-take-all mechanism works; with only budgets (and unlimited

bids) the clicks are simply divided up in proportion to budgets. Combining these ideas in the right

way results in a natural descending-price mechanism, wherethe price (per click) stops at the point

where the bidders who can afford that price have enough budget to purchase all of the clicks.

Generalizing to multiple slots requires understanding thestructure of feasible schedules, even

in the special budgets-only case. In Section 3 we solve the budgets-only case by characterizing

the allowable schedules in terms of the solution to a classical machine scheduling problem(to be
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precise, the problemQ | pmtn| Cmax [13]). The difficulty that arises is that the lengths of the

jobs in the scheduling problem actually depend on the price charged. Thus, we incorporate the

scheduling algorithm into a descending-price mechanism, where the price stops at the point where

the scheduling constraints are tight; at this point a block of slots is allocated at a fixed uniform price

(dividing the clicks equally by budget) and the mechanism iterates. We present the full mechanism

in Section 4 by incorporating bids analogously to the single-slot case: the price descends until the

set of bidders that can afford that price has enough budget tomake the scheduling constraints tight.

A tricky case arises when a new bidder appears whose budget violates the scheduling constraints;

in this case the budget of this “threshold” bidder is reducedto make them tight again. Finally in

Section 4.2 we show that the revenue-optimal mechanism has aNash equilibrium whose outcome

is identical to our mechanism. This follows from the fact that if all the bidders in a block declare a

bid (roughly) equal to the price of the block, nobody has an incentive to deviate, since every bidder

is charged exactly her bid, and the clicks are divided up equally by budget.

1.2. Related Work.

There are some papers on sponsored search that analyze thegeneralized second-price(GSP)

auction, which is the auction currently in use at Google and Yahoo. The equilibria of this auction

are characterized and compared with VCG [9, 18, 2, 26]. Here the utility function is theprofit-

maximizingutility where each bidder attempts to maximize her clicks× profit per click, and budget

constraints are generally not treated.

Borgs et al. [5] consider the problem of budget-constrainedbidders for multiple items of a

single type, with a utility function that is profit-maximizing, modulo being under the budget (being

over the budget gives an unbounded negative utility). They give a truthful mechanism allocating

some portion of the items that is revenue-optimal, and provethat in their model, under reasonable

assumptions, truthful mechanisms that allocate all the units are impossible. Under an identical

profit-maximizing model, Hafalir et al. [14] give what they term a “semi-truthful” mechanism, in

which agents state their true budgets and do not understate their values, and they prove that this

mechanism has an equilibrium that maximizes revenue over all Pareto-optimal mechanisms. Our

work is different both because of the different utility function and the generalization to multiple

5



slots with a scheduling constraint. Using related methods,Mahdian et al. [20] consider an online

setting where an unknown number of copies of an item arrive online, and give a truthful mechanism

with a constant competitive ratio guarantee.

Our mechanism can be seen as a generalization of Kelly’s fairsharing mechanism [17, 16]

to the case of multiple slots with a scheduling constraint. Nguyen and Tardos [23] generalize

the results of Johari and Tsitsiklis [16] to polyhedral constraints, and also discuss the application

to sponsored search. Both their bidding language and utility function differ from ours, and in

their words their mechanism “is not a natural auction mechanism for this case.” Nguyen and

Vojnovic [24] extend the study of proportional sharing mechanisms by considering incentives of

providers in oligopolies. It would be interesting to explore further the connection between these

proportional sharing mechanisms and ours. We mention here that the special case of our price-

setting mechanism for a single slot is reminiscent of the cost-sharing mechanism of Moulin and

Shenker [22]. We thus hope that our techniques and mechanisms would be useful to mechanism

design and analysis beyond the sponsored search application that inspired this work.

There is some work on algorithms for allocating bidders withbudgets to keywords that arrive

online, where the bidders place (possibly different) bids on particular keywords [21, 20]. The

application of this work is similar to ours, but their concern is purely online optimization; they do

not consider the game-theoretic aspects of the allocation.Abrams et al. [1] derive a linear program

for the offline optimization problem of allocating bidders to queries, and handle multiple positions

by using variables for “slates” of bidders. Their LP is related to ours, but again they do not consider

game-theoretic aspects of their proposed allocations.

Bidder strategies for keyword auctions in the presence of budget constraints have also been

considered [11, 25, 6, 4]. Generally these papers are not concerned with mechanism design, but

there could be some interesting relationships between the models in these papers and the one we

study here.

In our setting one is tempted to apply aFisher Marketmodel: herem divisible goods are

available ton buyers with moneyBi, anduij(x) denotesi’s utility of receivingx amount of good

j. It is known [3, 10, 7] that under certain conditions a vectorof prices for goods exists such that
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the market clears, in that there is no surplus of goods, and all the money is spent. Furthermore,

this price vector can be found efficiently [8]. The natural way to apply a Fisher model to a slot

auction is to regard the slots as commodities and have the utilities be in proportion to the number

of clicks. However this becomes problematic because there does not seem to be a way to encode

the scheduling constraints in the Fisher model; this constraint could make an apparently “market-

clearing” equilibrium infeasible, and indeed plays a central role in our investigations.

1.3. Our Setting.

We define theOffline Ad Slot Schedulingproblem as follows. We haven > 1 bidders interested

in clicks. Each bidderi has a budgetBi and a maximum cost-per-click (max-cpc)mi. Given a

number of clicksci, and a price per clickp, the utility ui of bidderi is ci if both the true max-cpc

and the true budget are satisfied, and−∞ otherwise. In other words,ui = ci if p ≤ mi and

cip ≤ Bi; andui = −∞ otherwise. We haven′ advertising slots where sloti receivesDi clicks

during the time interval[0, 1]. We assumeD1 > D2 > · · · > Dn′.

