IIIIIIIIIIlllIIIIIIIIIIIIIIIIIIIﬂIIlIIllHIIIIIHIIIIIIIIHI[IIIIIIIIIII!I

179673A
United States Patent i) Pateat Number: 5,179,673
Steely, Jr. et al. (45) Date of Patent: Jan. 12, 1993
[54] SUBROUTINE RETURN PREDICTION 4,314,978 3/1989 Dennis ... 364/200
. MECHANISM USING RING BUFFER AND 4.892:313; 1§/}x g::e 3647200
COMPARING PREDICATED ADDRESS 492 / 364200
MIHAcrUAEADDRESSToVALmuEOR s W Bocperendl e 35100
FLUSK THE PIPELINE, 5,040,137 8/1991 Sherrill 364/724. 16
Primary Examiner—Thomas C. Lee

73]

Inventors: Simon C. Steely, Jr., Hudson, N.H.;
David J. Sager, Acton, Mass.

 Assistant Exgminer—Alpesh M. Shah At

Attorney, Agent, or Firm—Kenyon & Kenyon

Assi ment Co
{131 gaee: ?{?m Equip rporstion, 57 ABSTRACT o
" . A method and arrangement for producing a predicted
e [21} App!’ Noz) 43143 subroutine return address in response 1o entry of a sub-
[22] Filed: Dec. 18 1989 ; routine return instruction in a computer pipeline that
o B " hasa ring pointer counter and a ring buffer coupled to
w51} Int. CLY GO6F 9/40; GOGF 9/42 . 4 i \)
Esz{ us.%. 395/3"?;- 364/238.8; e ring pointer counter. The ring pointer counter can-
o © 364/DIG. I; 364/231.8; 364/261,3 35S aring pointer that is changed when either a sub-
158) m‘ o{ Search. 395/375, 800 routine callmstrucnon OF returs: instruction ters'the
e computer pipeline. The ring buffer has buffer locations
S S erences Cite w store a value present at its input inte the buffer
56} " Ref Cited hich al its i i
o TENT DOCUMENTS location pointed to by the ring pointer when a subrou-
e USLPA - tine call instruction enters the pipeline. The ring buffer
5 st 2&% :‘;:g:: m‘“ e gm provides a value from the buffer location pointed to by
4,534,659 6/1986 Guenther et al 200 € e HOuES When & ’“h':;‘sm‘ el IS uchon
4611278 9/1986 Boothroyd etal 364200 uiers the computer pipeline, this provided value being
4'“9;472 3/1987 Kim . 384,200 the pred:ct:d subroutine retnrn address.
4,730,248 3/1988 Walanabe et al. v . 3647200
4773081 $/1988 Hassieretalh ... 364/900 § Claims, 3 Drawing Sheets
7 DELAY 44 S e
CONPARISON MCTUAL RETURM ME_“SS {ARA
_..D aee D.. i
B KIS-COMPARISON
: PrH .
PRA I = IHSTRUC- INSTRUC- ISSUE OTHER - EXEQUTT
o pe TION. TICN TION LOGIC STAGES |awe} STAGE
[CACHE FETCHING BFFER
ARk DECODER
b E o1 122 J L24 1.25 123 L30 Lsa
34‘1— &
/
) &5
Pl At
CRP cre
RHRHLEH m = COMTER
Al
BUFFER

US. Patent Jan. iz, 1993 Sheet 1 of 3 5,179,673

l"iiﬂﬂ | 200\1 1)
| SUBROUTINE
- 1101 204 |
SUBROUTINE CALL 1 | \
o _ "
1- | 202\ |
1 102 | | SUERUUTINE
10 < l LOS
| l N\ 4
 SUBROUTINE CALL -
N 105
1
106

107

Sheet 2 of 3 5,179,673

Jan, 12, 1993

U.S. Patent

mm/ﬁ

3915
NOT1N03x3

ede

H344n8
ONIH
. OF ~Jy3unno
dd [y
T\ _
© bE
cm!ﬁ_ mmlﬁ mmlﬁ vm..lﬁ mm.ﬂ‘ ﬂmlwn g€
SIVIS [~ 2190 [~ oIl 7 Noil NoIL =) [W
H3HI0 3551 “ONHLSNT ~ONHISNI ~DNHLSNT | ¥ ™ THd
- T4 :
“ ﬂ J
NOSTHVaHOI-SIN
VeV SSaH00Y NanLan TiLov ©ee
| v AVT30
e "9I4

