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Background

Memory latency is well over 300 cycles [Sprangle+ ISCA’02] and
It continues to increase

Caches reduce the number of memory accesses
@ Cache hit provides fast access to recently accessed data
@ Cache miss can stall the processor for hundreds of cycles

To sustain high performance, it is important to reduce the
number of cache misses

Cache misses can be reduced by intelligent management and
design of cache resources
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The Problem of L2 Cache Misses

@ Inatwo level cache hierarchy, L1 is constrained by access
time and L2 is constrained by transistor budget. In this talk
we will focus on only L2 caches

@ Even with more than half of the on-chip transistors devoted to
L2 cache, cache misses occur frequently and cause
performance loss [Hankins+ MICRO’03]

@ Existing techniques for managing L2 cache do not work well
enough, which results in increased number of cache misses
and reduced performance. Three key reasons of inefficiency:

@ Problem with cache organization
@ Problem with cache replacement
@ Problem with cache hierarchy
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A Casefor Revisiting L2 Cache Organization
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@ Current L2 designs [Pentium, Power, Athlon, Itanium] USe a
set-associative organization

@ L2 caches use sequential tag and data lookup to save power
[Itanium, Alpha]

@ Can we leverage the sequential lookup to get the benefit of a
highly associative organization?
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A Casefor Revisiting Cache Replacement

Current processors try to service L2 miss in parallel

Isolated misses are more costly on performance than parallel
misses

Current cache replacement algorithms assume uniform cost for
all misses

Performance can be improved by making the replacement
engine aware of the cost differential, so that it can reduce the
number of costly misses
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Outline

@ [ntroduction
@ The V-Way Cache
@ MLP-Aware Cache Replacement

@ Summary
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Fully Associative Caches. Cost vs. Benefit

@ Benefits

a Conflict miss elimination
@ Global replacement (finds the best victim)

@ Cost

a Significant increase in the number of tag comparisons
@ Increased access latency
@ Increased power consumption
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Fully Associative Caches. Cost vs. Benefit

@ Benefits

a Conflict miss elimination
@ Global replacement (finds the best victim)

@ Cost

a Significant increase in the number of tag comparisons
@ Increased access latency
@ Increased power consumption

Can we get the benefits of a fully associative cache without paying
the cost?
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Example of L ocal Replacement

ADDRESS TAG-STORE DATA-STORE
WORKING SET
dx0
dx1
SET A | xO| x1| x2| x3 -
dx2
X = {>I<O, xll, xl2, xCI%} dx3
Y ={y0, y1,y2,y3} dy0
I l l I
\ dyl
SETB |y0|yl|y2|y3 -
dy?2
dy3
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Example of L ocal Replacement
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Example of L ocal Replacement

ADDRESS TAG-STORE DATA-STORE
WORKING SET
dx4
dx1
SET A | x4| x1| x2| x3 >
dx2
X = {0, X1, X2, X3, X4} dx3
Y ={y0, y1, y2} dyO
L1 |
\ dyl
SETB |y0|yl|y2|y3 -
dy?2
dy3

EE382N Lecture 11th April, 2006. 8/32



Example of L ocal Replacement

ADDRESS TAG-STORE DATA-STORE
WORKING SET
THRASH dx4
dx0
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dx2
X = {x0, X1, X2, X3, x4} dx3
Y ={y0, y1, y2} dyO
L1 |
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dy?2
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Example of L ocal Replacement

ADDRESS TAG-STORE DATA-STORE
WORKING SET
THRASH dx4
dx0
SET A} | x4 | x0| x2| x3 -
dx2
X = {x0, X1, X2, X3, x4} dx3
Y ={y0, y1, y2} dyO
L1 |
\ dyl
SETB |y0|yl|y2|y3 -
/ dy2
DORMANT WAY =1 dy3

Static partitioning of resources.
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Example of Global Replacement

