
 Department of Electrical and Computer Engineering
 The University of Texas at Austin

 ECE 382N, Spring 2002

Y. N. Patt, D. N. Armstrong
Homework 2
Due: 11 February 2002

Part 1. Describe, using register transfer notation, the functionality
of the following subset of the Intel x86 architecture:

Instructions: ADD, XOR, MOV(data), INC, JMP.
Addressing Modes, using r/m : Immediate, Register, Base+Displacement.
Data Types: Double Word.

Part 2. On paper, design the data path and an accompanying state
diagram to implement the subset of the x86 architecture described in
Part 1 above.

Your state diagram should show all the relevant states. That is, pay
careful attention to each phase of the instruction cycle, and ALL the
processing that must go on to implement these instructions.

For this assignment, we will not be concerned with interrupts or
checking via "machine checks" or traps/faults for illegal
situations. (That comes later!)

The data path need not show control signals, just information paths.

Part 3. Now, implement your design from Part 2 in verilog. You may use
any available library parts for this assignment. These include a
4-bit ALU slice. Please hand in all circuit diagrams for your design.

You may create dummy modules in Verilog to "generate" the control
signals, such as the one shown below:

module ALU_control (alu_control_signals, opcode);

 output [M:0] alu_control_signals;
 input [N:0] opcode;

 assign alu_control_signals = 0;

endmodule // ALU_control

For this assignment, no simulation is necessary. However, your Verilog
code should compile correctly.

You do not have to turn in a copy of your Verilog code. Please put a
copy of your code in a directory called hw2 within your class
directory. When you continue working on your code for Homework 3, use
a separate directory.

Note: Even though you will not turn in your verilog code and
simulation runs, it is to your advantage to completely test it now. It
will save you time on the following assignments and on the project if
you can start with a fully-debugged datapath.

Part 4. For the design in Part 2, select an instance of each of the
five instructions, choose an appropriate addressing mode for each.
Calculate the number of cycles required to execute each of those five
instructions. Start counting cycles at the beginning of an
instruction’s fetch cycle and end with that instruction’s completion
(for example, destination write). For purposes of this assignment
only, assume 10 nsec cycle time, single-cycle cache access, 100 nsec
memory access time, data cache hit ratio of 0.80, instruction cache
hit ratio of 0.95. and no page faults. Please show your calculations.

Note: The actual number of cycles required to execute your program
will be substantially fewer, since you will be able to overlap
instruction execution. (That’s what pipelining has been all about for
more than 30 years). But, for this assignment only, we will examine
the execution times of each instruction individually.