5,179,673

Sheet 3 of 3

Jan. 12, 1993

U.S. Patent

mmJ

_ oG
1T) ‘ 0~ .
dHd Ty wnoa |
7 o ~ & [
o e
0E lﬁ mmdy mmlﬁ ¥e 2~ «NIW, 9%
| 4300030 Vv
_ Y344 | loNmgia £ M|
VIS 1°°°| s3ovis [T oman) T NarL 1 Mol [Noll oot e)
NOTLNI3X3 0 EN33 -ONHSNE) -ONWISNI| |-anuiswr =TT
| _ i -
| | f W | g
. NOSTHYGHOI-SI %
V) S0V N30 WAL N g -
| N

€ "9Id4

3,179,673

1

SUBROUTINE RETURN PREDICTION
MECHANISM USING RING BUFFER AND
COMPARING PREDICATED ADDRESS WITH
ACTUAL ADDRESS TO VALIDATE OR FLUSH
THE PIFELINE

FIELD OF THE INVENTION
- ‘The present invention relates 1o the field of changes

in the flow-of-control in pipelined computers. More !

specifically, the invention relates to the processing of
instructions assccizted with subroutines in a highly-
pipelined computer. ’

..~ BACKGROUND OF THE INVENTION

5. ‘The concept of pipelining of instructions in a com-
puter is well known. The processing of a single instruc~

_ tionis performed in 2 number of different stages, such as.

fetching, decoding and execution. In pipelined comput-

5

2

main flow by a return instruction, this return address is
located in the stack and provided to the pipeline, The
pipeline will then be able to return the control to the
main flow by entering the proper instruction into the
pipeline. By keeping a stack of the return addresses, and
using these return addresses to locate the next instruc-
tion when there is a return from the subroutine, bubbles
in the pipeline are eliminated. _

A_problem with the stack mechanism is the limited

@ size of the stack and the complicated procedures o deal

with stack overruns and underruns when there are a
large number of subroutines that have been called. In

- other words, if the stack contains twelve locations; only

15

ers, each of the various stages are working on different 20

instroctions at the same time. For example, if the pipe-
- line was only three stages long, the first instruction that
has passed through the pipeiine is being operated on by
" the third stage while the second instraction to enter the
pipeline. will be operated on by the second stage, and
while the third instruction to eater the pipeline is being
operated on by the first stage. Pipelining is a much more
efficient method of processing instructions in compari-
- som-with: waiting for a single instruction: to- be: com-
pietely processed before beginning the processing of 2
second instruction. In. a normal flow of a computer
PrOgram:, it i easy to know which instruction is to enter
the pipeline next. In most instances, it is the sequentizlly
next instruction that enters the pipeiine so that, for

25

Q

example; instruction 101 wﬂl enter the pipeline after 35

mstmcnon 100.

- One exception to this normal flow of control is
known ss a subroutine. A subroutine is a program or a
sequence of instructions thar can be “called" to perform

the same tasks at different points in a program, or even 40

in different programs. For exampie, instraction 101 may
¢zl for a subroutine which begins executing at instruc-
tion: 200. The subroutine may execute instructions
200-202 and then “return™ to the main flow at instruc-
tion 102. Further, the same subroutine, comprising in-
stractions 200-202, may be called from a number of
different Iocations in the main flow and return to differ-
ent locations in the main flow.

. Subroutines pose a problem for heavily pipelined
compnters (those with many stages in the pipeline).
Although the instruction which calls a sebroutine will
contain enough information to determine which is the
next instruction to enter the pipeline (i.e., the first in-
struction in the called subroutine), the return instruction
in the subroutine will - not contain such information.
Instead, a retarn instroction must pass through all of the
stages of the pipeline before the return address will be
known from the retarn instruction. If the computer

waited for the return instroction to pass through the

pipeline before entering another instruction, there
would then be a “bubble” in the pipeline behind the
return instruction in which there wouid be no instruc-
tions, thereby lowering the performance of the com-
puter.

