
 Department of Electrical and Computer Engineering
 The University of Texas at Austin

 ECE 382N, Spring 2002

Y. N. Patt, D. N. Armstrong
Problem Set 1a.
Due: January 22, 2002

This first problem set will cover fundamental knowledge learned in the
prerequisite courses, EE 319K and EE 360N. You are asked to do the
logic design of a simple ALU. In this first problem set, you are asked
to solve the problem with pencil and paper. In the next problem set,
you will be asked to redo the problem using the Verilog CAD tools
which we will be using for the rest of the semester.

This is the first step in your term project-- the complete design of a
substantial subset of a cpu and its simulation, from a formal
specification to the gates that implement that specification.

Using only NAND gates (or NOR gates, your choice), design a 16 bit
arithmetic logic unit that performs the following functions:

output<15:0> := a_input<15:0> + b_input<15:0>
output<15:0> := a_input<15:0> AND b_input<15:0>
output<15:0> := a_input<15:0>
output<15:0> := NOT (b_input<15:0>)

First design a single bit "slice" of the ALU, then interconnect slices
as appropriate to get the full 16 bit ALU.

Note: For this first assignment, you may use whatever drawing
standards you were taught in your prerequisite courses. Recall (or
ask about) the advantages of hierarchical design. Also, you are
expected to provide appropriate documentation of all your work. At
the very least, your documentation should contain a paragraph
summarizing the function of each component in your design and an
overall summary describing the interaction of the major components.
Good documentation will count substantially in the grading, and more
importantly, will prove enormously useful in keeping track of your
work in the course project.

What is the worst case delay for any single operation in your ALU (in
gate delays)?

Explain how your ALU could be used, perhaps more than once (that is,
using more than one copy), to implement s:=b-a,
s:=xor(a,b). Illustrate with a drawing if you like.

Note: It is always a good idea to keep copies of any drawings you turn
in. For example, it will make life easier when you need to refer to
them while you are doing Problem Set 1b.

