INSTRUCTION SET REFERENCE

ADD—Add
Opcode Instruction Descri ption
04 ib ADD AL,imm8 Add imm8to AL
05 iw ADD AX,imm16 Add imm16to AX
05 id ADD EAX,imm32 Add imm32 to EAX
80 /0 ib ADD r/m8,imm8 Add imm8to r/m8
81 /0 iw ADD r/m16,imm16 Add imm16to r/m16
81 /0 id ADD r/m32,imm32 Add imm32to r/m32
83/0ib ADD r/m16,imm8 Add sign-extended imm8to r/m16
83/0 ib ADD r/m32,imm8 Add sign-extended imm8to r/m32
00 /r ADD r/m8,r8 Add r8to ¥/m8
01/r ADD r/m16,r16 Add r16to r/m16
01/r ADD r/m32,r32 Add r32 to /m32
02/r ADD r8,r/m8 Add /m8to r8
03/r ADD r16,r/m16 Add r/mi16to r16
03/r ADD r32,r/m32 Add r/m32to r32
Description

Adds the first operand (destination operand) and the second operand (source operand) and stores
the result in the destination operand. The destination operand can be a register or a memory
location; the source operand can be an immediate, a register, or a memory location. (However,
two memory operands cannot be used in one instruction.) When an immediate value is used as

an operand, it is sign-extended to the length of the destination operand format.

The ADD instruction performs integer addition. It evaluates the result for both signed and
unsigned integer operands and sets the OF and CF flags to indicate a carry (overflow) in the
signed or unsigned result, respectively. The SF flag indicates the sign of the signed result.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-

cally.

Operation

DEST « DEST + SRC;

Flags Affected

The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

3-22

Intel® INSTRUCTION SET REFERENCE

ADD—Add (Cont inued)

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

3-23

INSTRUCTION SET REFERENCE Intel®

AND—Logical AND

Opcode Instru ction Descri ption
24 ib AND AL,imm8 AL AND imm8
25 iw AND AX,imm16 AX AND imm16
25 id AND EAX,imm32 EAX AND imm32
80 /4 ib AND r/m8,imm8 /m8 AND imm8
81 /4 iw AND r/m16,imm16 /m16 AND imm16
81 /4 id AND r/m32,imm32 /m32 AND imm32
83 /4 ib AND r/m16,imm8 r/m16 AND imm8 (sign-extended)
83 /4 ib AND r/m32,imm8 /m32 AND imm8 (sign-extended)
20 /r AND r/m8,r8 /m8 AND r8
211/r AND r/m16,r16 /m16 AND r16
211/r AND r/m32,r32 /m32 AND r32
22 1/r AND r8,r/m8 r8 AND r/m8
231/r AND r16,r/m16 r16 AND r/m16
231/r AND r32,r/m32 r32 AND r/m32
Description

Performs a bitwise AND operation on the destination (first) and source (second) operands and
stores the result in the destination operand location. The source operand can be an immediate, a
register, or a memory location; the destination operand can be a register or a memory location.
(However, two memory operands cannot be used in one instruction.) Each bit of the result is set to
1 if both corresponding bits of the first and second operands are 1; otherwise, it is set to 0.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST « DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

3-32

Intel® INSTRUCTION SET REFERENCE

AND—Logical A ND (Continued)

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

3-33

Intel® INSTRUCTION SET REFERENCE

CALL—cCall Procedure

Opcode Instru ction Descri ption

E8 cw CALL rel16 Call near, relative, displacement relative to next instruction

E8 cd CALL rel32 Call near, relative, displacement relative to next instruction

FF /2 CALL r/m16 Call near, absolute indirect, address given in /m16

FF /2 CALL r/m32 Call near, absolute indirect, address given in /m32

9A cd CALL ptr16:16 Call far, absolute, address given in operand

9A cp CALL ptr16:32 Call far, absolute, address given in operand

FF /3 CALL m16:16 Call far, absolute indirect, address given in m16:16

FF /3 CALL m16:32 Call far, absolute indirect, address given in m16:32
Description

Saves procedure linking information on the stack and branches to the procedure (called proce-
dure) specified with the destination (target) operand. The target operand specifies the address of
the first instruction in the called procedure. This operand can be an immediate value, a general-
purpose register, or a memory location.

This instruction can be used to execute four different types of calls:

® Near call—A call to a procedure within the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intrasegment call.

® Far call—A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

® Inter-privilege-level far call—A far call to a procedure in a segment at a different privilege
level than that of the currently executing program or procedure.

® Task switch—A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in
protected mode. See the section titled “Calling Procedures Using Call and RET” in Chapter 6 of
the IA-32 Intel Architecture Software Developer’s Manual, Volume 1, for additional information
on near, far, and inter-privilege-level calls. See Chapter 6, Task Management, in the IA-32 Intel
Architecture Software Developer’s Manual, Volume 3, for information on performing task
switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register
(which contains the offset of the instruction following the CALL instruction) onto the stack (for
use later as a return-instruction pointer). The processor then branches to the address in the
current code segment specified with the target operand. The target operand specifies either an
absolute offset in the code segment (that is an offset from the base of the code segment) or a
relative offset (a signed displacement relative to the current value of the instruction pointer in
the EIP register, which points to the instruction following the CALL instruction). The CS
register is not changed on near calls.

3-59

INSTRUCTION SET REFERENCE Intel®

CALL —Call Procedure (Cont inued)

For a near call, an absolute offset is specified indirectly in a general-purpose register or a
memory location (r/m16 or r/m32). The operand-size attribute determines the size of the target
operand (16 or 32 bits). Absolute offsets are loaded directly into the EIP register. If the operand-
size attribute is 16, the upper two bytes of the EIP register are cleared, resulting in a maximum
instruction pointer size of 16 bits. (When accessing an absolute offset indirectly using the stack
pointer [ESP] as a base register, the base value used is the value of the ESP before the instruction
executes.)

A relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at the
machine code level, it is encoded as a signed, 16- or 32-bit immediate value. This value is added
to the value in the EIP register. As with absolute offsets, the operand-size attribute determines
the size of the target operand (16 or 32 bits).

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-
address or virtual-8086 mode, the processor pushes the current value of both the CS and EIP
registers onto the stack for use as a return-instruction pointer. The processor then performs a “far
branch” to the code segment and offset specified with the target operand for the called proce-
dure. Here the target operand specifies an absolute far address either directly with a pointer
(ptrl16:16 or ptrl16:32) or indirectly with a memory location (m/6:16 or m16:32). With the
pointer method, the segment and offset of the called procedure is encoded in the instruction,
using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With
the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the
CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL
instruction can be used to perform the following three types of far calls:

® Far call to the same privilege level.
® Far call to a different privilege level (inter-privilege level call).
® Task switch (far call to another task).

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of call operation to be performed.

If the selected descriptor is for a code segment, a far call to a code segment at the same privilege
level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far call to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from the instruction
is loaded into the EIP register.

3-60

Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (Cont inued)

Note that a call gate (described in the next paragraph) can also be used to perform far call to a
code segment at the same privilege level. Using this mechanism provides an extra level of indi-
rection and is the preferred method of making calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called
must be accessed through a call gate. The segment selector specified by the target operand iden-
tifies the call gate. Here again, the target operand can specify the call gate segment selector
either directly with a pointer (ptri6:16 or ptri6:32) or indirectly with a memory location
(m16:16 or m16:32). The processor obtains the segment selector for the new code segment and
the new instruction pointer (offset) from the call gate descriptor. (The offset from the target
operand is ignored when a call gate is used.) On inter-privilege-level calls, the processor
switches to the stack for the privilege level of the called procedure. The segment selector for the
new stack segment is specified in the TSS for the currently running task. The branch to the new
code segment occurs after the stack switch. (Note that when using a call gate to perform a far
call to a segment at the same privilege level, no stack switch occurs.) On the new stack, the
processor pushes the segment selector and stack pointer for the calling procedure’s stack, an
(optional) set of parameters from the calling procedures stack, and the segment selector and
instruction pointer for the calling procedure’s code segment. (A value in the call gate descriptor
determines how many parameters to copy to the new stack.) Finally, the processor branches to
the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction, is somewhat similar to executing a call
through a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to (and the offset in the target operand is ignored.) The task gate in turn
points to the TSS for the task, which contains the segment selectors for the task’s code and stack
segments. The TSS also contains the EIP value for the next instruction that was to be executed
before the task was suspended. This instruction pointer value is loaded into EIP register so that
the task begins executing again at this next instruction.

The CALL instruction can also specify the segment selector of the TSS directly, which elimi-
nates the indirection of the task gate. See Chapter 6, Task Management, in the IA-32 Intel Archi-
tecture Software Developer’s Manual, Volume 3, for detailed information on the mechanics of a
task switch.

Note that when you execute at task switch with a CALL instruction, the nested task flag (NT) is
set in the EFLAGS register and the new TSS’s previous task link field is loaded with the old
tasks TSS selector. Code is expected to suspend this nested task by executing an IRET instruc-
tion, which, because the NT flag is set, will automatically use the previous task link to return to
the calling task. (See “Task Linking” in Chapter 6 of the IA-32 Intel Architecture Software
Developer’s Manual, Volume 3, for more information on nested tasks.) Switching tasks with the
CALL instruction differs in this regard from the JMP instruction which does not set the NT flag
and therefore does not expect an IRET instruction to suspend the task.

3-61

INSTRUCTION SET REFERENCE Intel®

CALL —Call Procedure (Cont inued)

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, the calls should be made through a call gate. If the far call is from a 32-bit code
segment to a 16-bit code segment, the call should be made from the first 64 KBytes of the 32-
bit code segment. This is because the operand-size attribute of the instruction is set to 16, so only
a 16-bit return address offset is saved. Also, the call should be made using a 16-bit call gate so
that 16-bit values will be pushed on the stack. See Chapter 17, Mixing 17-Bit and 32-Bit Code,
in the IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for more information
on making calls between 16-bit and 32-bit code segments.

Operation

IF near call
THEN IF near relative call
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32
THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); Fl;
Push(EIP);
EIP « EIP + DEST; (* DEST is rel32*)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); Fl;
Push(IP);
EIP « (EIP + DEST) AND 0000FFFFH; (* DEST is rel16 *)
FI;
FI;
ELSE (* near absolute call *)
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32
THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); Fl;
Push(EIP);
EIP < DEST,; (* DEST is /m32*)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); Fl;
Push(IP);
EIP <~ DEST AND O000FFFFH; (* DEST is r/m16 *)
FI;
Fl:
Fl;

IF far call AND (PE =0 OR (PE =1 AND VM = 1)) (* real-address or virtual-8086 mode *)
THEN
IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); Fl;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;

3-62

Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (Cont inued)

Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS « DESTI[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP «— DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS « DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP «— DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP « EIP AND 0000FFFFH; (* clear upper 16 bits *)
FI;
FI;

IF far call AND (PE =1 AND VM = 0) (* Protected mode, not virtual-8086 mode *)
THEN
IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector);
Fl;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,
task gate, or TSS THEN #GP(segment selector); Fl;
Depending on type and access rights
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
FI;

CONFORMING-CODE-SEGMENT:

IF DPL > CPL THEN #GP(new code segment selector); FI;

IF segment not present THEN #NP(new code segment selector); Fl;

IF OperandSize = 32

THEN

IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS « DEST[NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) « CPL
EIP « DEST[offset);

3-63

INSTRUCTION SET REFERENCE

CALL —Call Procedure (Cont inued)

Fl;
END;

ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); Fl;

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;

Push(CS);

Push(IP);

CS « DEST[NewCodeSegmentSelector);

(* segment descriptor information also loaded *)

CS(RPL) « CPL

EIP « DEST[offset) AND O000FFFFH; (* clear upper 16 bits *)

NONCONFORMING-CODE-SEGMENT:

IF (RPL > CPL) OR (DPL # CPL) THEN #GP(new code segment selector); FI;

IF segment not present THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address THEN #SS(0); Fl;
tempEIP « DEST[offset)

IF OperandSize=16

FI;

THEN

tempEIP « tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

FI;
END;

THEN

Push(CS); (* padded with 16 high-order bits *)
Push(EIP);

CS « DEST[NewCodeSegmentSelector);

(* segment descriptor information also loaded *)
CS(RPL) « CPL;

EIP « tempEIP;

ELSE (* OperandSize = 16 *)

Push(CS);

Push(IP);

CS « DEST[NewCodeSegmentSelector);

(* segment descriptor information also loaded *)
CS(RPL) « CPL;

EIP « tempEIP;

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); Fl;
IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI,

3-64

Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (Cont inued)

IF call gate code-segment selector index is outside descriptor table limits
THEN #GP(code segment selector); Fl;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL
THEN #GP(code segment selector); Fl;
IF code segment not present THEN #NP(new code segment selector); Fl;
IF code segment is non-conforming AND DPL < CPL
THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;
Fl,
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS
THEN
TSSstackAddress < new code segment (DPL * 8) + 4
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(current TSS selector); FI;
newSsS « TSSstackAddress + 4;
newESP « stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress < new code segment (DPL * 4) + 2
IF (TSSstackAddress +4) > TSS limit
THEN #TS(current TSS selector); FI;
newESP « TSSstackAddress;
newSsS « TSSstackAddress + 2;
Fl;
IF stack segment selector is null THEN #TS(stack segment selector); Fl;
IF stack segment selector index is not within its descriptor table limits
THEN #TS(SS selector); Fl
Read code segment descriptor;
IF stack segment selector's RPL # DPL of code segment
OR stack segment DPL # DPL of code segment
OR stack segment is not a writable data segment
THEN #TS(SS selector); Fl
IF stack segment not present THEN #SS(SS selector); FI;
IF CallGateSize = 32
THEN
IF stack does not have room for parameters plus 16 bytes
THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;
SS < newsSs;
(* segment descriptor information also loaded *)

3-65

INSTRUCTION SET REFERENCE Intel®

CALL —Call Procedure (Cont inued)

ESP < newESP;
CS:EIP « CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp « parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)
ELSE (* CallGateSize = 16 *)
IF stack does not have room for parameters plus 8 bytes
THEN #SS(SS selector); Fl;
IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit
THEN #GP(0); FI;

SS < newss;
(* segment descriptor information also loaded *)
ESP < newESP;
CS:IP « CallGate(CS:InstructionPointer);
(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)
temp « parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

Fl;

CPL « CodeSegment(DPL)

CS(RPL) « CPL

END,;

SAME-PRIVILEGE:
IF CallGateSize = 32
THEN
IF stack does not have room for 8 bytes
THEN #SS(0); FI;
IF EIP not within code segment limit then #GP(0); FI;
CS:EIP « CallGate(CS:EIP) (* segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* return address to calling procedure *)
ELSE (* CallGateSize = 16 *)
IF stack does not have room for 4 bytes
THEN #SS(0); FI;
IF IP not within code segment limit THEN #GP(0); FI;
CS:IP « CallGate(CS:instruction pointer)
(* segment descriptor information also loaded *)
Push(oldCS:oldIP); (* return address to calling procedure *)
FI;
CS(RPL) « CPL
END,;

3-66

Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (Cont inued)

TASK-GATE:
IF task gate DPL < CPL or RPL
THEN #GP(task gate selector);
Fl;
IF task gate not present
THEN #NP(task gate selector);
Fl;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
OR index not within GDT limits
THEN #GP(TSS selector);
FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);
FI;
IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0);
FI;
END,;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
OR TSS descriptor indicates TSS not available
THEN #GP(TSS selector);
FI;
IF TSS is not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit
THEN #GP(0);
Fl,
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

3-67

INSTRUCTION SET REFERENCE Intel®

CALL —Call Procedure (Cont inued)

Protected Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)

3-68

If target offset in destination operand is beyond the new code segment
limit.
If the segment selector in the destination operand is null.