To avoid bubbles, a mechanism known as a stack has
been used. Basicaily, a stack will store the return ad-
dress at the time a subroutine is called, and when the
subroutine is completed and control is retorned to the

43

twelve sibroutines can. be-called at one time without
resorting to the complicated procedures for stack over-
‘There is a need for 2 mechanism that provides return
addresses and eliminaies bubbles in. the pipeline, but
without requiring the' eomphcazed procedum neces-
sary when 2 stack s vsed, - _

. SUMMARY OF THE INVENTION

- This and other needs s are met by the present invention
which provides a ring baffer that simulates the charac-

teristics of a stack mechanism to predict a subroutine

return address. The ring buffer stores 2 predicted return
address in one of its ring buifer locations every time a
subrouatine is called (Le., enters the pipeline). Whenever
a subroutine return instruction enters the pipeline, the
predicted return address is provided to the pipeline
from: the ring buffer so that the appropriate instruction
from the main flow can enter the pipeline. In this way,
bubbles in the pipeline are-climinated.

The ring buffer used in the present invention can be
of limited size and have, for example, eight locations for
storing eight different return addresses. If more than
eight subroutines are called without any returns, then,
in ring buffer fashion, the earliest stored return ad-
dresses will be overwritien by the more recent return
addresses that have been stored in the ring buifer. Even-
tually, whesn a subrontine associated with a return ad-
dress that has been overwrittez has compieted process-
ing through the pipeline, and the flow of control is
changed to the main flow, the predicted return address
it the ring buffer will be incorrect. The actual retum

address for the return instruction will be known at the

end of the pipeline when the return instruction has
passed all the way through the pipeline. This actual |
return address will be compared at this time with the
predicted return address in the ring buffer. When the
predicted return address is wrong, as shown by the

" comparison, the pipeline is flushed and started again

3%

50

63

from the instruction using the actual retern address.
For well-behaved programs, return addresses are
predicted correctly over 90% of the time.

BRIEF DESCRIFTION OF THE DRAWINGS

FIG. 1 shows a block diagram of a program having a
main flow and a subroutine.
* F1G. 2 shows a block diagram of 2 pipeline using an
embodiment of the present invention.
FIG. -3 shows a block disgram of a pipeline using
another embodiment of the present invention.

DETAILED DESCRIPTION

FIG. 1 is a block illustration of a flaw of control of a’
computer. program. Instructions 100-107 are the in-

5,179,673

3
structions that make up a main flow of instructions 10.

A secondary flow of instructions 200-202 comprise 2

subroutine 12. In the example of FIG. 1, the subroutine
12 is called from one of two instructions 101 and 104.
‘When the sebroutine 12 is called, from instruction 101
and returns ta the matm Aow 10 retorn with instroction
202, Execution of the main flow 10 begins again at in-
struction 102 However, if the subroatine 12 was called
from instruction 104, the subroutine 12 must return the
flow of execution to the main fiow 10 at instraction 10S.

4
one or more of the stages in the pipeline. Such a bubble
could potentially occur with a subroutine return in-

" struction, such as instruction 202, as dascribed below.

i0

: As canbe seerr from the 2bove flow description, the

mﬂowmmbcremmedmﬁ'omthcmbmmnclz
atone of two places. In a larger program, it is possible
i’onﬁ:mtothemmﬁowmtobemadetomy
numbey of phces.

%; The: performagee ofan fostruction: i 2 pipelined
-~ computes irvolves a namber of operations performed in
mmlmgunthep:peime.!’zpehmngmoampm

15

A bubble in the pipeline 20 can oceur with a subrou-
tine return instruction since the actual place of retomn to

" the main flow (the acteal return address) will not be

executed in the execution stage 32, If no further mea-
sures are taken, stages 22-30 will be empty behind 2
subroutie return instruction since the address of the
next instruction will not be known- As stated earlier, -
this. bubbie represents inefficient use of the pipeline 20.
In order to prevent bubbles in the pipeline 20, there
must be # mechanism for predicting what is the next
nstruction to be processed after the retorn instruction
in the pipeline 20. Some compater architectures allow
the nse of stacks which store.cach return address every
time a subroutine is called: The stack stores these rerurn
addresses inc x Iast-in, first-out manner; so- thas the-last

ers imwelkknown, and involves operating on.separate 20 return address siored in the stack will be the first retorn:

instructions ie the separate stages of the pipeline simui-
tancovsiy: For example; if there are five stages in the

