
Name:

Problem 1 (25 points):

Part a (5 points): The main element of storage required to store a single bit of information depends on whether we are
talking about DRAM cells or SRAM cells.

For DRAM cells it is: a capacitor

For SRAM cells it is: a latch

Part b (5 points):

The primary purpose of segmentation is: protection

The primary purpose of paging is: virtual memory

Part c (5 points): The reference bit in a PTE is used for what purpose?

page replacement

The similar function is performed by what bit or bits in a cache’s tag store entry?

LRU/pseudo-LRU bits

Part d (5 points): We note that condition codes get set by the three load instructions and the four operates in the last
cycle of the instruction cycle when they load the destination register. So, someone suggested we get rid of the LD.CC
control signal and use instead the LD.REG signal to load condition codes, If we did this, without changing anything
else, would the LC-3b work correctly? Why/why not?

No, it won’t. TRAP, JSR/JSRR load the destination register without setting the condition codes.

Part e (5 points): A cache has the block size equal to the word length. What property of program behavior, which
usually contributes to higher performance if we use a cache, does not help the performance if we use THIS cache?

spatial locality

1

Name:

Problem 2 (20 points):

Little Computer Inc. has decided to support unaligned accesses in the LDW instruction. The specification of the LDW
instruction is as follows:

Assembler Format

LDW DR, BaseR, offset6

Encoding

15 12 11 9 8 6 5 0

BaseRDR0110 offset6

Operation

DR = MEM[BaseR+SEXT(offset6)];
setcc(DR);

Part a. (5 points) We show below the states used to implement the LDW instruction. Using the notation of the LC-3b
state diagram, describe inside each “bubble” what happens in each state. We have already given you what happens
in state C. In this state, MAR[0] is tested and next state is determined based on the value of MAR[0]. The modified
datapath is shown on the next page.

R

R

[MAR[0]]

B

A

C

D

E

To 18

F

[IR[15:12]]

LDW

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

MAR <− BaseR + SEXT(offset6)

MDR <− M[MAR]

R

R

10

MAR <− MAR+1

DR <− MDR
set CC

MDR[15:8] <− M[MAR]

2

Name:

Problem 2 continued:

MEMORY

ADDR. CTL.
LOGICMDR

MAR L

R.W

MAR[0]

LD.MDR

DATA.SIZE

R

MAR[0]

DATA.SIZE

ROTATE

DATA.SIZE
D.MAR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16LOGIC

16

GateMDR

R

16 16

16

[4:0]
SEXT

SEXT 16

X

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

+1

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

LOGIC

Y
2

ADDERMUX

2

MIO.EN

LOGIC

1 0

 0 1

[7:0]

16

16

3

Name:

Problem 2 continued:

Part b. (8 points) The modified datapath shown on the previous page contains a logic block whose inputs are LD.MDR,
DATA.SIZE, R.W, MAR[0], and X. The outputs of this logic block are the two-bit signal Y and a 1-bit ROTATE signal.
Identify precisely in the boxes below the signals X, Y[0], and Y[1]. Four or five words should be more than enough
for each signal. Identify the specific value for X in each input combination of the truth table. Complete the output
columns of the truth table.

Signal X: first/second access

Signal Y[0]: LD.MDR low byte

Signal Y[1]: LD.MDR high byte

Correct answer:

R.W DATA.SIZE LD.MDR MAR[0] X Y[1] Y[0] ROTATE

READ BYTE NO 0 x 0 0 x

READ BYTE NO 1 x 0 0 x

READ BYTE LOAD 0 x x 1 0

READ BYTE LOAD 1 x x 1 1

READ WORD NO 0 x 0 0 x

READ WORD NO 1 x 0 0 x

READ WORD LOAD 0 0 1 1 0
1 1 0 1

READ WORD LOAD 1 x x 1 1

4

Acceptable answer:

R.W DATA.SIZE LD.MDR MAR[0] X Y[1] Y[0] ROTATE

READ BYTE NO 0 x 0 0 x

READ BYTE NO 1 x 0 0 x

READ BYTE LOAD 0 x x 1 0

READ BYTE LOAD 1 x x 1 1

READ WORD NO 0 x 0 0 x

READ WORD NO 1 x 0 0 x

READ WORD LOAD 0 x 1 1 0

READ WORD LOAD 1 0 x 1 1
1 1 0 1

5

N
am

e:

Problem
2

continued:

P
art

c.
(7

points)
T

he
processing

in
each

state
(A

,B
,C

,D
,E

,F)
is

controlled
by

asserting
or

negating
each

control
signal.

E
nter

a
1

or
a

0
as

appropriate
for

the
m

icroinstructions
corresponding

to
states

A
,

B
,

D
,

E
,

F.
T

he
control

signals
for

state
C

are
already

filled
in

for
you.