In a schedule, each bidder is assigned to a set of (slot, time interval) pairs (j, [α, β)), where

j ≤ n′ and 0 ≤ α < β ≤ 1. A feasible scheduleis one where no more than one bidder is

assigned to a slot at any given time, and no bidder is assignedto more than one slot at any given

time. (Formally, the intervals for a particular slot do not overlap, and the intervals for a particular

bidder do not overlap.) A feasible schedule can be applied asfollows: when a user query comes

at some timeα ∈ [0, 1], the schedule for that time instant is used to populate the adslots. If we

assume that clicks come at a constant rate throughout the interval [0, 1], the number of clicks a

bidder is expected to receive from a schedule is the sum of(β − α)Dj over all pairs(j, [α, β)) in

its schedule.2

A mechanismfor Offline Ad Slot Schedulingtakes as input a declared budgetBi and declared

max-cpc (the “bid”)bi, and returns a feasible schedule, as well as a price per clickpi ≤ bi for each

bidder. The schedule gives some numberci of clicks to each bidderi that must respect the budget

2All our results generalize to the setting where each bidderi has a “click-through rate”γi and receives(β−α)γiDj

clicks (see Section 5). We leave this out for clarity.
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at the given price; i.e., we havepici ≤ Bi.

The revenueof a mechanism is
∑

i pici. We say a mechanism istruthful if it is a weakly

dominant strategy to declare one’s true budget and max-cpc;i.e., for any particular bidderi, given

any set of bids and budgets declared by the other bidders, declaring her true budgetBi and max-

cpcmi maximizes her utilityui. A (pure strategy)Nash equilibriumis a set of declared bids and

budgets such that no bidder wants to change her declaration of bid or budget, given that all other

declarations stay fixed. Anǫ-Nash equilibriumis a set of bids and budgets where no bidder can

increase her utility by more thanǫ by changing her bid or budget.

Throughout the paper we assume some arbitrary lexicographic ordering on the bidders, that

does not necessarily match the subscripts. When we compare two bids bi and bi′ we say that

bi ≻ bi′ iff either bi > bi′ , or bi = bi′ but i occurs first lexicographically.

2. One Slot Case

In this section we consider the casek = 1, where there is only one advertising slot, with some

numberD := D1 of clicks. We will derive a truthful mechanism for this case by first considering

the two extreme cases of infinite bids and infinite budgets.

Suppose all budgetsBi = ∞. Then, our input amounts to bidsb1 ≻ b2 ≻ . . . ≻ bn. Our

mechanism is simply to give all the clicks to the highest bidder. We charge bidder 1 her full price

p1 = b1. We claim that reporting the truth is a weakly dominant strategy for this mechanism.

Clearly all bidders will reportbi ≤ mi, since the price is set tobi if they win. The losing bidders

cannot gain from decreasingbi. The winning bidder can lower her price by loweringbi, but this

will not gain her any more clicks, since she is already getting all D of them.

Now suppose all bidsbi = ∞. In this case, our input is just a set of budgetsB1, . . . , Bn, and we

need to allocateD clicks, with no ceiling on the per-click price. Here we applya simple rule related

to pricing schemes for network bandwidth (see, e.g., [17, 16]): Let B =
∑

i Bi. Now to each bidder

i, allocate(Bi/B)D clicks. Set all prices the same:pi = p = B/D. The mechanism guarantees

that each bidder exactly spends her budget, thus no bidder will reportB′
i > Bi. Now suppose some

bidder reportsB′
i = Bi −∆, for ∆ > 0. Then this bidder is allocatedD(Bi − ∆)/(B − ∆) clicks,

which is less thanD(Bi/B), sincen > 1 and allBi > 0.
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2.1. Greedy First-Price Mechanism.

A natural mechanism for the general single-slot case is to solve the associated “fractional knap-

sack” problem, and charge bidders their bid; i.e., startingwith the highest bidder, greedily add

bidders to the allocation, charging them their bid, until all the clicks are allocated. We refer to this

as thegreedy first-price(GFP) mechanism. Though natural (and revenue-maximizing as a function

of bids) this mechanism is easily seen to be not truthful:

Example 1. Suppose there are two bidders andD = 120 clicks. Bidder 1 has (m1 = $2, B1 = $100) and

bidder 2 has (m2 = $1, B2 = $50). In the GFP mechanism, if both bidders tell the truth, then bidder 1 gets

50 clicks for$2 each, and 50 of the remaining 70 clicks go to bidder 2 for$1 each. However, if bidder 1

instead declaresb1 = $1+ ǫ, then she gets (roughly) 100 clicks, and bidder 2 is left with(roughly) 20 clicks.

The problem here is that the high bidders can get away with bidding lower, thus getting a lower

price. The difference between this and the unlimited-budget case above is that a lower price now

results in more clicks. It turns out that in equilibrium, this mechanism will result in an allocation

where a prefix of the top bidders are allocated, but their prices equalize to (roughly) the lowest bid

in the prefix (as in the example above).

2.2. The Price-Setting Mechanism.

An equilibrium allocation of GFP can be computed directly via the following mechanism,

which we refer to as theprice-setting (PS) mechanism. Essentially this is a descending price

mechanism: the price stops descending when the bidders willing to pay at that price have enough

budget to purchase all the clicks. We have to be careful at themoment a bidder is added to the

pool of the willing bidders; if this new bidder has a large enough budget, then suddenly the willing

bidders havemore than enough budget to pay for all of the clicks. To compensate, the mecha-

nism decreases this “threshold” bidder’s effective budgetuntil the clicks are paid for exactly. We

formalize the mechanism as follows:

9



Price-Setting (PS) Mechanism (Single Slot)

• Assume wlog thatb1 ≻ b2 ≻ . . . ≻ bn ≥ 0.

• Let k be the first bidder such thatbk+1 ≤
∑k

i=1
Bi/D. Compute

pricep = min{
∑k

i=1
Bi/D, bk}.

• AllocateBi/p clicks to eachi ≤ k − 1. AllocateB̂k/p clicks to

bidderk, whereB̂k = pD −
∑k−1

i=1
Bi.

Example 2. Suppose there are three bidders withb1 = $2, b2 = $1, b3 = $0.25 and B1 = $100,

B2 = $50, B3 = $80, andD = 300 clicks. Running the PS mechanism, we getk = 2 sinceB1/D =

1/3 < b2 = $1, but(B1 + B2)/D = $0.50 ≥ b3 = $0.25. The price is set tomin{$0.50, $1} = $0.50, and

bidders 1 and 2 get 200 and 100 clicks at that price, respectively. There is no threshold bidder.

Example 3. Suppose now bidder 2 changes her bid tob2 = $0.40 (everything else remains the same

as Example 2). We still getk = 2 sinceB1/D = 1/3 < b2 = $0.40. But now the price is set to

min{$0.50, $0.40} = $0.40, and bidders 1 and 2 get 250 and 50 clicks at that price, respectively. Note that

bidder 2 is now a threshold bidder, does not use her entire budget, and gets fewer clicks.

