
Chapter 7

Assembly Language

Thefollowing is providedasreferencematerialto theAssemblyprocess,andtheLC-
3bAssemblyLanguage.It hasbeenextractedfrom Intro to ComputingSystems:From
bits andgatesto C andbeyond,2e,McGraw-Hill, 2004. In my urgency to get this on
thewebsite,I mayhaveinadvertentlycreatedinconsistencies.If youfindanythinghere
that is missingan antecedentor otherwisemakesno sense,pleasecontactme and/or
oneof theTAs. – YalePatt

7.1 LC-3b Assembly Language

We will begin our study of the LC-3b assemblylanguageby meansof an example.
Theprogramin Figure7.1multipliesthepositive integerinitially storedin NUMBER
by six by addingthe integer to itself six times. For example,if the integer is 123,the
programcomputestheproductby adding123

�
123

�
123

�
123

�
123

�
123.

Theprogramconsistsof 21linesof code.Wehaveaddeda line number to eachline
of theprogramin orderto beableto referto individual lineseasily. This is a common
practice.Theseline numbersarenot partof theprogram.Ten linesstartwith a semi-
colon,designatingthat they arestrictly for the benefitof the humanreader. More on
this momentarily. Sevenlines(06, 07, 08, 0C, 0D, 0E,and10) specifyactualinstruc-
tionsto betranslatedinto instructionsin theISA of theLC-3b, which will actuallybe
carriedout whentheprogramruns.Theremainingfour lines(05,12,13,and15) con-
tain pseudo-ops,whicharemessagesfrom the programmerto the translationprogram
to help in the translationprocess.The translationprogramis calledan assembler (in
thiscasetheLC-3b assembler),andthetranslationprocessis calledassembly.

7.1.1 Instructions

Insteadof an instructionbeing16 0s and1s, asis the casein the LC-3b ISA, an in-
structionin assemblylanguageconsistsof four parts,asshown below:

LABEL OPCODE OPERANDS ; COMMENTS

143



144 CHAPTER7. ASSEMBLY LANGUAGE

01 ;
02 ; Program to multiply an integer by the constant 6.
03 ; Before execution, an integer must be stored in NUMBER.
04
05 .ORIG x3050
06 LEA R2,NUMBER
07 LDW R2,R2,#0
08 LEA R1,SIX
09 LDW R1,R1,#0
0A AND R3,R3,#0 ; Clear R3. It will
0B ; contain the product.
0C ; The inner loop
0D ;
0E AGAIN ADD R3,R3,R2
0F ADD R1,R1,#-1 ; R1 keeps track of
10 BRp AGAIN ; the iterations
11 ;
12 HALT
13 ;
14 NUMBER .BLKW 1
15 SIX .FILL x0006
16 ;
17 .END

Figure7.1: An assemblylanguageprogram

Two of theparts(LABEL andCOMMENTS)areoptional.More on thatmomentarily.

Opcodes and Operands

Two of the parts(OPCODEandOPERANDS)aremandatory. An instructionmust
have an OPCODE(the thing the instructionis to do), andthe appropriatenumberof
operands(thethingsit is supposedto do it to).

TheOPCODEis a symbolicnamefor theopcodeof thecorrespondingLC-3b in-
struction.Theideais that it is easierto rememberanoperationby thesymbolicname
ADD, AND, or LDW thanby thefour-bit quantity0001,0101,or 0110.

Thenumberof operandsdependson theoperationbeingperformed.For example,
theADD instruction(line 0E) requiresthreeoperands(two sourcesto obtainthenum-
bersto beadded,andonedestinationto designatewheretheresultis to beplaced).All
threeoperandsmustbeexplicitly identifiedin theinstruction.

AGAIN ADD R3,R3,R2

Theoperandsto beaddedareobtainedfrom register2 andfrom register3. Theresult
is to beplacedin register3. We representeachof theregisters0 through7 asR0, R2,
����� , R7.