If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

If code segment or gate or TSS selector index is outside descriptor table
limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL or
the RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for a segment selector from a call gate does not
indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor table
limits.

If the DPL for a code-segment obtained from a call gate is greater than the
CPL.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when no stack switch
occurs.

If a memory operand effective address is outside the SS segment limit.

intgl.

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Cont inued)

#SS(selector)

#NP(selector)

#T'S(selector)

#PF(fault-code)
#AC(0)

If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when a stack switch
occurs.

If the SS register is being loaded as part of a stack switch and the segment
pointed to is marked not present.

If stack segment does not have room for the return address, parameters, or
stack segment pointer, when stack switch occurs.

If a code segment, data segment, stack segment, call gate, task gate, or
TSS is not present.

If the new stack segment selector and ESP are beyond the end of the TSS.
If the new stack segment selector is null.

If the RPL of the new stack segment selector in the TSS is not equal to the
DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not
equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

3-69

Intel® INSTRUCTION SET REFERENCE

CLD—Clear Direction Flag

Opcode Instru ction Descri ption
FC CLD Clear DF flag
Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations incre-
ment the index registers (ESI and/or EDI).

Operation
DF « O;

Flags Affected
The DF flag is set to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

3-73

intgl.

CMOVceec—Conditional Move

INSTRUCTION SET REFERENCE

Opcode Instru ction

OF 47 /r CMOVA r16, /m16
OF 47 /r CMOVA r32, ’/m32
OF 43 /r CMOVAE r16, ’/m16
OF 43 /r CMOVAE r32, ’/m32
OF 42 /r CMOVB r16, /m16
OF 42 /r CMOVB r32, r/m32
OF 46 /r CMOVBE r16, ’/m16
OF 46 /r CMOVBE r32, ’/m32
OF 42 /r CMOVC r16, /m16
OF 42 /r CMOVC r32, /m32
OF 44 /r CMOVE r16, r/m16
OF 44 /r CMOVE r32, r/m32
OF 4F /r CMOVG r16, /m16
OF 4F /r CMOVG r32, /m32
OF 4D /r CMOVGE r16, /m16
OF 4D /r CMOVGE r32, /m32
OF 4C /r CMOVL r16, /m16
OF 4C /r CMOVL r32, /m32
OF 4E /r CMOVLE r16, /m16
OF 4E /r CMOVLE r32, ’/m32
OF 46 /r CMOVNA r16, /m16
OF 46 /r CMOVNA r32, /m32
OF 42 /r CMOVNAE r16, /m16
OF 42 /r CMOVNAE r32, /m32
OF 43 /r CMOVNB r16, /m16
OF 43 /r CMOVNB r32, /m32
OF 47 /r CMOVNBE r16, /m16
OF 47 /r CMOVNBE r32, /m32
OF 43 /r CMOVNC r16, /m16
OF 43 /r CMOVNC r32, ’/m32
OF 45 /r CMOVNE r16, /m16
OF 45 /r CMOVNE r32, /m32
OF 4E /r CMOVNG r16, /m16
OF 4E /r CMOVNG r32, /m32
OF 4C /r CMOVNGE r16, /m16
OF 4C /r CMOVNGE r32, /m32
OF 4D /r CMOVNL r16, /m16
OF 4D /r CMOVNL r32, /m32
OF 4F /r CMOVNLE r16, /m16
OF 4F /r CMOVNLE r32, /m32

Descri ption

Move if above (CF=0 and ZF=0)

Move if above (CF=0 and ZF=0)

Move if above or equal (CF=0)

Move if above or equal (CF=0)

Move if below (CF=1)

Move if below (CF=1)

Move if below or equal (CF=1 or ZF=1)
Move if below or equal (CF=1 or ZF=1)
Move if carry (CF=1)

Move if carry (CF=1)

Move if equal (ZF=1)

Move if equal (ZF=1)

Move if greater (ZF=0 and SF=OF)
Move if greater (ZF=0 and SF=OF)
Move if greater or equal (SF=0OF)

Move if greater or equal (SF=0OF)

Move if less (SF<>OF)

Move if less (SF<>OF)

Move if less or equal (ZF=1 or SF<>0F)
Move if less or equal (ZF=1 or SF<>0F)
Move if not above (CF=1 or ZF=1)
Move if not above (CF=1 or ZF=1)
Move if not above or equal (CF=1)
Move if not above or equal (CF=1)
Move if not below (CF=0)

Move if not below (CF=0)

Move if not below or equal (CF=0 and ZF=0)
Move if not below or equal (CF=0 and ZF=0)
Move if not carry (CF=0)

Move if not carry (CF=0)

Move if not equal (ZF=0)

Move if not equal (ZF=0)

Move if not greater (ZF=1 or SF<>OF)
Move if not greater (ZF=1 or SF<>OF)
Move if not greater or equal (SF<>OF)
Move if not greater or equal (SF<>OF)
Move if not less (SF=0OF)

Move if not less (SF=0OF)

Move if not less or equal (ZF=0 and SF=OF)
Move if not less or equal (ZF=0 and SF=OF)

3-81

INSTRUCTION SET REFERENCE

CMOVcec—Conditional M ove (Continued)

Opcode Instruction Descri ption

OF 41 /r CMOVNO r16, /m16 Move if not overflow (OF=0)

OF 41 /r CMOVNO r32, /m32 Move if not overflow (OF=0)

OF 4B /r CMOVNP r16, /m16 Move if not parity (PF=0)

OF 4B /r CMOVNP r32, /m32 Move if not parity (PF=0)

OF 49 /r CMOVNS r16, /m16 Move if not sign (SF=0)

OF 49 /r CMOVNS r32, /m32 Move if not sign (SF=0)

OF g5 /r CMOVNZ r16, /m16 Move if not zero (ZF=0)

OF 45 /r CMOVNZ r32, /m32 Move if not zero (ZF=0)

OF 40 /r CMOVO r16, /m16 Move if overflow (OF=1)

OF 40 /r CMOVO r32, /m32 Move if overflow (OF=1)

OF 4A /r CMOVP r16, /m16 Move if parity (PF=1)

OF 4A /r CMOVP r32, /m32 Move if parity (PF=1)

OF 4A /r CMOVPE r16, /m16 Move if parity even (PF=1)

OF 4A /r CMOVPE r32, /m32 Move if parity even (PF=1)

OF 4B /r CMOVPO r16, /m16 Move if parity odd (PF=0)

OF 4B /r CMOVPO r32, /m32 Move if parity odd (PF=0)

OF 48 /r CMOVS r16, /m16 Move if sign (SF=1)

OF 48 /r CMOVS r32, /m32 Move if sign (SF=1)

OF 44 /r CMOVZ r16, /m16 Move if zero (ZF=1)

OF 44 /r CMOVZ r32, /m32 Move if zero (ZF=1)
Description

The CMOVcc instructions check the state of one or more of the status flags in the EFLAGS
register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are in a specified
state (or condition). A condition code (cc) is associated with each instruction to indicate the
condition being tested for. If the condition is not satisfied, a move is not performed and execu-
tion continues with the instruction following the CMOV cc instruction.

These instructions can move a 16- or 32-bit value from memory to a general-purpose register or
from one general-purpose register to another. Conditional moves of 8-bit register operands are
not supported.

The conditions for each CMOVcc mnemonic is given in the description column of the above
table. The terms “less” and “greater” are used for comparisons of signed integers and the terms
“above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the CMOVA (conditional move if
above) instruction and the CMOVNBE (conditional move if not below or equal) instruction are
alternate mnemonics for the opcode OF 47H.

3-82

Intel® INSTRUCTION SET REFERENCE

CMOVec—Conditional Move (Con tinued)

The CMOVcc instructions were introduced in the P6 family processors; however, these instruc-
tions may not be supported by all IA-32 processors. Software can determine if the CMOVc¢c
instructions are supported by checking the processor’s feature information with the CPUID
instruction (see “COMISS—Compare Scalar Ordered Single-Precision Floating-Point Values
and Set EFLAGS” in this chapter).

Operation

temp < SRC
IF condition TRUE
THEN
DEST « temp
Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

3-83

INSTRUCTION SET REFERENCE Intel®

CMOVcec—Conditional M ove (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

3-84

INSTRUCTION SET REFERENCE Intel®

HLT—Halt
Opcode Instruction Descri ption
F4 HLT Halt
Description

Stops instruction execution and places the processor in a HALT state. An enabled interrupt
(including NMI and SMI), a debug exception, the BINIT# signal, the INIT# signal, or the
RESET# signal will resume execution. If an interrupt (including NMI) is used to resume execu-
tion after a HLT instruction, the saved instruction pointer (CS:EIP) points to the instruction
following the HLT instruction.

When a HLT instruction is executed on an IA-32 processor with Hyper-Threading Technology,
only the logical processor that executes the instruction is halted. The other logical processors in
the physical processor remain active, unless they are each individually halted by executing a
HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in protected or
virtual-8086 mode, the privilege level of a program or procedure must be O to execute the HLT
instruction.

Operation

Enter Halt state;

Flags Affected

None.

Protected Mode Exceptions
#GP(0)

Real-Addr ess Mode Exceptions

None.

Virtual-8086 Mode Exceptions
#GP(0)

3-324

INSTRUCTION SET REFERENCE Intel®

INC—Increment by 1

Opcode Instruction Descri ption

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC /m16 Increment r/m word by 1

FF /0 INC /m32 Increment r/m doubleword by 1

40+ rw INC r16 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1
Description

Adds 1 to the destination operand, while preserving the state of the CF flag. The destination
operand can be a register or a memory location. This instruction allows a loop counter to be
updated without disturbing the CF flag. (Use a ADD instruction with an immediate operand of
1 to perform an increment operation that does updates the CF flag.)

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST « DEST +1,

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS5(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

3-334

Intel® INSTRUCTION SET REFERENCE

INC—Increment by 1 (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

3-335

INSTRUCTION SET REFERENCE Intel®

IRET/IRETD—Interrupt Re turn

Opcode Instruction Descri ption

CF IRET Interrupt return (16-bit operand size)

CF IRETD Interrupt return (32-bit operand size)
Description

Returns program control from an exception or interrupt handler to a program or procedure that
was interrupted by an exception, an external interrupt, or a software-generated interrupt. These
instructions are also used to perform a return from a nested task. (A nested task is created when
a CALL instruction is used to initiate a task switch or when an interrupt or exception causes a
task switch to an interrupt or exception handler.) See the section titled “Task Linking” in
Chapter 6 of the IA-32 Intel Architecture Software Developer’s Manual, Volume 3.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return
double) is intended for use when returning from an interrupt when using the 32-bit operand size;
however, most assemblers use the IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted program or
procedure. During this operation, the processor pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers,
respectively, and then resumes execution of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested
task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS image stored on
the current stack. Depending on the setting of these flags, the processor performs the following
types of interrupt returns:

® Return from virtual-8086 mode.

® Return to virtual-8086 mode.

® Intra-privilege level return.

® Inter-privilege level return.

® Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return from the
interrupt procedure, without a task switch. The code segment being returned to must be equally
or less privileged than the interrupt handler routine (as indicated by the RPL field of the code
segment selector popped from the stack). As with a real-address mode interrupt return, the IRET
instruction pops the return instruction pointer, return code segment selector, and EFLAGS
image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes
execution of the interrupted program or procedure. If the return is to another privilege level, the
IRET instruction also pops the stack pointer and SS from the stack, before resuming program
execution. If the return is to virtual-8086 mode, the processor also pops the data segment regis-
ters from the stack.

3-354

intgl.

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Co ntinued)

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a
task called with a CALL instruction, an interrupt, or an exception) back to the calling or inter-
rupted task. The updated state of the task executing the IRET instruction is saved in its TSS. If
the task is re-entered later, the code that follows the IRET instruction is executed.