Note that this mechanism reduces to the given mechanisms in the special cases of infinite bids

or budgets (with the proper treatment of infinite bids/budgets).

Theorem 1. The price-setting mechanism (single slot) is truthful.

Proof. For the purposes of this proof, let bidders{1, . . . , n} be such thatb1 ≻ . . . ≻ bn = 0, and

consider a new bidder (call her Alice) with true max-cpcm and true budgetB∗.

We first show that reporting the true budget is a weakly dominant strategy for Alice, for any

fixed bidb > 0. Let ℓ be the first bidder withb ≻ bℓ, sob1 ≻ . . . ≻ bℓ−1 ≻ b ≻ bℓ ≻ . . . ≻ bn.

Let B =
∑ℓ−1

i=1
Bi. If B ≥ bD then the mechanism will not allocate any clicks to Alice, regardless

of the reported budget, since the price will stop before reaching b. If B < bD, we will argue that

Alice’s clicks c are non-increasing inB. DefineB̂ = bD − B > 0.

• If Alice declaresB ∈ [B̂,∞], then the price will stop atb. She will spendB̂ and receive

c = B̂/b clicks.
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• If Alice declaresB ∈ [0, B̂), then the price will be lower thanb, and she will spend all of

her budget. Her final number of clicks will bec = (B/(B + B + R))D, whereR is the

total spend of bidders{ℓ, . . . , n}. SinceR is non-increasing inB, we can conclude thatc is

non-decreasing inB.

Putting together these intervals, we see thatc is non-decreasing inB overall, and since Alice’s total

spend ismin{B, B̂}, we may conclude that it is weakly dominant to declareB = B∗.

It remains to show that it is weakly dominant for Alice to declare a bidb = m, given that she

declares a budgetB = B∗. Let R(b) be the total spend of bidders{1, . . . , n} given that Alice

declaresb. Note thatR(b) is non-increasing inb. Let p1 be the price that would result ifb = ∞,

and letp2 be the price that would result ifb = 0. Note thatp2 ≤ p1.

• If b ∈ [0, p2) then the price stops atp2 and Alice receives zero clicks.

• If b ∈ (p1,∞], then the price stops atp1, and Alice receivesB/p1 clicks.

• If b ∈ [p2, p1], then the price stops atb. To see this, note that if Alice had bid zero, then the

price would have gone down top2, so it certainly stops atb or lower. But at priceb, the set of

bidders that can afford this price consists of at least all the bidders that could afford pricep1,

and so we must haveB +
∑

i:bi≻b Bi ≥ B +
∑

i:bi≥p1
Bi ≥ p1D ≥ bD. Alice thus receives

max

{

0, D −

(

∑

i:bi≻b

Bi/b

)}

(1)

clicks, and we may conclude that in this interval, clicks arenon-decreasing withb.

Note that in the expression (1), plugging inp1 for b yields c = B/p1. Thus we have that in the

interval[p2,∞], clicks are non-decreasing withb, and the price is alwaysmin{b, p1}. We conclude

that biddingb = m is a weakly dominant strategy.

2.3. Price-Setting Mechanism Computes Nash Equilibrium ofGFP.

Consider the greedy first-price auction in which the highestbidder receivesB1/b1 clicks, the

secondB2/b2 clicks and so on, until the supply ofD clicks is exhausted. It is immediate that truth-

fully reporting budgets is a dominant strategy in this mechanism, since when a bidder is considered,
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her reported budget is exhausted as much as possible, at a fixed price. However, reportingbi = mi

is not a dominant strategy. Nevertheless, it turns out that GFP hasan equilibrium whose outcome

is (roughly) the same as the PS mechanism. One cannot show that there is a plain Nash equilibrium

because of the way ties are resolved lexicographically; thefollowing example illustrates why.

Example 4. Suppose we have the same instance as example 1: two bidders,D = 120 clicks, (m1 = $2,

B1 = $100) and (m2 = $1, B2 = $50). But now suppose that bidder 2 occurs first lexicographically. In

GFP, if bidder 2 tells the truth, and bidder 1 declaresb1 = $1, then bidder 2 will get chosen first (since she

is first lexicographically), and take 50 clicks. Bidder 2 will end up with the remaining 70 clicks. However,

if bidder 1 instead declaresb1 = $1 + ǫ for someǫ > 0, then she gets100/(1 + ǫ) clicks. But this is not a

best response, since she could bid1 + ǫ/2 and get slightly more clicks.

Thus, we prove instead that the bidders reach anǫ-Nash equilibrium:

Theorem 2. Suppose the PS mechanism is run on the truthful input, resulting in pricep and clicks

c1, . . . , cn for each bidder. Then, for anyǫ > 0 there is a pure-strategyǫ-Nash equilibrium of the

GFP mechanism where each bidder receivesci ± ǫ clicks.

Proof. We will show that for sufficiently smallǫ′ > 0, if each bidder truthfully reports her budget

and bidsbi = min{mi, p + ǫ′} in the GFP mechanism, then the conditions in the theorem hold.

There are two ways that the PS mechanism (under truthful input) can reach its last allocated

bidderk and final pricep: if mk > p ≥ mk+1 and thenpD =
∑k

i=1
Bi (no threshold bidder), or if

p = mk (k is a threshold bidder).

In the first case, we have that biddersi ≤ k all havemi > p. Thus in the supposed equilibrium

of GFP, all these bidders are biddingp + ǫ′, and all biddersi > k are biddingmi ≤ p. Therefore

in GFP, eachi ≤ k will receiveBi/(p + ǫ′) clicks, and the total number of clicks allocated by GFP

to bidders1 . . . k is
∑

i≤k Bi/(p + ǫ′) = ( p

p+ǫ′
)D. The remainingD′ = (1 − p

p+ǫ
)D clicks, are

allocated to biddersi > k. Bidders1 . . . k lose clicks by increasing their bid, and can gain at most

D′ clicks by lowering their bid. Biddersi > k will never raise their bid (since they are bidding

mi), and cannot gain more clicks by lowering their bid. SinceD′ can be made arbitrarily small, we

have anǫ-Nash equilibrium.
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In the second case,p = mk. Letk′ < k be the last bidder bidding more thanp. In the supposed

GFP equilibrium, bidders1 . . . k′ are biddingp+ǫ′, and bidders(k′+1, . . . , k) are biddingmk = p.