7.1. LC-3B ASSEMBLY LANGUAGE 145

TheLEA instruction(line 06) requirestwo operands(thememorylocationwhose
addressis to beread)andthedestinationregisterwhich is to containthataddressafter
the instructioncompletesexecution.We will seemomentarilythatmemorylocations
will begivensymbolicaddressescalledlabels. In thiscase,thelocationwhoseaddress
is to bereadis giventhelabelNUMBER. Thedestinationinto which thataddressis to
beloadedis register2.

LEA R2, NUMBER

As we discussedin class,operandscanbe obtainedfrom registers,from memory, or
they may be literal (i.e., immediate)valuesin the instruction. In the caseof register
operands,the registersareexplicitly represented(suchasR2 andR3 in line 0C). In
thecaseof memoryoperands,thesymbolicnameof thememorylocationis explicitly
represented(suchasNUMBER in line 06andSIX in line 08). In thecaseof immediate
operands,theactualvalueis explicitly represented(suchasthevalue0 in line 0A).

AND R3, R3, #0 ; Clear R3. It will contain the product.

A literal valuemustcontainasymbolidentifyingtherepresentationbaseof thenumber.
We use# for decimal,x for hexadecimal,andb for binary. Sometimesthereis no
ambiguity, suchasin thecase3F0A,which is a hex number. Nonetheless,we write it
asx3F0A.Sometimesthereis ambiguity, suchasin thecase1000.x1000representsthe
decimalnumber4096,b1000representsthedecimalnumber8, and#1000represents
thedecimalnumber1000.

Labels

Labelsaresymbolicnameswhich areusedto identify memorylocationsthat arere-
ferredto explicitly in the program. In LC-3b assemblylanguage,a label consistsof
from oneto 20alphanumericcharacters(i.e.,acapitalor lowercaseletterof thealpha-
bet,or a decimaldigit), startingwith a letterof thealphabet.NOW, Under21,R2D2,
andC3POareall examplesof possibleLC-3bassemblylanguagelabels.

Therearetwo reasonsfor explicitly referringto a memorylocation.

1. Thelocationcontainsthetargetof a branchinstruction(for example,AGAIN in
line 0E).

2. The locationcontainsa valuethat is loadedor stored(for example,NUMBER,
line 14,andSIX, line 15).

ThelocationAGAIN is specificallyreferencedby thebranchinstructionin line 10.

BRp AGAIN

If theresultof ADD R1,R1,#–1is positive (asevidencedby theP conditioncodebe-
ing set),thentheprogrambranchesto the locationexplicitly referencedasAGAIN to
performanotheriteration.



146 CHAPTER7. ASSEMBLY LANGUAGE

ThelocationNUMBER is specificallyreferencedby theLEA instructionin line 06.
Thevaluestoredin thememorylocationexplicitly referencedasNUMBER is loaded
into R2.

If a location in the programis not explicitly referenced,thenthereis no needto
give it a label.

Comments

Commentsaremessagesintendedonly for humanconsumption.They have no effect
on thetranslationprocessandindeedarenot actedon by theLC-3b Assembler. They
areidentifiedin theprogramby semicolons.A semicolonsignifiesthat therestof the
line is a commentandis to be ignoredby the assembler. If the semicolonis the first
non-blankcharacteron theline, theentireline is ignored.If thesemicolonfollows the
operandsof aninstruction,thenonly thecommentis ignoredby theassembler.

The purposeof commentsis to make the programmore comprehensibleto the
humanreader. They help explain a nonintuitive aspectof an instructionor a setof
instructions.In line 0A, thecomment“Clear R3; it will containtheproduct” lets the
readerknow that the instructionon line 0A is initializing R3 prior to accumulating
theproductof the two numbers.While thepurposeof line 0A maybeobviousto the
programmertoday, it maynot be the casetwo yearsfrom now, after the programmer
haswrittenanadditional30,000linesof codeandcannotrememberwhy he/shewrote
AND R3,R3,#0. It may alsobe the casethat two yearsfrom now, the programmer
no longerworks for the company and the company needsto modify the programin
responseto a productupdate.If the taskis assignedto someonewho hasnever seen
thecodebefore,commentsgo a longway to helpingcomprehension.

