Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 360N, Spring 2007

Yale Patt, Instructor

Chang Joo Lee, Rustam Miftakhutdinov, Poorna Samanta, TAs
Exam 1, March 7, 2007

Name;

Problem 1 (25 points):
Problem 2 (10 points):
Problem 3 (20 points):
Problem 4 (20 points):
Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (bsubporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheetexfaime

GOOD LUCK!

Name;

Problem 1 (20 points)

Part a (5 points): A 1GB physical memory system is byte addressable. It has bit@ais to the processor. It is
16-way interleaved. The memory is made out of 8MB chips, edtih8 data pins. Identify which bits in the address
are row address bits, chip address bits, byte of bus bitsraadeave bits.

1 0

29 28 27 26 25 24 23‘ 22‘ 21‘ 20 19‘ 18 17 16 15 14‘ 13‘ 12‘ 11 10 9 8

7. 6 5‘4‘3‘2

Part b (5 points): If we add ECC protection to the LC-3b, then each 16 bit word id@aquire another 5 bits to be
able to correct a one bit error. Suppose we did, and we got thectollowing 21 bit pattern.

20 19

18 17

16 15

14 13

12

11

10

9

8

7

6

5

4

3

2

1

(0]

1

1

0

0

0

1

1

0

1

1

1

0

0

0

1

0

0

0

1

Which bit was in error?

Part ¢ (5 points): The atomic unit of processing is:

Name;

Problem 1 continued

Part d (5 points): Some of the following are part of the ISA, the rest are parthef microarchitecture. Put a check
mark next to each that is part of the ISA.

page size:

MDR:

condition codes:

memory ready bit (R):

trap vector:

Part e (5 points): The xyz machine, which is bigendian, executes LD32 R1,AefRReit memory locations before the
instruction executes is as shown below:

A: 11110000
A+1: 11111111
A+2: 10101010
A+3: 00000000
After execution, R1 contains:
31 28 27 24 23 20 19 16 15 12 11

Name;

Part ¢ (10 points)

We have not talked about pipelining yet in class. When we do, Will see a pipelined machine can easily issue a
memory request every cycle. At the memory controller sideydwver, we may need a queue to buffer the memory
addresses if there are memory bank conflicts. In this exarefat successive memory accesses have arrived at the
memory controller, and are buffered until their banks aeefr Accesses must be done in the order in which they
arrived. The figure below shows which memory accesses akeattring each cycle.

Time in terms of clock cycles
5| 6] 7| 8] 9] 10 110 12 13 14 15 16

Note that memory access 1 is initiated in cycle 1 and retuats dt the end of cycle 5. Memory has an access time of
five cycles, and is four way interleaved.

Your job: Identify which bank each memory access goes to dind the table below accordingly. Memory access 1
has already been entered. (Note: there are several coolatibsis: any one of them will receive full credit.)

BANK 3 BANK 2 BANK 1 BANK 0

Name;

Problem 3 (20 points)
An x86 assembly language programmer complained that th&th.@id not have what to her was the most valuable
addressing mode which is available in the x86 ISA. Recall tha x86 instruction is variable length. One of the
optional bytes in that instruction is called SIB (for Schldex/Base). It allows one to construct an address by sgalin
(multiplying) the contents of one register (the Index) anidiag the result to the contents of another register (the
Base). That is, Address = Base + Scale*Index.
NO PROBLEM, we say. We will use an unused opcode to providednee capability with the LC-3b ISA. We will
call the new opcode SIB:

SIB DR, BaseR, Scale, |IndexR
which will load DR with the address computed by multiplyimgtindexR register bg°“?'¢ and adding the result to
the contents of the BaseR register.
We thus get the same effect as the x86 SIB byte, only it taked @¢3b instructions. That is,

SIB R5,R3, #3, R2

LDW R1, R5, #0
will load R1 with the contents of memory whose address isiobthby adding R3 to the product of R2 a2t

The next page shows the data sheet for the SIB instructidreistyle of Appendix A.

Part a (5 points): We can implement the SIB instruction with either one extedesbr two extra states in the state
diagram of the LC-3b. Which is better? Why?

SIB Scale, Index, Base

Assembler Format

SIB DR, BaseR, Scale, IndexR

Encoding

15 12 11 9 8 6 5 4 3 2 C
I — I I T I

1010 DR BaseR | 0 |Scale IndexR
|

Operation

DR = BaseR + (IndexR 25¢a¢);
setcc(DR);

Description

Load the register specified by DR with the address formed bijiphting the index register IndexR by°°*/¢ and
adding the result to the base register BaseR. The conditidescare set, based on whether the value loaded is
negative, zero, or positive.

Example

SIB R5,R3,#3,R2 ; R5is loaded with 8*R2 + R3

Part b (15 points): Your job here is to implement the SIB instruction with two rexstates (state 10, and state 26).
Using the notation of the LC-3b State Diagram, describe waaapens in these states inside their corresponding bub-
bles. Show all output arc(s) to indicate the next state atege 10 and state 26.

