
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 360N, Spring 2009
Yale Patt, Instructor
Ramapriyan Chakravarthy, Khubaib, Vivekanand Venugopal,TAs
Exam 1, March 11, 2009

Name:

Problem 1 (20 points):

Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (25 points):

Problem 5 (15 points):

Problem 6 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of theexam.

GOOD LUCK!

Name:

Problem 1 (20 points)

Part a (4 points): Consider memory that is protected by an even parity bit for every 8 bits of data. If we wish to
transmit 10001001, we would instead transmit 100010011 where the last bit is the parity bit. Suppose the first and
second bits were transmitted incorrectly, i.e., 010010011. Would the error be detected? Yes/No (circle one). If yes,
explain how. If no, is this in general of serious concern? Useno more than 20 words.

Part b (4 points): In a 32 location content addressable memory, how many address bits are used to identify the
location that one wishes to access? Explain in no more than 20words.

Part c (4 points): “Critical Path design focuses on reducing the longest logicpath among the various parts of the
processor. Generally, the access time to on-chip memory (i.e., cache), the ALU path, and the microsequencer are the
obvious culprits that one focuses on. In designing a versionof the LC-3b with a single cycle cache, I first computed
the delay for each of these three paths by measuring (a) the time it takes to load MDR, once the MAR is loaded, (b) the
time it takes the ALU to read SR1 and SR2, perform an XOR, and load DR with the result, and (c) the time it takes to
compute the address of the Control Store ROM, read its contents and latch the result into the microinstruction register.
Since (a) was the longest, I focused on shortening that path.”
What is wrong with the approach described above? Explain in no more than 20 words.

2

Name:

Problem 1 continued

Part d (4 points): Is the size of the TLB part of the ISA or part of the microarchitecture? Explain in no more than 20
words.

Part e (4 points): The MIPS ISA originally allowed three-cycle MULs to be followed by single cycle ADDs (as back
to backs) in a pipelined implementation without a hardware interlock. Explain how they did it.

3

Name:

Problem 2 (10 points)

Part a (2 points): The LC-3b is little endian. That meansSTW R0,A means R0[15:8] gets stored into location

and R0[7:0] gets stored in location . Assume A is an even address.

Part b (8 points): An enterprising engineer suggests that it would be worthwhile to produce a big endian LC-3b that
could be used with data sets consisting of big endian values.Assume a compiler is available to produce code in big
endian form.

What very small changes to the data path and/or microsequencer and/or state machine are necessary to change LC-3b
to a big endian LC-3b? Show by means of diagrams all changes that are necessary:

Datapath

Microsequencer

State Machine

4

Name:

Problem 3 (10 points)

Suppose our ISA had two different add instructions, the classical load-storeADD Ri,Rj,Rk that is present in the
LC-3b, and anADDM Ri,Rj,Rk instruction where all operands are in memory. That is, the semantics ofADDM is:

M[Ri] ← M[Rj] + M[Rk].

Part a (5 points): A programmer wrote the high level language statement A[i] = B[i] + C[i] that is part of the
loop body of a for loop. Should the compiler generate the ADD instruction or the ADDM instruction? Explain why.

Part b (5 points): A programmer wrote the high level language statement SUM = SUM + A[i] that is part of the loop
body of a for loop. Should the compiler generate the ADD instruction or the ADDM instruction? Explain why.

5

Name:

Problem 4 (25 points)

Consider a byte-addressable memory system with two levels of virtual to physical translation (like the VAX).

Virtual Address Space: 256B, partitioned into equal regions of process space and system space. Bit[7] of the VA
identifies the region, bit[7]=0 identifies process space. Page size: 4 bytes.

The systemdoes not include a Translation Lookaside Buffer. The Page Table Entries are one byte each and the format
is as follows:

PFNPROT

7 6 4 3 0

 V

For the Process P1:

PBR (process base register) is x90.
PLR (process length register) is 9.

SBR (system base register) is x18
The SLR (system length register) is 8.

Shown below are the contents of some physical memory locations:

x0

x1

x2

x3

x4

x5

x6

x7

x94

x0C

x01

x02

x34

x86

xAF

x80 x17

x10

x11

x12

x13

x14

x15

x16

x82

x62

xFF

xF4

xF3

x94

x00

x10

x8

x9

xF

xA

xB

xC

xD

xE

x9B

xB8

x04

x91

x1F

x82

x9A

x12

x18

x19

x1A

x1B

x1C

x1D

x1E

x1F

x8A

x85

x99

x82

x05

x80

x09

x8C

Part a (8 points): Given Virtual Address 00001101 (x0D), what is the corresponding physical address?

Answer:

6

Name:

Problem 4 continued

Part b (3 points): How many pages of process page table and system page table areresident in physical memory?

process page table: system page table:

Part c (3 points): Which frame(s) contain the process page table and which frame(s) contain the system page table?

process page table: system page table:

Part d (5 points): Which address ranges in process space will generate a page fault when accessed?

Part e (6 points):
If page X of Process P1 and page Y of Process P2 are mapped to thesame frame, page X of P1 is said to be shared
with page Y of P2.