It is importantto makecommentsthatprovideadditionalinsightandnot justrestate
the obvious. Therearetwo reasonsfor this. First, commentsthat restatetheobvious
area wasteof everyone’s time. Second,they tendto obscurethe commentsthat say
somethingimportantbecausethey addclutterto theprogram.For example,in line 0F,
the comment“DecrementR1” would be a badidea. It would provide no additional
insightto theinstruction,andit would addclutterto thepage.

Another purposeof comments,andalso the judicioususeof extra blank spaces
to a line, is to make the visual presentationof a programeasierto understand.So,
for example,commentsareusedto separatepiecesof theprogramfrom eachotherto
make theprogrammorereadable.Thatis, linesof codethatwork togetherto compute
a singleresultareplacedon successive lines,while piecesof a programthatproduce
separateresultsareseparatedfrom eachother. For example,notethatlines0E through
10areseparatedfrom therestof thecodeby lines0D and11. Thereis nothingon lines
0D and11 otherthanthesemicolons.

Extra spacesthat are ignoredby the assemblerprovide an opportunity to align
elementsof a programfor easierreadability. For example,all theopcodesstartin the
samecolumnon thepage.



7.1. LC-3B ASSEMBLY LANGUAGE 147

7.1.2 Pseudo-ops (Assembler Directives)

TheLC-3bassembleris aprogramthattakesasinputastringof charactersrepresenting
a computerprogramwritten in LC-3b assemblylanguage,andtranslatesit into a pro-
gramin theISA of theLC-3b. Pseudo-opsarehelpful to theassemblerin performing
thattask.

Actually, a more formal namefor a pseudo-opis assembler directive. They are
calledpseudo-opsbecausethey donot referto operationsthatwill beperformedby the
programduring execution. Rather, the pseudo-opis strictly a messageto the assem-
bler to help the assemblerin the assemblyprocess.Oncethe assemblerhandlesthe
message,thepseudo-opis discarded.TheLC-3b assemblercontainsfive pseudo-ops:
.ORIG, .FILL, .BLKW, .STRINGZ,and.END. All areeasilyrecognizableby thedot
astheir first character.

.ORIG

.ORIG tells the assemblerwherein memoryto placethe LC-3b program. In
line 05, .ORIG x3050 says,start with location x3050. As a result, the LEA
R2,NUMBERinstructionwill beput in locationx3050.

.FILL

.FILL tells theassemblerto setasidethenext locationin theprogramandinitial-
ize it with thevalueof theoperand.In line 15, theninth locationin theresultant
LC-3b programis initialized to thevaluex0006.

.BLKW

.BLKW tells theassemblerto setasidesomenumberof sequentialmemoryloca-
tions(i.e.,aBLocK of Words)in theprogram.Theactualnumberis theoperand
of the .BLKW pseudo-op.In line 11, the pseudo-opinstructsthe assemblerto
setasideonelocationin memory(andalsoto labelit NUMBER, incidentally).

Thepseudo-op.BLKW is particularlyusefulwhenthe actualvalueof the
operandis not yet known. For example,onemight want to setasidea location
in memoryfor storinga characterinput from a keyboard.It will not beuntil the
programis run thatwe will know theidentityof thatkeystroke.



148 CHAPTER7. ASSEMBLY LANGUAGE

.STRINGZ

.STRINGZtellstheassemblerto initialize asequenceof n
�

a memorylocations,
wherea � 1 if n is odd,anda � 2 if n is even. Theargumentis a sequenceof n
characters,insidedoublequotationmarks. Thefirst n

�
1 bytesof memoryare

initialized with the ASCII codesof the correspondingcharactersin the string,
followed by x00. A final byte x00 is addedif necessaryto endthe string on a
word boundary. The n

�
1st character(x00) providesa convenientsentinelfor

processingthestringof ASCII codes.