... pipeline; s: different nstruction will be in each of the

five: stages at the same time, with different operations

stage. The pipelining of stroctions is a2 moch more
eﬁmtme&odofpmgmﬁnnwmg

pmgofthenmm

. being performed on the individual instructions at cach 25

& A pipeline constructed in accordance with the pres- 30

entinvention is iflustrated in FIG. 2 and will be referred
tos with: reference numerst 2 The pipeline 26: has a
program counter buffer 21 that buffers a program count
or “PC™ tr an instruction cache 22. A tiumber of in-

stzoctions are stored in the instroction cache 22 at any 35

time: When the instruction cache 22 receives the PC

from the program counter buffer 21, a coded instruction

issent to an instruction fetching decoder 24. As its name
implies;: the decoder 24-decodes the instruction from

instroction cache 22 that has beer pointed to by the 40

programs counter buffar 21 .In accordance with the
pipeline technigne, the decoder 24 will be decoding a-
ﬁnl;mmumm:hzmpelmewhﬂensecondmmm
tion is being looked op in the instruction cache 22

#& The decoded imstruction is sent from decoder 24 to ant 45
. counter buffer 21 to locate an instroction. The PC is

fnstroction buffer 26, which merely buffers the decoded
instruction. Following the instruction buffer 26 is issne
logic 28, which performs a scheduling type of function.
The remaining stage or stages in the pipeline have refer-

address issued from: the stack when the nexe retomn
imstruction is decoded in the pipefine: However; some
compnterarchﬂecﬂxsdcnotpmﬁeoraﬂow for the
nse of stacks.
'I'hep:nu:tmvmmmvdsth:bmfuncmnal-
nyofambwnhommﬂymgamknppm
(Although the invention is usefiz} In architectures with-
out stacks, the invention: is also psefol in architectures
that do-use stacks.) Instead, a ring baffer 34 s used, as
seen in FIG. 2. The ring buffer 34 holds a relativaly
small number of predicted return addresses. As will be
explained in more detail below; the predicted return
addrmmthgnngbnﬂ'erummmfctchthenm
instruction from the instmction cache 22 when the in-
struction fetching decoder 24 has decoded a return
address. The pipeline 20 will ther continee operating on
subsequent instructions withont forming z bubble in the
pipeline. If the predicted return address eventually
fums out to be incorrect, the seqnence of instructions
wili be aborted and execution will continue using the
correct sequence of instructions.
. The ring buffer 34 can be an eight-deep buifer, for
example, with each location storing a predicted return
address. As stated earlier, the instruction cache 22 re-
ceives the program count (PC) from. the program

also sent to an adder 38, which adds the value 1 to the
PC. This value, PC+-1, is sent to the ring buffer 34 and

- %0 & multiplexer 36. During 2 normal sequence of in~

ence numeral 30, and can be any number of stages. The 50
ﬁmkstageinthepipdinemistheezecuﬁon'stage&in :

which the Instruction is execnted. Since there are six
stages in the pipeline 26 of FIG. 2, up to six instructions
can be processed simultaneously.

Normally, after one instruction has been called from 55

the instruction cache 22, such as instruction 100, the
next instruction will be called from the cache 22 and
will be the sequentially next instruction, such as instrue-
tion 10L If it is 3 call instruction, such as instroction

101, the decoded instruction itself will provide the PC 60

for the next instroction that is to be executed. In this
case, the next instruction to be executed after the cail.
instruction will be the first instruction of the subrontine,
instruction 200. In this manner, by using either the next

sequential - imstruction (PC+1) or the instruction 65

pointed to by 2 decoded call instruction, the pipeline 20
will be kept ful] of instructions. The pipeline 20 is being
used incfficiently if there are bubbles (no instructions) in

structions, without a subroutine or 2 branch, one in-
struction will follow another instruction sequentially
soch that PC=PC+1. Iftheprognmconntfo:zheﬁrst
instruction is PC, the program count for the next in-
struction will be PC+-1, and a third instruction will be
PC4-2. In other implementations, the incremental valne
will be differsnt then 1, 25 where the address of the
instruction following instruction 300 is 304, and the next
308. In that case, the value of the PC will change by 4,
so that PC=PC+4,