Is the virtual address 00000101(x05) of Process P2 in a page of P2 which is shared with a page of Process P1? If yes,
what is the corresponding virtual address in Process P1? ThePBR of Process P2 is x84 and the PLR of Process P2 is
4.

Answer:

7

Name:

Problem 5 (15 points)

We wish to use memory chips having 30 nsec access time with a 100 MHz processor. Our objective is to design a
32KB byte-addressable physical memory. The system design restricts us to using exactly eight memory chips. The
processor/memory data bus is 16 bits.

Part a (1 point): How many processor cycles does a single memory access take?

Part b (2 points): Can interleaving improve the performance of this memory forloads from sequential memory loca-
tions? If yes, what is the minimum number of banks required for optimal performance? If no, why not?

Part c (6 points): Three types of memory chips are available for our design:

A. 4K by 4 bits

B. 8K by 4 bits

C. 4K by 8 bits

Will 8 memory chips of typeA satisfy the above performance and capacity design constraints? Explain.

8

Name:

Problem 5 continued

Will 8 memory chips of typeB satisfy the above performance and capacity design constraints? Explain.

Will 8 memory chips of typeC satisfy the above performance and capacity design constraints? Explain.

Part d (3 points):
Next step is for you to design a full 32KB, optimal performance memory system to go with our 100 MHz proces-
sor, using whichever of the three types of memory chips you wish. Which type of memory chip have you selected?

Identify on the detailed address register shown below what each of the 15 address bits are used for (rank, chip address,
interleave, byte on bus):

14 0

Part e (3 points):
The next step is to wire it up. Unfortunately, an Aggie was hired to do the job. After he finished, we noticed that
instead of memory locations 2,3 being on bank 1, they were on bank 0, along with locations 4,5,6, and 7. Memory
location 8 was on bank 1, memory location 16 on bank 2, etc.

On the address register shown below, identify what each of the 15 address bits were actually used for after the Aggie
wired it up.

14 0

9

Name:

Problem 6 (20 points)

We wish to use the unused opcode 1010 to implement a new instruction PREDOP, which conditionally executes the
operation OP, depending on the state of the condition codes the same way that BR conditionally branches. OP can be
ADD, AND, or XOR.

Semantically, the instruction is processed as:

IF([N AND n] OR [Z AND z] OR [P AND p])
DR/SR = DR/SR OP SR2
setcc();

PREDOP has the following format:

 0PRED_OP SR2 OP

15 12 11 10 9 8 6 5 4 3 2 0

 p z n 1 0 1 0 DR/SR

Note that bits[8:6] specifies a register that is both source and destination, like the two-address machine x86.

Bits[4:3] are encoded as follows:

ADD/00
AND/01
XOR/10
11 will never be used

10

Name:

Problem 6 continued

Changes to the state machine (10 points):

To implement PREDOP, minor changes to the microsequencer and data path of the LC-3b are required. The result is
the updated state machine, as shown below.

Your job: Make the changes to the state machine, the microsequencer and the data path required to add PREPOP to
the instruction set.

First describe what goes on in states A and B, and identify thebinary representations for A,B,x,y,a,b,c,d,U,V,W in the
state machine.

Note that the microinstruction at state 40 is the same as the microinstruction at states 18 and 19.

x

To 40 (same as 18)

A:

B :

x :

y :

z :

y
z

A

B

c

To

W

BEN <− IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

32

a :

:

:

:

:

b

c

U

V

:W

ba

To

U

To

V

11

Name:

Problem 6 continued

Changes to the Microsequencer (6 points):

To have the state machine behave as described, you must do a 4-way branch from state B. One control signal plus a
very simple logic block is all that is needed to make that happen. Add the logic block and control signal in the box
provided to make that happen.

In what states is the new signal asserted?

J[4] J[3]

IRD

6

6

0,0,IR[15:12]

J[5]

BEN R

Branch Ready
Mode
Addr.

IR[11]

J[0]J[1]J[2]

COND0COND1

6

Address of Next State

12

Name:

Problem 6 continued

Changes to the Data Path (4 points):

Only one small change is needed to the data path. Add the logicrequired to make that happen in the box provided.

IR[11:9]

111

DRMUX

DR

1

13

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 1: LC-3b Instruction Encodings

14

Table 1: Data path control signals
Signal Name Signal Values
LD.MAR/1: NO(0), LOAD(1)
LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)
LD.BEN/1: NO(0), LOAD(1)
LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)
LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)
GateMDR/1: NO(0), YES(1)
GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)
GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2
BUS(1) ;select value from bus
ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]
R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]
8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero
offset6(1) ;select SEXT[IR[5:0]]
PCoffset9(2) ;select SEXT[IR[8:0]]
PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)
ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)
R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)
LSHF1/1: NO(0), YES(1)

Table 2: Microsequencer control signals
Signal Name Signal Values

J/6:
COND/2: COND0 ;Unconditional

COND1 ;Memory Ready
COND2 ;Branch
COND3 ;Addressing Mode

IRD/1: NO, YES

15

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 2: A state machine for the LC-3b

16

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 3: The LC-3b data path

17

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 4: The microsequencer of the LC-3b base machine

18

