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Abstract

We consider optimization problems that can be formulatechiasmizing the cost of a feasible so-
lution wT'x over an arbitrary combinatorial feasible s&tc {0,1}". For these problems we describe
a broad class of corresponding stochastic problems wheredst vectoW has independent random
components, unknown at the time of solution. A natural angartant objective that incorporates risk
in this stochastic setting is to look for a feasible solutidmose stochastic cost has a small tail or a small
convex combination of mean and standard deviation. Our tea@d® be equivalently reformulated as
nonconvex programs for which no efficient algorithms arevimoln this paper, we make progress on
these hard problems.

Our results are several efficient general-purpose appiaiom schemes. They use as a black-box
(exact or approximate) the solution to the underlying datristic problem and thus immediately apply
to arbitrary combinatorial problems. For example, from aailable 5-approximation algorithm to the
linear problem, we construct &1 + €)-approximation algorithm for the stochastic problem, whic
invokes the linear algorithm only a logarithmic number ofdis in the problem input (and polynomial
in %), for any desired accuracy level> 0. The algorithms are based on a geometric analysis of the
curvature and approximability of the nonlinear level sétfhe objective functions.

Key words:approximation algorithms, reliable optimization, stosti@optimization, risk, mean-risk, non-
linear programming, nonconvex optimization

1 Introduction

In this paper, we consider generic combinatorial problems @k what happens when their associated
costs are stochastic. The most common approaches in sticchpsmization are to find the solution of
minimum expected cost. However, in many applications Ioditsg considerations are very important: risk-
averse users need reassurance regarding the level of ndkpa just the expected cost of the provided
solution. For example, the transportation community haegrized the importance of reliable route plans
(e.q.,[7, 28, 25, 37, 9]), however the solutions offered are tyipycmefficient or heuristic with unknown
approximation guarantee. Similarly, reliability is a keynsideration in finance and otheontinuousop-
timization settings [34]. It has been noted that incorgogateliability [34, 29] transforms the problems
into nonconvex ones for which there are no known efficienbrtigms and rigorous approximative analysis
is scarce. In this paper, we provide a rigorous treatmenel@hle combinatorial optimization, offering
fully-polynomial approximation schemes for a rich framelwof reliability measures.

*This work was supported in part by the National Science Fatiod under grant 0931550.



To illustrate our framework, consider an application sushdaving to the airport in uncertain traffic.
Our goal is to find a route that gets us to the airport on timeafy, the route which minimizes our expected
travel time may not be an appropriate choice. In fact, themaébbjectives may vary depending on when
we are submitting the route query: ahead of time, when we @patthg how much time to budget for our
trip, or at the start of our trip, when we are optimizing ouacbe of ontime arrival. In the former setting,
we would typically want to allocate enough time to ensure s@onfidence of ontime arrival, say 95%. In
the latter, given a deadline to reach our destination, we tedéind the route which will most likely reach
by the deadline. Another natural objective, used for exaniyyl the Federal Highway Administration as
a travel time reliability criterion, is given by the mean glstandard deviation of a route [10]. The latter
reliability criterion has been considered in the contexstoichastic minimum spanning treess as well [2],
and this model is sometimes referred to as mean-risk optioiz €.9., [2]).

We thus focus on a general framework for reliable stochasticbinatorial optimization, which includes
the following problem settings:

1. minimize (mean + c - standard deviation) for a non-negative constantwhich parametrizes the
level of risk-aversion. [Call this th®lean-risk modebr objective.]

2. maximizePr(solution cost < budget) for a givenbudget [Probability tail model/ objective.]

3. minimizebudget such thatPr(solution cost < budget) > p for a given confidence probability.
[Value-at-risk mode].

In contrast with the diversity in model specifications ahowe will show that the same approximation
algorithm design can simultaneously address all. Throughwe assume that the cost distributions are in-
dependent, although our algorithms also extend to the das®relations of neighboring edges for example
in shortest path problems (the graph with correlated edgasmsformed into a slightly larger graph with
independent edges and thus all our results here immedizety through.)

