Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 360N, Spring 2009

Yale Patt, Instructor

Ramapriyan Chakravarthy, Khubaib, Vivekanand Venugops,
Exam 1, March 11, 2009

Name;

Problem 1 (20 points):
Problem 2 (10 points):
Problem 3 (10 points):
Problem 4 (25 points):
Problem 5 (15 points):
Problem 6 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (besub@orting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheetexfaime

GOOD LUCK!

Name;

Problem 1 (20 points)

Part a (4 points): Consider memory that is protected by an even parity bit f@arg8 bits of data. If we wish to
transmit 10001001, we would instead transmit 10001001 Trevtiee last bit is the parity bit. Suppose the first and
second bits were transmitted incorrectly, i.e., 0100100A/uld the error be detected? Yes/No (circle one). If yes,
explain how. If no, is this in general of serious concern? hsenore than 20 words.

Part b (4 points): In a 32 location content addressable memory, how many asldries are used to identify the
location that one wishes to access? Explain in no more thavo?@s.

Part ¢ (4 points): “Critical Path design focuses on reducing the longest I@gith among the various parts of the
processor. Generally, the access time to on-chip memary ¢ache), the ALU path, and the microsequencer are the
obvious culprits that one focuses on. In designing a versfdhe LC-3b with a single cycle cache, | first computed
the delay for each of these three paths by measuring (a)ytiesttakes to load MDR, once the MAR is loaded, (b) the
time it takes the ALU to read SR1 and SR2, perform an XOR, aad DR with the result, and (c) the time it takes to
compute the address of the Control Store ROM, read its ctgam latch the result into the microinstruction register.
Since (a) was the longest, | focused on shortening that’path.

What is wrong with the approach described above? Explaimimare than 20 words.

Name;

Problem 1 continued

Part d (4 points): Is the size of the TLB part of the ISA or part of the microarebiure? Explain in no more than 20
words.

Part e (4 points): The MIPS ISA originally allowed three-cycle MULSs to be foled by single cycle ADDs (as back
to backs) in a pipelined implementation without a hardwateriock. Explain how they did it.

Name;

Problem 2 (10 points)

Part a (2 points): The LC-3b is little endian. That meanSTW RO, A means R0O[15:8] gets stored into location
and RO[7:0] gets stored in locatipn . Assume A is an even address.

Part b (8 paints): An enterprising engineer suggests that it would be wortkemoi produce a big endian LC-3b that
could be used with data sets consisting of big endian valdaesume a compiler is available to produce code in big
endian form.

What very small changes to the data path and/or microseguand/or state machine are necessary to change LC-3b
to a big endian LC-3b? Show by means of diagrams all chang¢site necessary:

Datapath

Microsequencer

State Machine

Name;

Problem 3 (10 points)

Suppose our ISA had two different add instructions, thesita load-storéADD Ri , Rj , Rk that is present in the
LC-3b, and alADDM Ri , R , Rk instruction where all operands are in memory. That is, timeasgics ofADDMis:

M[RI] «— M[R]] + M[RK].

Part a (5 points): A programmer wrote the high level language statement A[i] [§ B CJ[i] that is part of the
loop body of a for loop. Should the compiler generate the AR§tnuction or the ADDM instruction? Explain why.

Part b (5 points): A programmer wrote the high level language statement SUM MSUA[i] that is part of the loop
body of a for loop. Should the compiler generate the ADD indtion or the ADDM instruction? Explain why.

Name;

Problem 4 (25 points)
Consider a byte-addressable memory system with two le¥eistoal to physical translation (like the VAX).

Virtual Address Space: 256B, partitioned into equal regiohprocess space and system space. Bit[7] of the VA
identifies the region, bit[7]=0 identifies process spacgePaze: 4 bytes.

The systendoes not include a Translation Lookaside Buffer. The Page Tablei&ntre one byte each and the format
is as follows:

7 6 43 (
V | PROT PFN

For the Process P1:

PBR (process base register) is x90.
PLR (process length register) is 9.

SBR (system base register) is x18
The SLR (system length register) is 8.

Shown below are the contents of some physical memory latsitio

x0 x94 x8 x9B x10 x82 x18 X8A
x1 x0C X9 xB8 x11 X62 x19 x85
X2 x01 XA x04 x12 xFF x1A x8C
x3 x02 xB x91 x13 xF4 x1B x99
x4 x34 xC x1F x14 xF3 x1C x82
x5 x86 xD x82 x15 x94 x1D x05
X6 XAF xXE X9A x16 x00 x1E x80
X7 x80 XF x12 x17 x10 x1F x09

Part a (8 points): Given Virtual Address 00001101 (xOD), what is the corresping physical address?