REDISTRIBUTED
ADDRESS TAG-STORE DATA-STORE

WORKING SET

SET AO X0 | x2

X ={x0, x1,x2,x3} SETBO y0|y2

Y ={y0,y1,y2,y3} SETALl |xl|x3

~ SET Bl
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Example of Global Replacement

REDISTRIBUTED
ADDRESS TAG-STORE DATA-STORE

WORKING SET
SET AO X0 | x2 I

X = {x0, x1, X2, X3, X4} SETBO | y0|y2

Y = {y0, y1, y2} SETAL |x1|x3

\ SET B1

Dynamic sharing of resources!!

yl
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TheV-Way Cache

STATUS | TAG | FPTR TAG-STORE DATA-STORE
DATA
ARRAY
V| RPTR
TAG | INDEX | OFF
\

TAG FPTR
COMPARE SELECTJ

HIT

DATA

REPLACEMEN
SCHEME

GLOBAL }
.
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TheV-Way Cache
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TheV-Way Cache

STATUS | TAG | FPTR TAG-STORE DATA-STORE
DATA
ARRAY
V| RPTR
TAG | INDEX| OFF

TAG FPTR
COMPARE SELECTJ

HIT

Y

DATA

L\

GLOBAL
EPLACEMEN
SCHEME

Tl

EE382N Lecture 11th April, 2006.

10/32



TheV-Way Cache

STATUS | TAG | FPTR TAG-STORE DATA-STORE
DATA
ARRAY
v| RPTR
TAG | INDEX| OFF
\

TAG FPTR
COMPARE SELECTJ

MISS

DATA

GLOBAL
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TheV-Way Cache
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TheV-Way Cache

TAG-STORE

DATA-STORE

TAG | INDEX] OFF |

TAG

OMPARE SELECT

MISS
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DATA
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TheV-Way Cache
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TheV-Way Cache
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A Practical Global Replacement Algorithm

@ LRU is impractical because there are thousands of lines

@ Second level cache access stream Is a filtered version of the
program access stream

@ Reuse frequency of cache lines is very low. On average, more
than 80% of the lines are reused less than four times

@ We can track the reuse counts of a line with just two bits

We propose a frequency-based, clock-style, replacement scheme
called Reuse Replacement

EE382N Lecture 11th April, 2006.

11/32



Reuse Replacement

REUSE COUNTER
TABLE

<—— PTR

INITIALIZE

ACCESS ACCESS ACCESS

TEST TEST TEST

VICTIMIZE

TEST

@ Victim is the first “00” counter
@ Decrement counter value if not victim
@ Increment PTR after victim is found
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Reuse Replacement

REUSE COUNTER
TABLE

10

INITIALIZE
00

ACCESS ACCESS ACCESS 00

ACCESS
<—— PTR
TEST TEST TEST

VICTIMIZE

TEST

@ Victim is the first “00” counter
@ Decrement counter value if not victim
@ Increment PTR after victim is found
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Victim Distance for Reuse Replacement

@ Problem of variable replacement latency
@ Average victim distance: 3.9
@ Worst case victim distance: 1888

@ Solution
@ Test eight counters each cycle
@ Limit search to five cycles

Latency (in cycles) 1 2 3 4 5
Probability (victim) | 91.3% | 96.9% | 98.3% | 98.9% | 99.2%

EE382N Lecture 11th April, 2006. 13/32




Reduction in Misseswith the V-Way Cache

100
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Storage, Latency, and Energy Cost

@ Storage needed for extra tags, FPTR, RPTR, and Reuse bits

Line-size | Miss-rate reduction | Increase in area

128 B 13.2% 5.8%
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Storage, Latency, and Energy Cost

@ Storage needed for extra tags, FPTR, RPTR, and Reuse bits

Line-size | Miss-rate reduction | Increase in area

128 B 13.2% 5.8%

@ Delay due to more tags and FPTR selection: 130 ps
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Storage, Latency, and Energy Cost

