
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 360N, Spring 2007
Yale Patt, Instructor
Chang Joo Lee, Rustam Miftakhutdinov, Poorna Samanta, TAs
Exam 2, April 18, 2007

Name:

Problem 1 (25 points):

Problem 2 (20 points):

Problem 3 (15 points):

Problem 4 (20 points):

Problem 5 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of theexam.

GOOD LUCK!

Name:

Problem 1 (25 points)

Part a (4 points): Today’s microprocessors run at more than 1 GHz. Some of them more than 3 GHz. This causes
errors due to alpha particles. That is errors that are not dueto the logic, and if the instruction is executed a second
time, it will probably (with very high probability) executecorrectly. We call them soft errors. Suppose we do not have
any way to test for soft errors, and we just continue to execute as if the error had not occurred. For each of the items
below, put a check mark if a soft error in that item could causea program to execute incorrectly.

Branch History Register of the 2-level predictor:

LRU bit in a 2-way set associative cache:

Protection field in the PTE of a virtual page:

Z condition code:

Part b (5 points): A 10 by 4 matrix is stored incolumn major order, starting at location 2000. We wish to load the
third row of the matrix into V0. To execute the vector load correctly, what values must be present in:

Vaddr:

VLen:

VStride:

2

Name:

Part c (4 points): A PAg 2-level branch predictor is implemented, which keeps 12 bits of history for each of the 1000
branches in the program. How many saturating 2-bit countersdoes it take to implement this predictor?

Answer:

Part d (5 points): The IBM 360/91, you recall is the computer for which Tomasulo’s algorithm was designed. While
the computer was executing, someone hit the halt button and found that the contents of the three reservation stations
in front of the adder are as shown below.

+

α

β

γ

0 β − 1 − 10

1 − 20 0 γ −

0 α − 1 − 30

Assuming the adder is fully pipelined and takes four cycles to execute an ADD instruction, how many cycles will it
take to complete the three ADD instructions after somebody hits the run button? Explain.

Answer:

3

Name:

Part e (7 points): The Central Arbitration Unit (CAU) of a bus based system containing two potential bus masters has
the following state machine:

Idle

Idle

Idle

Idle

Idle

BG1 BG0

BG1 BG0

BG1 BG0

BG1 BG0

SACK

SACK

BR1

SACK

BR1

SACK SACK

BR1

SACK

SACK

BR1

SACK SACK

SACK

SACKSACK

BR0

SACK

SACKSACK

SACK

SACK

SACK

SACK

SACK

SACK

BR1 & BR0

BR1 & BR0

BR1 & BR0

BR1 & BR0

BR1 & BR0

BR1 & BR0

BR1 & BR0

BR1 & BR0

BR1 & BR0

What is the plus or minus of this CAU over the priority encoderschemes we have discussed in class?

Answer:

4

Name:

Problem 3 (20 points):

An array A consists of N one-byte elements, stored in N consecutive locations of memory, starting at address x4000.

A programmer wishes to add the integer P to each even numberedelement of A, but does so by the very curious
method of adding ”1” to each even numbered element, and then iterating that process P times. The C code segment
looks like this:

for (i = 0; i < P; i++)
{

for (index = 0; index < N; index = index + 2)
A[index] = A[index] + 1;

}

Assume the compiler allocates registers for the loop variables i and index, and that the values P and N are also in
registers before the code segment starts executing.

Your job is to compute the cache miss ratio during execution of this program segment if the processor has a 1 KB,
2-way set associative, physically addressed cache. Line size is 8 bytes. Replacement is LRU.
Show all work below. You may leave the answers as fractions.

Part a (5 points): N=512, P=10

Part b (5 points): N=512, P=50

Part c (5 points): N=2048, P=10

Part d (5 points): N=2048, P=50

Part a: Part b: Part c: Part d:

5

Name:

Problem 3 (15 points)

The following sequence of instructions is to be executed on amachine similar to the IBM 360/91, i.e., out-of-order

execution using the Tomasulo algorithm.