Contributions. We start our discussion with the (relatively) simpler meisk-model, which is equivalent

to minimizing (mean +c- \/variance). We provide strong results that applyabitrary cost distributions
with given means and variances, and achieve essentiallyaiine approximation factor as what is possible
for the underlying deterministic problem. In particulag provide general-purpose algorithms that use as a
black-box an algorithm for the deterministic problem. Wensuarize our results for this setting below:

Theorem (See Theorems 1, 5There is a fully-polynomial approximation scheme for themask stochas-
tic model, when there is an exact or fully-polynomial apjmeation algorithm for the underlying determin-
istic problem.

In addition, there is d1 + €)d-approximation for the stochastic model running in timeypamial in%,
when there is an availablé&approximation for the deterministic problem.

A rigorous approximation-algorithmic analysis of the set@nd third models in the framework, which
involve optimization of the probability tails, necessiatan assumption on the distribution: in the absence
of any knowledge on the distributions, the best one can dousith the tails, for example using Chernoff or
Chebyshev bounds, and optimize those tail bounds insteaid-will yield a conservative overestimate of
the probability of exceeding the budget.

We provide strict approximation results under the commasisumed Gaussian distributions; we then
show how the same algorithmic techniques can apply to ariwistributions using tail bounds. In the
former setting, minimizing the probability tail in the sexbmodel is equivalent to maximizir%j%
and we get the following approximations:



Theorem (See Theorems 1, 6)There is a fully-polynomial approximation scheme for thebability tail
model, when there is an exact or fully-polynomial approxioraalgorithm for the underlying deterministic
problem.

In addition, when there is an availableapproximation for the deterministic problem, there is a

\/1 — [%} -approximation for the stochastic model running in timeypamial in%.

We remark that the above algorithms find the approximateisoluassuming there is a feasible solution
with expected cost at most the budget( b+ ¢) times the budget in the exact and approximate deterministic
settings respectively (in other words, the probability xéeeding the budget is at m01§1. Otherwise, if
a given budget is so small that the probability of exceeding greater thar%, we are in a risk-loving,
rather than a risk-averse situation, which would be sintdaninimizing a(mean — standard deviation)-
type objective in model (1). In other words, we would prefglutons with higher variances (for example,
looking for longest paths).

The third (value-at-risk) model under Gaussian distrimsiis equivalent to the mean-risk model, with
risk-aversion coefficient = ®~!(p), where®~!(-) is the inverse cumulative distribution function of the
standard normaN (0, 1).

For arbitrary distributions, the third model again reduethe mean-risk model, but with a more con-
servative risk-aversion coefficient= \/g , as a result of which our algorithms provide an overestimate

of the true error probability of exceeding the budget. Ofting a tail bound in the second model similarly
provides an overestimate of the true probability, whichdsia the best one can hope to achieve in the
absence of other distributional information.

Background and Challenges. Our algorithms build on the fact that the model formulationsur frame-
work are all instances of concave minimization, for whicksiknown that the optimal solution is attained
at an extreme point of the feasible set (sg,, [4]). In particular, our objective functions depend only on
the means and variances of feasible solutions. Thus, wercggcpthe feasible set on the plane spanned by
the mean and variance vectors and only consider extreméspminthe projection (see Figure 1(a)). This
greatly restricts the number of relevant extreme points.ekample, in the case of minimum spanning trees
and matroids there are only polynomially many such extremietg, which can be efficiently enumerated,
hence the corresponding reliable spanning trees and misiroa stochastic environment can be found with
a straightforward polynomial-time algorithm. However, amitrary combinatorial problem would most
likely have too many extreme points even on a two-dimensipr@gection (for example, shortest paths have
nl°&™ such points [30]), hence our focus on approximation in thisgs.