Thus GFP allocatesBi/(p+ ǫ′) clicks to bidders1 . . . k′, Bi/p clicks to bidders(k′ +1, . . . , k− 1)

(if any such bidders exist) and the remaining clicks to bidder k. As in the previous case, no bidder

can gain from raising her bid, the number of clicks that a bidder i ≤ k′ can gain from lowering her

bid can be made arbitrarily small, and no other bidder can gain from lowering her bid.

3. Multiple Slots: Bids or Budgets Only

Generalizing to multiple slots makes the scheduling constraint nontrivial. Now instead of split-

ting a pool ofD clicks arbitrarily, we need to assign clicks that correspond to a feasible schedule of

bidders to slots. The conditions under which this is possible add a complexity that we characterize

and incorporate into our mechanism in this section.

As in the single-slot case it will be instructive to considerfirst the cases of infinite bids or

budgets. Suppose allBi = ∞. In this case, the input consists of bids onlyb1 ≻ b2 ≻ . . . ≻ bn.

Naturally, what we do here is rank by bid, and allocate the slots to the bidders in that order. Since

each budget is infinite, we can always set the pricespi equal to the bidsbi. By the same logic as in

the single-slot case, this is easily seen to be truthful. In the other case, whenbi = ∞, there is a lot

more work to do, and we devote the remainder of the section to this case.

Without loss of generality, we may assume the number of slotsequals the number of bids (i.e.,

n′ = n); if this is not the case, then we add dummy bidders withBi = bi = 0, or dummy slots with

Di = 0, as appropriate. We keep this assumption for the remainder of the paper.

3.1. Assigning slots using a classical scheduling algorithm.

First we give an important lemma that characterizes the conditions under which a set of bidders

can be allocated to a set of slots, which turns out to be just a restatement of a classical result [15]

from scheduling theory.

Lemma 1. Suppose we would like to assign an arbitrary set{1, . . . , k} of bidders to a set of slots

{1, . . . , k} with D1 > · · · > Dk. Then, a click allocationc1 ≥ ... ≥ ck is feasible iff

c1 + · · ·+ cℓ ≤ D1 + · · ·+ Dℓ for all ℓ = 1, ..., k. (2)
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Proof. In scheduling theory, we say ajob with service requirementx is a task that needsx/s units

of time to complete on amachinewith speeds. The question of whether there is a feasible allo-

cation is equivalent to the following scheduling problem: Givenk jobs with service requirements

xi = ci, andk machines with speedssi = Di, is there a schedule of jobs to machines (with

preemption allowed) that completes in one unit of time?

As shown in Horvath et al. [15], the optimal schedule for thisproblem (a.k.a.Q|pmtn|Cmax) can

be found efficiently by thelevel algorithm,3 and the schedule completes in timemaxℓ≤k{
∑ℓ

i=1
xi/

∑ℓ

i=1
si}.

Thus, the conditions of the lemma are exactly the conditionsunder which the schedule completes

in one unit of time.

3.2. A multiple-slot budgets-only mechanism.

Our mechanism will roughly be a descending-price mechanismwhere we decrease the price

until a prefix of budgets fits tightly into a prefix of positionsat that price, whereupon we allocate

that prefix, and continue to decrease the price for the remaining bidders.

The following subroutine, which will be used in our mechanism (and later in the general mech-

anism), takes a set of budgets and determines a prefix of positions that can be packed tightly with

the largest budgets at a uniform pricep. The routine ensures that all the clicks in those positions

are sold at pricep, and all the allocated bidders spend their budget exactly.

3In later work, Gonzalez and Sahni [12] give a faster (linear-time) algorithm.
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Routine “Find-Price-Block”

Input: Set ofn bidders, set ofn slots withD1 > D2 > · · · > Dn.

• If all Di = 0, assign bidders to slots arbitrarily and exit.

• Sort the bidders by budget and assume wlog thatB1 ≥ B2 ≥

... ≥ Bn.

• Definerℓ =
∑ℓ

i=1
Bi/

∑ℓ

i=1
Di. Set pricep = maxℓ rℓ.

• Let ℓ∗ be the largestℓ such thatrℓ = p. Allocate slots{1, . . . ℓ∗}

to bidders{1, . . . , ℓ∗} at pricep, using all of their budgets; i.e.,

ci := Bi/p.

Note that in the last step the allocation is always possible since for all ℓ ≤ ℓ∗, we havep ≥

rℓ =
∑ℓ

i=1
Bi/

∑ℓ

i=1
Di, which rewritten is

∑ℓ

i=1
ci ≤

∑ℓ

i=1
Di, and so we can apply Lemma 1.

Now we are ready to give the mechanism in terms of this subroutine; an example run is shown in

Figure 1.

Price-Setting Mechanism (Multiple Slots, Budgets Only)

• Run “Find-Price-Block” on bidders1, . . . , n, and slots1, . . . , n.

This gives an allocation ofℓ∗ bidders to the firstℓ∗ slots.

• Repeat on the remaining bidders and slots until all slots areallo-

cated.

Let p1, p2, . . . be the prices used for each successive block assigned by the algorithm. We claim

thatp1 > p2 > . . . ; to see this, note then whenp1 is set, we havep1 = rk andp1 > rℓ for all ℓ > k,

wherek is the last bidder in the block. Thus for allℓ > k, we havep1

∑

j≤ℓ Dj >
∑

i≤ℓ Bj , which

givesp1

∑

k<j≤ℓ Dj >
∑

k<i≤ℓ Bj usingp1 = rk. This implies that when we apply Find-Price-

Block the second time, we getr′ℓ =
∑

k<i≤ℓ Bj/
∑

k<j≤ℓ Dj < p1, and sop2 < p1. This argument

applies to successive blocks to givep1 > p2 > . . . .

Theorem 3. The price-setting mechanism (multiple slots, budgets only) is truthful.
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Bidder Budget
1
2
3
4

$80
$70
$20
$1

3/5

20/21

D1 = 100

D2 = 50

D3 = 25

D4 = 0

p1 = $1.00

p2 = $0.84

Figure 1: An example of the PS mechanism (multiple slots, budgets only). We have four slots withD1, . . . , D4

clicks as shown, and four bidders with declared budgets as shown. The first application of Find-Price-Block computes

r1 = B1/D1 = 80/100, r2 = (B1+B2)/(D1+D2) = 150/150, r3 = (B1+B2+B3)/(D1+D2+D3) = 170/175,

r4 = (B1 + B2 + B3 + B4)/(D1 + D2 + D3 + D4) = 171/175. Sincer2 is largest, the top two slots make up the

first price block with a pricep1 = r2 = $1; bidder 1 gets80 clicks and bidder 2 gets70 clicks, using the schedule as

shown. In the second price block, we getB3/D3 = 20/25 and(B3 + B4)/(D3 + D4) = 21/25. Thusp2 is set to

21/25 = $0.84, bidder3 gets500/21 clicks and bidder4 gets25/21 clicks, using the schedule as shown.