ADD R2,R2,R3
MUL R3,R1,R2
ADD R2,R1,R2
ADD R2,R2,R5
MUL R1,R4,R5
MUL R3,R5,R6
ADD R3,R1,R2

However, in this machine, there are only two reservation stations each in front of the adder and the multiplier, as shown
below:

A1

A2 M2

M1

RS_V SR1 SR2 RS_V SR1 SR2

*+

• Note the extra valid bit RSV associated with each reservation station entry. It indicates whether a reservation
station entry is ”live.” That is, when an instruction is written to a reservation station at the end of the decode
stage, that bit is set to 1. When an instruction completes execution (in WB stage), that bit is set to 0. That is, the
instruction remains live in the reservation station until it completes execution and writes back its result.

• ADD takes 4 cycles (F,D,E,WB). MUL takes 7 cycles (F,D,E1,E2,E3,E4,WB) and is fully pipelined.

• In Decode stage, instructions are decoded, renamed and stored in any available reservation station (one whose
RS V bit is set to 0).

• A source operand is ready for execution in the cycle immediately following the WB stage of the instruction that
produced it.

Part a (9 points): Assume all reservation stations are initially empty (i.e.,their RSV bits are all 0s). The first instruc-
tion (ADD R2,R2,R3) is fetched in cycle 1. Show the state of the reservation stations in the above drawing at the end
of cycle 8. The initial contents of the Register Alias Table are shown on the next page.

6

Name:

Problem 3 continued:

Part b (6 points): Show the contents of the Register Alias Table at the end of cycle 8

R1

R2

R3

R4

R5

R6

V TAG VALUE V TAG VALUE

R1

R2

R3

R4

R5

R6

1

1

1

1

1

1

1

2

3

4

5

6

Initial Contents of RAT Contents of RAT at End of Cycle 8

7

Name:

Problem 4 (20 points)

Recall the synchronous bus system from problem 1 of Problem Set 5 (reproduced on pages 15 and 16). To improve
bus efficiency, we decided to allow the storage controllers to transfer data in bursts of up to four data elements. To this
end, we added a new bus signalTXD (transaction done) and changed the bus protocol as follows:

After the storage controller is granted the data bus, it transfers a burst of up to four data elements in up to four bus
cycles (one data element per cycle). The storage controllersets theTXD signal in the last cycle of the burst to let the
storage arbitration unit know that the bus transaction is done.

To implement the new protocol, we added extra address logic and a 4-entry data buffer (indexed by a 2-bit register
Index) to the storage controller, as shown in the figure:

Index

Data Buffer
4−Entry

State
Machine

LoadCount

DecrCount

Addr
Logic

IncrIndex
Count

A
dd

r

D
at

a

ad
dr id

2
Index

2−Entry Request Buffer

GateId
le

ng
th

do
nere
q

ad
dr

_p

le
ng

th
_p

id
_p

R
ea

dy

D
ev

S
B

G
j id

_s

da
ta

_s

S
B

R
j

T
X

D

GateData

ClearIndex
da

ta

Storage Device

When a request comes from the 2-entry request buffer (req = 1), the storage controller asks the storage device (by set-
ting theDev signal) to fill the data buffer with four data elements (less if Count < 4). The address logic (independent
of the state machine) controls which and how many elements need to be brought in. The state machine waits in state
DATA WAIT until the storage device loads the data into the data buffer and assertsReady. The controller is now ready
to request the data bus. Once the bus is granted, the controller puts consecutive elements from the buffer (starting with
element 0) onto the bus by incrementing theIndex each cycle.

Complete the state diagram for the new storage controller onthe next page (Note: we have provided more than enough
states for your use. Use as many as you need).