Operation

IFPE=0
THEN

GOTO REAL-ADDRESS-MODE;;

ELSE

GOTO PROTECTED-MODE;

Fl;

REAL-ADDRESS-MODE;
IF OperandSize = 32
THEN

IF top 12 bytes of stack not within stack limits THEN #SS; FI,

IF instruction pointer not within code segment limits THEN #GP(0); FI;

EIP « Pop();

CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)

tempEFLAGS « Pop();

EFLAGS « (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)

Fl;
END;

IF top 6 bytes of stack are not within stack limits THEN #SS; FI;

IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP « Pop();

EIP « EIP AND 0000FFFFH;

CS « Pop(); (* 16-bit pop *)

EFLAGS[15:0] <« Pop();

PROTECTED-MODE:
IF VM =1 (* Virtual-8086 mode: PE=1, VM=1 *)
THEN

Fl;

GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *)

IFNT=1
THEN

FI;

GOTO TASK-RETURN;(*PE=1, VM=0, NT=1 *)

IF OperandSize=32
THEN

IF top 12 bytes of stack not within stack limits

3-355

INSTRUCTION SET REFERENCE Intel®

IRET/IRETD—Interrupt Return (Cont inued)

THEN #SS(0)
Fl;
tempEIP « Pop();
tempCS « Pop();
tempEFLAGS « Pop();
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits
THEN #SS(0);
FI;
tempEIP « Pop();
tempCS « Pop();
tempEFLAGS « Pop();
tempEIP « tempEIP AND FFFFH,;
tempEFLAGS « tempEFLAGS AND FFFFH;
Fl;
IF tempEFLAGS(VM) = 1 AND CPL=0
THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE=1, VM=1 in EFLAGS image *)
ELSE
GOTO PROTECTED-MODE-RETURN;
(* PE=1, VM=0 in EFLAGS image *)
FI;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)
IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS « Pop();
(*VM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP « Pop();
EIP « EIP AND 0000FFFFH;
CS « Pop(); (* 16-bit pop *)
EFLAGSI[15:0] « Pop(); (* IOPL in EFLAGS is not modified by pop *)

FI;

ELSE
#GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)

3-356

Intel® INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Co ntinued)

FI;
END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *)
IF top 24 bytes of stack are not within stack segment limits
THEN #SS(0);
Fl;
IF instruction pointer not within code segment limits
THEN #GP(0);
FI;
CS « tempCS;
EIP « tempEIP;
EFLAGS « tempEFLAGS
TempESP « Pop();
TempSS « Pop();
ES « Pop(); (* pop 2 words; throw away high-order word *)
DS « Pop(); (* pop 2 words; throw away high-order word *)
FS « Pop(); (* pop 2 words; throw away high-order word *)
GS « Pop(); (* pop 2 words; throw away high-order word *)
SS:ESP « TempSS:TempESP,;
CPL « 3;
(* Resume execution in Virtual-8086 mode *)
END,;

TASK-RETURN: (* PE=1, VM=1, NT=1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
OR index not within GDT limits
THEN #TS (TSS selector);
FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy
THEN #TS (TSS selector);
Fl;
IF TSS not present
THEN #NP(TSS selector);
FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit
THEN #GP(0);
FI;
END,;

3-357

INSTRUCTION SET REFERENCE Intel®

IRET/IRETD—Interrupt Return (Cont inued)

PROTECTED-MODE-RETURN: (* PE=1, VM=0 in flags image *)
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit
THEN GP(selector; FI;
Read segment descriptor pointed to by the return code segment selector
IF return code segment descriptor is not a code segment THEN #GP(selector); Fl;
IF return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is conforming
AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL
FI;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
IF EIP is not within code segment limits THEN #GP(0); Fl;
EIP « tempEIP;
CS « tempCS; (* segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) « tempEFLAGS;
IF OperandSize=32
THEN
EFLAGS(RF, AC, ID) « tempEFLAGS;

FI;
IF CPL < IOPL
THEN
EFLAGS(IF) « tempEFLAGS;
FI;
IFCPL=0
THEN
EFLAGS(IOPL) « tempEFLAGS;
IF OperandSize=32
THEN EFLAGS(VM, VIF, VIP) « tempEFLAGS;
Fl;
Fl;
END;

RETURN-TO-OUTER-PRIVILGE-LEVEL:
IF OperandSize=32
THEN
IF top 8 bytes on stack are not within limits THEN #SS(0); FI;
ELSE (* OperandSize=16 *)
IF top 4 bytes on stack are not within limits THEN #SS(0); FI;

3-358

Intel® INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Co ntinued)

FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits
THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL # RPL of the return code segment selector
IF stack segment selector RPL # RPL of the return code segment selector
OR the stack segment descriptor does not indicate a a writable data segment;
OR stack segment DPL # RPL of the return code segment selector
THEN #GP(SS selector);
FI;
IF stack segment is not present THEN #SS(SS selector); FI;
IF tempEIP is not within code segment limit THEN #GP(0); Fl;
EIP « tempEIP;
CS « tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) « tempEFLAGS;
IF OperandSize=32
THEN
EFLAGS(RF, AC, ID) « tempEFLAGS;

Fl;
IF CPL < IOPL
THEN
EFLAGS(IF) « tempEFLAGS;
FI;
IFCPL=0
THEN
EFLAGS(IOPL) « tempEFLAGS;
IF OperandSize=32
THEN EFLAGS(VM, VIF, VIP) « tempEFLAGS;
FI;
FI;

CPL « RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)
DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL (* stored in hidden part of segment register *)
THEN (* segment register invalid *)
SegmentSelector « 0; (* null segment selector *)
Fl;
OD;
END:

3-359

INSTRUCTION SET REFERENCE Intel®

IRET/IRETD—Interrupt Return (Cont inued)

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on the mode
of operation of the processor. If performing a return from a nested task to a previous task, the
EFLAGS register will be modified according to the EFLAGS image stored in the previous task’s
TSS.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code segment limit.
#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL of
the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is not busy
If a TSS segment descriptor specifies that the TSS is not available.
#SS(0) If the top bytes of stack are not within stack limits.
#NP(selector) If the return code or stack segment is not present.
#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and alignment
checking is enabled.

3-360

Intel® INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Co ntinued)

Real-Address Mode Exceptions

#GP If the return instruction pointer is not within the return code segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit.
IF IOPL not equal to 3

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If ai)nl 3naligned memory reference occurs and alignment checking is
enabled.

3-361

INSTRUCTION SET REFERENCE

Jec—Jump if Condition Is Met

Opcode

77 cb

73 ¢cb

72 cb

76 cb

72 cb

E3 cb

E3 cb

74 cb

7F cb

7D cb
7Ccb

7E cb

76 cb

72 cb

73 ¢cb

77 cb

73 ¢cb

75 ¢cb

7E cb
7Ccb

7D cb

7F cb

71 cb

7B cb

79 cb

75 ¢cb

70 cb

7A cb

7A cb

7B cb

78 cb

74 cb

OF 87 cw/cd
OF 83 cw/cd
OF 82 cw/cd
OF 86 cw/cd
OF 82 cw/cd
OF 84 cw/cd
OF 84 cw/cd
OF 8F cw/cd

Instruction
JA rel8
JAE rel8
JB rel8
JBE rel8
JC rel8
JCXZ rel8
JECXZ rel8
JE rel8

JG rel8
JGE rel8
JL rel8

JLE rel8
JINA rel8
JNAE rel8
JNB rel8
JNBE rel8
JINC rel8
JINE rel8
JING rel8
JINGE rel8
JNL rel8
JINLE rel8
JNO rel8
JINP rel8
JINS rel8
JINZ rel8
JO rel8

JP rel8
JPE rel8
JPO rel8
JS rel8

JZ rel8

JA rel16/32
JAE rel16/32
JB rel16/32
JBE rel16/32
JC rel16/32
JE rel16/32
JZ rel16/32
JG rel16/32

Descri ption

Jump short if above (CF=0 and ZF=0)

Jump short if above or equal (CF=0)

Jump short if below (CF=1)

Jump short if below or equal (CF=1 or ZF=1)
Jump short if carry (CF=1)

Jump short if CX register is 0

Jump short if ECX register is 0

Jump short if equal (ZF=1)

Jump short if greater (ZF=0 and SF=0F)
Jump short if greater or equal (SF=0F)
Jump short if less (SF<>O0F)

Jump short if less or equal (ZF=1 or SF<>0F)
Jump short if not above (CF=1 or ZF=1)
Jump short if not above or equal (CF=1)
Jump short if not below (CF=0)

Jump short if not below or equal (CF=0 and ZF=0)
Jump short if not carry (CF=0)

Jump short if not equal (ZF=0)

Jump short if not greater (ZF=1 or SF<>O0F)
Jump short if not greater or equal (SF<>0F)
Jump short if not less (SF=0F)

Jump short if not less or equal (ZF=0 and SF=OF)
Jump short if not overflow (OF=0)

Jump short if not parity (PF=0)

Jump short if not sign (SF=0)

Jump short if not zero (ZF=0)

Jump short if overflow (OF=1)

Jump short if parity (PF=1)

Jump short if parity even (PF=1)

Jump short if parity odd (PF=0)

Jump short if sign (SF=1)

Jump short if zero (ZF = 1)

Jump near if above (CF=0 and ZF=0)

Jump near if above or equal (CF=0)

Jump near if below (CF=1)

Jump near if below or equal (CF=1 or ZF=1)
Jump near if carry (CF=1)

Jump near if equal (ZF=1)

Jump near if 0 (ZF=1)

Jump near if greater (ZF=0 and SF=0OF)

3-362

Intel® INSTRUCTION SET REFERENCE

Jec—Jump if Cond ition Is Met (Continued)

Opcode Instru ction Descri ption
OF 8D cw/cd JGE rel16/32 Jump near if greater or equal (SF=0OF)
OF 8C cw/cd JL rel16/32 Jump near if less (SF<>OF)
OF 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>OF)
OF 86 cw/cd JNA rel16/32 Jump near if not above (CF=1 or ZF=1)
OF 82 cw/cd JNAE rel16/32 Jump near if not above or equal (CF=1)
OF 83 cw/cd JNB rel16/32 Jump near if not below (CF=0)
OF 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)
OF 83 cw/cd JNC rel16/32 Jump near if not carry (CF=0)
OF 85 cw/cd JNE rel16/32 Jump near if not equal (ZF=0)
OF 8E cw/cd JING rel16/32 Jump near if not greater (ZF=1 or SF<>O0F)
OF 8C cw/cd JNGE rel16/32 Jump near if not greater or equal (SF<>OF)
OF 8D cw/cd JNL rel16/32 Jump near if not less (SF=0F)
OF 8F ew/cd JNLE rel16/32 Jump near if not less or equal (ZF=0 and SF=0OF)
OF 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0)
OF 8B cw/cd JNP rel16/32 Jump near if not parity (PF=0)
OF 89 cw/cd JNS rel16/32 Jump near if not sign (SF=0)
OF 85 cw/cd JINZ rel16/32 Jump near if not zero (ZF=0)
OF 80 cw/cd JO rel16/32 Jump near if overflow (OF=1)
OF 8A cw/cd JP rel16/32 Jump near if parity (PF=1)
OF 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1)
OF 8B cw/cd JPO rel16/32 Jump near if parity odd (PF=0)
OF 88 cw/cd JS rel16/32 Jump near if sign (SF=1)
OF 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)
Description

Checks the state of one or more of the status flags in the EFLAGS register (CF, OF, PF, SF, and
ZF) and, if the flags are in the specified state (condition), performs a jump to the target instruc-
tion specified by the destination operand. A condition code (cc) is associated with each instruc-
tion to indicate the condition being tested for. If the condition is not satisfied, the jump is not
performed and execution continues with the instruction following the Jcc instruction.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). A relative offset (relS8, rell6, or rel32) is
generally specified as a label in assembly code, but at the machine code level, it is encoded as a
signed, 8-bit or 32-bit immediate value, which is added to the instruction pointer. Instruction
coding is most efficient for offsets of —128 to +127. If the operand-size attribute is 16, the upper
two bytes of the EIP register are cleared, resulting in a maximum instruction pointer size of 16
bits.

3-363

INSTRUCTION SET REFERENCE Intel®

Jec—Jump if Condition Is Met (C ontinued)

The conditions for each Jcc mnemonic are given in the “Description” column of the table on the
preceding page. The terms “less” and “greater” are used for comparisons of signed integers and
the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the JA (jump if above) instruction and
the JNBE (jump if not below or equal) instruction are alternate mnemonics for the opcode 77H.

The Jcc instruction does not support far jumps (jumps to other code segments). When the target
for the conditional jump is in a different segment, use the opposite condition from the condition
being tested for the Jcc instruction, and then access the target with an unconditional far jump
(JMP instruction) to the other segment. For example, the following conditional far jump is
illegal:

JZ FARLABEL;

To accomplish this far jump, use the following two instructions:

JNZ BEYOND;
JMP FARLABEL;
BEYOND:

The JECXZ and JCXZ instructions differs from the other Jcc instructions because they do not
check the status flags. Instead they check the contents of the ECX and CX registers, respectively,
for 0. Either the CX or ECX register is chosen according to the address-size attribute. These
instructions are useful at the beginning of a conditional loop that terminates with a conditional
loop instruction (such as LOOPNE). They prevent entering the loop when the ECX or CX
register is equal to 0, which would cause the loop to execute 2% or 64K times, respectively,
instead of zero times.

All conditional jumps are converted to code fetches of one or two cache lines, regardless
of jump address or cacheability.

Operation

IF condition
THEN
EIP « EIP + SignExtend(DEST);
IF OperandSize = 16
THEN
EIP « EIP AND 0000FFFFH;

FI;
ELSE (* OperandSize = 32 *)
IF EIP < CS.Base OR EIP > CS.Limit
#GP
FI;

Fl;

3-364

Intel® INSTRUCTION SET REFERENCE

Jec—Jump if Cond ition Is Met (Continued)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from O to FFFFH. This condition can
occur if a 32-bit address size override prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

3-365

INSTRUCTION SET REFERENCE Intel®

JMP—Jump
Opcode Instruction Descri ption
EB cb JMP rel8 Jump short, relative, displacement relative to next instruction
E9 cw JMP rel16 Jump near, relative, displacement relative to next instruction
E9 cd JMP rel32 Jump near, relative, displacement relative to next instruction
FF /4 JMP /m16 Jump near, absolute indirect, address given in ¥/m16
FF /4 JMP /m32 Jump near, absolute indirect, address given in ¥/m32
EA cd JMP ptr16:16 Jump far, absolute, address given in operand
EA cp JMP ptr16:32 Jump far, absolute, address given in operand
FF /5 JMP m16:16 Jump far, absolute indirect, address given in m16:16
FF /5 JMP m16:32 Jump far, absolute indirect, address given in m16:32
Description

Transfers program control to a different point in the instruction stream without recording return
information. The destination (target) operand specifies the address of the instruction being
jumped to. This operand can be an immediate value, a general-purpose register, or a memory
location.

This instruction can be used to execute four different types of jumps:

® Near jump—A jump to an instruction within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment jump.

¢ Short jump—A near jump where the jump range is limited to —128 to +127 from the current
EIP value.

® Far jump—A jump to an instruction located in a different segment than the current code
segment but at the same privilege level, sometimes referred to as an intersegment jump.

® Task switch—A jump to an instruction located in a different task.

A task switch can only be executed in protected mode (see Chapter 6, Task Management, in the
IA-32 Intel Architecture Software Developer’s Manual, Volume 3, for information on
performing task switches with the JMP instruction).

Near and Short Jumps. When executing a near jump, the processor jumps to the address
(within the current code segment) that is specified with the target operand. The target operand
specifies either an absolute offset (that is an offset from the base of the code segment) or a rela-
tive offset (a signed displacement relative to the current value of the instruction pointer in the
EIP register). A near jump to a relative offset of 8-bits (rel8) is referred to as a short jump. The
CS register is not changed on near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory location
(r/m16 or r/m32). The operand-size attribute determines the size of the target operand (16 or 32
bits). Absolute offsets are loaded directly into the EIP register. If the operand-size attribute is
16, the upper two bytes of the EIP register are cleared, resulting in a maximum instruction
pointer size of 16 bits.