ADDR2MUX

LD.MAR

LD.MDR

LD.IR

LD.BEN

LD.REG

LD.PC
LD.CC

GatePC

GateMDR

GateALU

GateMARMUX

PCMUX

DRMUX

SR1MUX

MARMUX

ALUK

MIO.EN

LSHF1

X

ADDR1MUX

R.W

DATA.SIZE

GateSHF

ADDERMUX

ZERO, offset6, PCoffset9, PCoffset11
 00, 01, 10, 11

PC+2, BUS, ADDR
 00, 01, 10

ADD, AND, XOR, PASSA
 00, 01, 10, 11

state A

state B

state C

state D

state E

state F

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

IR[11:9](0), R7(1)

IR[11:9](0), IR[8:6](1)

PC(0), BaseR(1)

BYTE(0), WORD(1)

LSHF(ZEXT[IR[7:0],1)(0), adder(1)

BUS(0), MAR+1(1)

RD(0), WR(1)

1
1

1
1

1
0

1
1

1
1

1
1

1
1

1
1

1
1

1
1

E
ntries

left
blank

are
0.

6

Name:

Problem 3 (20 points):

We hired a new circuit designer from A&M to help us implement the LC-3b, and he loaded the microinstructions into
the wrong control store locations, as noted on the state machine shown in Figure 1. No problem, we can fix it with
some quick fixes to the microsequencer. Figure 2 identifies the “new” microsequencer.

R

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]
NOTES
B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT[offset9]
*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

PC<−BaseR

To 18

56

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

set CC

[BEN]

PC<−MDR

2

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

DR<−SR1 XOR OP2*

R7<−PC
[IR[11]]

1011

JSR

JMP

BR

1010

PC<−BaseR

20

16
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

set CC

set CC
DR<−PC+LSHF(off9,1)

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off11,1)

PC<−PC+LSHF(off9,1)

0

1

DR<−SHF(SR,A,D,amt4)

MAR <− PC
PC <− PC + 2

[INT]

0

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

MDR<−SR

To 11

R R

M[MAR]<−MDR

10

3

R R

12

To 13

14

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

To 18

32

To 54

To 52

40

3846443660

58

62

50

DR<−SR1&OP2* 42
26

34

4

5

6

7

8

9

18, 11, 13

To 48

Figure 1
7

Name:

Problem 3 continued:

Cond[1:0]

00

01

10

11

Unconditional

Addressing Mode

Ready

Branch

Signal Values

D E F

H[5:0]

B CA

Figure 2 : "new" microsequencer

GJ[4]J[5]

1 0
IRD

Address of Next State

6

COND0COND1

6 6

Part a. (10 points) Identify the signals A through G in the boxes provided below. A few words at most should suffice
for each box.

A

B

C

D

E

F

G

IR[11]

R

BEN

J[2]

J[0]

J[3]

J[1]

Part b. (6 points) Identify separately each bit of H[5:0].

H[5] H[3] H[2] H[1] H[0]H[4]

IR[15]1 IR[13]IR[14] IR[12] 0

Part c. (4 points) In which state / states is IRD asserted? 2

8

Name:

Problem 4 (15 points):

An LC-3b system ships with a two-way set associative, write back cache with perfect LRU replacement. The tag store
requires a total of 4352 bits of storage. What is the block size of the cache? This is one problem where you really do
need to show all your work on the paper.

Hint: 4352 =
�����

+
���

.

4 bytes

Solution:

address = 16 bits
bits for identifying byte in block = b bits
bits used for index = i bits
tag bits = 16 - b - i bits

contents of tag store entry for a set: 1 LRU bit, 1 valid bit per block, 1 dirty bit per block, 1 tag per block
size of tag store entry for a set = 1 + 2 x (2 + 16 - b - i)

tag store size =
���

x (1 + 2 x (2 + 16 - b - i))

���	�
+
�
�

=
���

x (1 + 2 x (2 + 16 - b - i))
�
�

x (1 + 16) =
���

x (1 + 2 x (2 + 16 - b - i))

i = 8, b = 2
block size =

���
= 4 bytes

9

Name:

Problem 5 (20 points):

A machine with 64KB, byte addressable virtual memory and 4KB physical memory has two-level virtual address
translation similar to the VAX. The page size of this machine is 256 bytes. Virtual address space is partitioned into
the P0 space, P1 space, system space and reserved space. The space a virtual address belongs to is specified by the
most significant two bits of the virtual address, with 00 indicating P0 space, 01 indicating P1 space, and 10 indicating
system space. Assume that the PTE is 32 bits and of the format 10000000..000PFN.

For a single load instruction the physical memory was accessed three times. The first access was at location x108 and
the value read from that location (x108, x109, x10A, x10B) was x80000004. Hint: What does this value mean?

The second access was at location x45C and the third access was at location x942.

If SBR = x100, P0BR = x8250 and P1BR = x8350,

Part a. (7 points) What is the virtual address corresponding to physical address x45C ?

VA = x 825C

Part b. (6 points) What is 32 bit value read from location x45C ?

Value = x 8 0 0 0 0 0 0 9

Part c. (7 points) What is the virtual address corresponding to physical address x942 ?

VA = x 0342

10

