
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 360N, Fall 2003
Yale Patt, Instructor
Santhosh Srinath, Danny Lynch, TAs
Exam 2, November 19, 2003

Name:

Problem 1 (20 points):

Problem 2 (20 points):

Problem 3 (20 points):

Problem 4 (20 points):

Problem 5 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

GOOD LUCK!

Name:

Problem 1 (20 points):

Part a (5 points): Is a scoreboard a useful structure in an in-order pipelined processor? Why or why not? Explain in
20 words or fewer, please.

Part b (5 points): A microprocessor manufacturer decides to advertise its newest chip based only on the metric IPC
(Instructions per cycle). Is this a good metric? Why or why not?

If you were the chief microarchitect for another company and were asked to design a chip to compete based on this
metric, what important design decision would you make (in less than 10 words)?

Part c (10 points): A residue number system has been designed with three moduli, p1, p2, and p3. The number 17 is
represented as 261. The number 25 is represented as 039. What are the three moduli?

2

Name:

Problem 2 (20 points):

Recall the asynchronous bus studied in class. You have been asked to redesign the device controller to allow the PAU
(priority arbitration unit) to save time by assigning the bus masters for the next TWO bus cycles (instead of one) at the
same time. The connections of device controllers to the PAU and to each other are shown below.

BR1

SACK

SACK’

Controller Controller Controller
BG1

BR0

DEV DEVDEV DEV

BR2

BG0

BG2
BG2’

BG2

BG1’

BG1

BG1

BG1’
BG0’

BG0

P
A

U

Controller

Device Device Device Device

The system will work as follows: If two or more devices request the bus on the same (and highest of those asserted)
priority, then the PAU bus grant signal will set up the bus masters for the next two bus cycles. We will need two SACK
signals, SACK and SACK’. We will need two bus grant signals for each level of priority, for example BG1, and BG1’
shown on the figure above.

If a device controller on priority level i receives BGi and wants the bus, it asserts SACK and passes on BGi’. If it
does not want the bus, it passes on BGi. If a device controller receives BGi’ and wants the bus, it asserts SACK’ and
passes on nothing. If it does not want the bus, it passes on BGi’.

When BBSY is negated, the device controller that is asserting SACK asserts BBSY, and negates SACK. When the
device controller that is asserting SACK’ sees that SACK has been negated, it asserts SACK and negates SACK’.

When SACK and SACK’ are both negated, the PAU can again grant the bus.

Your job: On the next page construct the state machine for the device controller on the next page. Use the Moore
model, as we did in class. Show only relevant inputs and outputs on all arcs. Our solution requires 8 states.

3

Name:

Problem 2 (continued):

4

Name:

Problem 3 (20 points):

Six instructions, three adds (ADD Ri,Rj,Rk) and three multiplies (MUL Ri,Rj,Rk) are fetched one at a time, on suc-
cessive cycles, decoded, and executed when their operands become available (i.e., out-of-order). Rj and Rk are the
source registers, Ri is the destination register.

The stages for each instruction are as discussed in class. For the ADD, 7 cycles: F-D-E1-E2-E3-E4-WB. For the
MUL, 9 cycles; F-D-E1-E2-E3-E4-E5-E6-WB. Data forwarding is not allowed

Processing starts at cycle 1 with an empty set of reservation stations.

The initial RAT and the RAT at the end of cycle 8 are shown below. The relevant information in the reservation
stations at the end of cycle 8 are also shown below.

ρ
σ

11

0
0

1
1

π
δ

5 π
3

50

50α
β

21
1
0

1
1 3

30
δπ ρ0

20

Multiply Reservation Stations at the end of Cycle 8Add Reservation Stations at the end of Cycle 8

1
1

0

R6
R5
R4
R3
R2
R1
R0 1

5
3
11
19
50

V VALUETAG

R7 0

1

0

1
0

δ

π
ρ

σ

20
30

RAT at the end of Cycle 8RAT Initial

1
1

R6
R5
R4
R3
R2
R1
R0 1

3
11
19

V VALUETAG

R7

1

1
1
1

1
1

2

10
20
30

Your job: Fill in the six entries below with the code sequence that produces the above RAT and reservation stations at
the end of cycle 8.

DR SR1 SR2Opcode

1

2

3

4

5

6

5

Name:

Problem 4 (20 points):

A vector processor with 11 cycle memory latency, two load ports and one store port, 16-way interleaved memory, and
supporting full chaining is to be used to execute the compiled program for the following high level code:

for (i=0; i<10; i++)
{

E[i] = (A[i]*B[i])+(C[i]*D[i]);
}

Part a (8 points) Write the vector code to accomplish this. You have available the following vector instructions:

MOVI VLEN, #n
MOVI VSTR, #n
VADD Vi,Vj,Vk ; Vj, Vk are sources, Vi is dest
VMUL Vi,Vj,Vk
VSH Vi,Vj ; Vi <-- Vj shifted right one bit
VLD Vi,A ; Vi gets loaded with contents of memory, starting at A
VST Vi,A ; Contents of Vi gets stored in memory, starting at A

Part b (12 points) How long will it take for this code to execute? Assume that the latency for multiply is 6 cycles, add
is 4 cycles, shift is 1 cycle, and for load or store is 11 cycles.

