Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 382N, Spring 2002
Y. N. Patt, Instructor
D. N. Armstrong, TA
Exam 1, March 6, 2002

Name (2 points):

Problem 1 (14 points):
Problem 2 (14 points):
Problem 3 (14 points):
Problem 4 (14 points):
Problem 5 (14 points):
Problem 6 (14 points):
Problem 7 (14 points):
Problem 8 (14 points):
Problem 9 (14 points):

Total (100 points):

Directions: The first two problems of this exam are required problems. You may answer any 5 of the last 7
problems. Place an “X” in the 2 lines above for the 2 problems that you choose not to answer.

Note: Please be sure that your answers to all questions (and all supporting work that is required) are
contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

GOOD LUCK AND HAVE A GOOD SPRING BREAK!

Name:

Problem 1 - Required (14 points):

Part a (7 points): Circle the errors in the following Verilog code:

module TOP(z[3:0], // output
al3:0], // input
b[3:0], // input
c[3:01); // input

output [3:0] z;
input [3:0] a, b, c;
reg clock;

nand2$ n2gate(t[0], a[0], b[0]);
nand2$ n2gate(t[1], al1], b[1]);
nand2$ n2gate(t[2], al[2], b[2]);
nand2$ n2gate(t[3], al3], b[3]);

nand3$ n3gate(z[0], t[0], c[0], 1°b1);
nand3$ n3gate(z[1], t[1], 1’b1l, c[11);
nand3$ n3gate(z[2], 1°b1l, t[2], c[2]);
nand3$ n3gate(1’b1l, z[0], t[3], c[3]1);

nor3$ n3gate(z, 4°b0, 4’b0, 4’b0);
always
begin

clock = “clock;
end

endmodule; // TOP

For each error that you circle, provide a 1 sentence explanation of the error.

Name:

Problem 1 - (continued) - Required (14 points):

Part b (7 points): When determining which instructions would be used in the project, it was decided that
students needn’t implement both the NOT and the XOR instruction. Which of the following x86 XOR
instructions is the best instruction with which to implement the NOT of both 32-bit memory locations and
also 32-bit registers. Why?

35 id
81 /6 id
83 /6 ib
32 /r
33 /r

XO0R
XO0R
XO0R
XO0R
XO0R

EAX, imm32
r/m32, imm32
r/m32, imm8
r/m32, r32
r32, r/m32

EAX XOR imm32

r/m32 X0R imm32

r/m32 X0R imm8 (sign-extended)
r/m32 XO0R r/m32 XOR r32

r32 XO0R r/m32

Name:

Problem 2 - Required (14 points):

Design a register file with a single write port and four read ports. The register file should hold 4 registers
where each register is 32-bits wide.

You may use the following library parts in your design:

module
module
module
module

reg32e$(clk, Din, Q, write_enable); // 32-bit wide, write-enabled register

nand2$(out, in0, inl); // two input nand gate
mux2$ (out, in0, inil, s0); // 2 to 1 mux
decoder2_4$(s, y, ybar); // 2 to 4 decoder

Use the following prototype for your register file module. It is up to you to decide the appropriate width of
each signal.

module

regfile32_4 (clk, // input - the clock
read_selectO, // input - select line for 1st read port
read_selectl, // input - select line for 2nd read port
read_select2, // input - select line for 3rd read port
read_select3, // input - select line for 4th read port
write_select, // input - select line for write port
write_enable, // input - write enable for write port

write_data, // input - data to write to regfile
read_portO, // output - data from 1st read port
read_portl, // output - data from 2nd read port
read_port2, // output - data from 3rd read port

read_port3); // output - data from 4th read port

You may answer either in Verilog or with a block diagram, whichever you prefer. In either case, please use
modular design in your solution. If you use a block diagram to answer, be sure to label all the signal names
and the widths. Please make your solution as simple and clear as possible.

Note: you may use only one bit of storage to store each bit in the register file (i.e., designing a register file
with a single read port and then duplicating that part is not satisfactory).