For example,thecodefragment

.ORIG x3010
HELLO .STRINGZ "Hello, World!"

would resultin theassemblerinitializing locationsx3010throughx301Dto the
following values:

x3010: x48
x3011: x65
x3012: x6C
x3013: x6C
x3014: x6F
x3015: x2C
x3016: x20
x3017: x57
x3018: x6F
x3019: x72
x301A: x6C
x301B: x64
x301C: x21
x301D: x00

.END

.END tells the assemblerwherethe programends. Any charactersthat come
after .END will not be utilized by the assembler. Note: .END doesnot stop
the programduringexecution. In fact, .END doesnot evenexist at the time of
execution.It is simply adelimiter—it markstheendof thesourceprogram.

7.1.3 An Example

Theprogramshown in Figure7.2takesacharacterthatis input from thekeyboardand
a file andcountsthenumberof occurrencesof thatcharacterin thatfile.



7.1. LC-3B ASSEMBLY LANGUAGE 149

01 ;
02 ; Program to count occurrences of a character in a File.
03 ; Character to be input from the keyboard.
04 ; Result to be displayed on the monitor.
05 ; Program works only if no more than 9 occurrences are found.
06 ;
07 ;
08 ; Initialization
09 ;
0A .ORIG x3000
0B AND R2,R2,#0 ; R2 is counter, initialize to 0
0C LEA R3,PTR ; R3 is pointer to characters
0D LDW R3,R3,#0
0E TRAP x23 ; R0 gets character input
0F LDB R1,R3,#0 ; R1 gets the next character
10 ;
11 ; Test character for end of file
12 ;
13 TEST ADD R4,R1,#-4 ; Test for EOT
14 BRz OUTPUT ; If done, prepare the output
15 ;
16 ; Test character for match. If a match, increment count.
17 ;
18 NOT R1,R1
19 ADD R1,R1,R0 ; If match, R1 = xFFFF
1A NOT R1,R1 ; If match, R1 = x0000
1B BRnp GETCHAR ; If no match, do not increment
1C ADD R2,R2,#1
1D ;
1E ; Get next character from the file
1F ;
20 GETCHAR ADD R3,R3,#1 ; Increment the pointer
21 LDB R1,R3,#0 ; R1 gets the next character to test
22 BRnzp TEST

Figure7.2: Theassemblylanguageprogramto countoccurrencesof acharacter



150 CHAPTER7. ASSEMBLY LANGUAGE

23 ;
24 ; Output the count.
25 ;
26 OUTPUT LEA R0,ASCII ; Load the ASCII template
27 LDW R0,R0,#0
28 ADD R0,R0,R2 ; Convert binary to ASCII
29 TRAP x21 ; ASCII code in R0 is displayed
2A TRAP x25 ; Halt machine
2B ;
2C ; Storage for pointer and ASCII template
2D ;
2E ASCII .FILL x0030
2F PTR .FILL x4000
30 .END

Figure7.2: Theassemblylanguageprogramto countoccurrencesof a character(con-
tinued)

A few notesregardingthisprogram:
Threetimesduringthisprogram,assistancein theform of aservicecall is required

of theoperatingsystem.In eachcase,a TRAP instructionis used.TRAP x23causesa
characterto beinput from thekeyboardandplacedin R0 (line 0E).TRAP x21 causes
theASCII codein R0 to bedisplayedon themonitor (line 29). TRAP x25 causesthe
machineto behalted(line 2A).

TheASCII codesfor thedecimaldigits 0 to 9 (0000to 1001)arex30 to x39. The
conversionfrom binary to ASCII is donesimply by addingx30 to thebinaryvalueof
thedecimaldigit. Line 2EshowsthelabelASCII usedto identify thememorylocation
containingx0030.

The file that is to beexaminedstartsat addressx4000(seeline 2F). Usually, this
startingaddresswould not beknown to theprogrammerwho is writing this program,
sincewe would want the programto work on files that will becomeavailablein the
future.

7.2 The Assembly Process

BeforeanLC-3bassemblylanguageprogramcanbeexecuted,it mustfirstbetranslated
into amachinelanguageprogram,thatis, onein whicheachinstructionis in theLC-3b
ISA. It is thejob of theLC-3bassemblerto performthattranslation.