8

Name:

Problem 4 continued

DONE

IDLE DATA_WAIT

LoadCount

ClearIndex

done

Dev

Ready

Readyreq

req

9

Name:

Problem 5 (20 points):

We wish to use the unused opcode 1010 to implement a new instruction MULB, which performs an unsigned 8 bit
multiply on the low 8 bits in two source operands and writes back the 16 bit result to a destination register. The mul-
tiplicand value is always in a register and the multiplier value can be either the contents of a register or an immediate
value. The specification of this instruction is as follows:

Assembler Formats

MULB DR, SR1, SR2
MULB DR, SR1, imm4

Encodings

 1 0

15 12 11 9 8 6 5 3 2 0

imm4

 0 0 SR2 0

15 12 11 9 8 6 5 3 2 0

MULB

MULB

SR11010 DR

SR11010 DR

Operation

if (bit[5] == 0)
DR = SR1 * SR2;

else
DR = SR1 * ZEXT(imm4);

setcc();

Note that it is the programmer’s job to make sure SR1[15:8] = SR2[15:8] = 0.

To implement MULB, we have added the following structures tothe LC-3b datapath as shown on the next page.

1. An 8-bit register MPLIER (Multiplier)

2. A 16-bit register MCAND (Multiplicand)

3. A logical 1-bit right shifter

4. A 16-bit register X (Note: RESET.X clears X)

5. A 3-bit register Y (Note: RESET.Y clears Y)

6. Five 2-input MUXes as needed

10

Name:

Problem 5 continued:

1

0

0

0

0

0

SR2
OUT

SR1
OUT

REG
FILE

16 16

3

3

16

SR2

LD.REG

16

1

SR2MUX

AB

2
ALUK

AMUXBMUX

GateALU

16

ALU

BMUX

SR1
3

DR

RESET.X

LD.X

16

16

SHF

GateSHF

16

SMUX

6

IR[5:0]

0

SEXT(IR[4:0])

MCAND

16 0

LD.MLIER

LD.MCAND

16

M1MUX

1

RSHF1

8
[7:0]

8

M2MUX

M1MUX
8

SMUX

1

1

16

X

1
16

RESET.Y

3

6

ZEXT

INC.Y Y

[0]

8

1IR[5]

SHFA

in microsequencer
To Logic A

MPLIER

AMUX

Some useful control signals:

SHFA[5:4]: 00 = Left shift
01 = Logical right shift
10 = Undefined
11 = Arithmetic right shift

SHFA[3:0]: Shift amount
ALUK[1:0]: 00 = ADD

01 = AND
10 = XOR
11 = PASS A

11

Name:

Problem 5 continued:

We have also added the following to the microsequencer, as shown below.

1. A 1-bit register MDONE (Multiply done) and combinationallogic A and B

2. A 3-bit COND field, instead of the 2-bit COND field

IRD

Address of Next State

6

6

0,0,IR[15:12]

Ready
Mode
Addr.

J[0]J[1]J[2]

MDONE

LOGIC B

J[5] J[4] J[3]

3

LOGIC A

1111

1

LD.MDONE

Branch

R IR[11]

COND[1]COND[2] COND[0]

BEN

COND

NA[0]NA[1]NA[2]NA[3]NA[4]

MPLIER

NA[5]

1 0

8

* NA = Next Address

12

Name:

Problem 5 continued:

Part a (4 points): Describe what the X and Y registers do:

X:

Y:

Part b (6 points): We show the beginning of the state diagram necessary to implement MULB. Using the notation
of the LC-3b State Diagram, add the bubbles you need to implement the MULB instruction. Your job is todescribe
inside each bubble what happens in each state.

1010

To State 18

State 36

State 34

State 10

State 42

State 32

MDONE

[MDONE]

Otherwise, MCAND <− 0

[IR[15:12]]

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

If MPLIER[0], MCAND <− LSHF(SR1[15:0], Y)

MDONE

13

Name:

Problem 5 continued:

Part c (5 points): Show the logic circuits required to implement combinational logic A and logic B.
NOTE: If you need to assign any new encoding to the COND[2:0],useCOND[2:0] = 100.