3-366

Intel® INSTRUCTION SET REFERENCE

JMP—Jump (C ontinued)

A relative offset (rel8, rell6, or rel32) is generally specified as a label in assembly code, but at
the machine code level, it is encoded as a signed 8-, 16-, or 32-bit immediate value. This value
is added to the value in the EIP register. (Here, the EIP register contains the address of the
instruction following the JMP instruction). When using relative offsets, the opcode (for short vs.
near jumps) and the operand-size attribute (for near relative jumps) determines the size of the
target operand (8, 16, or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-
address or virtual-8086 mode, the processor jumps to the code segment and offset specified with
the target operand. Here the target operand specifies an absolute far address either directly with
a pointer (ptr16:16 or ptrl6:32) or indirectly with a memory location (m16.:16 or m16:32). With
the pointer method, the segment and address of the called procedure is encoded in the instruc-
tion, using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate.
With the indirect method, the target operand specifies a memory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The far address is loaded
directly into the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of
the EIP register are cleared.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the JMP
instruction can be used to perform the following three types of far jumps:

® A far jump to a conforming or non-conforming code segment.

® A far jump through a call gate.

® A task switch.

(The JMP instruction cannot be used to perform inter-privilege-level far jumps.)

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor in the GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of jump to be performed.

If the selected descriptor is for a code segment, a far jump to a code segment at the same privi-
lege level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far jump to the same
privilege level in protected mode is very similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptrl16:16 or ptr16:32) or indirectly with a memory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 bits) in the far address. The new code
segment selector and its descriptor are loaded into CS register, and the offset from the instruc-
tion is loaded into the EIP register. Note that a call gate (described in the next paragraph) can
also be used to perform far call to a code segment at the same privilege level. Using this mech-
anism provides an extra level of indirection and is the preferred method of making jumps
between 16-bit and 32-bit code segments.

3-367

INSTRUCTION SET REFERENCE Intel®

JMP—Jump (Cont inued)

When executing a far jump through a call gate, the segment selector specified by the target
operand identifies the call gate. (The offset part of the target operand is ignored.) The processor
then jumps to the code segment specified in the call gate descriptor and begins executing the
instruction at the offset specified in the call gate. No stack switch occurs. Here again, the target
operand can specify the far address of the call gate either directly with a pointer (ptr16:16 or
ptrl16:32) or indirectly with a memory location (m16:16 or m16:32).

Executing a task switch with the JMP instruction, is somewhat similar to executing a jump
through a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to (and the offset part of the target operand is ignored). The task gate in
turn points to the TSS for the task, which contains the segment selectors for the task’s code and
stack segments. The TSS also contains the EIP value for the next instruction that was to be
executed before the task was suspended. This instruction pointer value is loaded into EIP
register so that the task begins executing again at this next instruction.

The JMP instruction can also specify the segment selector of the TSS directly, which eliminates
the indirection of the task gate. See Chapter 6, Task Management, in IA-32 Intel Architecture
Software Developer’s Manual, Volume 3, for detailed information on the mechanics of a task
switch.

Note that when you execute at task switch with a JMP instruction, the nested task flag (NT) is
not set in the EFLAGS register and the new TSS’s previous task link field is not loaded with the
old task’s TSS selector. A return to the previous task can thus not be carried out by executing
the IRET instruction. Switching tasks with the JMP instruction differs in this regard from the
CALL instruction which does set the NT flag and save the previous task link information,
allowing a return to the calling task with an IRET instruction.

Operation

IF near jump
THEN IF near relative jump
THEN
tempEIP « EIP + DEST,; (* EIP is instruction following JMP instruction*)
ELSE (* near absolute jump *)
tempEIP « DEST;
FI;
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP « tempEIP;
ELSE (* OperandSize=16 *)
EIP « tempEIP AND 0000FFFFH;
FI;
Fl:

IF far jump AND (PE =0 OR (PE =1 AND VM = 1)) (* real-address or virtual-8086 mode *)

3-368

Intel® INSTRUCTION SET REFERENCE

JMP—Jump (C ontinued)

THEN
tempEIP « DEST[offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
CS « DEST[segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32
THEN
EIP « tempEIP; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
EIP « tempEIP AND 0000FFFFH; (* clear upper 16 bits *)
FI;
FI;
IF far jump AND (PE =1 AND VM = 0) (* Protected mode, not virtual-8086 mode *)
THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
OR segment selector in target operand null
THEN #GP(0);
FI;
IF segment selector index not within descriptor table limits
THEN #GP(new selector);
Fl;
Read type and access rights of segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,
task gate, or TSS THEN #GP(segment selector); Fl;
Depending on type and access rights
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
ELSE
#GP(segment selector);
FI;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(segment selector); FI;
IF segment not present THEN #NP(segment selector); FI;
tempEIP « DEST[offset);
IF OperandSize=16
THEN tempEIP « tempEIP AND 0000FFFFH;
Fl;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS « DEST[SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) « CPL
EIP « tempEIP;
END;

3-369

INSTRUCTION SET REFERENCE

JMP—Jump (Cont inued)

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL # CPL) THEN #GP(code segment selector); Fl;
IF segment not present THEN #NP(segment selector); FI;
IF instruction pointer outside code segment limit THEN #GP(0); FlI;
tempEIP « DEST[offset);
IF OperandSize=16
THEN tempEIP « tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS « DEST[SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) « CPL
EIP « tempEIP;
END,;

CALL-GATE:

IF call gate DPL < CPL

OR call gate DPL < call gate segment-selector RPL
THEN #GP(call gate selector); FlI;

IF call gate not present THEN #NP(call gate selector); FI;

IF call gate code-segment selector is null THEN #GP(0); FlI;

IF call gate code-segment selector index is outside descriptor table limits
THEN #GP(code segment selector); Fl;

Read code segment descriptor;

IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor is conforming and DPL > CPL
OR code-segment segment descriptor is non-conforming and DPL = CPL

THEN #GP(code segment selector); Fl;

IF code segment is not present THEN #NP(code-segment selector); Fl;

IF instruction pointer is not within code-segment limit THEN #GP(0); Fl;

tempEIP « DEST[offset);

IF GateSize=16
THEN tempEIP « tempEIP AND 0000FFFFH;

FI;

IF tempEIP not in code segment limit THEN #GP(0); FI;

CS « DEST[SegmentSelector); (* segment descriptor information also loaded *)

CS(RPL) « CPL

EIP « tempEIP;

END,;

TASK-GATE:
IF task gate DPL < CPL
OR task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); FI;
IF task gate not present THEN #NP(gate selector); FlI;
Read the TSS segment selector in the task-gate descriptor;

3-370

Intel® INSTRUCTION SET REFERENCE

JMP—Jump (C ontinued)

IF TSS segment selector local/global bit is set to local
OR index not within GDT limits
OR TSS descriptor specifies that the TSS is busy
THEN #GP(TSS selector); Fl;
IF TSS not present THEN #NP(TSS selector); FI;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit THEN #GP(0); FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL
OR TSS DPL < TSS segment-selector RPL
OR TSS descriptor indicates TSS not available
THEN #GP(TSS selector); Fl;
IF TSS is not present THEN #NP(TSS selector); Fl;
SWITCH-TASKS to TSS
IF EIP not within code segment limit THEN #GP(0); FI;
END;

Flags Affected

All flags are affected if a task switch occurs; no flags are affected if a task switch does not occur.

Protected Mode Exceptions

#GP(0) If offset in target operand, call gate, or TSS is beyond the code segment
limits.

If the segment selector in the destination operand, call gate, task gate, or
TSS is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#GP(selector) If segment selector index is outside descriptor table limits.

If the segment descriptor pointed to by the segment selector in the
destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL

(When not using a call gate.) If the RPL for the segment’s segment selector
is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

3-371

INSTRUCTION SET REFERENCE Intel®

JMP—Jump (Cont inued)

#SS(0)
#NP (selector)

#PF(fault-code)
#AC(0)

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS’s segment
selector.

If the segment descriptor for selector in a call gate does not indicate it is a
code segment.

If the segment descriptor for the segment selector in a task gate does not
indicate available TSS.

If the segment selector for a TSS has its local/global bit set for local.

If a TSS segment descriptor specifies that the TSS is busy or not available.
If a memory operand effective address is outside the SS segment limit.

If the code segment being accessed is not present.

If call gate, task gate, or TSS not present.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3. (Only occurs when fetching
target from memory.)

Real-Addr ess Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

3-372

If the target operand is beyond the code segment limits.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made. (Only occurs when fetching target from memory.)

INSTRUCTION SET REFERENCE

MOV—Move
Opcode Instru ction Descri ption
88/r MOV r/m8,r8 Move r8to r/m8
89/r MOV r/m16,r16 Move r16to r/m16
89/r MOV r/m32,r32 Move r32to r/m32
8AIr MOV r8,r/m8 Move r/m8to r8
8B /r MOV r16,r/m16 Move r/mi16to r16
8B /r MOV r32,r/m32 Move r/m32to r32
8CI/r MOV r/m16,Sreg** Move segment register to /m16
8E /r MOV Sreg,r/m16** Move r/m16 to segment register
A0 MOV AL,moffs8* Move byte at (seg:offset) to AL
Al MOV AX,moffs16* Move word at (seg:offset) to AX
Al MOV EAX,moffs32* Move doubleword at (seg:offset) to EAX
A2 MOV moffs8*,AL Move AL to (seg:offsef)
A3 MOV moffs16*,AX Move AX to (seg:offsef)
A3 MOV moffs32* EAX Move EAX to (seg:offsef)
BO+ rb MOV r8,imm8 Move imm8to r8
B8+ nw MOV r16,imm16 Move imm16to r16
B8+ rd MOV r32,imm32 Move imm32 to r32
C6/0 MOV r/m8,imm8 Move imm8to r/m8
C71/0 MOV r/m16,imm16 Move imm16 to /m16
C71/0 MOV r/m32,imm32 Move imm32 to /m32
NOTES:

* The moffs8, moffs16, and moffs32 operands specify a simple offset relative to the segment base, where
8, 16, and 32 refer to the size of the data. The address-size attribute of the instruction determines the size

of the offset, either 16 or 32 bits.

** |n 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the fol-
lowing “Description” section for further information).

Description

Copies the second operand (source operand) to the first operand (destination operand). The
source operand can be an immediate value, general-purpose register, segment register, or
memory location; the destination register can be a general-purpose register, segment register, or
memory location. Both operands must be the same size, which can be a byte, a word, or a
doubleword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an
invalid opcode exception (#UD). To load the CS register, use the far JIMP, CALL, or RET
instruction.

3-441

INSTRUCTION SET REFERENCE Intel®

MOV—Move (Con tinued)

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must
be a valid segment selector. In protected mode, moving a segment selector into a segment
register automatically causes the segment descriptor information associated with that segment
selector to be loaded into the hidden (shadow) part of the segment register. While loading this
information, the segment selector and segment descriptor information is validated (see the
“Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A null segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers
without causing a protection exception. However, any subsequent attempt to reference a
segment whose corresponding segment register is loaded with a null value causes a general
protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction inhibits all interrupts until after the execution
of the next instruction. This operation allows a stack pointer to be loaded into the ESP register
with the next instruction (MOV ESP, stack-pointer value) before an interrupt occurs'. The LSS
instruction offers a more efficient method of loading the SS and ESP registers.

When operating in 32-bit mode and moving data between a segment register and a general-
purpose register, the 32-bit IA-32 processors do not require the use of the 16-bit operand-size
prefix (a byte with the value 66H) with this instruction, but most assemblers will insert it if the
standard form of the instruction is used (for example, MOV DS, AX). The processor will
execute this instruction correctly, but it will usually require an extra clock. With most assem-
blers, using the instruction form MOV DS, EAX will avoid this unneeded 66H prefix. When the
processor executes the instruction with a 32-bit general-purpose register, it assumes that the 16
least-significant bits of the general-purpose register are the destination or source operand. If the
register is a destination operand, the resulting value in the two high-order bytes of the register
is implementation dependent. For the Pentium 4, Intel Xeon, and P6 family processors, the two
high-order bytes are filled with zeros; for earlier 32-bit IA-32 processors, the two high order
bytes are undefined.

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only
the first instruction in the sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying
instructions may not delay the interrupt. Thus, in the following instruction sequence:

STI

MOV SS, EAX

MOV ESP, EBP

interrupts may be recognized before MOV ESP, EBP executes, because STI also delays interrupts for
one instruction.

3-442

Intel® INSTRUCTION SET REFERENCE

MOV—Move (C ontinued)

Operation

DEST « SRC;

Loading a segment register while in protected mode results in special checks and actions, as
described in the following listing. These checks are performed on the segment selector and the
segment descriptor it points to.

IF SSis loaded;

THEN
IF segment selector is null
THEN #GP(0);
Fl;
IF segment selector index is outside descriptor table limits
OR segment selector's RPL # CPL

OR segment is not a writable data segment
OR DPL # CPL

THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE
SS « segment selector;
SS « segment descriptor;

Fl;
Fl;
IF DS, ES, FS, or GS is loaded with non-null selector;
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister « segment selector;
SegmentRegister « segment descriptor;
Fl;
FI;
IF DS, ES, FS, or GS is loaded with a null selector;
THEN
SegmentRegister « segment selector;
SegmentRegister « segment descriptor;
FI;

3-443

INSTRUCTION SET REFERENCE Intel®

MOV—Move (Con tinued)

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)
#SS(selector)

#NP

#PF(fault-code)
#AC(0)

#UD

If attempt is made to load SS register with null segment selector.
If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector’s RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

If a memory operand effective address is outside the SS segment limit.

If the SS register is being loaded and the segment pointed to is marked not
present.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

If attempt is made to load the CS register.

Real-Addr ess Mode Exceptions

#GP

#SS
#UD

3-444

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

If attempt is made to load the CS register.

Intel® INSTRUCTION SET REFERENCE

MOV—Move (C ontinued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.
#UD If attempt is made to load the CS register.

3-445

INSTRUCTION SET REFERENCE

MOVQ—Move Quadword

Opcode Instru ction Descri ption

OF 6F Ir MOVQ mm, mm/mé64 Move quadword from mm/mé64 to mm.

OF 7F Ir MOVQ mm/m64, mm Move quadword from mm to mm/mé4.

F3 OF 7E MOVQ xmm1, xmm2/m64 Move quadword from xmm2/memé64 to xmm1.

66 OF D6 MOVQ xmm2/m64, xmm1 Move quadword from xmm1 to xmm2/memé64.
Description

Copies a quadword from the source operand (second operand) to the destination operand (first
operand). The source and destination operands can be MMX technology registers, XMM regis-
ters, or 64-bit memory locations. This instruction can be used to move a quadword between two
MMX technology registers or between an MMX technology register and a 64-bit memory loca-
tion, or to move data between two XMM registers or between an XMM register and a 64-bit
memory location. The instruction cannot be used to transfer data between memory locations.

When the source operand is an XMM register, the low quadword is moved; when the destination
operand is an XMM register, the quadword is stored to the low quadword of the register, and the

high quadword is cleared to all Os.