In order to prove Theorem 3, we first need to establish the following Lemma:

Lemma 2. In Find-Price-Block, ifBi = Bi+1, theni cannot be the last slot of the computed price

block.

Proof. Suppose the contrary, namely thati is the last slot of the first price block and(i + 1) is the

first slot in the second price block. DenoteB = B1 + ...+Bi−1 andD = D1 + ...+Di−1. Then the

price of the first price block satisfies (1)p1 = B+Bi

D+Di
≥ B

D
and (2)p1 = B+Bi

D+Di
> B+Bi+Bi+1

D+Di+Di+1
. The

first condition is equivalent toBi

Di
≥ B+Bi

D+Di
, and the second condition is equivalent toB+Bi

D+Di
> Bi+1

Di+1
.

The latter two inequalities implyBi

Di
> Bi+1

Di+1
, which is a contradiction to the fact thatBi = Bi+1

andDi > Di+1.

Proof. Theorem 3 Suppose bidders1, . . . , n declare budgetsB1 ≥ · · · ≥ Bn, and Alice declares

budgetB. Let ℓB be the rank of Alice by budget (and lexicographic order in case of ties) if she

bids B. We will prove that the number of clicks Alice receives is non-increasing as she lowers

her declared budgetB, which immediately implies that truthful reporting of budgets is weakly

dominant in the PS mechanism.

Let rB
j be the ratiorj assuming Alice bidsB; so rB

k = (B +
∑k−1

i=1
Bi)/

∑k

i=1
Di if ℓB ≤ k,

andrB
k =

∑k

i=1
Bi/

∑k

i=1
Di otherwise. For a declared budgetB, let kB be the last slot in the first
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price block chosen by the mechanism. So,kB = arg maxk rB
k (if there are multiple maxima, then

kB is the largest lexicographically).

For sufficiently largeB > B1, we get thatrB
1 > rB

k for all k and sokB = 1. For any such

B Alice receivesD1 clicks, the most possible. Now as we lowerB, two significant events could

occur; we could drop to another bidder’s budgetBi, or we could have a change inkB, thus changing

the set of bidders in the first block. If neither of these events occur, then Alice remains in the first

price block, but gets a smaller share of the clicks. Thus it remains to cover these two events.

If B = Bi for somei, then note that by Lemma 2, Alice cannot be the last bidder in the block,

so i is in the same block as Alice. Therefore we may exchange the roles of Alice and bidderi

lexicographically (i.e., increase Alice’s rank by one) andnothing changes.

Now supposeB reaches a point whererk changes becausearg maxk rB
k changes fromkB to

k′. We usek∗ = kB for the remainder of the proof for ease of notation. At the bidB we have

rB
k∗ = rB

k′. We claim that eitherk′ > k∗ or k′ < ℓB. To see this note that for anyk betweenℓB and

k∗ we have thatrB
k decreases at a rate of1/(

∑k

i=1
Di), which is faster than the rate of the highest

ratio rB
k∗.

If k′ > k∗ then Alice remains in the first block, but it expands from ending atk∗ to ending at

k′. Both before and after the change inrk, Alice is spending her entire budget at pricerB
k∗ = rB

k′,

so her clicks remain the same.

If k′ < ℓB then Alice would remain in a block ending at slotk∗, sincerB
k∗ remains maximum

amongrB
ℓB

, ..., rB
n (by the same reasoning about “rate” as above). SincerB

k∗ = rB
k′ we have that the

price of Alice’s block and the first block will be the same. Since Alice is spending her entire budget

before and after the change inrk at the same price, her clicks remain the same. As we continue to

decreaseB beyond this point, we simply remove the bidders and slots from the first price block,

and imagine that we are again in the first price block of a reduced instance.

4. Main Results

In this section we give our main results, presenting our price-setting mechanism in the gen-

eral case, building on the ideas in the previous two sections. We begin in Section 4.1 by stating
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the mechanism and showing some examples, then proving that the mechanism is truthful. In

Section 4.2 we analyze the revenue-optimal schedule, and show that it can be computed with a

generalization of thegreedy first-price (GFP)mechanism. We then show that GFP has anǫ-Nash

equilibrium whose outcome is identical to the general PS mechanism.

4.1. The Price-Setting Mechanism (General Case).

The generalization of the PS mechanism combines the ideas from the bids-and-budgets version

of the single slot mechanism with the budgets-only version of the multiple-slot mechanism. As

our price descends, we maintain a set of “active” bidders with bids at or above this price, as in the

single-slot mechanism. These active bidders are kept ranked bybudget, and when the price reaches

the point where a prefix of bidders fits into a prefix of slots (asin the budgets-only mechanism)

we allocate them and repeat. As in the single-slot case, we have to be careful when a bidder

enters the active set and suddenly causes an over-fit; in thiscase we again reduce the budget of this

“threshold” bidder until it fits. We formalize this as follows:

Price-Setting Mechanism (General Case)

(i) Assume wlog thatb1 ≻ b2 ≻ . . . ≻ bn = 0.

(ii) Let k be the first bidder such that running Find-Price-Block on

bidders1, . . . , k would result in a pricep ≥ bk+1.

(iii) ReduceBk until running Find-Price-Block on bidders1, . . . , k

would result in a pricep ≤ bk. Apply this allocation, which for

someℓ∗ ≤ k gives the firstℓ∗ slots to theℓ∗ bidders among1 . . . k

with the largest budgets.

(iv) Repeat on the remaining bidders and slots.