The multipiexer 36 also receives inputs from the in-
struction fetching decoder 24. One input is 2 called
subroutine address (CSA) contained within a call in-
struction that is received from instruction cache 22 and
decoded in decoder 24. The called subrontine addressis
selected from the muitiplexer 36 to be the PC for the
instruction cache 22 whenever the decoded instruction
is a call instruction. If the instruction that is decoded in
the instruction fetching decoder 24 is a return instruc-

5,179,673

5
tion, and not a call instruction, a signal is sent to the ring
buffer 34 through an RP counter 40. The RP counter 40
contains a ring-pointer (RP) that indexes into the ring
buffer 34. The ring buffer 34 sends a predicted retumn
address (PRA) pointed to by the RP to the multiplexer
36. Under control of a signal from the instruction fetch-

ing decoder 24, the multiplexer 36 will select the PRA

to be the PC for the instruction cache 227 The operation
of the ring buifer 34 will be described later.

- So far, three inputs to the multiplexer 36 for selecting
the PC have been described. The first of these is PC4-1,
which is selected by the multiplexer when the instroc-
tion decoded by the mstruction fetching decoder 24 is
neither a calf nor a return instruction. The second input
tox: the muitiplexer 36 is the called subroutine address
(CSA), contained in the decoded instruction, and sent
by the instruction fetching decoder 24-10 the multi-

- plexey 360 The CSA i€ used whenever the decoder 24

has decoded a cail instruction.. The: third inpur to the
muitiplexer 36 that has been. described thus far is the
predicted return address (PRA) that is sent by the ring

__buffer 34 to the muitipiexer 36- whenever a retorn in-
.- struction: has been. decoded. by the decoder 24 The

opesation of the sing buffer 34 will now be described.

% As mentioned earlier; the ring buffer 34 comprises a -

Enite number of buffer locations that store predicted
return addresses. The buifer jocations in the ring buffer

.. 34 are indexed by the ring-pointer (RP) kept in the RP

countes 40, The operation of the RP counter is simple.
Whenever the RP counter 40 receives the signal from
the decoder 24 that the decoded instruction is a call
instzuction, the RP counter 40 is incremented by one so
that it points to the next higher buffer location. In equa-
tion form, upon a subroutine call, RP=RP+1. When
the mstruction decoded by decoder 24 is a return in-
struetionr, RP is decremented by one. This gives the
equation that RP=RF—1 for 2 subroutine return in-
struction.

7w The valee piaced into the ring buffer 34 at the loca-

tien pmn:ed 1o by RP upon the decoding of a subroutins

call instruction is the vaine of PC+ 1. In other words, -

thcseqnmmﬂynmaddrcssaﬁeﬂhcaddrcssoﬁhemu
instruction is loaded into the Jocation i ring buffer 34
pointed to by RP: This valoe, PC+ 1, then becomes the
PRA. The PRA will be supplied by the ring buffer 34 to

 the multiplexer 36 when a subroutine return instrnction’
> has been decoded by decoder 24. The loading of PC+1 -

and the return of the PRA into and out of the location
pointed. to by RP is performed according to a ring
buffer control signal issued by the decoder 24.
- An example of the operation of the ring huﬁ'cr 34
now follows:

- The first instruction o enter the pipeline 20 is instruc-
tion 100 This is looked up in the instruction cache 22
using PC=100. The instruction is decoded in the de-

_coder 24, and since it is neither a subroutine call or

return, the control signal from the decoder 24 selects
the next PC to be PC+1. In this case, the value of
PC+1=101, so that instruction 101 is sent from the
instroction cache 22 to the decoder 24.

Instruction 101 is a subroutine call {sex FIG. 1} so
that the decoder 24 will send a signal 10 the RP counter
£0. The RP in RP counter 40 is incremented from, for
example, RP=3, to RP=4, so that it points to a new
buffer location RP{4} in the ring buffer 34. The value of
PC+-1, in this instance, 1014+ 1=102, is stored in the
ring buffer 34 at ring buffer location RP{4).