@ Storage needed for extra tags, FPTR, RPTR, and Reuse bits

Line-size | Miss-rate reduction | Increase in area

128 B 13.2% 5.8%

@ Delay due to more tags and FPTR selection: 130 ps

@ Energy In accessing bigger tag-store

Parallel lookup | Baseline | V-Way

1.02nJ 0.35nJ | 0.40nJ
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Outline

@ Introduction
@ The V-Way Cache
@ MLP-Aware Cache Replacement

@ Summary
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Memory Level Parallelism (ML P)

@ Performance loss due to L2 misses can be reduced by
servicing the misses in parallel

@ The notion of servicing multiple misses in parallel is termed
Memory Level Parallelism (MLP) [Glew WACI’98]

@ Several techniques to improve MLP
@ Made possible by non-blocking caches [Kroft ISCA’81]
@ Out-of-order processing [Choi+ ISCA’04]
@ Runahead execution [Mutlu+ HPCA’03]
@ Read miss clustering at compile time [Pai+ MICRO’99]
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MLP isNot Uniform for All Misses

A | c |
more
‘> costly :>c|§§tsly
B

| | | | | > | | | | | >
0 200 400 600 800 1000 0 200 400 600 800 1000
time (cycles) time (cycles)

@ MLP is not uniform across all misses
@ [solated misses are more costly than parallel misses
@ Current replacement schemes assume uniform cost for all lines

@ MLP-aware replacement can improve performance. Need a
model to quantify the MLP-based cost of each miss.
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Algorithm to Compute ML P-Based Cost

@ MLP-based cost depends on:
@ The number of parallel misses (more misses = less costly)
@ The amount of overlap (more overlap = less costly)
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Algorithm to Compute ML P-Based Cost

@ MLP-based cost depends on:
@ The number of parallel misses (more misses = less costly)
@ The amount of overlap (more overlap = less costly)

@ MSHR keeps track of all in-flight misses
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Algorithm to Compute ML P-Based Cost

@ MLP-based cost depends on:
@ The number of parallel misses (more misses = less costly)
@ The amount of overlap (more overlap = less costly)

@ MSHR keeps track of all in-flight misses

@ Add a field mlp_cost to each MSHR entry

update_mlp_cost() /* gets called every cycle */
begin:
N < Number of outstanding demand misses in MSHR
for each demand miss in the MSHR
miss.mlp_cost+ = (1/N)
end
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Machine Configuration

@ Pipeline: Out-of-order, 8-wide, 128-entry window
@ First level caches: 16kB, 2-way, 64B linesize

@ Second level cache: 1MB, 16-way, 64B linesize
@ Memory latency: 400 cycles

@ Bus latency: 40 cycles (without contention)
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Distribution of ML P-Based Cost
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Distribution of ML P-Based Cost
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Repeatability of M LP-Based Cost

A miss that was serviced in 1solation can be serviced In
parallel the next time

Given the current cost we need to estimate the future cost

How stable Is the cost for consecutive misses for a cache line?

et delta be the absolute difference between the cost for
consecutive misses to a given line

Lower values of delta denotes that the similar cost repeats

Higher values of delta means cost varies significantly
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Repeatability of M LP-Based Cost
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For most benchmarks, the delta value is small indicating that we can
use our cost metric for cost-sensitive cache replacement

However, the high value of delta for parser and mgrid indicate that
we will need an adaptive mechanism to revert back
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Design of ML P-Aware Replacement Scheme

COST (@) (b)
CALCULATION
LOGIC BUS Computed value off Quantized
L2 MLP-Based Cost| Vvalue
CCL | MmSHR
0 to 59 cycles 0
C 60 to 119 cycles 1
A
REPLACEMENT LE 180 to 239 cycles 3
=NGINE T 240 to 299 cycles 4
v Y 300 to 359 cycles 5
ICACHE DCACHE
360 to 419 cycles 6
PROCESSOR PIPELINE 420+ cycles 7