We can geometrically visualize the objective function imts of its level sets on the mean-variance
plane. These form parabolas, corresponding to higher tilgefunction values at greater mean and vari-
ance values. The optimal solution is obtained at the lowasthwla touching the projected feasible set. Fig-
ure 1(a) depicts these parabolas and the challenge thes arth concave minimization problems: along the
convex hull boundary of the feasible set, the objective fioncfluctuates and, in particular, many extreme
points may be local optima and thus local search algorithmsgdvfail to find a good approximation. What
we do instead is follow the objective function levels to guids into the relevant portion of the feasible set,
as explained below.

Overview of Algorithms and Techniques. [For the case of easy deterministic problems.] The algarith
constructs a (non-linear) separation oracle for tellingviagther, for a given function level sethere is a
feasible solution below the level set (with value less thengiven function value) or else, whether the entire

The level set of a functioif for value X is the subset of the domain on which the function equalsy = {x | f(x) = \}.
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Figure 1:(a) Level sets of the probability tail objective function ane ttonvex hull of the projected feasible
set on the mean-variance plaifl) Level sets and approximate separation oracle for the mskioisjective
on the mean-variance plane.

feasible set is above the given level. Afterwords, a binaareh on the optimum objective function value
combined with the separation oracle finds the desired appeig solution.

The separation oracle approximates a given level set cyruasbribing a (partial) polygon in it. Each
side of the polygon induces a linear objective over the BBasiet, which we minimize via a black-box call
to the algorithm for the deterministic problem. If the résg solution is below the current level set (more
precisely, its associated original objective functiorueais smaller tharil + ¢) times the given level), the
separation oracle returns that solution. Else, if afterimizing with respect to all linear segments, we do
not find any solutions below the level set, the separatioglengeturns a negative answer that the entire
feasible set is above it.

The subtlety arises in how to construct the polygonal segsrterensure a good and efficient approxima-
tion. To get an efficient algorithm, we need to approximatelével set curves with as few linear segments
as possible. On the other hand, to get a good approximataborfave need a finer polygon (with more and
smaller sides), which is sandwiched between the desired $mt with function value\ and the level set
with function value\(1 + €) (See Figure 1(b)). In particular, in the worst case when ¢lellsets touch,
as is the case for the probability tail objective, a polygandwiched between the two level sets will have
infinitely many sides. We resolve this problem by carefulbubding the optimal solution so that we do
not need all infinitely many linear segments from the polygord we prove that it suffices to consider only
polynomially many such segments.

[Hard deterministic problems.] We could use the same dlgoridesign as above, by appropriately
modifying its analysis and approximation factors, when \agehad-approximation rather than an exact
algorithm for solving the underlying deterministic profle It turns out that for this case, a cruder and
simpler algorithm gives the same approximation factor. artipular, all we need to do here is apply the
algorithm for the deterministic problem on a small sequesfdmear cost functions of the formmean + k -
variance, for a geometric progression of coefficierts

However, even if we know what single choice fofvould find the optimal solution, the difficulty is to
translate the approximation given by the deterministiclolaox algorithm for thdinear functioninto an
approximation for theoriginal concave functionthe two functions have nothing in common (except that
the former is a gradient of the latter at some point), and aripiti is not clear that an approximation of
the former would at all yield a meaningful approximationtéador the original objective. Fortunately, all
objective functions in our framework admit such an appration (the probability tail objective is again



more challenging due to the given budget and requires usdw kinat there is a feasible solution at least a
small distance away from the budget).

Related Work. A rich body of work in stochastic combinatorial optimizatifocuses on two-stage and
multistage optimizationd.g.,[36, 17, 21, 16, 18]). The models there typically look fongmns of minimum
expected cost, and Swamy and Shmoys remark that “it wouldtieeeisting to explore stochastic models
that incorporate risk” [39]. There are models that incogterdditional budget constraints [38] or threshold
constraints for specific problems such as knapsack, loahbialg and others [8, 13, 23].