Name:

Problem 2 (continued) - Required (14 points):

Additional space for your register file design.

Name:

Problem 3 (14 points):

The first Alpha chip (21064) had the property that if a branch instruction predicted taken (i.e., the instruction
stream was to be redirected rather than execute the fall through path), the target address would be computed
(PC + offset) from the actual 0s and 1s of the branch instruction, and that target address would be used as
the location in the instruction cache to perform the next fetch. What important consequence did this imply?

Was this a good consequence or a bad consequence? If good, explain why. If bad, explain what additional
feature could have been added to the data path to remove the bad consequence.

In either case, feel free to illustrate the issue with a figure.

Name:

Problem 4 (14 points):

We have not talked a lot about SPEC yet. We will later in the semester. Suffice it to say for now that SPEC
numbers are measures of the time it takes to execute certain representative benchmark programs. A higher
number means the execution time of the corresponding benchmark(s) is smaller. Some have argued that
this gives unfair advantage to processors that are designed using a faster clock, and have suggested that the
SPEC numbers should be normalized with respect to the clock frequency, since faster clocks mean shorter
execution time and therefore better SPEC numbers. Is this suggestion a good or a bad idea? Explain.

If you are told that your design will be evaluated on the basis of its SPEC/MHz number, what major design
decision would you make?

Name:

Problem 5 (14 points):

The Pentium processor, vintage 1992, had a split-line first-level instruction cache. Why was that a good
idea? Be brief, please, but specific.

Name:

Problem 6 (14 points):

Your job is to implement the x86 ISA, augmented with instructions that each write four results as part of the
semantics of those instructions. Your design decision is to implement the machine with a ten-stage pipeline
that writes results in stages 7, 8, 9 and 10. Is there any problem with your design decision? Discuss possible
problems, and what you would do to make sure everything works.

Name:

Problem 7 (14 points):

Your job is to evaluate the potential performance of two processors, each implementing a different ISA. The
evaluation is based on its performance on a particular benchmark. On the processor implementing ISA A,
the best compiled code for this benchmark performs at the rate of 10 IPC. That processor has a 500 MHz
clock. On the processor implementing ISA B, the best compiled code for this benchmark performs at the
rate of 2 IPC. That processor has a 600 MHz clock.

What is the performance in MIPS (millions of instructions per second) of the processor implementing ISA
A?

What is the performance in MIPS (millions of instructions per second) of the processor implementing ISA
B?

Which is the higher performance processor? A_ B__ Don’t know___.

Explain?

10

Name:

Problem 8 (14 points):

The Two-level branch predictor was first introduced on a commercially viable microprocessor by Intel in 1995
on their Pentium Pro. The processor had a twelve stage pipeline, and was capable of fetching and decoding
three instructions each cycle. This meant that one could easily encounter several branch instructions to
predict before the direction of older branch instructions were confirmed. That is, many newer branch
instructions would come along while the direction of older branch instructions was still unknown. One can
handle the problem in one of at least three ways:

1. Allow at most some small number of unconfirmed branch instructions in mid-stream at any one time,
then stop fetching.

2. Allow as many as happen to occur, but use the confirmed Branch History Register entries (the first
level of the two-level predictor) to index into the second-level Pattern History Table to perform the
prediction.

3. Allow as many as happen to occur, but update the Branch History Register on the fly with the predicted
values of the immediately preceding branches and use them to provide the index into the second-level
Pattern History Table.

Which way do you think is the best way to handle the problem? Explain.

11

Name:

Problem 9 (14 points):

Your job is to improve the performance of the x86 ISA, and the corporate fathers decree that performance
is so important that you don’t have to worry about compatibility. [See, this is a university and we spend
time on academic exercises. This one, most would argue, ain’t going to happen! — Actually, it could within
a certain context which we should discuss between now and the end of the semester. But, for now, let’s deal
with the problem at hand.] What is the first thing you would change in the x86 ISA to improve performance?
Why? What is the second thing you would change in the x86 ISA? Why? Third thing?

12