Operation

MOVQ instruction when operating on MMX technology registers and memory locations:

DEST « SRC;

MOVQ instruction when source and destination operands are XMM registers:

DEST[63-0] « SRC[63-0];

MOVQ instruction when source operand is XMM register and destination

operand is memory location:
DEST « SRCI[63-0];

MOVQ instruction when source operand is memory location and destination

operand is XMM register:
DEST[63-0] « SRC;
DEST[127-64] « 0000000000000000H;

Flags Affected

None.

SIMD Floating-Point Exceptions

None.

3-486

Intel® INSTRUCTION SET REFERENCE

MOVQ—Move Quadword (Con tinued)

Protected Mode Exceptions
#GP(0) If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If EM in CRO is set.
128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is

MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

#NM If TS in CRO is set.
#MF (MMX technology register operations only.) If there is a pending FPU
exception.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If any part of the operand lies outside of the effective address space from
0 to FFFFH.
#UD If EM in CRO is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is
MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

#NM If TS in CRO is set.
#MF (MMX technology register operations only.) If there is a pending FPU
exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

3-487

Intel® INSTRUCTION SET REFERENCE

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String

Opcode Instruction Descri ption

Ad MOVS m8, m8 Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVS m16, m16 Move word at address DS:(E)SI to address ES:(E)DI

A5 MOVS m32, m32 Move doubleword at address DS:(E)SI to address
ES:(E)DI

Ad MOVSB Move byte at address DS:(E)SI to address ES:(E)DI

A5 MOVSW Move word at address DS:(E)SI to address ES:(E)DI

A5 MOVSD Move doubleword at address DS:(E)SI to address
ES:(E)DI

Description

Moves the byte, word, or doubleword specified with the second operand (source operand) to the
location specified with the first operand (destination operand). Both the source and destination
operands are located in memory. The address of the source operand is read from the DS:ESI or
the DS:SI registers (depending on the address-size attribute of the instruction, 32 or 16, respec-
tively). The address of the destination operand is read from the ES:EDI or the ES:DI registers
(again depending on the address-size attribute of the instruction). The DS segment may be over-
ridden with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the MOVS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source and destination operands should be symbols that indicate the size and location of the
source value and the destination, respectively. This explicit-operands form is provided to allow
documentation; however, note that the documentation provided by this form can be misleading.
That is, the source and destination operand symbols must specify the correct type (size) of the
operands (bytes, words, or doublewords), but they do not have to specify the correct location.
The locations of the source and destination operands are always specified by the DS:(E)SI and
ES:(E)DI registers, which must be loaded correctly before the move string instruction is
executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
MOVS instructions. Here also DS:(E)SI and ES:(E)DI are assumed to be the source and desti-
nation operands, respectively. The size of the source and destination operands is selected with
the mnemonic: MOVSB (byte move), MOVSW (word move), or MOVSD (doubleword move).

After the move operation, the (E)SI and (E)DI registers are incremented or decremented auto-
matically according to the setting of the DF flag in the EFLAGS register. (If the DF flag is O, the
(E)SI and (E)DI register are incremented; if the DF flag is 1, the (E)SI and (E)DI registers are
decremented.) The registers are incremented or decremented by 1 for byte operations, by 2 for
word operations, or by 4 for doubleword operations.

The MOVS, MOVSB, MOVSW, and MOVSD instructions can be preceded by the REP prefix
(see “REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix” in this chapter) for
block moves of ECX bytes, words, or doublewords.

3-489

INSTRUCTION SET REFERENCE Intel®

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String
(Continued)

Operation

DEST «SRC;
IF (byte move)
THEN IF DF =0
THEN
(E)SI « (E)SI + 1;
(E)DI « (E)DI + 1;
ELSE
(E)Sl « (E)SI-1;
(E)DI « (E)DI - 1;
FI;
ELSE IF (word move)
THEN IF DF =0
(E)SI « (E)SI + 2;
(E)DI « (E)DI + 2;
ELSE
(E)SI « (E)SI - 2;
(E)DI « (E)DI - 2;
FI;
ELSE (* doubleword move*)
THEN IF DF =0
(E)SI « (E)SI + 4;
(E)DI « (E)DI + 4;
ELSE
(E)SI « (E)SI - 4;
(E)DI « (E)DI — 4;
FI;
FI;

Flags Affected

None.

3-490

intgl.

INSTRUCTION SET REFERENCE

MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String

(Continued)

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If a memory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

3-491

INSTRUCTION SET REFERENCE Intel®

NOP—No Operation

Opcode Instruction Descri ption
90 NOP No operation
Description

Performs no operation. This instruction is a one-byte instruction that takes up space in the
instruction stream but does not affect the machine context, except the EIP register.

The NOP instruction is an alias mnemonic for the XCHG (E)AX, (E)AX instruction.

Flags Affected

None.

Exceptions (All Operating M odes)

None.

3-516

Intel® INSTRUCTION SET REFERENCE

NOT—One's Complement Negation

Opcode Instru ction Descri ption

F6 /2 NOT r/m8 Reverse each bit of /m8

F7 12 NOT r/m16 Reverse each bit of /m16

F7 12 NOT r/m32 Reverse each bit of /m32
Description

Performs a bitwise NOT operation (each 1 is set to 0, and each O is set to 1) on the destination
operand and stores the result in the destination operand location. The destination operand can be
a register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation
DEST « NOT DEST;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the destination operand points to a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

3-517

INSTRUCTION SET REFERENCE Intel®

NOT—One's Compl ement Negation (Con tinued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

3-518

Intel® INSTRUCTION SET REFERENCE

PADDB/PADDW/PADDD—Add Packed Integers

Opcode Instru ction Descri ption

OFFC/Ir PADDB mm, mm/mé64 Add packed byte integers from mm/mé64 and mm.

66 OF FC Ir PADDB xmm1,xmm2/m128 Add packed byte integers from xmm2/m128 and
xmmfT.

OF FD Ir PADDW mm, mm/mé64 Add packed word integers from mm/mé64 and mm.

66 OF FD /r PADDW xmm1, xmm2/m128 Add packed word integers from xmm2/m128 and
xmmT.

OF FE Ir PADDD mm, mm/mé64 Add packed doubleword integers from mm/mé64 and
mm.

66 OF FE /r PADDD xmm1, xmm2/m128 Add packed doubleword integers from xmm2/m128
and xmm1.

Description

Performs a SIMD add of the packed integers from the source operand (second operand) and the
destination operand (first operand), and stores the packed integer results in the destination
operand. See Figure 9-4 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1
for an illustration of a SIMD operation. Overflow is handled with wraparound, as described in
the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on 128-
bit operands, the destination operand must be an XMM register and the source operand can be
either an XMM register or a 128-bit memory location.

The PADDB instruction adds packed byte integers. When an individual result is too large to be
represented in 8 bits (overflow), the result is wrapped around and the low 8 bits are written to
the destination operand (that is, the carry is ignored).

The PADDW instruction adds packed word integers. When an individual result is too large to
be represented in 16 bits (overflow), the result is wrapped around and the low 16 bits are written
to the destination operand.

The PADDD instruction adds packed doubleword integers. When an individual result is too
large to be represented in 32 bits (overflow), the result is wrapped around and the low 32 bits
are written to the destination operand.

Note that the PADDB, PADDW, and PADDD instructions can operate on either unsigned or
signed (two’s complement notation) packed integers; however, it does not set bits in the
EFLAGS register to indicate overflow and/or a carry. To prevent undetected overflow condi-
tions, software must control the ranges of values operated on.

3-537

INSTRUCTION SET REFERENCE Intel®

PADDB/PADDW/PADDD—Add P acked Integers (Co ntinued)

Operation

PADDB instruction with 64-bit operands:
DEST[7..0] « DEST[7..0] + SRCI7..0];
* repeat add operation for 2nd through 7th byte *;
DEST[63..56] «— DEST[63..56] + SRC[63..56];

PADDB instruction with 128-bit operands:
DEST[7-0] « DEST[7-0] + SRCJ[7-0];
* repeat add operation for 2nd through 14th byte *;
DEST[127-120] «~ DEST[111-120] + SRC[127-120];

PADDW instruction with 64-bit operands:
DEST[15..0] « DEST[15..0] + SRC[15..0];
* repeat add operation for 2nd and 3th word *;
DESTI[63..48] « DEST[63..48] + SRC[63..48];

PADDW instruction with 128-bit operands:
DEST[15-0] « DEST[15-0] + SRC[15-0];
* repeat add operation for 2nd through 7th word *;
DEST[127-112] « DEST[127-112] + SRC[127-112];

PADDD instruction with 64-bit operands:
DEST[31..0] « DESTI[31..0] + SRCJ[31..0];
DESTI[63..32] « DEST[63..32] + SRCI[63..32];

PADDD instruction with 128-bit operands:
DEST[31-0] « DEST[31-0] + SRC[31-0];
* repeat add operation for 2nd and 3th doubleword *;
DEST[127-96] <« DEST[127-96] + SRC[127-96];

Intel C/C++ Compiler Intrinsic Equiv alents

PADDB __m64 _mm_add_pi8(_m64 ml, __m64 m2)
PADDB __m128i_mm_add_epi8 (__m128ia,__m128ib)
PADDW __m64 _mm_addw_pil6(__m64 ml, _ m64 m2)
PADDW _ m128i _mm_add_epil6 (__m128ia, _ m128ib)
PADDD __m64 _mm_add_pi32(__m64 ml, __m64 m2)
PADDD _ m128i _mm_add_epi32 (__m128ia, _ m128ib)

Flags Affected

None.

3-538

intgl.

INSTRUCTION SET REFERENCE

PADDB/PADDW/PADDD—Add P acked I ntegers (Continued)

Protected Mode Exceptions

#GP(0)

#SS(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only.) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.

If EM in CRO is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is

MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

If TS in CRO is set.
(64-bit operations only.) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only.) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0)

#UD

#NM
#MF

(128-bit operations only.) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If EM in CRO is set.
128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is

MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

If TS in CRO is set.
(64-bit operations only.) If there is a pending x87 FPU exception.

3-539

INSTRUCTION SET REFERENCE Intel®

PADDB/PADDW/PADDD—Add P acked Integers (Co ntinued)

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only.) If alignment checking is enabled and an
unaligned memory reference is made.

3-540

Intel® INSTRUCTION SET REFERENCE

PADDSB/PADDSW—Add Packed Signed Integers wi th Signed
Saturation

Opcode Instru ction Descri ption

OF EC Ir PADDSB mm, mm/mé64 Add packed signed byte integers from mm/mé64 and
mm and saturate the results.

66 OF EC /r PADDSB xmmf, Add packed signed byte integers from xmm2/m128
and xmm1 saturate the results.

OF ED /r PADDSW mm, mm/mé64 Add packed signed word integers from mm/mé64 and

mm and saturate the results.

66 OF ED /r PADDSW xmm1, xmm2/m128 Add packed signed word integers from xmm2/m128
and xmm1 and saturate the results.

Description

Performs a SIMD add of the packed signed integers from the source operand (second operand)
and the destination operand (first operand), and stores the packed integer results in the destina-
tion operand. See Figure 9-4 in the IA-32 Intel Architecture Software Developer’s Manual,
Volume 1 for an illustration of a SIMD operation. Overflow is handled with signed saturation,
as described in the following paragraphs.

These instructions can operate on either 64-bit or 128-bit operands. When operating on 64-bit
operands, the destination operand must be an MMX technology register and the source operand
can be either an MMX technology register or a 64-bit memory location. When operating on 128-
bit operands, the destination operand must be an XMM register and the source operand can be
either an XMM register or a 128-bit memory location.

The PADDSB instruction adds packed signed byte integers. When an individual byte result is
beyond the range of a signed byte integer (that is, greater than 7FH or less than 80H), the satu-
rated value of 7FH or 80H, respectively, is written to the destination operand.

The PADDSW instruction adds packed signed word integers. When an individual word result is
beyond the range of a signed word integer (that is, greater than 7FFFH or less than 8000H), the
saturated value of 7FFFH or 8000H, respectively, is written to the destination operand.

Operation

PADDSB instruction with 64-bit operands:
DEST[7..0] « SaturateToSignedByte(DEST[7..0] + SRC (7..0]) ;
* repeat add operation for 2nd through 7th bytes *;
DEST[63..56] « SaturateToSignedByte(DEST[63..56] + SRC[63..56]);

PADDSB instruction with 128-bit operands:
DEST[7-0] « SaturateToSignedByte (DEST[7-0] + SRC[7-0]);
* repeat add operation for 2nd through 14th bytes *;
DEST[127-120] « SaturateToSignedByte (DEST[111-120] + SRC[127-120]);

3-543

INSTRUCTION SET REFERENCE Intel®

PADDSB/PADDSW—Add Packed Si gned Integers w ith Signed
Saturation (C ontinued)

PADDSW instruction with 64-bit operands
DEST[15..0] " SaturateToSignedWord(DEST[15..0] + SRC[15..0]);

* repeat add operation for 2nd and 7th words *;
DEST[63..48] " SaturateToSighedWord(DEST[63..48] + SRC[63..48]);

PADDSW instruction with 128-bit operands
DEST[15-0] « SaturateToSignedWord (DEST[15-0] + SRC[15-0]);
* repeat add operation for 2nd through 7th words *;
DEST[127-112] « SaturateToSignedWord (DEST[127-112] + SRC[127-112]);

Intel C/C++ Compiler Intrinsic Equiv alents

PADDSB __m64 _mm_adds_pi8(__m64 m1, __m64 m2)
PADDSB _ m128i _mm_adds_epi8 (__m128ia, _ m128ib)
PADDSW __m64 _mm_adds_pil6(__m64 ml, __m64 m2)
PADDSW _ m128i _mm_adds_epil6 (__m128ia, _ m128ib)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only.) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If EM in CRO is set.
128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is

MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

#NM If TS in CRO is set.
#MF (64-bit operations only.) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

3-544

Intel® INSTRUCTION SET REFERENCE

PADDSB/PADDSW—Add Packed Signed Integers wi th Signed
Saturation (Continued)

#AC(0) (64-bit operations only.) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP(0) (128-bit operations only.) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CRO is set.
128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is

MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

#NM If TS in CRO is set.
#MF (64-bit operations only.) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only.) If alignment checking is enabled and an
unaligned memory reference is made.