At the other end of the spectrum is the paradigm of robustopétion (see survey [5]), which provides
completely reliable (robust) solutions, though this isygmbssible when the uncertainty is bounded, namely
the random variables have bounded support. Our frameworkliable optimization falls between stochas-
tic optimization, which minimizes expected cost, and rolmystimization, which minimizes the maximum
cost. Interestingly, part of our framework (the mean-ristdel) arises in robust discrete optimization under
ellipsoidal uncertainty sets [6]. Bertsimas and Sim ofterif pseudopolynomial algorithms, assuming that
the underlying deterministic problem can be solved exattlgontrast with our fully polynomial approxi-
mation schemes that work with both exact and approximatarighgns for the deterministic problem.

Atamtiurk and Narayanan [2] also consider mean-risk mipation in discrete optimization, giving a
characterization in terms of submodular minimization. @asible set is an arbitrary subset of the hyper-
cube vertices, on which it is not known how to do submodularimization. As a curiosity, we mention here
that the mean-risk objective is also supermodular via theAko extension [24]. However, supermodular
minimization is even harder and this perspective does riptdweg problem at hand.

The probability tail objective was previously consideredhe special context of stochastic shortest paths
and an exact algorithm was given based on enumerating relexaleme points from the path polytope [30].
The same type of algorithm extends to arbitrary combinaktgmioblems and its complexity is polynomial
for minimum spanning trees and matroids. However, in géniéia superpolynomial or exponential, hence
our focus on approximation algorithms in this paper.

A comprehensive survey of models that incorporate ristointinuoussettings is provided by Rockafel-
lar [34]. The solution concepts and continuous nature optieblems make this work very different from
ours. Similarly, continuous optimization work with prolilél (chance) constraintse(g.,[29]) applies for
linear andnot discrete optimization problems. Additional related workthe combinatorial optimization
side includes research on multi-criteria optimizatierg(, [32, 1, 35, 40]) and combinatorial optimization
with a ratio of linear objectives [27, 33]. Our models canodie seen as instances of concave discrete
minimization; however, the existing work in this area regsiassumptions that do not hold in our frame-
work, such as restrictive properties on the feasible settlgtpositive range of the objective function, or
boundedness/positivity of the objective function gradiéd, 3, 22, 14].

2 An FPTASfor thereliable versions of easy combinatorial problems

In this section, we formally define the models in our reliadti@chastic optimization framework and present
a general-purpose FPTAS design for these problems. The &R3&s as a black-box an exact algorithm for
the underlying deterministic problem and is based on a ge@ranalysis of the curvature and approxima-
bility of the level sets of the objective functions.

Suppose we have an arbitrary combinatorial set of feasiilgisns 7 C {0,1}", together with an
oracle for optimizing linear objectives over the set. Inifidd, we are given nonnegative vectors of means
p € R™ and variances- € R” for the stochastic cost vect®W, coming from independent distributions so
that the mean and variance of a solutiore F is u”x andr7x > 0 respectively. We are interested in
finding a feasible solution with optimal cost, where the ootdf optimality incorporates risk.



1. [Mean-risk model]A family of objectives that has been analyzed in continuquisttization settings,
mostly in the context of finance [11, 26], is the family of cerwcombinations of mean and standard
deviation. Formally, this problem is to:

minimize pix 4+ evVrTx 1)
subjectto x e F,

where the constanrtparametrizes the degree of the user’s risk aversion.

2. [Probability tail model] An alternative natural model maximizes the probabilityt ttiee stochastic
solution cost is within a desired budget or threshbldnaximizePr (W”x < t) subject tox € F.
When the stochastic cosW are Gaussian, subtracting the mean and dividing by the atdrmtvia-
tion transforms the problem into the following equivaleotriulation (which is also approximation-
preserving as we show in the extended version):

T

. t—p x
maximize (2)
vrTx
subject to x e F.

When the stochastic cos& come from arbitrary distributions, the maximum probapilg lower-

bounded by(%"ﬁ (by the one-sided Chebyshev bound, also known as Caniemqual—

ity [15], Pr(X < E[X] + ky/Var(X)) > 1 — 1+k2, with k£ =
lower-bound will not yield a strict apprOX|mat|on of the peability tail objectlve it is the best one
can achieve in the absence of other distributional infoimnat-and our techniques can strictly ap-
proximate this bound as well:

- (t — uTx)?
maximize 3
(t—pTx)?2+77x @
subject to x e F.