Answer:

Name;

Problem 4 continued

Part b (3 points): How many pages of process page table and system page tabésiaent in physical memory?

process pagetable: system pagetable:

Part ¢ (3 points): Which frame(s) contain the process page table and whichefgneontain the system page table?

process pagetable: system pagetable:

Part d (5 points): Which address ranges in process space will generate a palge/feen accessed?

Part e (6 points):
If page X of Process P1 and page Y of Process P2 are mappedgartieeframe, page X of P1 is said to be shared
with page Y of P2.

Is the virtual address 00000101(x05) of Process P2 in a pig2 which is shared with a page of Process P17 If yes,
what is the corresponding virtual address in Process P1PBfeof Process P2 is x84 and the PLR of Process P2 is

4,

Answer:

Name;

Problem 5 (15 points)

We wish to use memory chips having 30 nsec access time witlDaMHy processor. Our objective is to design a
32KB byte-addressable physical memory. The system desgjriats us to using exactly eight memory chips. The
processor/memory data bus is 16 bits.

Part a (1 point): How many processor cycles does a single memory access take?

Part b (2 points): Can interleaving improve the performance of this memonjdads from sequential memory loca-
tions? If yes, what is the minimum number of banks requireadfiiimal performance? If no, why not?

Part ¢ (6 points): Three types of memory chips are available for our design:
A. 4K by 4 bits
B. 8K by 4 bits
C. 4K by 8 hits

Will 8 memory chips of typeA satisfy the above performance and capacity design consPaExplain.

Name;

Problem 5 continued

Will 8 memory chips of typeB satisfy the above performance and capacity design contPakExplain.

Will 8 memory chips of typeC satisfy the above performance and capacity design constPaExplain.

Part d (3 points):
Next step is for you to design a full 32KB, optimal performamemory system to go with our 100 MHz proces-
sor, using whichever of the three types of memory chips yahwWhich type of memory chip have you selected?

I

Identify on the detailed address register shown below wael f the 15 address bits are used for (rank, chip address,
interleave, byte on bus):

14

Part e (3 points):

The next step is to wire it up. Unfortunately, an Aggie wasdito do the job. After he finished, we noticed that
instead of memory locations 2,3 being on bank 1, they wereamk I, along with locations 4,5,6, and 7. Memory
location 8 was on bank 1, memory location 16 on bank 2, etc.

On the address register shown below, identify what eacheofLthaddress bits were actually used for after the Aggie
wired it up.

Name;

Problem 6 (20 points)

We wish to use the unused opcode 1010 to implement a new étismtPREDOP, which conditionally executes the
operation OP, depending on the state of the condition cdaesame way that BR conditionally branches. OP can be
ADD, AND, or XOR.

Semantically, the instruction is processed as:

IF([N AND n] OR[Z AND z] OR [P AND p])
DR/ SR = DR/ SR OP SR2
setcc();

PRED.OP has the following format:

15 12 11 10 9 8 6 5 4 3 2

PRED_OP 1 01 O0|n|z|p| DR/SR | O| OP SR2
1 1 1

Note that bits[8:6] specifies a register that is both sountkdestination, like the two-address machine x86.
Bits[4:3] are encoded as follows:

ADD/00

AND/01

XOR/10
11 will never be used

10

Name;

Problem 6 continued
Changesto the state machine (10 points):

To implement PREDOP, minor changes to the microsequencer and data path ofaf8blare required. The result is
the updated state machine, as shown below.

Your job: Make the changes to the state machine, the micueseser and the data path required to add PREPtO
the instruction set.

First describe what goes on in states A and B, and identifpihary representations for A,B,x,y,a,b,c,d,U,V,Win the
state machine.

Note that the microinstruction at state 40 is the same as tb®imstruction at states 18 and 19.

32

BEN <- IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

X A:

To 40 (same as 18)

z y:
z:
B
a:
b:
a b c
c:
U :
To To To
U \% w
Vo
W :

11

Name;

Problem 6 continued
Changesto the Microsequencer (6 points):
To have the state machine behave as described, you must gy dranch from state B. One control signal plus a

very simple logic block is all that is needed to make that lesppAdd the logic block and control signal in the box
provided to make that happen.

In what states is the new signal assert¢d?