An example run of this mechanism is shown in Figure 2. Since the PS mechanism sets prices per

slot, it is natural to ask if these prices constitute some sort of “market-clearing” equilibrium in the

spirit of a Fisher market. The quick answer is no: since the price per click increases for higher

slots, and each bidder values clicks at each slot equally, then bidders will always prefer the bottom
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BidderBudget Bid
1
2
3
4

$3
$0.75
$1
$0.50

$80
$70
$20
$1

29/45

D1 = 100

D2 = 50

D3 = 25

D4 = 0

p1 = $0.80

p2 = $0.75

p3 = $0

Figure 2: Consider the same bidders and slots as in Figure 1, but now add bids as shown. Running Find-Price-Block

on only bidder 1 gives a price ofr1 = 80/100, which is less than the next bid of$1. So, we run Find-Price-Block on

bidders 1 and 3 (the next-highest bid), givingr1 = 80/100 andr2 = 100/150. We still get a price of$0.80, but now

this is more than the next-highest bid of$0.75, so we allocate the first bidder to the first slot at a price of$0.80. We

are left with bidders 2-4 and slots 2-4. With just bidder 3 (the highest bidder) and slot 2, we get a pricep = 20/50

which is less than the next-highest bid of$0.75, so we consider bidders 2 and 3 on slots 2 and 3. This gives a price of

max{70/50, 90/75} = $1.40, which is more than$0.50. Since this is also more than$0.75, we must lowerB2 until

the price is exactly$0.75, which makesB′

2 = $36.25. With this setting ofB′

2, Find-Price-Block allocates bidders

2 and 3 to slots 2 and 3, giving75(36.25/56.25) and75(20/56.25) clicks respectively, at a price of$0.75 per click.

Bidder 4 is allocated to slot 4, receiving zero clicks.

slot. Note that by the same logic as the budgets-only mechanism, the pricesp1, p2, . . . for each

price block strictly decrease.

4.1.1. Efficiency.

So far we have been largely ignoring the efficiency of computing the allocation in the PS mech-

anism. It is immediately clear that the general PS mechanismcan be executed in time polynomial

in n andlog(1/ǫ) to some precisionǫ using binary search and linear programming.

In fact, a purely combinatorialO(n2) time algorithm is possible. As bidders get added in

step (ii), maintaining a sorted list of bidders and budgets can be done in timeO(n log n). Thus it

remains to show that running Find-Price-Block (and computing the reduced budget) can be done

in O(n) time given these sorted lists. In Find-Price-Block, computing the ratiosrℓ can be done

in linear time. Finding the allocation from Lemma 1 can also be done in linear time using the

Gonzalez-Sahni algorithm [12] for scheduling related parallel machines (in fact the total time for

scheduling can be madeO(n) since each slot is scheduled only once). Finally, computingthe

reduced budget is a simple calculation on each relevant ratio rℓ, also doable in linear time. We

suspect that there is aO(n · polylog(n)) algorithm using a more elaborate data structure; we leave
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this open.

Theorem 4. The price-setting mechanism (general case) is truthful.

Proof. We split the proof into two lemmas, showing that clicks are non-decreasing in both bids

and budgets. This immediately implies the theorem. First weneed a small observation about

Find-Price-Block:

Lemma 3. Suppose Find-Price-Block is run on a set of budgetsB1 ≥ · · · ≥ Bn and produces a

block1, . . . , ℓ∗ with pricep. Then if a bidder is added to the set with budgetB, and Find-Price-

Block still produces pricep, we must have thatB ≤ Bℓ∗.

Proof. Suppose not. ThenB > Bℓ∗ and we have that(B +
∑ℓ∗−1

i=1
Bi)/

∑ℓ∗

i=1
Di ≤ p. This

contradictsp =
∑ℓ∗

i=1
Bi/

∑ℓ∗

i=1
Di, sinceB > Bℓ∗.

Lemma 4. The number of clicks a bidder is allocated is non-decreasingin her declared budget.

Proof sketch:Let bidders{1, . . . , n} be such thatb1 ≻ . . . ≻ bn, and consider a new bidder

Alice with bid bℓ−1 ≻ b ≻ bℓ. We will argue that the number of clicks that Alice receives is

non-increasing as she reduces her declared budgetB.

Suppose Alice declaresB = ∞ and letB̂ be the amount she would spend (Alice would always

be a threshold bidder if she declaredB = ∞). Any declared budgetB ∈ [B̂,∞] would result in

the same number of clicks, becauseB is reduced by the mechanism in step (iii) toB̂.

Now asB decreases from̂B, two different events could occur: (a) Alice’s price block threshold

ℓ∗ could change (because Find-Price-Block outputs a different ℓ∗) or (b) the lowest bidderk could

change (because running Find-Price-Block on1, . . . , k gave a price less thanbk+1). For event

(a), and between these events, the arguments from Theorem 3 imply that Alice’s clicks are non-

increasing.

For event (b), when the price of the Alice’s block is exactlybk+1, if bidderk + 1 is added, the

resulting price output by Find-Price-Block in step (ii) is still at leastbk+1, since adding a bidder

cannot reduce the price. Also Lemmas 3 and 2 together imply that Alice is still in the price block

chosen in step (iii). Thus Alice’s clicks do not increase.
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Lemma 5. The number of clicks a bidder is allocated is non-decreasingin her declared bid.

Proof sketch:For the purposes of this proof, let bidders{1, . . . , n} be such thatb1 ≻ . . . ≻ bn, and

consider a new bidder (call her Alice) with declared budgetB. We will argue that the number of

clicks that Alice receives in non-increasing with her declared bidb.

Let p1 be the price that Alice would pay ifb = ∞, and suppose Alice is in thejth price block

when she bids∞. Note that for any bidb ∈ (p1,∞], Alice is still in thejth price block and receives

the same number of clicks (B/p1). Let p2 be the minimum bid required to keep Alice in thejth

price block.

We claim that ifb ∈ [p2, p1], the price will always be exactlyb: no allocation is made until Alice

is considered in step (ii), and when she’s considered, Find-Price-Block returns a pricep ≥ p1,

since the set of bidders considered contains all the bidderswho produced pricep1. Thus Alice is a

threshold bidder, and in step(iii) Alice’s budget is reduced so that the price is exactlyb.

Let kb be the number of bidders with bidbi ≻ b. LetBb
i be theith largest budget among bidders

with bid bi ≻ b. We claim that ifb ∈ [p2, p1], we have
∑ℓ

i=1
Bb

i /
∑ℓ

i=1
Di < b for all ℓ ≤ kb, since

otherwise Alice would not be in thejth block.