6

The decoder 24, upon decoding the call instruction
101, has also sent a control signal to the ‘multiplexer 36,
and sent the called subroutine address (CSA) to be the
next PC. The CSA is able to be sent by the decoder 24
to the multiplexer 36 since it is contained in the subrou-
tine call instructiorr 101 that has been decoded.

The subroutine 12 is executed such that mstroction
200 is retrieved from the instrection cache 22 and de-

. coded. Instruction 201 will then be fetched from the

20

25

40

instruction cache 22 (PC=PC+1=201) since instruc-
tion. 200 is neither a call nor & return instruction. Sirm-
Iarly, instruction 202 ‘will follow instruction 201 in the
pipeline. However, instruction 202 is a subroutine re-
torn nstraction. .

- When subroutine return ms:mmonm:sdeoodedby
the decodes 24, potcnﬁallythenmmstmcnoncmﬂdbc
either the instruction 102 or 165 (See FIG. 1.} Using a

_ring buffer 34, the correct returp address can usually be -

provided. Upon decoding 2 retorn instruction,. the de-
coder 24 sends a signal to the RP'counter 40 The FRA
pointed to by the RP contained in RP counter 40 will be
provided: to the multipiexer -3& In this example; the
PRA associated with instruction 102, which. has been
stored st RP(#); is provided to the multiplexer 36 The
decoder 24 sends a control signzl to the multiplexer 36
to cause it to select PRA to be the next PC. Thus, using -
the supplied PRA, instruction 102 will be sent from
instruction cache 22 to be decoded by the decoder 24,
Aho,theRPinRPcoum:rmisdmtedsothatit

. NOW points to RP(3).

‘The above is & description of the opennon of the
pipeline 20 when the PRA, is correct. However, in some
circumstances, the PRA will not be correct. This can
happen, for example, if the subroutine causes a remurnr to
a different location in the main flow 10 than the instroe.
tion immediately foliowirig the call instruction. The fact
that the PRA is incorrect will not be known until the
return instroction has completely gone through the
pipeline 20 and been executed. It is at that pomt that the
actual retum address for the retipn Instruction becomes
known. In the meantime, a nomber of instroctions fol-

" lowing the return instruction have enteréd and are in
" the various stages of the pipeline 20. The pipeline 26

0

60

65

must recogtrize that the actnal reren address is different
from the predicted return address and take corrective
measurss, -

The acmal return addrz:s (ARA) is sent from the end
of the pipeline to a compare unit 42. At the sarne time
that-the comparc unit 42 receives the ARA, it also re-
ceives the PRA. The PRA lhas been seat via a series of
gelay latches 44 to the compare unit 42. The PRA and
the ARA are compared. If there is 2 mis-comparison, 8
mis-comparison signal is sent to the decoder 24 and to
the issue logic 28. The mis-comparison signal causes a
flushing of the pipeline 20 of all the instructions which
entered the pipeline 20 after the return instruction. The
muitiplexer 36 receives at its fourth input the ARA so
that the PC to go to the instruction cache 22 will now
become this ARA after a mis-comparison has been rec.
ognized.- A new segnence of instructions, beginning
with the instruction at the actual return address (ARA),

" are then processed by the pipeline 20.

-The ring buffer 34 has 2 limited number of buffer

‘locations. This ¢can lead to a mis-predicted return ad-

dress being provided by the ring buffer 34. As an exam-
ple, assume that the ring buffer 34 has eight Iocations
RP@—RP(7). If eight subroutines have been called,
with no returns having been made, the ring buffer 34

5,179,673

7
will be full. When a ninth subroutine call has been made,
the first ring buffer location, RP(0), will be overwritten
in standard ring buffer manner. The PRA that was -~
previcusly in RP(0) is essentially lost by the overwriting

of a new PRA into that location. Thus, if nine subrou. §

tine returns are issued, the correct subroutine return
address jor the first subroutine that was called will no
longer be found in RP(0). Instead, the new value of the
PRA that was stored in RP(0) will be issued as the
PRA. This PRA will be incorrect as will eventuaily be 10
determined by a comparison of the PRA with the ARA.
The appropriate corrective measures as described ear.
lier will there be taken upon recognition of the mis-
comparison.