7.2.1 A Two-Pass Process

In this section,we will seehow theassemblergoesthroughtheprocessof translating
anassemblylanguageprograminto a machinelanguageprogram.We will useasour
runningexampletheassemblylanguageprogramof Figure7.2.



7.2. THE ASSEMBLY PROCESS 151

You rememberthat thereis in generala one-to-onecorrespondencebetweenin-
structionsin anassemblylanguageprogramandinstructionsin thefinal machinelan-
guageprogram.We couldattemptto performthis translationin onepassthroughthe
assemblylanguageprogram. Startingfrom the top of Figure7.2, the assemblerdis-
cardslines 01 to 09, sincethey containonly comments.Commentsare strictly for
humanconsumption;they have no bearingon the translationprocess.Theassembler
thenmoveson to line 0A. Line 0A is a pseudo-op;it tells theassemblerthat the ma-
chinelanguageprogramis to starta locationx3000. Theassemblerthenmoveson to
line 0B, which it caneasilytranslateinto LC-3b machinecode.At this point,wehave

x3000: 0101010010100000

The LC-3b assemblermoveson to translatethe next instruction(line 0C). Unfortu-
nately, it is unableto doso,sinceit doesnotknow themeaningof thesymbolicaddress,
PTR.At this point theassembleris stuck,andtheassemblyprocessfails.

To prevent the above problemfrom occurring, the assemblyprocessis donein
two completepasses(from beginningto .END) throughtheentireassemblylanguage
program.Theobjectiveof thefirst passis to identify theactualbinaryaddressescorre-
spondingto thesymbolicnames(or labels).This setof correspondencesis known as
the symbol table. In passone,we constructthe symboltable. In passtwo, we trans-
late the individual assemblylanguageinstructionsinto their correspondingmachine
languageinstructions.

Thus,whentheassemblerexaminesline 0Cfor thepurposeof translating

LEA R3,PTR

duringthesecondpass,it alreadyknows thecorrespondencebetweenPTRandx3028
(from thefirst pass).Thusit caneasilytranslateline 0C to

x3002: 1110011000010011

Theproblemof notknowing the16-bitaddresscorrespondingto PTRnolongerexists.

7.2.2 The First Pass: Creating the Symbol Table

For ourpurposes,thesymboltableis simplyacorrespondenceof symbolicnameswith
their 16-bit memoryaddresses.We obtainthesecorrespondencesby passingthrough
the assemblylanguageprogramonce,noting which instructionis assignedto which
address,andidentifyingeachlabelwith theaddressof its assignedentry.

Recall thatwe provide labelsin thosecaseswherewe have to refer to a location,
eitherbecauseit is thetargetof abranchinstructionorbecauseit containsdatathatmust
be loadedor stored. Consequently, if we have not madeany programmingmistakes,
andif we identify all thelabels,wewill haveidentifiedall thesymbolicaddressesused
in theprogram.

The above paragraphassumesthat our entireprogramexists betweenour .ORIG
and.END pseudo-ops:This is truefor theassemblylanguageprogramof Figure7.2.

Thefirst passstarts,afterdiscardingthecommentson lines01to 09by noting(line
0A) that the first instructionwill be assignedto addressx3000. We keeptrackof the



152 CHAPTER7. ASSEMBLY LANGUAGE

locationassignedto eachinstructionby meansof a locationcounter(LC). TheLC is
initialized to theaddressspecifiedin .ORIG,thatis, x3000.

Theassemblerexamineseachinstructionin sequence,andincrementstheLC once
for eachassemblylanguageinstruction.If theinstructionexaminedcontainsa label,a
symboltableentry is madefor that label,specifyingthecurrentcontentsof LC asits
address.Thefirst passterminateswhenthe.END instructionis encountered.

