Introduction to Measurement Methodology

Outline

* Introduction

- Misuse of the data
- The Basic Equation (how long did it take)
- The Mean

★ How do we Measure

- Real Hardware, Simulator, Analytical Model
- Hardware Instrument, μcode,
 Software Monitor

What do we Measure (Benchmarks)

- Synthetic code
- Kernels
- Toy Benchmarks
- SPEC
- The Perfect Club
- Your Relevant Workload

* Serious Abuses

From a Welcoming Address At A Well-Known Conference

Why Measure

- * Before the fact
 - So we know what to build

- * After the fact
 - So we know what to do next time

The Standard Performance Equation

Cycles Per Instruction

ISA Organization

- Pipelining
- Issue Rate
- Branch Handling

Means

* Arithmetic Mean

$$A = \frac{1}{n} \sum_{i=1}^{n} P_i$$

* Geometric Mean

$$G = \sqrt[n]{\prod_{i=1}^{n} P_i}$$

* Harmonic Mean

$$H = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{P_i}}$$

How Do We Measure

Degree of Santizing

Real Simulation Analytic Model

Real Hardware

- "Gotchas" Have a chance to get in the way
- Least Flexible
- Fast for doing thorough job

Simulation

- Some effects are missing
- Most Flexible
- Slowest

Analytic Model

- Good for gross effects
- Must be validated

How Do We Measure (Continued)

Invasiveness

Hardware Instrumentation

Microcode Instrumentation **Software Monitoring**

Hardware Instrumentation

- Most Expensive
- Non-Invasive
- Least Flexible

Microcoded Instrumentation

- Best of Both Worlds
- SPAM

Software Monitoring

- Cheap
- Very Invasive
- Most Flexible

SPEC 2006 CINT 2006 (12) 9 IN C 3 IN C++ per/bench sjeng h 264 ref omnetpp xalancbnk CFP 2006 (#) bwaves (F). 6 IN FOLTIAN GAMESS (F) 3 IN C mile (C) 4 IN C FORTRAN Zensmp (F) 4 IN C++ gromacs (C,F)
cactus ADM (C,F) leslie3d (F) GEMSFOTD (F) namd (C++) deal II (C++) tonto (F)

16m (C)

wrf (C,F)

sphinx3 (C)

soplex (C++)
povrey (C++)
Calculix (C, F)

Benchmarks

Rationale: Find a set of programs or program fragments representative of the workload you will be requiring of the machine

Types:

- 1. The ADD instruction very old
- 2. Instruction MIX Old (Gibson MIX, 1959)
- 3. Kernels
 - e.g., Livermore Loops
- 4. Synthetic Benchmarks
 - Parameterized
 - Careful: RRW is not RWR
- 5. Toy Benchmarks
 - Easy to hand-compile
 - Pretty much in disrepute today e.g., Towers of Hanoi
- 6. SPEC Suite (Systems Performance Evaluation Co-operative)
 - At least common agreement, I Guess!!
- 7. Real Workload

Bad Ways to Measure Performance (... and each has been used and reported in the Open Literature)

* Apples & Oranges

- A Lightly Loaded VAX vs. Counting Simulated Cycles

* Who Gets the Credit

- The Architecture or the Compiler
- Example: Berkeley Pascal vs VMS
 Pascal
- Algorithm Optimizations
- Instruction set or register windows (Colwell)

* Choice on Benchmarks

- Selective
 - * Overstates significance of one feature
 - e.g. Regularity (Fl. Pt.)
 - e.g. Procedure Call Intensive
 - e.g. No Floating Point

- Small

- * 100% Cache, TB Hits
- * No I/O, Context Switch

* Play with Statistics

Program A Program B

6.8%

Machine 1: 1 unit 2 units

Machine 2: 2 units 1 unit

Machine 1 is $\frac{2}{1}$ on A, $\frac{1}{2}$ on B

Speed Up is $\frac{1}{2}$ (2 + $\frac{1}{2}$) = 1.25

* Too Focused on Frequency

MOVL 12.4%

Frequency Execution Time
Calls 2.5% 21.6%