3. [Value-at-risk modelJFinally, we may wish to minimize the budgesuch that the probability of not
exceeding it is at least a given confidence lgxel

minimize t 4)
subjectto  Pr(Wlx <t)>p
x e F.

Depending on whether we have Gaussian or arbitrary disiits; this problem is exactly equivalent
to, or its solution can be upper-bounded using Chebysheudsnd by the mean-risk model (1) with

c=d"1(p)orc=, /% (See Ghaouet al. [12]; more details are provided in the extended version
of this paper).
We can obtain fully-polynomial approximation schemes (AB)for all models above, with the same
FPTAS template, which we explain below. All models are ins&s of concave minimization (equivalently,

convex maximization) ovex € F. Our algorithms make black-box calls to an exact algoritsom{etimes
referred to as thénear oracle for solving the underlying deterministic (linear) protvie

minimize  w’x (5)

subjectto x e F,



for a carefully choseemallset of linear objectivess > 0. We remark that in general such a set may not even
exist; for example, the necessary number of linear objestimay be large or even infinite if the objective
function has unbounded gradient (as is the case in the secodel above). From a complexity perspective,
minimizing a concave function over some feasible set maydrd ko approximate even if minimizing a
linear function over the same set can be done in polynonmed {22].

Thanks to the form of the objective functions, they can alpbgected onto the mean-variance plane
span(w, ) and can be thought of as functions on two dimensions. In tlaatep the projected level sets
of the objective functions are parabolas. We construct gmoxpmate separation oracle, which tells us
whether for a given function valug there is a feasible solution below tli¢ — ¢)\-level set or else if
the entire feasible set is above thdevel set. We do this by inscribing a (partial) polygon beén these
two level sets. Geometrically, the optimal polygon choiel{ fewest sides) is such that its vertices are
on one level set and its sides are tangent to the other, amshokigure 1(b). The FPTAS template for
a maximization problem is described more formally in Fig@rén the Appendix (it is analogous for a
minimization problem).

Theorem 1. There is an oracle fully-polynomial time approximation egte for all problems in the reli-
able stochastic framework above, which uses as a black-haxact algorithm for solving the underlying
deterministic problem (5).

In the rest of this section we prove this theorem. The cruxhef proof is in establishing that the
approximate separation oracle can be constructed frormpuoiially many linear segments, as described
in the following main technical lemma. (The Lemma is stateidef stochastic maximization problem as in
Eqg. (2); the analogous statement holds for a stochastiamization problem as in Eq. (1).) The argument
for how the theorem follows from the Lemma is provided in tkeeaded version.

Lemma 2 (Approximate Separation Oracle). Suppose we have an exact algorithm for solving the deter-
ministic problem (5). Then, we can construct an oracle wiiglves the following approximate separation
problem: given a levek ande € (0, 1), the oracle returns

1. Asolutionx € F with f(x) > (1 —¢€)A, or
2. An answer thaf (x) < A for all x € F,
and the number of linear oracle calls it makes is polynomiagf iand the size of the input.

The proof-construction of the Approximate Separation @&om Lemma 2 follows from a series of
lemmas about bounding the size and number of the linear segitiat approximate a level set and comprise
the separation oracle. Since the level sets and their positith respect to each other is different for the
different objectives, the actual computations of the size mumber of linear segments differs. For lack of
space we provide the proof for the probability tail formidat(2), which is more subtle due to the budget
threshold and the fact the level sets are tangent to each dthe proofs for the remaining objectives are
analogous.

Consider the lower level sefs, = {z | f(z) < A} of the objective functiory(m, s) = t_TT’ where
m,s € R. DenoteL) = {z | f(z) = A}. We will prove that any level set boundary can be approxichate
a small number of linear segments. The main work here ingolleziving a condition for a linear segment
with endpoints oy, to have objective function values withfh — ¢) of \.