3-545

Intel® INSTRUCTION SET REFERENCE

POP—Pop a Value from the S tack

Opcode Instru ction Description

8F /0 POP rIm16 Pop top of stack into m16; increment stack pointer
8F /0 POP r/m32 Pop top of stack into m32; increment stack pointer
58+ nw POP r16 Pop top of stack into r16; increment stack pointer
58+ rd POP r32 Pop top of stack into r32; increment stack pointer
1F POP DS Pop top of stack into DS; increment stack pointer
07 POP ES Pop top of stack into ES; increment stack pointer
17 POP SS Pop top of stack into SS; increment stack pointer
OF A1 POP FS Pop top of stack into FS; increment stack pointer
OF A9 POP GS Pop top of stack into GS; increment stack pointer

Description

Loads the value from the top of the stack to the location specified with the destination operand
and then increments the stack pointer. The destination operand can be a general-purpose register,
memory location, or segment register.

The address-size attribute of the stack segment determines the stack pointer size (16 bits or 32
bits—the source address size), and the operand-size attribute of the current code segment deter-
mines the amount the stack pointer is incremented (2 bytes or 4 bytes). For example, if these
address- and operand-size attributes are 32, the 32-bit ESP register (stack pointer) is incre-
mented by 4 and, if they are 16, the 16-bit SP register is incremented by 2. (The B flag in the
stack segment’s segment descriptor determines the stack’s address-size attribute, and the D flag
in the current code segment’s segment descriptor, along with prefixes, determines the operand-
size attribute and also the address-size attribute of the destination operand.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded
into the register must be a valid segment selector. In protected mode, popping a segment selector
into a segment register automatically causes the descriptor information associated with that
segment selector to be loaded into the hidden (shadow) part of the segment register and causes
the selector and the descriptor information to be validated (see the “Operation” section below).

A null value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a
general protection fault. However, any subsequent attempt to reference a segment whose corre-
sponding segment register is loaded with a null value causes a general protection exception
(#GP). In this situation, no memory reference occurs and the saved value of the segment register
is null.

The POP instruction cannot pop a value into the CS register. To load the CS register from the
stack, use the RET instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the
POP instruction computes the effective address of the operand after it increments the ESP
register. For the case of a 16-bit stack where ESP wraps to Oh as a result of the POP instruction,
the resulting location of the memory write is processor-family-specific.

3-599

INSTRUCTION SET REFERENCE Intel®

POP—Pop a Value from the S tack (Continued)

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack
is written into the destination.

A POP SS instruction inhibits all interrupts, including the NMI interrupt, until after execution
of the next instruction. This action allows sequential execution of POP SS and MOV ESP, EBP
instructions without the danger of having an invalid stack during an interrupt!. However, use of
the LSS instruction is the preferred method of loading the SS and ESP registers.

Operation
IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN
DEST « SS:ESP; (* copy a doubleword *)
ESP <« ESP + 4;
ELSE (* OperandSize = 16*)
DEST « SS:ESP; (* copy a word *)
ESP « ESP + 2;
Fl;

ELSE (* StackAddrSize = 16*)
IF OperandSize = 16
THEN
DEST « SS:SP; (* copy a word *)
SP « SP + 2;
ELSE (* OperandSize = 32 *)
DEST « SS:SP; (* copy a doubleword *)
SP « SP + 4;
FI;
FI;

1. Note that in a sequence of instructions that individually delay interrupts past the following instruction, only
the first instruction in the sequence is guaranteed to delay the interrupt, but subsequent interrupt-delaying
instructions may not delay the interrupt. Thus, in the following instruction sequence:

STI

POP SS

POP ESP
interrupts may be recognized before the POP ESP executes, because STI also delays interrupts for one
instruction.

3-600

Intel® INSTRUCTION SET REFERENCE

POP—Pop a Value from the S tack (Cont inued)

Loading a segment register while in protected mode results in special actions, as described in
the following listing. These checks are performed on the segment selector and the segment
descriptor it points to.

IF SS is loaded;
THEN
IF segment selector is null
THEN #GP(0);
FI;
IF segment selector index is outside descriptor table limits
OR segment selector’'s RPL # CPL
OR segment is not a writable data segment
OR DPL # CPL
THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE
SS « segment selector;
SS « segment descriptor;

FI;
Fl;
IF DS, ES, FS, or GS is loaded with non-null selector;
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister «— segment selector;
SegmentRegister « segment descriptor;
Fl;
Fl;
IF DS, ES, FS, or GS is loaded with a null selector;
THEN
SegmentRegister «— segment selector;
SegmentRegister « segment descriptor;
Fl;

Flags Affected

None.

3-601

INSTRUCTION SET REFERENCE Intel®

POP—Pop a Value from the S tack (Continued)

Protected Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)

#SS(selector)

#NP

#PF(fault-code)
#AC(0)

3-602

If attempt is made to load SS register with null segment selector.
If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector’s RPL and the
segment descriptor’s DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is not a data or readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is a data or nonconforming code segment, but both the RPL and the CPL
are greater than the DPL.

If the current top of stack is not within the stack segment.
If a memory operand effective address is outside the SS segment limit.

If the SS register is being loaded and the segment pointed to is marked not
present.

If the DS, ES, FS, or GS register is being loaded and the segment pointed
to is marked not present.

If a page fault occurs.

If an unaligned memory reference is made while the current privilege level
is 3 and alignment checking is enabled.

Intel® INSTRUCTION SET REFERENCE

POP—Pop a Value from the S tack (Cont inued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference is made while alignment checking is
enabled.

3-603

intgl.

INSTRUCTION SET REFERENCE

PSLLW/PSLLD/P SLLQ—Shift Packed Dat a Left Logical

Opcode Instruction Description

OFF1/r PSLLW mm, mm/mé64 Shift words in mm left mm/mé64 while shifting in Os.

66 OF F1/r PSLLW xmm1, xmm2/m128 Shift words in xmm1 left by xmm2/m128 while shifting in
0Os.

OF 71 /6 ib PSLLW mm, imm8 Shift words in mm left by imm8 while shifting in Os.

66 0F 71/6ib PSLLW xmm1, imm8 Shift words in xmm1 left by imm8 while shifting in Os.
OF F2Ir PSLLD mm, mm/mé64 Shift doublewords in mm left by mm/mé64 while shifting
in Os.

66 OF F2 /r PSLLD xmm1, xmm2/m128 Shift doublewords in xmm1 left by xmm2/m128 while
shifting in Os.

OF 72 /6 ib PSLLD mm, imm8 Shift doublewords in mm left by imm8 while shifting in
0Os.

66 0F 72/6ib PSLLD xmm1, imm8 Shift doublewords in xmm1 left by imm8 while shifting in
0Os.

OF F3/r PSLLQ mm, mm/m64 Shift quadword in mm left by mm/mé4 while shifting in
0Os.

66 OF F3/r PSLLQ xmm1, xmm2/m128 Shift quadwords in xmm1 left by xmm2/m128 while
shifting in Os.

OF 73 /6 ib PSLLQ mm, imm8 Shift quadword in mm left by imm8 while shifting in Os.

66 OF 73/6ib PSLLQ xmm1, imm8 Shift quadwords in xmm1 left by imm8 while shifting in
0Os.

Description

Shifts the bits in the individual data elements (words, doublewords, or quadword) in the desti-
nation operand (first operand) to the left by the number of bits specified in the count operand
(second operand). As the bits in the data elements are shifted left, the empty low-order bits are
cleared (set to 0). If the value specified by the count operand is greater than 15 (for words), 31
(for doublewords), or 63 (for a quadword), then the destination operand is set to all Os. (Figure
3-12 gives an example of shifting words in a 64-bit operand.) The destination operand may be
an MMX technology register or an XMM register; the count operand can be either an MMX
technology register or an 64-bit memory location, an XMM register or a 128-bit memory loca-
tion, or an 8-bit immediate.

Pre-Shift
DEST
Shift Left
with Zero
Extension

Post-Shift
DEST

X3

X2 X1 X0

]

]

A 4 Y

A 4

X3 << COUNT

X2 << COUNT

X1 << COUNT | X0 << COUNT

Figure 3-12. PSLLW, PSLLD, and PSLLQ Instructi on Operation Using 64-bit O perand

3-625

INSTRUCTION SET REFERENCE Intel®

PSLLW/PSLLD/PSLLQ—Shift Packed Dat a Left Logical (Continued)

The PSLLW instruction shifts each of the words in the destination operand to the left by the
number of bits specified in the count operand; the PSLLD instruction shifts each of the double-
words in the destination operand; and the PSLLQ instruction shifts the quadword (or quad-
words) in the destination operand.

Operation

PSLLW instruction with 64-bit operand:
IF (COUNT > 15)
THEN
DEST[64..0] «~ 0000000000000000H
ELSE
DEST[15..0] « ZeroExtend(DEST[15..0] << COUNT);
* repeat shift operation for 2nd and 3rd words *;
DEST[63..48] < ZeroExtend(DEST[63..48] << COUNT);
FI;

PSLLD instruction with 64-bit operand:

IF (COUNT > 31)

THEN
DEST[64..0] «~ 0000000000000000H

ELSE
DESTI[31..0] « ZeroExtend(DEST[31..0] << COUNT);
DESTI[63..32] « ZeroExtend(DEST[63..32] << COUNT);

FI;

PSLLQ instruction with 64-bit operand:
IF (COUNT > 63)
THEN
DEST[64..0] <~ 0000000000000000H
ELSE
DEST « ZeroExtend(DEST << COUNT);
FI;

PSLLW instruction with 128-bit operand:
IF (COUNT > 15)
THEN
DEST[128..0] <« 00000000000000000000000000000000H
ELSE
DEST[15-0] « ZeroExtend(DEST[15-0] << COUNT);
* repeat shift operation for 2nd through 7th words *;
DEST[127-112] « ZeroExtend(DEST[127-112] << COUNT);
Fl,

3-626

Intel® INSTRUCTION SET REFERENCE

PSLLW/PSLLD/P SLLQ—Shift Packed Dat a Left Logical (Continued)

PSLLD instruction with 128-bit operand:
IF (COUNT > 31)
THEN
DEST[128..0] « 00000000000000000000000000000000H
ELSE
DEST[31-0] « ZeroExtend(DEST[31-0] << COUNT);
* repeat shift operation for 2nd and 3rd doublewords *;
DEST[127-96] « ZeroExtend(DEST[127-96] << COUNT);
Fl;

PSLLQ instruction with 128-bit operand:
IF (COUNT > 63)
THEN
DEST[128..0] « 00000000000000000000000000000000H
ELSE
DEST[63-0] « ZeroExtend(DEST[63-0] << COUNT);
DEST[127-64] < ZeroExtend(DEST[127-64] << COUNT);
Fl,

Intel C/C++ Compiler Intrinsi c Equiv alents

PSLLW _ m64 _mm_slli_pil6 (__m64 m, int count)

PSLLW __m64 _mm_sll_pil6(__m64 m, __m64 count)
PSLLW _m128i _mm_slli_pil6(__m64 m, int count)
PSLLW _ m128i _mm_slli_pil6(__m128i m, _ m128i count)
PSLLD _ _m64 _mm_slli_pi32(__m64 m, int count)

PSLLD __m64 _mm_sll_pi32(__m64 m, __m64 count)
PSLLD _ m128i _mm_slli_epi32(__m128i m, int count)
PSLLD _ m128i _mm_sll_epi32(_m128i m, __m128i count)
PSLLQ _ m64 _mm_slli_si64(__m64 m, int count)

PSLLQ __m64 _mm_sll_si64(__m64 m, __m64 count)
PSLLQ _m128i _mm_slli_si64(__m128i m, int count)
PSLLQ __m128i _mm_sll_si64(__m128i m, __m128i count)

Flags Affected

None.

3-627

INSTRUCTION SET REFERENCE Intel®

PSLLW/PSLLD/PSLLQ—Shift Packed Dat a Left Logical (Continued)

Protected Mode Exceptions

#GP(0)

#SS(0)
#UD

#NM

#MF
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only.) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If a memory operand effective address is outside the SS segment limit.

If EM in CRO is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is

MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

If TS in CRO is set.
(64-bit operations only.) If there is a pending x87 FPU exception.
If a page fault occurs.

(64-bit operations only.) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege level is 3.

Real-Addr ess Mode Exceptions

#GP(0)

#UD

#NM
#MF

3-628

(128-bit operations only.) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

If EM in CRO is set.
128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is

MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

If TS in CRO is set.
(64-bit operations only.) If there is a pending x87 FPU exception.

Intel® INSTRUCTION SET REFERENCE

PSLLW/PSLLD/P SLLQ—Shift Packed Dat a Left Logical (Continued)

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode

#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only.) If alignment checking is enabled and an
unaligned memory reference is made.

Numeric Exceptions

None.

3-629

INSTRUCTION SET REFERENCE Intel®

PSRAW/PSRAD—Shift Packed Dat a Right Arithmet ic

Opcode Instruction Descri ption

OF E1/r PSRAW mm, mm/mé64 Shift words in mm right by mm/mé64 while shifting in
sign bits.

66 OF E1 /r PSRAW xmm1, xmm2/m128 Shift words in xmm1 right by xmm2/m128 while
shifting in sign bits.

OF 71 /4 ib PSRAW mm, imm8 Shift words in mm right by imm8 while shifting in
sign bits

66 OF 71 /4 ib PSRAW xmm1, imm8 Shift words in xmm1 right by imm8 while shifting in
sign bits

OF E2 /r PSRAD mm, mm/mé64 Shift doublewords in mm right by mm/mé4 while
shifting in sign bits.

66 OF E2 /r PSRAD xmm1, xmm2/m128 Shift doubleword in xmm1 right by xmm2 /m128
while shifting in sign bits.

OF 72 /4ib PSRAD mm, imm8 Shift doublewords in mm right by imm8 while shifting
in sign bits.

66 OF 72 /4 ib PSRAD xmm1, imm8 Shift doublewords in xmm1 right by imm8 while
shifting in sign bits.

Description

Shifts the bits in the individual data elements (words or doublewords) in the destination operand
(first operand) to the right by the number of bits specified in the count operand (second operand).
As the bits in the data elements are shifted right, the empty high-order bits are filled with the
initial value of the sign bit of the data element. If the value specified by the count operand is
greater than 15 (for words) or 31 (for doublewords), each destination data element is filled with
the initial value of the sign bit of the element. (Figure 3-13 gives an example of shifting words
in a 64-bit operand.)

Pre-Shift
DEST X3 X2 X1 X0

Shift Right
with Sign
Extension
Y Y A Y
Post[-)?zfgflt_ X3 >> COUNT | X2>> COUNT | X1 >> COUNT | X0 >> COUNT

Figure 3-13. PSRAW and PSRAD Instruction Operation Using a 64-bit Operand

The destination operand may be an MMX technology register or an XMM register; the count
operand can be either an MMX technology register or an 64-bit memory location, an XMM
register or a 128-bit memory location, or an 8-bit immediate.