State 32

ke

State 10 State 2

Using the data path diagram labeled “SIB with two extra state the next page, add any additional structures and
any control signals needed to implement SIB as specifieddtwih states shown in the bubbles. Label any additional
control signals “ECS 1” (for “extra control signal 1”), “EC3 etc.

Show the values in the figure below for each control signalesgonding to states 10 and 26.

—
o
= ~
4])
Bl
a E
§ ga°
n - ~ 0
.. & §% 2% -
83 g g 5a E oS a
Ia) o ®© 4 = = x
< Fcege_. E2 30
S - = o od E X =)
NS X 2 g 9O X A4 ¥ =
2 e e &% b zo z =
@ ES“’.; N g . ©
= > & 8 < =~
g 3308s 588 g%
g roeg n° 98 o<g° T m
x ~ ~ as needed
= 5 3 w
$8,889088338 35 3388 2, 8 _ 9;¢
SZ5o585¢88ksf s 2853 §3 cozEzpRRRA
5398985853936 8866 486 & O n < < s = S o000 oo
I I I
State 10 1 1 1
T T T
State 26 | | |
S
a o
x O [}
I T 1T T 1
State 10
f ——t+—1—

MARMUX

SIB with two extra states

A A

16 16

LD.REG—

3
SR2—4>

SR2
ouT

SR1
ouT

l<+4-DR
3
<t4—SR1

¥

—l>; SR2MUX7

A

1 i

CONTROL

fﬂ A
R

A

6
SHF \§74IR[5:01

16

I yOUTPUT

MAEIQ—LD.MAR
<<—DATA.SIZE 0]
LOGIC WE RW
<—MAR[0]
LoGIC | MIO.EN
DATA.
y v SIZE v
WEIWEO
16 _ ADDR. CTL.
MEMORY LOGIC
2 ||
MDR LD.MDR MEM.EN
MIO.EN i
L 1
16 A6
LOGIC <
<——DATA.SIZE INMUX
l<—MAR[0] <_I

Name;

Problem 4 (20 points)

Consider the followindgwo level virtual memory system for the LC-3b:

Virtual Address Space: 64KB Physical Memory Size: 4KB
User Space Range: x0000 to x7FFF Page Size: 256 bytes
System Space Range: x8000 to xFFFF Page Table Entry Size: te2 by

The systendoes not include a Translation Lookaside Buffer. The Page TableyHotmat is as follows:

15 11 0
[V]0 0 0[M[0 0 0 .| PFN |

Part a (2 points): How many bits are allocated for the Page Frame Number (PFkigiP TE? Show the computation.

Answer:

Part b (18 points): The machine stopped at a breakpoint and the following sté¢ernation was observed:

PC SBR UBR RO R1 R2 R3 R4 R5 R6 R7
x3100 x000 x9000 x30F0 xFOOO x4050 xFOOO x0000 x1299 x800000Q1

Note: SBR is the System Page Table Base Register and UBR isttrePage Table Base Register. Each points to the
first entry of the corresponding page table.

After execution resumed, the machine issued the followiragsssive six physical memory requests, uninterrupted by
any page faults, access control violations, or anything. é\te that each entry is incomplete. Your job: complete the
six entries.

Access# PA Data I dentity of I1tem Being Read
1 x8004
2 x8001
3 x6200
4
5 x8007
6 x8004

Note: The last column should identify what is being read gpadly. For example: “The instruction JSR HELP,”
“The PTE for User Virtual Page 0,” “PTE for System Virtual Ra@,” “Data due to load instruction,” etc.

Name;

Problem 5 (25 points):

The LC-3b assumes that all accesses are aligned. Once wéhdes the MAR, we enter a state (for example, states
25, 29, etc), where the MDR is loaded each cycle until theyeéghal from memory tells the state machine that the
MDR contains good data, and processing can continue.

We wish to augment the LC-3b to support unaligned loaidbout changing the control store of the LC-3b. (We will
not deal with stores in the interest of time on this exam.) diagram below shows how we can do it.

CE=
CHIP.ADDRI[14:0] [<
15
Word Addressable
Memory
32K X 16bits MEM .CE
1 FIRST/SECOND
Ready ™ 1
Data MEM READY —F— f)
16 A A
v Unaligned L oad 15
1 Rotator Controller
X — JROTATE MDRHIGH.LD 15 +
16 MDRLOW.LD 1
Y 1
MDR <; MAR[].SZO] 15 15
1 1 1 1 A
16 Y 1
16 MDR.READY MARIO] p
Y
R MEM.EN DATASIZE MAR[15:0]
Processor

Note that we have a new piece of logic,@dnaligned Load Controller.