Let B̂b be Alice’s reduced budget when she bidsb ∈ [p2, p1], and letcb = B̂b/b denote the

number of clicks she receives. To satisfy the price being at most b in step (iii), we must have

that for all ℓ ≤ kb, B̂b ≤ Bb
ℓ + ∆, where∆ > 0 satisfies(∆ +

∑ℓ

i=1
Bb

i )/
∑ℓ

i=1
Di = b. In

addition, we must have(Bb +
∑kb

i=1
Bb

i )/
∑kb+1

i=1
Di ≤ b. Putting these constraints together we get

B̂b = minℓ≤kb+1{b
∑ℓ

i=1
Di −

∑ℓ−1

i=1
Bb

i } and so

cb = B̂b/b = min
ℓ≤kb+1

{

ℓ
∑

i=1

Di −
1

b

ℓ−1
∑

i=1

Bb
i

}

.

As b decreases, if the set of bidders with bids≻ b does not change, then theBb
i s don’t change,

and so this expression implies thatcb also decreases. Ifb decreases to the point whereb′ ≻ b for

some new bidderb′, then we claim thatcb also cannot increase. To see this note that for allℓ, the

expression
∑ℓ−1

i=1
Bb

i can only increase or stay the same if a new bidder is added. We conclude that

cb is non-increasing in the intervalb ∈ [p2, p1].

Whenb decreases top2, we transition from Alice being in thejth price block to thej + 1st
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price block. As in Theorem 3, at the point of transition thejth price block will have the same price

as thej + 1st price block, and in both scenarios Alice spends exactlyB̂p2
. Thus her clicks do not

change. We can iterate these arguments for thej + 1st price block, and so the theorem is proven.

Lemmas 4 and 5 immediately imply Theorem 4.

4.2. Greedy First-Price Mechanism for Multiple Slots.

In the general case, as in the single-slot case, there is a natural greedy first-pricemechanism

when the bidding language includes both bids and budgets: Order the bidders by bidb1 ≻ b2 ≻

. . . ≻ bn. Starting from the highest bidder, for each bidderi compute the maximum possible

number of clicksci that one could allocate to bidderi at pricebi, given the budget constraintBi

and the commitments to previous biddersc1, . . . , ci−1. This reduces to the “fractional knapsack”

problem in the single-slot case, and so one would hope that itmaximizes revenue for the given bids

and budgets, as in the single-slot case. This is not immediately clear, but does turn out to be true,

as we will prove in this section.

As in the single-slot case, the greedy mechanism is not a truthful mechanism. However, we

show that it does have a pure-strategy equilibrium, and thatequilibrium has prices and allocation

equivalent to the price setting mechanism.

4.2.1. Greedy is Revenue-Maximizing.

Consider a revenue-maximizing schedule that respects bothbids and budgets. In this allocation,

we can assume wlog that each bidderi is charged exactlybi per click, since otherwise the allocation

can increase the price for bidderi, reduceci and remain feasible. Thus, by Lemma 1, we can find a

revenue-maximizing schedulec∗ = (c∗1, . . . , c
∗
n) by maximizing

∑

i bici subject toci ≤ Bi/bi and

c1 + · · ·+ cℓ ≤ D1 + · · · + Dℓ for all ℓ = 1, ..., n.

Theorem 5. The greedy first-price auction gives a revenue-maximizing schedule.

Proof. Note that an equivalent statement of the constraintc1 + · · · + cℓ ≤ D1 + · · · + Dℓ for all
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ℓ = 1, ..., n. is:
∑

i∈S

c′i ≤ D1 + ... + D|S| for all subsetsS ⊆ {1, ..., n}. (3)

Suppose bids areb1 ≻ b2 ≻ ... ≻ bn and the corresponding clicks given to bidders in the greedy

allocation arec = (c1, ..., cn). Let c∗ = (c∗1, ..., c
∗
n) be the revenue-maximizing solution with the

closest prefixto c, meaning that the firsti such thatci 6= c∗i is maximized, and modulo that,ci − c∗i

is minimized.

We shall prove that the greedyc gives a revenue-maximizing schedule. Suppose the contrary

and leti be the first index on whichc differs fromc
∗. Note thatci > c∗i (by the definition of greedy,

ci is the maximum possible givenc1, ..., ci−1). Let c∗max = max{c∗i+1, ..., c
∗
n}. Let J = {j > i :

c∗j = c∗max}. Consider an arbitrary tight constraint onc
∗ of the form (3), defined by the setS. We

claim that ifi ∈ S, then allj ∈ J are also inS.

Proof of claim:Suppose the contrary, namely thati ∈ S andj /∈ S for somej ∈ J . Applying (3),

we get
∑

ℓ∈S

c∗ℓ =
∑

ℓ≤|S|

Dℓ. (4)

One of the bidders inS must have indexm > i, otherwise (3) would be violated forc andS by
∑

ℓ∈S⊆{1,...,i} cℓ >
∑

ℓ∈S⊆{1,...,i} c∗ℓ =
∑

ℓ≤|S| Dℓ. If m /∈ J , then we would violate (3) for the set

S ′ = S ∪ {j}\{m}:
∑

ℓ∈S′ c∗ℓ >
∑

ℓ∈S c∗ℓ =
∑

ℓ≤|S|=|S′| Dℓ. Thereforem ∈ J .

Now by the feasibility ofc∗ and the fact thatj /∈ S, we also havec∗j +
∑

ℓ∈S c∗ℓ ≤ D|S|+1 +
∑

ℓ≤|S| Dℓ which implies, together with (4), thatc∗j ≤ D|S|+1. Again by feasibility, we also have
∑

ℓ∈S\m c∗ℓ ≤
∑

ℓ≤|S|−1
Dℓ and this, together with (4), givesc∗m ≥ D|S|. Putting these last two

observations together yieldsD|S| ≤ cm = c∗max = c∗j ≤ D|S|+1. Unlesscm = c∗max = c∗j = 0, this

violates the distinctness of the non-zeroDj ’s. But if c∗max = 0, it means that allcℓ for ℓ > i have

cℓ = 0, which means thatc gives strictly more clicks thanc∗, a contradiction.

Let j be an arbitrary member ofJ . By the claim, there is anǫ > 0 such that if we setc′ = c
∗

exceptc′i = c∗i + ǫ andc′j = c∗j − ǫ, we get a feasible allocationc′, sincej appears in every tight

constraint in whichi appears. This allocation has revenue at least that ofc
∗, sincebi ≥ bj . But, it

has a closer prefix toc thanc
∗, a contradiction.

