Department of Electrical and Computer Engineering The University of Texas at Austin

EE 379K, Fall, 2000 Yale Patt, Instructor TAs: Kathy Buchheit, Laura Funderburg, Chandresh Jain, Onur Mutlu, Danny Nold, Kameswar Subramaniam, Francis Tseng, Brian Ward Exam 1, October 4, 2000

Name (2 points):
Problem 1 (18 points):
Problem 2 (15 points):
Problem 3 (10 points):
Problem 4 (15 points):
Problem 5 (15 points):
Problem 6 (15 points):
Problem 7 (10 points):
Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

GOOD LUCK!

Name:
Problem 1 (18 points):
Part I (6 points): A memory's addressibility is 64 bits. What does that tell you about the size of the MAR and MDR? About the size of the MAR:
About the size of the MDR:
Part II (6 points): You wish to express -64 as a 2's complement number. How many bits do you need (the minimum number):
With this number of bits, what is the largest positive number you can represent (please give answer in both decimal and binary):
With this number of bits, what is the largest unsigned number you can represent (please give answer in both decimal and binary):
Part III (6 points): We want to increase the number of registers that we can specify in the LC-2 ADD instruction to 32. Do you see any problem with that? Explain.

Problem 2 (15 points):

For the following transistor circuit, fill in the truth table.

What is Z in terms of A and B?

Problem 3 (10	points):							
	below, if	f the register sp	pecified by	the row can	be change	ed during th	R? the MAR? the Mae phase of the instru	
		For the i	instruction	whose opco	de is 0001	(ADD):		
		Fetch Instruction	Decode	Evaluate Address	Fetch Data	Execute	Store Result	
	PC IR							
	MAR MDR							
	111210							
			instruction	whose opc		0 (LD):		
		Fetch Instruction	Decode	Evaluate Address	Fetch Data	Execute	Store Result	
	PC IR							
	MAR MDR							
	WIDIC							
			instruction	n whose ope		1 (ST):		
		Fetch Instruction	Decode	Evaluate Address	$egin{array}{c} ext{Fetch} \ ext{Data} \end{array}$	Execute	Store Result	
	PC IR							
	MAR							
	MDR							
	_		_		(
	F	or the instructi	ion whose (·	,	rol instruct:		
		Fetch Instruction	Decode	Evaluate Address	Fetch Data	Execute	Store Result	
	PC							
	IR MAR							

Name:____

MDR

Name:	:	

Problem 4 (15 points):

Recall that the ADDER was built with individual *slices* that produced a Sum bit and Carry_out bit based on the two operand bits A and B and the Carry_in bit. We called such an element a Full Adder. Suppose we have a 3-to-8 Decoder and two six input OR gates, as shown. Can we connect them so that we have a Full Adder? If so, please do. [Hint: if an input to an OR gate is not needed, we can simply put a input 0 on it and it will have no effect on anything. For example, see figure.]

The LC-2 does not have an opcode for the logical function OR. That is, there is no instruction in the LC-2

Name:_

(3):

(4):

Problem 5 (15 points):

0101 110 100 000 101

Name:			

Problem 6 (15 points):

Define a new 8-bit floating point format with 1 sign bit, 4 bits of exponent, using an excess-7 code (that is, the bias is 7), and 3 bits of fraction. If xE5 is the bit pattern for a number in this 8-bit floating point format, what value does it have (express as a decimal number):

Problem 7 (10 points):

Shown below is our favorite memory, a 2^2 by 3 bit memory. We have labeled each of the 12 gated latches A, B, C, D, E, F, G, H, I, J, K, L and the lines D < 2:0 > M, N, P. We have also indicated the values on certain wires.

Part A: What are the values at M and N and P?

Part B: Suppose WE changes from 0 to 1 for a short period of time and then changes back to 0. Which of the values A, B, C, D, E, F, G, H, I, J, K, L are different from what they were in Part A? What are their new values?