COND1 CONDO
BEN R IR[11]
o
Branch Ready Addr.
Mode
J[5] J[4] J3] J[2] J1] J[0]

Y

0,0,IR[15:12]
6

;<17 IRD

6

g

Address of Next State

12

Name;

Problem 6 continued
Changesto the Data Path (4 points):

Only one small change is needed to the data path. Add theregidgred to make that happen in the box provided.

IR[11:9] —=

111 ——=

DRMUX

13

ADD'
ADD’
AND
AND’
BR
JMP
JSR
JSRR
LDB*
LDW *

+

LEA
NOT’
RET
RTI
LSHF *
RSHFL'
RSHFA'
STB
STW
TRAP

XOR'

+

XOR

not used

not used

15 14 13 12 11 10 9 8 7 [5 4 3 2 1 0

o | o | i o] w] s
o | o | 1 o
:01:0]: :DR: :SRI: 0 0:0 :SRZ:
oo | o | 1o
o0 [nz]p] poomen
oo | o | soun | s
o0 (1|
o0 o o0 soun | s
:00:10: :DR: B:cxse:R : tj)Off:sef:é :
:01:10: :DR: B:cxse:R : :offs:efé: :
wo | o | e
oo | o | w |1
o | | | s
CORBE =
ot | R | % [0]0] amouns
Dot | o | s [o]1] amouns
Yo | o2 | % [1]1] amouns
oon | | boser | bothets
:01:11: :SR: B:dse:R : :offs:efé: :
e | s
o | [o]w |
‘10‘01‘ ‘DR‘ ‘SR‘ 1 | ir‘nm‘s |
————— —
‘10‘10““““““
‘IO‘H‘

Figure 1: LC-3b Instruction Encodings

14

Table 1: Data path control signals

Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)
LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)
LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)
GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)
GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)
PCMUX/2: PG+2(0) ;select pe-2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder
DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7
SRIMUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]
ADDR1IMUX/1: PC(0), BaseR(1)
ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffsetl1(3) ;select SEXT[IR[10:0]]
MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder
ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)
MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)
DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals

Signal Name Signal Values
J/6:
COND/2: CONDL ;Unconditional
COND; ;Memory Ready
COND, ;Branch
CONDs; ;Addressing Mode
IRD/1: NO, YES

15

BEN<-IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

LDB

To 18 15

6AR<—LSHF(ZEXT[IR[7:O]]9

13
T0 18 5R<-SHF(SR,A,D,amt
set CC

PC<-PC+LSHF(0off9,1))
PC<-BaseR

To 18

To 18

R7<-PC
PC<-BaseR

R7<-PC

To'18 GC<—PC+LSHF(Off1

1]

i

To 18

To 18 CR< PC+LSHF(of‘f9

1)
)CMAR< B+off6) CAR< B+LSHF(off6} @AR< B+LSHF(off6}) CMAR< B+off€D

set CC
/

To 18

24

NOTES

MDR<-SR[7:0]

B+off6 : Base + SEXT[offset6]
PC+0ff9 : PC + SEXT[offset9]

23
C@DFK M[MAR[15 1](9 CDR< M[MARDD MDR<-SR

17

*OP2 may be SR2 or SEXT[imm5)| DR< MDR
** [15:8] or [7:0] depending on DR< SEXT[BYTE DATA MAR]< MDR M[MAR]< MDR**
set CC
MARIO] f —
L L ¢ R R L R R
To 18 To 18 To'18 To 19

Figure 2: A state machine for the LC-3b

16

GateMARMUX

—?/MARMUX

A A

16 16

<—ADDR1MUX 16

LD.REG—>

3
SR27L|>

SR2
ouT

SR1
ouT

l<t-4-DR
3
I<t4—SR1

z}z}z}ooo

v

—l>; SR2MUX7

Y

CONTROL

4

6
SHF \vLIR[S:m

[[
youTPUT

|<+—DATA.SIZE o)
LOGIC WE RW
l<—MAR[0]
Loeic MIO.EN
DATA.
y \Y SIZE v
WE1 WEO
16 _ ADDR. CTL.
MEMORY LoGIC
2 ||
MDR LD.MDR MEM .EN
MIO.EN i
[y
16 A6
LOGIC <
|<+——DATA.SIZE INMUX
l<—MAR[0] 4-‘

Figure 3: The LC-3b data path

17

J5]

0,0,IR[15:12]

|

J[4]

J3]

COND1

J

CONDO

BEN

J2

J

Branch

N

J[1]

RN

Ready

IR[11]

J[0]

~—

ie

Address of Next State

<}— IRD

Figure 4: The microsequencer of the LC-3b base machine

18

J

Addr.
Mode