23



4.2.2. Price-Setting Mechanism is a Nash Equilibrium of theGreedy First Price Mechanism.

We note that truthfully reporting one’s budget is a weakly dominant strategy in GFP, since

when a bidder is considered for allocation, their budget is exhausted at a fixed price, subject to a

cap on the number of clicks they can get. Reporting one’s bid truthfully is not a dominant strategy,

but we can still show that there is anǫ-Nash equilibrium whose outcome is arbitrarily close to the

PS mechanism.

Theorem 6. Suppose the PS mechanism is run on the truthful input, resulting in clicksc1, . . . , cn

for each bidder. Then, for anyǫ > 0 there is a pure-strategyǫ-Nash equilibrium of the GFP

mechanism where each bidder receivesci ± ǫ clicks.

Proof. Theorem 6 We will abuse notation and letǫ′ denote any positive quantity that can be made

arbitrarily close to zero. When the PS mechanism is run on thetruthful input, letp1 > p2 > . . .

denote the prices of each block. We will show that if in GFP each bidderi truthfully reports her

budget and bidsbi = min{mi, pj + ǫ′}, wherej is the price block ofi in the PS mechanism, we

meet the conditions of the theorem.

Suppose the first price block is determined when bidderk is considered, and ends at slotℓ∗ ≤ k.

The pricep1 satisfiesmk+1 ≤ p1 ≤ mk. Let P ⊆ [k] denote the bidders in the first block (the

ones in[k] with theℓ∗ highest budgets). Also, we have that alli ∈ P spend their entire budget in

the PS mechanism, except possiblyk, who may spend less than her budget ifmk = p1. We now

argue that GFP will produce the same allocation as the PS mechanism for this price block. For

all i ∈ P we havebi = min{mi, p1 + ǫ′} ≥ min{mk, p1} = p1. All biddersi ∈ ([k] \ P ) have

bi ≤ p2 + ǫ′ < p1. All biddersi /∈ [k] havemi ≺ mk and so sincebi ≤ mi we getbi ≺ bi′ for all

i′ ∈ P . We conclude that the bidders inP are the first to be considered by the GFP mechanism.

Furthermore, ifk ∈ P , andBk is reduced in the PS mechanism (becausek is a threshold bidder),

then we must havebk = mk = p1, and sobk ≺ bi for all i ∈ P, i 6= k. Thus in this case bidderk is

the last bidder inP to be considered by GFP. From here it is straightforward to show that GFP will

assign the firstℓ∗ slots to the bidders inP (almost) exactly like the PS mechanism does, with at

leastci−ǫ′ clicks to eachi ∈ P ; the mechanism will haveǫ′ clicks left over, which will be assigned

to bidders not inP . Applying this same argument to subsequent price blocks, weconclude that
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GFP will assignc′i = ci ± ǫ′ clicks to all biddersi.

To show this is an equilibrium, consider a bidder Alice (callher “biddera”) that was assigned

to price blockj∗ and receivedc′a = ca ± ǫ′ clicks. If Alice spent withinǫ′ of her entire budget,

it means she would not want to raise her bid, since she could not possibly receive more thanǫ′

additional clicks. If she did not spend her budget, then fromthe observations above we know that

she is bidding her true max-cpcma, and therefore also does not want to raise her bid.

It remains to show that Alice does not want to lower her bid. Let ℓj denote the last slot in

price blockj. Let Pj denote the set of bidders in price blockj. Alice’s current bidba is at least

pj, and if she keeps her bid abovepj her clicks will remainca ± ǫ from the arguments above.

Let S = ∪j≤j∗Pj . If Alice lowers her bid tob′a < pj, then all biddersi ∈ S besides Alice

will have bi ≻ b′a. Thus when Alice is considered by the greedy algorithm, her clicks will be

constrained by the commitments to these bidders. Furthermore each of these bidders will still

receive at leastc′i clicks. For all price blocksj, we have
∑

i∈Pj
c′i ≥

∑ℓj

i=ℓj−1+1
Di − ǫ′. Thus

∑

i∈S,i6=a c′i ≥ (
∑ℓj∗

i=1
Di)−ǫ′−c′a. SinceS has sizeℓj∗, this implies that the constraint (3) restricts

Alice’s clicks to at mostc′a + ǫ′.

5. Conclusions

In this paper we have given a truthful mechanism for assigning bidders to click-generating slots

that respects budget and per-click price constraints. The mechanism also respects a scheduling

constraint on the slots, using a classical result from scheduling theory to characterize (and compute)

the possible allocations. We have also proved that the revenue-maximizing mechanism has anǫ-

Nash equilibrium whose outcome is arbitrarily close to our mechanism. This final result in some

way suggests that our mechanism is the right one for this model. It would interesting to make this

more formal; we conjecture that a general truthful mechanism cannot do better in terms of revenue.

5.1. Extensions.

There are several natural generalizations of theOnline Ad Slot Schedulingproblem where it

would be interesting to extend our results or apply the knowledge gained in this paper. We mention

a few here.
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Click-through rates.In sponsored search (e.g. [9]) it is common for each bidder tohave a personal

click-through-rateγi; in our model this would mean that a bidderi assigned to slotj for a time

period of lengthα would receiveαγiDj clicks. All our results can be generalized to this setting by

simply scaling the bids usingb′i = biγi. However, our mechanism in this case does not necessarily

prefer moreefficientsolutions; i.e., ones that generate more overall clicks. Itwould be interesting

to analyze a possible tradeoff between efficiency and revenue in this setting.

Multiple Keywords.To model multiple keywords in our model, we could say that each queryq

had its own set of click totalsDq,1 . . .Dq,n, and each bidder is interested in a subset of queries.

The greedy first-price mechanism is easily generalized to this case: maximally allocate clicks to

bidders in order of their bidbi (at pricebi) while respecting the budgets, the query preferences, and

the click commitments to previous bidders. It would not be surprising if there was an equilibrium

of this extension of the greedy mechanism that could be computed directly with a generalization

of the PS mechanism.

Online queries, uncertain supply.In sponsored search, allocations must be made online in re-

sponse to user queries, and some of the previous literature has focused on this aspect of the prob-

lem (e.g., [21, 20]). Perhaps the ideas in this paper could beused to help make online allocation

decisions using (unreliable) estimates of the supply, a setting considered by Mahdian et al. [20],

with game-theoretic considerations.
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