Lemma 3. Consider the pointém;, s1), (me, s2) € Ly with s; > sy > 0. The segment connecting these
two points is contained in the level set regibR\ L, _.) whenevers; > (1 — €)*s1, for everye € (0,1)
(See Fig. 2(a)).
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Figure 2:(a) The objective value along a segment is not too far from theativje value at the endpoints
of the segment, providesl ands;, are not too far.A and \(1 — ¢) are the objective function values along
the parabolic level setg(b) Applying the approximate linear oracle on the optimal linebjective gives
an approximate valugto the optimal linear objective valug. The challenge is to relate the linear oracle
approximation factog% to an approximation guaranteAfé for the original nonlinear objective.

Proof. Any point on the segmerjtm, s1), (ms, s2)] can be written as a convex combination of its end-
points, (am + (1 — a)ma, as; + (1 — a)sz), wherea € [0,1]. Consider the function(«) = f(am; +
(1 —a)ma,as; + (1 — a)sa2). We have,

t—am;—(1—a)my t—a(my —ms) —ms

Ma) = Vas) + (1 —a)ss - Va(s) — s2) + s2

We want to find the point on the segment with smallest objectalue, so we minimize with respectdo

a(mg —mq)(s1 — s2) + 2(ma —my)se — (t —ma)(s1 — $2)
2[a(sy — s2) + s2]3/2 '

P (a) =

Setting the derivative t0 is equivalent to setting the numerator above tthus we get:

(t—mg)(sl —82) —2(7712 —ml)SQ B t—m2 282

Omin =

(mg—ml)(sl—SQ) n mo — My 81—82.

Note that the denominator &f(«) is positive and its numerator is linearan with a positive slope, therefore
the derivative is negative far < i, and positive otherwise, so.i, is indeed a global minimum as
desired.

It remains to verify thab (oumin) > (1 — €)A. Note thatt —m; = \\/s; fori = 1,2 since(m;, s;) € Ly
and consequentlyp, —my = A(/s1 — /s2). We use this in the following expansion bfayin).

t+ Qmin(ma —my) —mg (G — $222) (my —my) — mo

h(amin) = =
min \/amin(sl — 52) + 59 \/(% — 512%)(31 — 52) + 52
A —
_ tt-m — 259720 —my 2(t—m2) _232W _ 9 (s152)"/*
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We need to show that when the ratig/ s is sufficiently close td, h(amin) > (1 —€)A, or equivalently

2(s159)1/% 1/4 12 | 1/2
—_—>1- 2 > (1—
VS1+ /S22 ‘ < (15272 (L= Q)1 927)
S1 1/2 S1 1/4
— — — — — <
< (1 e)<32> 2(32> +(1—-€) <0 (6)

- . . : . 1/4
The minimum of the last quadratic function above is attalaeéz—;) = ﬁ and we can check that at
this minimum the quadratic function is indeed negative:

(1—6)<L>2—2<L>+(1—e):(1—e)—%<0,

1—c¢ 1—c¢ — €

forall 0 < ¢ < 1. The inequality (6) is satisfied % = 1, therefore it holds for al(j—;) € [1, ﬁ].
Hence, a sufficient condition far(amin) < (1 — €)X is sz > (1 — €)*sy, and we are done. O

Using Lemma 3, we next show that any level gtcan be approximated within a multiplicative factor
of (1 — ¢) via a small number of segments. Lst;,, ands,,,, be a lower and upper bound respectively for
the variance of the optimal solution. For example, takg, to be the smallest positive coordinate of the
variance vector, ansl,,,, the variance of the feasible solution with smallest mean.

Lemmad4. The level seL) = {(m,s) € R? | t_TT = A} can be approximated within a factor of — €) by

H log (Srﬂ>/log ﬁw linear segments.