3-630

Intel® INSTRUCTION SET REFERENCE

PSRAW/PSRAD—Shift Packed Data Right Arithmetic (Continue d)

The PSRAW instruction shifts each of the words in the destination operand to the right by the
number of bits specified in the count operand, and the PSRAD instruction shifts each of the
doublewords in the destination operand.

Operation

PSRAW instruction with 64-bit operand:
IF (COUNT > 15)
THEN COUNT « 16;
Fl,
DESTI[15..0] « SignExtend(DEST[15..0] >> COUNT);
* repeat shift operation for 2nd and 3rd words *;
DEST[63..48] « SignExtend(DEST[63..48] >> COUNT);

PSRAD instruction with 64-bit operand:
IF (COUNT > 31)
THEN COUNT « 32;
Fl;
ELSE
DEST[31..0] « SignExtend(DEST[31..0] >> COUNT);
DEST[63..32] < SignExtend(DEST[63..32] >> COUNT);

PSRAW instruction with 128-bit operand:

IF (COUNT > 15)
THEN COUNT « 16;

Fl;

ELSE
DEST[15-0] « SignExtend(DEST[15-0] >> COUNT);
* repeat shift operation for 2nd through 7th words *;
DEST[127-112] « SignExtend(DEST[127-112] >> COUNT);

PSRAD instruction with 128-bit operand:

IF (COUNT > 31)
THEN COUNT « 32;

FI;

ELSE
DEST[31-0] « SignExtend(DEST[31-0] >> COUNT);
* repeat shift operation for 2nd and 3rd doublewords *;
DEST[127-96] < SignExtend(DEST[127-96] >>COUNT);

3-631

INSTRUCTION SET REFERENCE Intel®

PSRAW/PSRAD—Shift Packed Dat a Right Arithmet ic (Continued)

Intel C/C++ Compiler Intrinsic Equiv alents

PSRAW __m64 _mm_srai_pil6 (__m64 m, int count)

PSRAW __m64 _mm_sraw_pil6 (__m64 m, __m64 count)
PSRAD __m64 _mm_srai_pi32 (__m64 m, int count)

PSRAD __m64 _mm_sra_pi32 (__m64 m, __m64 count)
PSRAW __m128i _mm_srai_epil6(__m128i m, int count)
PSRAW __m128i _mm_sra_epil6(__m128i m, _ m128i count))
PSRAD __m128i _mm_srai_epi32 (__m128im, int count)
PSRAD _ m128i _mm_sra_epi32 (__m128i m, __m128i count)

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

(128-bit operations only.) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#UD If EM in CRO is set.
128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is

MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

#NM If TS in CRO is set.
#MF (64-bit operations only.) If there is a pending x87 FPU exception.
#PF(fault-code) If a page fault occurs.

#AC(0) (64-bit operations only.) If alignment checking is enabled and an
unaligned memory reference is made while the current privilege level is 3.

3-632

Intel® INSTRUCTION SET REFERENCE

PSRAW/PSRAD—Shift Packed Data Right Arithmetic (Continue d)

Real-Address Mode Exceptions

#GP(0) (128-bit operations only.) If memory operand is not aligned on a 16-byte
boundary, regardless of segment.

If any part of the operand lies outside of the effective address space from
0 to FFFFH.

#UD If EM in CRO is set.

128-bit operations will generate #UD only if OSFXSR in CR4 is 0. Execu-
tion of 128-bit instructions on a non-SSE2 capable processor (one that is
MMX technology capable) will result in the instruction operating on the
mm registers, not #UD.

#NM If TS in CRO is set.
#MF (64-bit operations only.) If there is a pending x87 FPU exception.

Virtual-8086 Mode Exceptions
Same exceptions as in Real Address Mode
#PF(fault-code) For a page fault.

#AC(0) (64-bit operations only.) If alignment checking is enabled and an
unaligned memory reference is made.

Numeric Exceptions

None.

3-633

Intel® INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Ont o the Stack

Opcode Instru ction Descri ption
FF /6 PUSH r/m16 Push /m16
FF /6 PUSH r/m32 Push /m32
50+rw PUSH r16 Push r16
50+rd PUSH r32 Push r32
6A PUSH imm8 Push imm8
68 PUSH imm16 Push imm16
68 PUSH imm32 Push imm32
OE PUSH CS Push CS

16 PUSH SS Push SS

1E PUSH DS Push DS

06 PUSH ES Push ES

OF AO PUSH FS Push FS

OF A8 PUSH GS Push GS

Description

Decrements the stack pointer and then stores the source operand on the top of the stack. The
address-size attribute of the stack segment determines the stack pointer size (16 bits or 32 bits),
and the operand-size attribute of the current code segment determines the amount the stack
pointer is decremented (2 bytes or 4 bytes). For example, if these address- and operand-size
attributes are 32, the 32-bit ESP register (stack pointer) is decremented by 4 and, if they are 16,
the 16-bit SP register is decremented by 2. (The B flag in the stack segment’s segment descriptor
determines the stack’s address-size attribute, and the D flag in the current code segment’s
segment descriptor, along with prefixes, determines the operand-size attribute and also the
address-size attribute of the source operand.) Pushing a 16-bit operand when the stack address-
size attribute is 32 can result in a misaligned the stack pointer (that is, the stack pointer is not
aligned on a doubleword boundary).

The PUSH ESP instruction pushes the value of the ESP register as it existed before the instruc-
tion was executed. Thus, if a PUSH instruction uses a memory operand in which the ESP
register is used as a base register for computing the operand address, the effective address of the
operand is computed before the ESP register is decremented.

In the real-address mode, if the ESP or SP register is 1 when the PUSH instruction is executed,
the processor shuts down due to a lack of stack space. No exception is generated to indicate this
condition.

IA-32 Archit ecture Compatibility

For TA-32 processors from the Intel 286 on, the PUSH ESP instruction pushes the value of the
ESP register as it existed before the instruction was executed. (This is also true in the real-
address and virtual-8086 modes.) For the Intel 8086 processor, the PUSH SP instruction pushes
the new value of the SP register (that is the value after it has been decremented by 2).

3-663

INSTRUCTION SET REFERENCE Intel®

PUSH—Push Word or Doublew ord Onto th e Stack (Cont inued)

Operation
IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN

ESP « ESP - 4;
SS:ESP « SRC; (* push doubleword *)
ELSE (* OperandSize = 16*)
ESP « ESP - 2;
SS:ESP « SRC; (* push word *)
FI;
ELSE (* StackAddrSize = 16%*)
IF OperandSize = 16
THEN
SP « SP - 2;
SS:SP « SRC; (* push word *)
ELSE (* OperandSize = 32%)
SP « SP — 4;
SS:SP « SRC; (* push doubleword *)
FI;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#S5S(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Addr ess Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

3-664

Intel® INSTRUCTION SET REFERENCE

PUSH—Push Word or Doubleword Onto the Stack (Co ntinued)

#SS If a memory operand effective address is outside the SS segment limit.
If the new value of the SP or ESP register is outside the stack segment
limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

3-665

intgl.

INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Oper ation Prefix

Opcode Instru ction Descri ption
F3 6C REP INS r/m8, DX Input (E)CX bytes from port DX into ES:[(E)DI]
F3 6D REP INS r/m16, DX Input (E)CX words from port DX into ES:[(E)DI]
F3 6D REP INS r/m32, DX Input (E)CX doublewords from port DX into ES:[(E)DI]
F3 A4 REP MOVS m8, m8 Move (E)CX bytes from DS:[(E)SI] to ES:[(E)DI]
F3 A5 REP MOVS m16, m16 Move (E)CX words from DS:[(E)SI] to ES:[(E)DI]
F3 A5 REP MOVS m32, m32 Move (E)CX doublewords from DS:[(E)SI] to ES:[(E)DI]
F3 6E REP OUTS DX, /m8 Output (E)CX bytes from DS:[(E)SI] to port DX
F3 6F REP OUTS DX, /m16 Output (E)CX words from DS:[(E)SI] to port DX
F3 6F REP OUTS DX, /m32 Output (E)CX doublewords from DS:[(E)SI] to port DX
F3 AC REP LODS AL Load (E)CX bytes from DS:[(E)SI] to AL
F3 AD REP LODS AX Load (E)CX words from DS:[(E)SI] to AX
F3 AD REP LODS EAX Load (E)CX doublewords from DS:[(E)SI] to EAX
F3 AA REP STOS m8 Fill (E)CX bytes at ES:[(E)DI] with AL
F3 AB REP STOS m16 Fill (E)CX words at ES:[(E)DI] with AX
F3 AB REP STOS m32 Fill (E)CX doublewords at ES:[(E)DI] with EAX
F3 A6 REPE CMPS m8, m8 Find nonmatching bytes in ES:[(E)DI] and DS:[(E)SI]
F3 A7 REPE CMPS m16, m16 Find nonmatching words in ES:[(E)DI] and DS:[(E)SI]
F3 A7 REPE CMPS m32, m32 Find nonmatching doublewords in ES:[(E)DI] and DS:[(E)SI]
F3 AE REPE SCAS m8 Find non-AL byte starting at ES:[(E)DI]
F3 AF REPE SCAS m16 Find non-AX word starting at ES:[(E)DI]
F3 AF REPE SCAS m32 Find non-EAX doubleword starting at ES:[(E)DI]
F2 A6 REPNE CMPS m8, m8 Find matching bytes in ES:[(E)DI] and DS:[(E)SI]
F2 A7 REPNE CMPS m16, m16 Find matching words in ES:[(E)DI] and DS:[(E)SI]
F2 A7 REPNE CMPS m32, m32 Find matching doublewords in ES:[(E)DI] and DS:[(E)SI]
F2 AE REPNE SCAS m8 Find AL, starting at ES:[(E)DI]
F2 AF REPNE SCAS m16 Find AX, starting at ES:[(E)DI]
F2 AF REPNE SCAS m32 Find EAX, starting at ES:[(E)DI]
Description

Repeats a string instruction the number of times specified in the count register ((E)CX) or until
the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE (repeat while
equal), REPNE (repeat while not equal), REPZ (repeat while zero), and REPNZ (repeat while
not zero) mnemonics are prefixes that can be added to one of the string instructions. The REP
prefix can be added to the INS, OUTS, MOVS, LODS, and STOS instructions, and the REPE,
REPNE, REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The
REPZ and REPNZ prefixes are synonymous forms of the REPE and REPNE prefixes, respec-
tively.) The behavior of the REP prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions,
use the LOOP instruction or another looping construct.

3-687

INSTRUCTION SET REFERENCE Intel®

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Operation P refix
(Continued)

All of these repeat prefixes cause the associated instruction to be repeated until the count in
register (E)CX is decremented to O (see the following table). (If the current address-size attribute
is 32, register ECX is used as a counter, and if the address-size attribute is 16, the CX register is
used.) The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after
each iteration and terminate the repeat loop if the ZF flag is not in the specified state. When both
termination conditions are tested, the cause of a repeat termination can be determined either by
testing the (E)CX register with a JECXZ instruction or by testing the ZF flag with a JZ, JNZ,
and JNE instruction.

Repeat Prefix

Termination Condition 1

Termination Condition 2

REP
REPE/REPZ
REPNE/REPNZ

ECX=0
ECX=0
ECX=0

None
ZF=0
ZF=1

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require
initialization because both the CMPS and SCAS instructions affect the ZF flag according to the
results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens,
the state of the registers is preserved to allow the string operation to be resumed upon a return
from the exception or interrupt handler. The source and destination registers point to the next
string elements to be operated on, the EIP register points to the string instruction, and the ECX
register has the value it held following the last successful iteration of the instruction. This mech-
anism allows long string operations to proceed without affecting the interrupt response time of
the system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is prefixed with
REPE or REPNE, the EFLAGS value is restored to the state prior to the execution of the instruc-
tion. Since the SCAS and CMPS instructions do not use EFLAGS as an input, the processor can
resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle the rate
at which these instructions execute.

A REP STOS instruction is the fastest way to initialize a large block of memory.

3-688

Intel® INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE/REPNZ—Repeat String Oper ation Prefix
(Continued)

Operation

IF AddressSize = 16
THEN
use CX for CountReg;
ELSE (* AddressSize = 32 *)
use ECX for CountReg;
Fl;
WHILE CountReg # 0
DO
service pending interrupts (if any);
execute associated string instruction;
CountReg « CountReg — 1,
IF CountReg =0
THEN exit WHILE loop
FI;
IF (repeat prefix is REPZ or REPE) AND (ZF=0)
OR (repeat prefix is REPNZ or REPNE) AND (ZF=1)
THEN exit WHILE loop
FI;
OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS
register.

Exceptions (All Operating Modes)

None; however, exceptions can be generated by the instruction a repeat prefix is associated with.

3-689

INSTRUCTION SET REFERENCE Intel®

RET—Return from P rocedure

Opcode Instruction Description

C3 RET Near return to calling procedure

CB RET Far return to calling procedure

C2 iw RET imm16 Near return to calling procedure and pop imm16 bytes
from stack

CA iw RET imm16 Far return to calling procedure and pop imm16 bytes from
stack

Description

Transfers program control to a return address located on the top of the stack. The address is
usually placed on the stack by a CALL instruction, and the return is made to the instruction that
follows the CALL instruction.

The optional source operand specifies the number of stack bytes to be released after the return
address is popped; the default is none. This operand can be used to release parameters from the
stack that were passed to the called procedure and are no longer needed. It must be used when
the CALL instruction used to switch to a new procedure uses a call gate with a non-zero word
count to access the new procedure. Here, the source operand for the RET instruction must
specify the same number of bytes as is specified in the word count field of the call gate.

The RET instruction can be used to execute three different types of returns:

® Near return—A return to a calling procedure within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment return.

® Far return—A return to a calling procedure located in a different segment than the current
code segment, sometimes referred to as an intersegment return.

® Inter-privilege-level far return—A far return to a different privilege level than that of the
currently executing program or procedure.

The inter-privilege-level return type can only be executed in protected mode. See the section
titled “Calling Procedures Using Call and RET” in Chapter 6 of the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1, for detailed information on near, far, and inter-privi-
lege-level returns.

When executing a near return, the processor pops the return instruction pointer (offset) from the
top of the stack into the EIP register and begins program execution at the new instruction pointer.
The CS register is unchanged.

When executing a far return, the processor pops the return instruction pointer from the top of the
stack into the EIP register, then pops the segment selector from the top of the stack into the CS
register. The processor then begins program execution in the new code segment at the new
instruction pointer.