The first instructionthat hasa label is at line 13. Sinceit is the sixth instruction
in theprogramandtheLC at thatpoint containsx300A, a symboltableentry is con-
structedthus:

Symbol Address

TEST x300A

The secondinstructionthat hasa label is at line 20. At this point, the LC hasbeen
incrementedto x3018.Thusa symboltableentryis constructed,asfollows:

Symbol Address

GETCHAR x3018

At theconclusionof thefirst pass,thesymboltablehasthefollowing entries:

Symbol Address

TEST x300A
GETCHAR x3018
OUTPUT x301E
ASCII x3028
PTR x302A

7.2.3 The Second Pass: Generating the Machine Language Pro-
gram

The secondpassconsistsof going throughthe assemblylanguageprograma second
time,line by line, thistimewith thehelpof thesymboltable.At eachline, theassembly
languageinstructionis translatedinto anLC-3b machinelanguageinstruction.

Startingagainat thetop, theassembleragaindiscardslines01 through09 because
they containonly comments.Line 0A is the .ORIG pseudo-op,which the assembler
usesto initialize LC to x3000. Theassemblermoveson to line 0B, andproducesthe
machinelanguageinstruction0101010010100000. Thenthe assemblermoveson to
line 0C.

This time, when the assemblergets to line 0C, it can completelyassemblethe
instructionsinceit knows that PTR correspondsto x302A. The instructionis LEA,
which hasan opcodeencodingof 1110. The Destinationregister(DR) is R3, that is,
011.

PCoffsetis computedasfollows: Weknow thatPTRis thelabelfor addressx302A,
andthattheincrementedPCis LC+2, in this casex3004.SincePTR(x302A)mustbe
thesumof theincrementedPC(x3004)andtwicethesign-extendedPCoffset(sincethe
offset is in wordsandmemoryis byte-addressable),PCoffsetmustbex0013. Putting



7.2. THE ASSEMBLY PROCESS 153

Address Binary

0011000000000000
x3000 0101010010100000
x3002 1110011000010011
x3004 0110011011000000
x3006 1111000000100011
x3008 0010001011000000
x300A 0001100001111100
x300C 0000010000001000
x300E 1001001001111111
x3010 0001001001000000
x3012 1001001001111111
x3014 0000101000000001
x3016 0001010010100001
x3018 0001011011100001
x301A 0010001011000000
x301C 0000111111110110
x301E 1110000000000100
x3020 0110000000000000
x3022 0001000000000010
x3024 1111000000100001
x3026 1111000000100101
x3028 0000000000110000
x302A 0100000000000000

Figure 7.3: The machinelanguageprogramfor the assemblylanguageprogramof
Figure7.2

this all together, x3002 is set to 1110011000010011, and the LC is incrementedto
x3004.

Note: In orderto usetheLEA instruction,it is necessarythatthesourceof theload,
in this casethe addresswhoselabel is PTR, is not morethan+512 or -510 memory
locationsfrom theLEA instructionitself. If theaddressof PTRhadbeengreaterthan
LC+2 +510 or lessthanLC+2 -512, thenthe offset would not fit in bits [8:0] of the
instruction. In sucha case,an assemblyerror would have occurred,preventing the
assemblyprocessfrom completingsuccessfully. Fortunately, PTR is closeenoughto
theLEA instruction,sotheinstructionassembledcorrectly.

The secondpasscontinues.At eachstep,the LC is incrementedandthe location
specifiedby LC is assignedthe translatedLC-3b instructionor, in the caseof .FILL,
thevaluespecified.Whenthesecondpassencountersthe.END instruction,assembly
terminates.

Theresultingtranslatedprogramis shown in Figure7.3.
That processwas,on a goodday, merely tedious. Fortunately, you do not have

to do it for a living—theLC-3b assemblerdoesthat. And, sinceyou now know LC-



154 CHAPTER7. ASSEMBLY LANGUAGE

3b assemblylanguage,thereis no needto programin machinelanguage.Now we
canwrite our programssymbolicallyin LC-3b assemblylanguageandinvoke theLC-
3b assemblerto createthe machinelanguageversionsthat canexecuteon an LC-3b
computer.