Events can occur during the execution of 2 program 15
by a pipelined computer that require the pipeline to
abort all instructions in all the stages of the pipeline.
This 18 sometimes called **flushing™ the pipeline. All the
work that was going on in the pipeline 20 at this time
will be discarded. These instructions that are discarded 20
are cailed the “shadow”. Typicaily the front end of the
pipeline will then begin executing instructions at some
error-handling address. .

For the purpose of this description, the events that
flush the pipeline will be referred to as “traps™. Exam. 25
ples of traps are branch mis-prediction, virtnal memory -
page fault, resource busy, and parity error in some hard-
ware.

To enhance the performance of the subroutine return
prediction mechanism, the ring buffer 34 needs 1o be 30
backed up 10 the point it was at when the imstruction
that caused the trap passed through the ring buffer stage
of the pipeline 20, Keeping copies of every change that
occurs to the ring buffer 34 until it is known that no trap
will oceur is too expensive a sclution. s

The embodiment of FIG. 3 solves this problem by
providing another ring pointer, the “confirmed ring
pointer” or CRP kept in a CRP counter 45. The CRP is
changed similarty to the RP, such that it is incremented
when 2 subroutine cail instruction is seen and is decre- 40
mented when a subroutine return instruction is seen.
The difference is that the CRP counter 45 watches the
instructions that reach the last stage of the pipeline 20.
Changes are made to the CRP based on the instructions
that are at the last stage. When a trap occurs, the RP in 45
the RP counter 40 will be set 1o the value of the CRP in
the CRP counter 48.)

-This preserves the RP to be- in correct sync when
new instructions are begun to be executed after a trap.

There may have been some subroutine call instructions S0

that occurred in the shadow of the trap which wrote
over entrics in the ring buffer 34 and subsequent predic-
tions for subroutine return instructions will be incor-
rect. However, the RP will be in sync and as soon as the
RP passes over the incorrect entries, the ring buffer 34 55
will again be in 2 good state. 3
The present invention is not limited to the embodi-
ment shown, but finds application with pipelines of
various sizes and with ring buffers of varions sizes.
What is claimed: - 60
1. An arrangement for producing a predicted subroo-
tine return address in response t0 entry of a subroutine
Feturn instruction in a computer pipeline, comprising:
(2) means for detecting the entry into the computer
. pipeline of a subrontine call instruction or the sub- §5
routine return instruction; .
{b) a ring pointar counter that contains a sing peinter
that is incremented when the subroutine call in-

8
struction enters the computer pipeline, and is dec-
remented when the subroutine instruction enters
.the computer pipeline;)

(c) a ring buifer coupiéd to said ring pointar counter
and having buifer locations, an input and 2n output,
said ring buffer storing a value present at said input
into .the buffer Jocation pointed to by said ring
pointer when the subroutine call instruction enters
the.computer pipeline and providing a valve at said
output from the buffer Jocation pointed to by the
ring pointer when the subroutine retern instruction
enters the computer pipeline, said value at sajd
output being the predicted subroutine retorn ad-
dressy and

(d) a comparison unit coupled to said ring buffer and
to the computer pipeline, the comparicon unit com-
paring an actual return address produced by the
computer pipeline in response to the processing of
the subroutine returs instruction with the pre-
dicted return address for that return instruction,
and having an output at which is provided 2 mis-
comparison signal when the actual return addressis
not the same as the predictad return address, the
mis-comparison signal being coupled to the com-
puter pipeline to cause the computer pipeline to
flush the computer pipeline when the actuat return
address is not the same as the predicted return
address.