3-690

Intel® INSTRUCTION SET REFERENCE

RET—Return from P rocedure (Con tinued)

The mechanics of an inter-privilege-level far return are similar to an intersegment return, except
that the processor examines the privilege levels and access rights of the code and stack segments
being returned to determine if the control transfer is allowed to be made. The DS, ES, FS, and
GS segment registers are cleared by the RET instruction during an inter-privilege-level return if
they refer to segments that are not allowed to be accessed at the new privilege level. Since a
stack switch also occurs on an inter-privilege level return, the ESP and SS registers are loaded
from the stack.

If parameters are passed to the called procedure during an inter-privilege level call, the optional
source operand must be used with the RET instruction to release the parameters on the return.
Here, the parameters are released both from the called procedure’s stack and the calling proce-
dure’s stack (that is, the stack being returned to).

Operation

(* Near return *)
IF instruction = near return
THEN;
IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
EIP « Pop();
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits
THEN #SS(0)
Fl;
tempEIP « Pop();
tempEIP « tempEIP AND O000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP « tempEIP;
FI;
IF instruction has immediate operand
THEN IF StackAddressSize=32
THEN
ESP « ESP + SRC; (* release parameters from stack *)
ELSE (* StackAddressSize=16 *)
SP « SP + SRC; (* release parameters from stack *)
FI;
Fl;

(* Real-address mode or virtual-8086 mode *)

IF ((PE =0) OR (PE =1 AND VM = 1)) AND instruction = far return
THEN;

3-691

INSTRUCTION SET REFERENCE Intel®

RET—Return from P rocedure (Cont inued)

IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); Fl;
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack not within stack limits THEN #SS(0); Fl;
tempEIP « Pop();
tempEIP « tempEIP AND 0000FFFFH;
IF tempEIP not within code segment limits THEN #GP(0); FI;
EIP « tempEIP;
CS « Pop(); (* 16-bit pop *)
FI;
IF instruction has immediate operand
THEN
SP « SP + (SRC AND FFFFH); (* release parameters from stack *)
FI;
FI;

(* Protected mode, not virtual-8086 mode *)
IF (PE =1 AND VM = 0) AND instruction = far RET

THEN
IF OperandSize = 32
THEN
IF second doubleword on stack is not within stack limits THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)
IF second word on stack is not within stack limits THEN #SS(0); Fl;
Fl;

IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond diescriptor table limit
THEN GP(selector; FI;
Obtain descriptor to which return code segment selector points from descriptor table
IF return code segment descriptor is not a code segment THEN #GP(selector); Fl;
if return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is conforming
AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL
FI;
END;FI,

3-692

Intel® INSTRUCTION SET REFERENCE

RET—Return from P rocedure (Con tinued)

RETURN-SAME-PRIVILEGE-LEVEL:
IF the return instruction pointer is not within ther return code segment limit
THEN #GP(0);
Fl;
IF OperandSize=32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
ESP « ESP + SRC; (* release parameters from stack *)
ELSE (* OperandSize=16 *)
EIP « Pop();
EIP « EIP AND 0000FFFFH;
CS « Pop(); (* 16-bit pop *)
ESP « ESP + SRC; (* release parameters from stack *)
Fl;

RETURN-OUTER-PRIVILEGE-LEVEL:
IF top (16 + SRC) bytes of stack are not within stack limits (OperandSize=32)
OR top (8 + SRC) bytes of stack are not within stack limits (OperandSize=16)
THEN #SS(0); FI;
Fl;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits
THEN #GP(selector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL # RPL of the return code segment selector
OR stack segment is not a writable data segment
OR stack segment descriptor DPL # RPL of the return code segment selector
THEN #GP(selector); FI;
IF stack segment not present THEN #SS(StackSegmentSelector); Fl;
IF the return instruction pointer is not within the return code segment limit THEN #GP(0); FI:
CPL « ReturnCodeSegmentSelector(RPL);
IF OperandSize=32
THEN
EIP « Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
(* segment descriptor information also loaded *)
CS(RPL) « CPL;
ESP « ESP + SRC; (* release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
(* segment descriptor information also loaded *)
ESP « tempESP;
SS « tempSS;

3-693

INSTRUCTION SET REFERENCE Intel®

RET—Return from P rocedure (Cont inued)

ELSE (* OperandSize=16 *)
EIP « Pop();
EIP « EIP AND 0000FFFFH;
CS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
CS(RPL) « CPL;
ESP « ESP + SRC; (* release parameters from called procedure’s stack *)
tempESP « Pop();
tempSS « Pop(); (* 16-bit pop; segment descriptor information also loaded *)
(* segment descriptor information also loaded *)
ESP « tempESP;

SS « tempSS;
FI;
FOR each of segment register (ES, FS, GS, and DS)
DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL; (* DPL in hidden part of segment register *)
THEN (* segment register invalid *)
SegmentSelector < 0; (* null segment selector *)
FI;
OD;
For each of ES, FS, GS, and DS
DO
IF segment selector index is not within descriptor table limits
OR segment descriptor indicates the segment is not a data or
readable code segment
OR if the segment is a data or non-conforming code segment and the segment
descriptor’'s DPL < CPL or RPL of code segment’s segment selector
THEN
segment selector register < null selector;
oD;

ESP « ESP + SRC; (* release parameters from calling procedure’s stack *)

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the return code or stack segment selector null.

If the return instruction pointer is not within the return code segment limit
#GP(selector) If the RPL of the return code segment selector is less then the CPL.

If the return code or stack segment selector index is not within its
descriptor table limits.

3-694

intgl.

INSTRUCTION SET REFERENCE

RET—Return from P rocedure (Con tinued)

#SS(0)

#NP(selector)
#PF(fault-code)
#AC(0)

If the return code segment descriptor does not indicate a code segment.

If the return code segment is non-conforming and the segment selector’s
DPL is not equal to the RPL of the code segment’s segment selector

If the return code segment is conforming and the segment selector’s DPL
greater than the RPL of the code segment’s segment selector

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the return code
segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the top bytes of stack are not within stack limits.
If the return stack segment is not present.

If the return code segment is not present.

If a page fault occurs.

If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions

#GP
#SS

If the return instruction pointer is not within the return code segment limit

If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0)
#SS(0)
#PF(fault-code)
#AC(0)

If the return instruction pointer is not within the return code segment limit
If the top bytes of stack are not within stack limits.
If a page fault occurs.

If an unaligned memory access occurs when alignment checking is
enabled.

3-695

intgl.

SAL/SAR/S HL/SHR—SHhift

INSTRUCTION SET REFERENCE

Opcode Instru ction Description

DO /4 SAL r/m8 Multiply /m8by 2, 1 time

D2 /4 SAL r/m8,CL Multiply /m8 by 2, CL times

CO /4 ib SAL r/m8,imm8 Multiply /m8 by 2, imm8 times

D1 /4 SAL r/m16 Multiply /m16 by 2, 1 time

D3 /4 SAL r/m16,CL Multiply /m16 by 2, CL times

Cl/4ib SAL r/m16,imm8 Multiply /m16 by 2, imm8 times

D1 /4 SAL r/m32 Multiply /m32 by 2, 1 time

D3 /4 SAL r/m32,CL Multiply #m32 by 2, CL times

Cl/4ib SAL r/m32,imm8 Multiply /m32 by 2, imm8 times

DO /7 SAR r/m8 Signed divide* /m8 by 2, 1 time

D2 /7 SAR r/m8,CL Signed divide* /m8by 2, CL times

Co/7ib SAR r/m8,imm8 Signed divide* /m8 by 2, imm8 times

D1 /7 SAR r/m16 Signed divide* /m16 by 2, 1 time

D3 /7 SAR r/m16,CL Signed divide* /m16 by 2, CL times

Cl/7ib SAR r/m16,imm8 Signed divide* /m16 by 2, imm8times

D1 /7 SAR r/m32 Signed divide* /m32 by 2, 1 time

D3 /7 SAR r/m32,CL Signed divide* /m32 by 2, CL times

Cl/7ib SAR r/m32,imm8 Signed divide* /m32 by 2, imm8times

DO /4 SHL /m8 Multiply /m8by 2, 1 time

D2 /4 SHL /m8,CL Multiply /m8 by 2, CL times

Co/4ib SHL r/m8,imm8 Multiply /m8by 2, imm8 times

D1 /4 SHL /m16 Multiply /m16 by 2, 1 time

D3 /4 SHL /m16,CL Multiply /m16 by 2, CL times

Cl/4ib SHL /m16,imm8 Multiply /m16 by 2, imm8 times

D1 /4 SHL /m32 Multiply #m32 by 2, 1 time

D3 /4 SHL #/m32,CL Multiply /m32 by 2, CL times

Cl/4ib SHL /m32,imm8 Multiply /m32 by 2, imm8 times

DO /5 SHR /m8 Unsigned divide /m8 by 2, 1 time

D2 /5 SHR /m8,CL Unsigned divide /m8 by 2, CL times

Co/5ib SHR /m8,imm8 Unsigned divide /m8 by 2, imm8 times

D1/5 SHR r/m16 Unsigned divide /m16 by 2, 1 time

D3 /5 SHR /m16,CL Unsigned divide /m16 by 2, CL times

Cl/5ib SHR r/m16,imm8 Unsigned divide /m16 by 2, imm8times

D1/5 SHR r/m32 Unsigned divide /m32 by 2, 1 time

D3 /5 SHR /m32,CL Unsigned divide /m32 by 2, CL times

Cl/5ib SHR r/m32,imm8 Unsigned divide /m32 by 2, imm8times
NOTE:

* Not the same form of division as IDIV; rounding is toward negative infinity.

3-703

INSTRUCTION SET REFERENCE Intel®

SAL/SAR/SHL/SHR—Shift (Continued)

Description

Shifts the bits in the first operand (destination operand) to the left or right by the number of bits
specified in the second operand (count operand). Bits shifted beyond the destination operand
boundary are first shifted into the CF flag, then discarded. At the end of the shift operation, the
CF flag contains the last bit shifted out of the destination operand.

The destination operand can be a register or a memory location. The count operand can be an
immediate value or register CL. The count is masked to 5 bits, which limits the count range to
0 to 31. A special opcode encoding is provided for a count of 1.

The shift arithmetic left (SAL) and shift logical left (SHL) instructions perform the same oper-
ation; they shift the bits in the destination operand to the left (toward more significant bit loca-
tions). For each shift count, the most significant bit of the destination operand is shifted into the
CF flag, and the least significant bit is cleared (see Figure 7-7 in the IA-32 Intel Architecture
Software Developer’s Manual, Volume 1).

The shift arithmetic right (SAR) and shift logical right (SHR) instructions shift the bits of the
destination operand to the right (toward less significant bit locations). For each shift count, the
least significant bit of the destination operand is shifted into the CF flag, and the most significant
bit is either set or cleared depending on the instruction type. The SHR instruction clears the most
significant bit (see Figure 7-8 in the IA-32 Intel Architecture Software Developer’s Manual,
Volume 1); the SAR instruction sets or clears the most significant bit to correspond to the sign
(most significant bit) of the original value in the destination operand. In effect, the SAR instruc-
tion fills the empty bit position’s shifted value with the sign of the unshifted value (see Figure
7-9 in the IA-32 Intel Architecture Software Developer’s Manual, Volume 1).

The SAR and SHR instructions can be used to perform signed or unsigned division, respectively,
of the destination operand by powers of 2. For example, using the SAR instruction to shift a
signed integer 1 bit to the right divides the value by 2.

Using the SAR instruction to perform a division operation does not produce the same result as
the IDIV instruction. The quotient from the IDIV instruction is rounded toward zero, whereas
the “quotient” of the SAR instruction is rounded toward negative infinity. This difference is
apparent only for negative numbers. For example, when the IDIV instruction is used to divide
-9 by 4, the result is -2 with a remainder of -1. If the SAR instruction is used to shift -9 right by
two bits, the result is -3 and the “remainder” is +3; however, the SAR instruction stores only the
most significant bit of the remainder (in the CF flag).

The OF flag is affected only on 1-bit shifts. For left shifts, the OF flag is set to O if the most-
significant bit of the result is the same as the CF flag (that is, the top two bits of the original
operand were the same); otherwise, it is set to 1. For the SAR instruction, the OF flag is cleared
for all 1-bit shifts. For the SHR instruction, the OF flag is set to the most-significant bit of the
original operand.

3-704

Intel® INSTRUCTION SET REFERENCE

SAL/SAR/S HL/SHR—Shift (Continued)

IA-32 Archit ecture Compatibility

The 8086 does not mask the shift count. However, all other IA-32 processors (starting with the
Intel 286 processor) do mask the shift count to 5 bits, resulting in a maximum count of 31. This
masking is done in all operating modes (including the virtual-8086 mode) to reduce the
maximum execution time of the instructions.

Operation

tempCOUNT « (COUNT AND 1FH);
tempDEST « DEST;
WHILE (tempCOUNT # 0)

DO
IF instruction is SAL or SHL
THEN
CF < MSB(DEST);
ELSE (* instruction is SAR or SHR *)
CF « LSB(DEST);
FI;
IF instruction is SAL or SHL
THEN
DEST « DEST * 2;
ELSE
IF instruction is SAR
THEN
DEST « DEST / 2 (*Signed divide, rounding toward negative infinity*);
ELSE (* instruction is SHR *)
DEST « DEST /2 ; (* Unsigned divide *);
Fl;
Fl;
tempCOUNT « tempCOUNT - 1;
OD;

(* Determine overflow for the various instructions *)
IF (COUNT and 1FH) =1

THEN
IF instruction is SAL or SHL
THEN
OF « MSB(DEST) XOR CF;
ELSE
IF instruction is SAR
THEN
OF « 0;
ELSE (* instruction is SHR *)
OF « MSB(tempDEST);
Fl;

3-705

INSTRUCTION SET REFERENCE Intel®

SAL/SAR/SHL/SHR—Shift (Continued)

FI;
ELSE IF (COUNT AND 1FH) =0
THEN
All flags remain unchanged;
ELSE (* COUNT neither 1 or 0 *)
OF <« undefined;
FI;
Fl;

Flags Affected

The CF flag contains the value of the last bit shifted out of the destination operand; it is unde-
fined for SHL and SHR instructions where the count is greater than or equal to the size (in bits)
of the destination operand. The OF flag is affected only for 1-bit shifts (see “Description”
above); otherwise, it is undefined. The SF, ZF, and PF flags are set according to the result. If the
count is 0, the flags are not affected. For a non-zero count, the AF flag is undefined.

Protected Mode Exceptions
#GP(0) If the destination is located in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Addr ess Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

3-706

Intel® INSTRUCTION SET REFERENCE

SAL/SAR/S HL/SHR—Shift (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

3-707

Intel® INSTRUCTION SET REFERENCE

STD—Set Direction Flag

Opcode Instru ction Descri ption
FD STD Set DF flag
Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decre-
ment the index registers (ESI and/or EDI).

Operation
DF « 1;

Flags Affected
The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

3-745