THE ANSWER

6

Name:

Problem 5 (20 points):

We wish to add to the LC-3b the new instruction MIN, which identifies the smallest value in k consecutive memory
locations, and stores the result in one of the general purpose registers. Values range from -128 to +127 and occupy one
byte of memory each. The condition codes will be set according to whether the result is negative, zero, or positive.
We will use the unused opcode 1010 for this purpose. The format of the instruction will be

 0 0 0

15 12 11 9 8 6 5 4 2 0

LengthRMIN DR, BaseR, LengthR DR BaseR1010

where the address of the first location is in BaseR, and the number of locations k is in LengthR.

If LengthR is
�

0, the instruction is not defined.

There is no requirement that the contents of BaseR or LengthR remain unchanged at the end of this instruction’s
execution.

Example:
After the instruction MIN R1,R2,R3 is executed, where R2 contains x4000, R3 contains #5, and memory is as shown
below:

x4001

x4002

x4003

x4004

x4000

#105

#82

#−44

#−83

#7

R1 will contain the value #-83, and condition N will be set.

7

Name:

Problem 5 continued:

To implement MIN, we have chosen to add the following to the LC-3b data path:

1. A four-input mux to the A input of the ALU.
This requires a new control field, AMUX, specified as follows:

SR1/00, the SR1 source from the original data path,
MINUS1/01, a constant -1
PLUS/10, a constant 1
BUS/11, the contents on the bus

2. We have also augmented the set of control signals that can control SR2, and DR of the register file.

3. We have also added a BENMUX at the input of the BEN register, as shown. The additional source for the BEN flag
is bit 15 of the output of the ALU.

This requires a new control signal, BENMUX, specified as follows: Logic/0
ALUout/1

SR2MUX

16

16
16

ALU
B A

3

3

3
2

3

3

−1

SR2
OUT

SR1
OUT

REG
FILE

SR1

LD.REG

ALUK

SEXT(IR[4:0])

16

16 16

GateALU

3 3

3

16

16

AMUX

2AMUX

SR2

DR

IR[11:9]

R7

D
R

M
U

X

IR[11:9]

SR
2_

IN
_M

U
X

SR2_IN_MUX

DRMUX

+1

IR[2:0]

IR[2:0]

2

[15]

LD.BEN

BEN

Logic

IR[11:9]

N
Z
P

BENMUX

8

Name:

Problem 5 continued:

Part a. (12 points): We have provided the skeleton of the augmented LC-3b state machine for you to implement MIN.
Using the notation we have adopted for the LC-3b, show what happens in every state.

We wish to assign state numbers 41 through 52 to the 12 new states. Five states have been assigned for you. Part
of your job is to assign the remaining seven states from the set 43,47,48,49,50,51,52. Note that state 10, the entry
point for the MIN opcode has also been assigned, in accordance with the 16-way decode from state 32.

Note that in some states we have specified some of the operations required. You are free to specify addtional op-
erations to be performed in each state as you feel necessary.

Note that three of the states have been labeled additionally A,B,C. These labels are for your use in part b on the
following page.

DR < DR XOR −1

DR <− DR + 1

Load BEN

Load BEN

44

46

DR <− MDR

To 18

B

C

45

42

10

41

Length <− Length − 1

From 32

A

9

Name:

Problem 5 continued:

Part b. (8 points): Specify the control signals required (for both data path control and microsequencer control) to
implement states A, B, C. Note that we have added control signals corresponding to our changes in the data path.

IR
D

C
on

d

A

B

C
J

G
at

eM
A

R
M

U
X

G
at

eA
LU

G
at

eM
D

R

G
at

eP
C

LD
.P

C

LD
.C

C

LD
.R

EG

LD
.B

EN

LD
.IR

LD
.M

D
R

LD
.M

A
R

A

B

C

PC
M

U
X

SR
1M

U
X

D
R

M
U

X

A
D

D
R

2M
U

X

A
D

D
R

1M
U

X

M
A

R
M

U
X

A
LU

K

M
IO

.E
N

R
.W

D
A

TA
.S

IZ
E

B
EN

M
U

X

A
M

U
X

SR
2_

IN
_M

U
X

G
at

eS
H

F

10

LC-3b ISA

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD+

+

AND+

RET

RTI

JMP

JSR

JSRR

LDB +

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+
DR1001

+
DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

+ indicates instructions that modify condition codes.

11

A state machine for the LC-3b (from Appendix C)

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

R7<−PC
[IR[11]]

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

PC<−BaseR

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

13

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off11,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

To 18

DR<−PC+LSHF(off9,1)
set CC

12

The LC-3b datapath (from Appendix C)

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D.MAR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

13

The Microsequencer of the LC-3b base machine (from Appendix C)

J[4] J[3]

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

BEN R

Branch Ready
Mode
Addr.

IR[11]

J[0]J[1]J[2]

COND0COND1

14