2. A computer pipeline comprising:

a) ap instruction cache whick stores coded instruc-
tions and has an input that receives a program
count which indexes the coded instroctions, and an
output at which the indexed coded instructions ars
provided;

b) an instruction fetching decoder baving an input
coupled to the instruction cache output and which
decodes the coded instructions, and having as out-

i) a subroutine call address when the coded instruc-
tion is a subroutine call instruction,
i) a multiplexer control signal which indicates
whether the coded instruction is a return instruc-
tion, the call instroction or neither,
iif) a ring pointer counter control signal which is a
first value when the coded instruetion is a returmn
instruction and a second value when the coded
instruction is the call instruction, and

iv) a decoded instraction;

. b) an execurion stage coupled to the instruction fetch-

ing decoder which executes the decoded instruc-
tion;

¢) a program counter coupled to the input of the
instruction cache and having an output at which is
provided the program count to the instruction
cache input;

d) a multiplexer having plurality of inputs, 2 control
inpmt coupled to the multiplexer control signal
output of the instruction fetching decoder, and an
outpnt coupled to the program counter input;

¢) an adder having a an input coupled to the output of
the program counter and an output coupied to one
of said multiplexer inputs at which is provided a
value equal to the program count plus one;

f) a ring pointer connter having an input coupled to
the instruction fetching decoder to receive the ring
pointer counter control signal, and containing a:
ring peinter which points to buffer locations in
response 1o the ring pointer counter control signal,

5,179,673

9

said ring pointer being incremented when the in-
struction fetching decoder decodes a subroutine
call instruction and being decremented when the
instruction fetching decoder decodes a subroutine
return instruction; 3

£) & ring buffer having an input coupled to the adder
outpat, a plurality of buffer Jocations, and an out-
put coupled to one of said multiplexer inputs, said
ting buffer storing said value received from the
adder output as a retarn value in the buffer location
pointed to by said ring pointer when a subroutine
call instruction is decoded and providing said re-
turn valuoe from the buffer location pointed to by
the ring pointer at the ring buffer output when a
subroutine retorn instruction is decoded, said re-
turn: value at said ring buffer output being the pre-

... dicted subroutine return address; - .
h) the multiplexer operating to output:

i)} the subroutine call address when the multiplexer 20
- control signal is indicative of the subroutmc call
" instruction,.

ﬁ} the predxcted retnm address. when the multl-

s

struction, and 25

iii} the output of the adder when the multiplexer
control signal is indicative of neither the subron-
- tine call instruction nor the subroutine return
" instruction; and)

i) a comparison enit coupled. to said ring buffer and to
said execution stage, the comparisor unit compar-
ing an actual retnrn address produced by the exe-
cution stage in response to the processing of the
retuen instruction with the predicted return address
for that return instruction, and having an output at
which is provided a mis-comparison signai when
the actual return address is not the same as the
predicted return address, the mis-comparison sig-

" nal being coupled to the computer pipeline to cause 49
_ the computer pipeline to flush the computer pipe-
line when the actual return address is not the same
as the predicted return address.

a5

45

50

55

65

10

3. The pipeline of claim 2, further comprising means
for processing a corract sequence of instructions begin-
ning with the instruction indicated by the actual return
address, the means coupled to the instruction cache and
the ring pointer counter and, when the mis-comparison
signal indicates that the predicted return address and
the actnal retorn address do not match, operating to
input the actual return address into the instruction
cache and to return the ring pointer counter to its pre-
trap state.

4. The pipeline of claim 2, further comprising a con-
firmed ring pointer cownter coupled to the execution
stage and the ring pointer counter, and containing a
confirmed ring pointer that is incremented when the
execution stage receives & subroutine call instruction
and is decremented when the execution stage receives a
subroutine return instruction, and which provides the
coniirmed ring pointer to the ring pointer counter to

replace the ring pointer when a trap occurs. .

5. A method of predicting subroutine retum ad-
dresses in 2 pipclines computer comprising: -

(a) storing in one of a plurality of buffer locations in

a ring bufier a value equal to one plos an address of
a call mstmaction in response to that call instruc-
tion;

(b) pointing to the buffer location containing the most
recently stored value;

{(c) providing the pomted to most recently stored
value as an output i response to a retarmn instruc-
tion, said output being the predicted subroutine

(d) pointing to the buifer location contzining the next
most recently stored value;

(e} comparing an actual retura address produced by
the computer pipeline in response to the processing
of the return instruction with the predicted return
address for that return instruction to determine
whether the predicted retorn address is valid; and

(f) when the determipation indicates that the pre-
dicted return address is not valid, generating a
mis-comparison signal to cause a flush of the com-
puter pipeline.

.

T = T X