Like in our original machine (your 3rd programming lab), fh@cessor provides the MAR, MEM.EN, DATASIZE, in
state 25, 29, etc.) and waits for the memory system to rehemeaady bit R. The Unaligned Access Controller has as
input: MEM.EN, DATASIZE, MAR[0] and the MEM.READY signal &fm Memory. The Unaligned Load Controller
controls the unaligned load with MEM.CE, MDRHIGH.LD, MDRMDLD, FIRST/SECOND and a MDR.READY
signal to let the processor know that MDR contains good date processor uses MDR.READY as it used the R
signal from memory in the aligned case.

10

Name;

Problem 5 continued:

The control bits are encoded as follows:

DATASIZE: 0 = Byte

1 =Word
MDRHIGH.LD: 0= No Load

1 = Load High Byte
MDRLOW.LD: 0 =No Load

1 =Load Low Byte
ROTATE: 0 = No Rotation

1 = 8-bit Rotation
FIRST/SECOND: 0 = First Access

1 = Second Access
MDR.READY: 0 = MDR Not Ready

1 =MDR Ready

Part a (5 points): Identify the 1-bit signal X and the 15-bit signal Y shown oe tiagram. (Note: they are generated
by the processor.)

Part b (5 points): The state machine for the Unaligned Load Controller is shbalow. State 0 is an idle state, where
Nno memory access is occurring. In state 3, the state maceiadVPOR.READY which the processor interprets as the
old R bit from memory, so it can move on and read the value irMBeR.

MEM.EN

C1

Briefly explain what is accomplished in States 1 and 2.

State 1

State 2

11

Name;

Problem 5 continued:
Part c (10 points): The Unaligned Load Controller has signals C1, C2, C3, C4,Gfhdnhich are used to transition

the controller through its states. Complete the logic eiquatfor those control signals. (Note: No control signaks ar
required to transition form state 3 to state 0.)

Cil=

C2=

C3=

C4=

C5=

Part d (5 points): The Unaligned Load Controller is best thought of as a Moorelhitze. That is, its outputs are
associated with the state. Complete the table below, iyémgithe value of each output signal for each state.

MEM.CE | FIRST/SECOND| MDRHIGH.LD | MDRLOW.LD | MDR.READY

State 0

State 1

State 2

State 3

12

Table 1: Data path control signals

Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)
LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)
LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)
GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)
GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)
PCMUX/2: PG+2(0) ;select pe-2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder
DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7
SRIMUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]
ADDR1IMUX/1: PC(0), BaseR(1)
ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffsetl1(3) ;select SEXT[IR[10:0]]
MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder
ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)
MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)
DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals

Signal Name Signal Values
J/6:
COND/2: CONDL ;Unconditional
COND; ;Memory Ready
COND, ;Branch
CONDs; ;Addressing Mode
IRD/1: NO, YES

13

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

LDB

To 18 15

6AR<—LSHF(ZEXT[IR[7:O]]9

13
T0 18 5R<-SHF(SR,A,D,amt
set CC

PC<-PC+LSHF(0off9,1))
PC<-BaseR

To 18

To 18

R7<-PC
PC<-BaseR

R7<-PC

To'18 GC<—PC+LSHF(Off1

1]

i

To 18

To 18 CR< PC+LSHF(of‘f9

1)
)CMAR< B+off6) CAR< B+LSHF(off6} @AR< B+LSHF(off6}) CMAR< B+off€D

set CC
/

To 18

24

NOTES

MDR<-SR[7:0]

B+off6 : Base + SEXT[offset6]
PC+0ff9 : PC + SEXT[offset9]

23
C@DFK M[MAR[15 1](9 CDR< M[MARDD MDR<-SR

17

*OP2 may be SR2 or SEXT[imm5)| DR< MDR
** [15:8] or [7:0] depending on DR< SEXT[BYTE DATA MAR]< MDR M[MAR]< MDR**
set CC
MARIO] f —
L L ¢ R R L R R
To 18 To 18 To'18 To 19

Figure 1: A state machine for the LC-3b

14

GateMARMUX

—?/MARMUX

A A

16 16

<—ADDR1MUX 16

LD.REG—>

3
SR27L|>

SR2
ouT

SR1
ouT

l<t-4-DR
3
I<t4—SR1

z}z}z}ooo

v

—l>; SR2MUX7

Y

CONTROL

4

6
SHF \vLIR[S:m

[[
youTPUT

|<+—DATA.SIZE o)
LOGIC WE RW
l<—MAR[0]
Loeic MIO.EN
DATA.
y \Y SIZE v
WE1 WEO
16 _ ADDR. CTL.
MEMORY LoGIC
2 ||
MDR LD.MDR MEM .EN
MIO.EN i
[y
16 A6
LOGIC <
|<+——DATA.SIZE INMUX
l<—MAR[0] 4-‘

Figure 2: The LC-3b data path

15

J5]

0,0,IR[15:12]

|

J[4]

J3]

COND1

J

CONDO

BEN

J2

J

Branch

N

J[1]

RN

Ready

IR[11]

J[0]

~—

ie

Address of Next State

<}— IRD

Figure 3: The microsequencer of the LC-3b base machine

16

J

Addr.
Mode