EE382N Lecture 11th April, 2006. 25/32



Design of ML P-Aware Replacement Scheme

COST (@) (b)
CALCULATION
LOGIC BUS Computed value off Quantized
L2 MLP-Based Cost| Vvalue
CCL | MmSHR
0 to 59 cycles 0
C 60 to 119 cycles 1
A
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Need to include both recency as well as cost information in
replacement decisions.
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Design of ML P-Aware Replacement Scheme

COST (@) (b)
CALCULATION
LOGIC BUS Computed value off Quantized
L2 MLP-Based Cost| Vvalue
CCL | MmSHR
0 to 59 cycles 0
C 60 to 119 cycles 1
A
REPLACEMENT LE 180 to 239 cycles 3
=NGINE T 240 to 299 cycles 4
v Y 300 to 359 cycles 5
ICACHE DCACHE
360 to 419 cycles 6
PROCESSOR PIPELINE 420+ cycles 7

Need to include both recency as well as cost information in
replacement decisions.  Proposed a linear (LIN) function

Victim = min{Recency(i) + X\ x cost(i)}
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Resultsfor the LIN Policy

(%) IPC improvement over baseline (LRU)
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Resultsfor the LIN Policy
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Decisions based on MLP cost hurts performance on parser and
mgrid because of the high delta values. Need a mechanism to turn

on LIN only if it is likely to benefit.
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Cost Distribution for the LIN policy
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Tournament Selection of Replacement Policy

ATD-LIN

Saturating Counter

SET A

If MSB of SCTR is 1,
MTD uses LIN
else MTD uses LRU MTD

ATD-LRU

SET A

ATD-LIN | ATD-LRU Action
HIT HIT SCTR unchanged
MISS MISS SCTR unchanged
MISS HIT Decre_ment SCTR by cost
of Miss in ATD-LIN
Increment SCTR by cost
HIT MISS

of Miss in ATD-LRU
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Tournament Selection of Replacement Policy

Saturating Counter ATD-LIN | ATD-LRU Action
ATD-LIN ATD-LRU
HIT HIT SCTR unchanged
SET A SET A
MISS MISS SCTR unchanged
If MSB of SCTR is 1, MISS HIT Decre_ment SCTR by costq
MTD uses LIN MTD of Miss in ATD-LIN
else MTD uses LRU Increment SCTR by cost
SET A HIT MISS of Miss in ATD-LRU

@ Tournament selection is expensive in terms of hardware cost if
Implemented on a per-set basis.

@ We can make the decision based on a few sampled-set and use
this decision globally for the entire cache.
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Sampling Based Adaptive Replacement

Legend for MTD

Leader Sets. Implement LIN
Policy. Have ATD entries.

MTD _ _
Follower Sets. Policy decided
Set A By SCTR. No ATD entries.
Set B
ATD-LRU
Set C Set B
e
Set D N\
e — - SCTR|t|=— Set E
e
T setG
Set F
Set G . :
Decides Policy for only
Set H Follower Sets in MTD

Sampling Based Adaptive Replacement
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Resultsfor SBAR

(%) IPC improvement over baseline (LRU)
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Outline

@ Problem Description

@ The V-Way Cache

@ MLP-Aware Cache Replacement
@ Summary
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Summary

@ What Is the problem?
— Traditional designs do not use the L2 cache efficiently
— This leads to increased L2 misses and reduced performance
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Summary

What is the problem?
— Traditional designs do not use the L2 cache efficiently
— This leads to increased L2 misses and reduced performance

The V-Way cache can lower miss rate by allowing global
replacement

MLP-Aware replacement can improve performance by
reducing the number of costly misses.

For more information:

— “The V-Way Cache: Demand-Based Associativity via Global Replacement” by Moinuddin
K. Qureshi, David Thompson, and Yale N. Patt, ISCA 2005.
(http://www.ece.utexas.edu/-gk/papers/vway.pdf)

— ““A Case for MLP-Aware Cache Replacement by Moinuddin K. Qureshi, Daniel N. Lynch,
Onur Mutlu, and Yale N. Patt, ISCA 2006. (http://www.ece.utexas.edu/-gk/papers/mip.pdf)
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