Smin

Proof. By definition of s,,,;, ands,,.., the variance of the optimal solution ranges frefi, t0 smax. BY
Lemma 3, the segments connecting the points pwith variances max, smax(1—¢€)%, smax(1—€)%, ..., Smin
all lie in the level set regiot. \ L 1 _), that is they underestimate and approximate the level setithin

a factor of(1 — €). The number of these segments }slog (irr'ﬁ)/log =1. ]

The above lemma yields the approximate separation oractaddevel set., and the feasible sé%, by
applying the black-box algorithm for the deterministic iplem to cost vectorgu + 7, for all possible slopes
(—a) of the segments approximating the level set. This concltlieproof-construction for the separation
oracle in Lemma 2.

3 Approximating thereliable versions of hard combinatorial problems

In this section, we show that®&approximate oracle to the deterministic problem (5), aksited the linear
oracle, can be used to construct efficient approximatioardkgns for the reliable stochastic models. As in
the approximative analysis for easy combinatorial prolsiene first check whether the optimal solution has
zero variance and if not, proceed with the algorithm andyesimbelow.

We can use the same approximation algorithm template thetieewts a separation oracle as in the
previous section, but it turns out that a cruder algorithmchisimply tests a geometric progression of
mean-variance tradeoffs provides the same approximatiaragtees. The main technical challenge in the
algorithm analysis is that even if we know the optimal meariance tradeoff to query from the black-box
algorithm for the deterministic problem, it is not obviousdanot intuitive what approximation factor one
can get for the reliable objectives from the@pproximation factor for the deterministic one.

We obtain a very strong result for the relatively simpler meiak objective—we can get essentially the
same approximation factor as the available one for the mhétéstic problem:

9



Theorem 5. Suppose we havedapproximation oracle for solving the deterministic cordiorial prob-
lem (5). The mean-risk model (1) can be approximated to aiplia#tive factor ofd(1 + ¢) by calling the
oracle for the deterministic problem polynomially manyesiin the input size anéi.

We can also get the following approximation for the prolgbthil formulation (2):

Theorem 6. Suppose we havedapproximation oracle for solving the deterministic comdibrial prob-

(2+e)e/4
algorithm for the deterministic problem polynomially matitpes in% and the input size, assuming the
optimal solution to (2) satisfieg” x* < (1 — €)t.

lem (5). The probability tail model (2) has\%l — [M} -approximation algorithm that calls the

The high-level analysis for these approximation algorghsthe same; it differs in the computation of
the approximation factors. For lack of space, we only offeroserview of the proof of Theorem 6; the
remaining details for both theorems are in the extendedorers

We first prove several geometric lemmas that enable us teeddre approximation factor. The first
lemma is key for the transition from approximating a linebjeative (by the algorithm for the deterministic
problem) to approximating the probability tail objectivigee Figure 2(b) for visualizing the notation.

Lemma 7 (Geometric lemma)Consider two objective function valua$ > X and points(m*, s*) € L),
(m,s) € Ly with positive coordinates, such that the tangents to thetpat the corresponding level sets
are parallel. Then, thg-interceptsb*, b of the two tangent lines satisfy

b—b*=s [1— (A—) }
The next lemma shows that if we know the optimal linear olbjedb use with the availablé&approximate
algorithm for the deterministic problem (5), then we canragjmate the optimal solution well.

Lemma 8 (Optimal Linear Objective Lemma)Suppose we have @approximate linear oracle for opti-
mizing over the feasible sgt and suppose that the optimal solution satisfi€sx* < (1 — ¢)¢. If we can
guess the slope of the tangent to the corresponding leveltdbe optimal point*, then we can find a

71— 5%—approximate solution to the nonconvex problem (2).
In particular, settinge = /0 gives a(1 — /§)-approximate solution.

Next, we prove a geometric lemma that will be needed to aedlyz approximation factor we get when
applying the linear oracle on an approximately optimal slop

Lemma9. Consider the level sdt, and points(m*, s*) and (m, s) on it, at which the tangents tb, have
slopes—a and —a(1 + &) respectively. Let thg-intercepts of the tangent line &, s) and the line parallel
to it through (m*, s*) beb; andb respectively. The% < ﬁ

We now show that we get a good approximation even when we us@ioximately optimal linear
objective with our linear oracle.