J[5] J[4] J[3]

31111

COND

NA[5] NA[4]

LOGIC B

MDONE

LOGIC A

MPLIER

MDONE

8

NA[3]

Part d (5 points): The processing in each state we added is controlled by asserting or negating each control signal.
Enter a 1 or a 0 as appropriate for the microinstructions corresponding to the states we have added.

NOTE: Please use the encodings specified on the datapath and microsequencer figures for all the signals.

S
ta

te

IR
D

C
O

N
D

[2
:0

]

J[
5:

0]

LD
.R

E
G

LD
.C

C

LD
.M

P
LI

E
R

LD
.M

C
A

N
D

LD
.X

LD
.M

D
O

N
E

IN
C

.Y

R
E

S
E

T.
X

R
E

S
E

T.
Y

M
1M

U
X

A
M

U
X

B
M

U
X

S
M

U
X

A
LU

K
[1

:0
]

G
at

eA
LU

G
at

eS
H

F

10

34

36

42

14

Problem Set 5 problem 1

We show below a synchronous split transaction bus system employing centralized arbitration. There are two processors (P0

and P1) and two storage devices (S0 and S1). For the sake of simplicity, we assume that processors will only read data from

the the storage devices.

Arbitration

There are two arbitration units, Processor Arbitration Unit(PrAU) and Storage Device Arbitration Unit(SAU). PrAU

arbitrates the addr_p bus across P0 and P1. SAU arbitrates the data bus across S0 and S1. This allows one processor to

request a transfer while the other processor is receiving data. P0 has higher priority than P1 and S0 has higher priority than

S1.

Data Transfer

The following is how a transfer between Processor i (Pi) and Storage Device j (Sj) proceeds:

When Pi needs data from Sj, it asserts the Bus Request signal (PBRi). Upon receiving the Bus Grant signal (PBGi)

from the PrAU, the controller asserts the starting address on addr_p, the Vaddr (valid address signal, not shown in the

figure), number of elements to be transfered on signal length_p (Count), and its Id (i in this case) on id_p signal. Pi

now waits for data from Sj.

1.

When Sj sees an address that lies in its address range with Vaddr asserted, it latches the address, length, and Id and

starts processing the request.

2.

15

When Sj is ready to return a data element, it asserts SBRj and upon receiving the Grant signal (SBGj), it asserts data

on data_s, the Id of the processor that requested the data on id_s and the Vid (valid id signal, where Vid = SBG0 OR

SBG1, not shown in the figure). It also decrements its Count of the remaining elements. The SBGj signal grants the

bus to Sj for a single cycle.

3.

When Pi sees its Id on id_s with Vid signal asserted, it latches the data element and decrements its Count.4.

Pi and Sj cycle through steps 3 and 4 until Count reaches 0.5.

The device and controller synchronize using the Dev and Ready signals. When a transfer needs to be carried out the Dev

signal is asserted. The availability of valid data is indicated by asserting the Ready signal.

Note: for the sake of simplicity, assume each processor can have only one pending transfer. Each storage controller can

buffer up to two requests since each processor could have one pending transfer from a given storage.

Construct the state machine for the processor controller Pi. Show relevant inputs and outputs on all arcs. (Remember

that the controller keeps track of the number of data transfers completed in a Count register.)

1.

Assume that the controller consists of a state machine and a two-entry buffer:

Whenever the storage controller is requested on the bus, the buffer stores the id_p, length_p, and addr_p bus signals.

The req output of the buffer indicates that at least one request is awaiting service in the buffer. The id, length, and

addr signals are the buffered bus signals of the oldest buffered bus request. The done input tells the buffer to clear the

oldest buffered request.

Draw the state diagram for the state machine in the figure above. Show relevant inputs and outputs on all arcs.

2.

16

