
 Department of Electrical and Computer Engineering
 The University of Texas at Austin

Yale Patt, Instructor
Hyesoon Kim, Moinuddin Qureshi, TAs

Project Specification Summary and Clarifications

Instructions
============

ADD (p. 3-21) -- All variations
OR (p. 3-511) -- All variaitons
NOT (p. 3-509) -- All variations
MOV (p. 3-432) -- All variations except moffs* format
DEC (p. 3-177) -- All variations
JMP (p. 3-358) -- All variations except m16:16 and m16:32
CMOVC (p. 3-79) -- All variations of CMOVC
Jcc (p. 3-354) -- All JNE and JNA variations (4 total)
HLT (p. 3-317) -- All variations
ROR (p. 3-660) -- All variations of ROR
SAL (p. 3-693) -- All variations of SAL
SAR (p. 3-693) -- All variations of SAR
BSWAP (p. 3-49) -- All variations
XCHG (p. 3-789) -- All variations
NOP (p. 3-508) -- All variations
PUSH (p. 3-650) -- All variations
POP (p. 3-589) -- All variations
CALL (p. 3-58) -- All variations except m16:16 and m16:32
RET (p. 3-680) -- All variations
IRET (p. 3-346) -- IRETD variation for 32-bit stack
CLD (p. 3-72) -- All variations
STD (p. 3-732) -- All variations
REP MOVS (p. 3-677) -- Repeat MOVS variation only

Prefixes
========

Operand Size Override
Segment Register Override
Repeat String operation (for MOVS only)

Addressing Modes
================

Immediate
Register
Mod R/M Byte
SIB Byte (except for Index==100 or Base==101)

Data Types
==========

Doubleword -- as specified by the instruction (doubleword is default)
Word -- requires operand size override
Byte -- as specified by the instruction

General Issues
==============

* There will be no self-modifying code in the test cases.

* There will be no illegal operands in the test cases.

Addresses
=========

* An _Effective Address_ is computed from the instruction, e.g., a
 base plus displacement specified with an r/m byte.

* A _Linear Address_ is calculated by summing the effective address
 with the appropriate segment register having been shifted 16 bits to
 the left for a total size of 32-bits.

Main Memory
===========

* Main memory is 32KB in size.

* Main memory configuration is per your design.

Caches
======

* Instruction and data cache size is limited to 1KB of data storage
 total.

* Cache configuration is per your design.

* Tag and Data storage are to be constructed from RAM parts (not SRAM).

* In order that they be initialized to 0, valid bits may be
 constructed from register parts.

The Bus
=======

* A bus must connect the processor, main memory and your I/O devices.

* The bus width and arbitration scheme are per your design.

Segmentation
============

* Each segment has a constant (hardwired) segment limit associated
 with it.

* When an effective address exceeds the segment limit a general
 protection exception is taken. (Not quite the full story, see
 Interrupts and Exceptions below.)

* Be advised that when accessing a word or dword, all the bytes in the
 data must fall within the segment limit.

Virtual Memory
==============

* You are required to implement parts of a virtual memory system as
 specified below.

* The page size for your project is 4KB.

* A Translation Lookaside Buffer (TLB) will be used to translate
 between virtual page numbers and physical frame numbers.

* Each TLB entry will contain at least the following flags: a valid
 bit, a present flag, and a read/write flag. Note a translation can
 be valid without the page being present in main memory, hence the
 valid and present flags. Depending on your design, you may or may
 not need a PCD flag (Page-level Cache Disable) for your I/O
 devices. See I/O Devices below.

* A page can be in the "read only" state or in the "read or write
 state," as indicated by the read/write flag.

* The TLB will hold 8 entries, 6 of which will be hardcoded to values
 specified by your TA. The other two entries are per your design,
 e.g., memory mapped I/O or other project specific purposes.

* If the processor tries to write a read only page, then a general
 protection exception is taken.

* If the processor tries to access a page not in the TLB or a page not
 present in physical memory, then a page fault is taken. (Note the
 abstraction: you are not required to implement the x86 page
 directory table for this project.)

I/O Devices
===========

* You are required to implement atleast one simple and one complicated
 I/O device for your project.

* See the LC-3b documentation for simple examples of memory mapped
 keyboard and monitor registers.

* More complicated I/O devices include a DMA controller.

* Be advised that memory addresses that correspond to memory mapped
 I/O devices cannot be cached. You can use the TLB to indicate that a
 page cannot be cached by setting the PCD flag (Page-level Cache
 Disable) in the TLB. In this case, you will issue the request to
 main memory directly.

Interrupts and Exceptions
=========================

* You are required to support at least one external interrupt from one
 of your I/O devices.

* The two exceptions that you are required to support are: general
 protection exceptions and page faults. Note that both instruction
 and data accesses may cause these exceptions.

* General protection exceptions are caused by writing to a read only
 page or when computing a memory operand with an effective address
 outside the CS, DS, ES, FS or GS segment limit. Note that accessing
 memory outside the stack segment(SS), limit causes a Stack Segment
 Exception which is not required for this project.

* Page faults are caused by accessing a page that is not in the TLB or
 not present in physical memory.

* There will be no nested interrupts/exceptions.

* More detailed directions on handling interrupts and exceptions will
 be provided later.