Lemma 10. Suppose that we use an approximately optimal linear objeatiith ad-approximate linear
oracle for solving the probability tail model (2). In partitar, suppose the linear objective (slope) that we
use is within(1 + &) of the slope of the tangent at the optimal solution. Thenwliliggive a solution to the

probability tail model (2) with value at Ieai/l — {1—652 — 1} % times the optimal, provided the optimal

solution satisfieg” x* < (1 — €)t.

10



Consequently, we can approximate the optimal solution Iplyam the approximate linear oracle on a
small number of appropriately chosen linear functions aoklipg the best resulting solution, as explained
in the proof of Theorem 6 in the extended version.

When¢ = 1, that is when we can solve the underlying linear problem txat polynomial time, the

above algorithm gives an approximation factor, géleT/ or equivalentlyl — ¢, wheree = Z[ﬁ —1].
While this algorithm is still an oracle-fully polynomialrtie approximation scheme, it gives a bi-criteria
approximation: it requires that there is a small gap betwkemean of the optimal solution and the budget
t so it is weaker than our previous algorithm, which had no seciuirement. This is expected since,
of course, this algorithm is cruder, simply taking a geometrogression of linear functions rather than
tailoring the black-box algorithm calls for the determtiigoroblem to the objective function value that it is

searching for, as in the approximate separation oraclahlbdPTAS from the previous section is based on.

4 Conclusion

We have presented a framework for reliable stochastic camtdniial optimization that includes mean-risk
minimization and models involving the probability tail dig stochastic cost of a solution. Our algorithms are
independent of the feasible set structure and use solutiotise underlying linear (deterministic) problems
as oracles for solving the corresponding stochastic modalsuch, they apply to very general combinato-
rial settings for whichexactor approximatdinear oracles are available.

Our primary motivation for this work was to design an appnoaiion algorithm for finding the most
reliable route in a network with uncertain edge delays (g@nse that the route maximizes the probability
of arriving on time under a given deadline), which consetjyesxtended to the rich class of problems and
reliability models considered here. An implementation of approximation algorithm in the context of
reliable routes reveals that they are also very practicalexample, they achieve 99.9%-accuracy with only
up to 6 iterations of an algorithm for the deterministic pewb.

In future work, it would be interesting to extend our offlitechastic models to online models, as has
previously been done with offline linear to online linear fdeams [20, 19]. It would be also useful to con-
sider adaptive stochastic reliability models, buildingtloa framework of multistage stochastic optimization.
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Appendix

Problem: Maximize f(x) overx € F.
Output: Solutionx’ such thatf (x') > (1 — €) finaz(X)
Algorithm:

1. For appropriate lower and upper boundsf¢f), denotedf; and f,, respectively, apphap-
proximate separation oracleelow withe’ = 1 — /1 — ¢ successively on the function values
fu, (1 =€) fu, (1 — €)2f,, ... until we find a value, for which the separation oracle retaps

feasible solutiork’.

2. Run the available black-box algorithm for the deterntiaiproblem on subset of elements
with zero mean, to find the smallest-variance solution antbegsolutions with mean zerp.
Compare with the solution above and return the solution béttter objective function value.

Approximate Separation Oracle.
Input: Function value\, approximation facto¢’ > 0; black-box access to algorithm for minimizing

linear functions ovek € F.
Output:

(@) Asolutionx’ € Fwith f(x') > (1-¢€)), or
(b) Ananswer thaf(x) < Aforallx € F.
Algorithm:
1. Inscribe a polygon between the level sets correspondiffignction values\ and(1 — €')\.
2. For each side of the polygon, minimize the induced lindgedtive.

3. If aresulting solutiorx’ satisfiesf (x’) > (1 — €)A, returnx’. Else return thaf (x) < A for
allx e F.

Figure 3: FPTAS template for solving reliable stochastideis.
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