
Comments?
E-mail your comments about Synopsys
documentation to vcs_support@synopsys.com

VCS®/VCSi™
User Guide
Version Y-2006.06-SP2
March 2008

ii

Copyright Notice and Proprietary Information
Copyright © 2008 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CRITIC,
CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM, HSPICE, Hypermodel, iN-Phase, in-Sync,
Leda, MAST, Meta, Meta-Software, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler,
PowerMill, PrimeTime, RailMill, RapidScript, Saber, SiVL, SNUG, SolvNet, Superlog, System Compiler, TetraMAX,
TimeMill, TMA, VCS, Vera, and Virtual Stepper are registered trademarks of Synopsys, Inc.

Trademarks (™)
Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail, Astro-Xtalk, Aurora,
AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit Analysis, Columbia,
Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, Cyclelink, Davinci, DC
Expert, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design Analyzer, Design Vision, DesignerHDL,
DesignTime, DFM-Workbench, Direct RTL, Direct Silicon Access, Discovery, DW8051, DWPCI,
Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO Compiler, EDAnavigator, Encore, Encore PQ,
Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker, FoundryModel, FPGA Compiler II, FPGA
Express, Frame Compiler, Galaxy, Gatran, HANEX, HDL Advisor, HDL Compiler, Hercules, Hercules-Explorer, Hercules-

II, Hierarchical Optimization Technology, High Performance Option, HotPlace, HSIM
plus

, HSPICE-Link, iN-Tandem,
Integrator, Interactive Waveform Viewer, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, JVXtreme,
Liberty, Libra-Passport, Library Compiler, Libra-Visa, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici, Metacapture,
Metacircuit, Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-3200, MS-3400, Nova Product
Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum Silicon, Orion_ec, Parasitic View,
Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power Compiler, PowerCODE, PowerGate,
ProFPGA, ProGen, Prospector, Protocol Compiler, PSMGen, Raphael, Raphael-NES, RoadRunner, RTL Analyzer,
Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon Blueprint, Silicon Early Access,
SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire, Source-Level Design, Star, Star-DC,
Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-SimXT, Star-Time, Star-XP, SWIFT,
Taurus, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice,
TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification Portal, VFormal, VHDL Compiler, VHDL System
Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
All other product or company names may be trademarks of their respective owners.

VCS/VCSi User Guide, version Y-2006.06-SP2

i

Contents

1. Getting Started

What VCS Supports . 1-3

Main Components of VCS. 1-3

VCSi . 1-6

Preparing to Run VCS. 1-6
Obtaining a License . 1-7
Setting Up Your Environment. 1-8
Setting Up Your C Compiler. 1-9

VCS Workflow . 1-10

Compiling the Simulation Executable . 1-13
Basic Compile-Time Options . 1-14

Running a Simulation . 1-18
Basic Runtime Options . 1-19

Accessing the Discovery AMS Documentation 1-20

Making a Verilog Model Protected and Portable 1-22

ii

2. Modeling Your Design

Avoiding Race Conditions . 2-2
Using and Setting a Value at the Same Time 2-2
Setting a Value Twice at the Same Time 2-3
Flip-Flop Race Condition . 2-4
Continuous Assignment Evaluation . 2-5
Counting Events. 2-6
Time Zero Race Conditions . 2-7

Optimizing Testbenches for Debugging. 2-8
Conditional Compilation. 2-9
Enabling Debugging Features At Runtime. 2-10
Combining the Techniques . 2-13

Avoiding the Debugging Problems From Port Coercion 2-14

Creating Models That Simulate Faster . 2-15
Unaccelerated Data Types, Primitives, and Statements 2-16
Inferring Faster Simulating Sequential Devices. 2-18
Modeling Faster always Blocks . 2-22
Using the +v2k Compile-Time Option 2-23

Case Statement Behavior . 2-24

Memory Size Limits in VCS. 2-25

Using Sparse Memory Models . 2-25

Obtaining Scope Information. 2-27
Scope Format Specifications . 2-27
Returning Information About the Scope. 2-30

iii

Avoiding Circular Dependency . 2-33

Designing With $lsi_dumpports for Simulation and Test 2-34
Dealing With Unassigned Nets . 2-35
Code Values at Time 0. 2-36
Cross Module Forces and No Instance Instantiation 2-36
Signal Value/Strength Codes . 2-38

3. Compiling Your Design

Using the vcs Command . 3-2

Incremental Compilation . 3-3

Triggering Recompilation. 3-4

Using Shared Incremental Compilation 3-5

The Direct Access Interface Directory. 3-7

Initializing Memories and Regs . 3-8

Allowing Inout Port Connection Width Mismatches. 3-9

Using Lint . 3-10

Changing Parameter Values From the Command Line. 3-12

Checking for X and Z Values in Conditional Expressions 3-14
Enabling the Checking. 3-15
Filtering Out False Negatives. 3-16

HSOPT Technology. 3-18

Making Accessing an Out of Range Bit an Error Condition. 3-20

Compiling Runtime Options Into the simv Executable. 3-21

iv

Performance Considerations. 3-23
Using Local Disks . 3-23
Managing Temporary Disk Space on UNIX 3-24
Compile-Time Options That Impede or Accelerate VCS 3-25
Compiling for Debugging or Performance 3-27

 64-32-Bit Cross-Compilation and Full 64-Bit Compilation 3-28
Identifying the Source of Memory Consumption 3-29
Minimizing Memory Consumption . 3-30
Running a 64-32-Bit Cross-Compilation 3-31

Setting up the Compiler and Linker 3-32
Memory Setup . 3-32
Specifying the Compiler, Linker, and -comp64 Option . . . 3-33

Running a 64-Bit Compilation and Simulation 3-34

Using Radiant Technology. 3-34
Compiling With Radiant Technology 3-35
Known Limitations . 3-35
Potential Differences in Coverage Metrics. 3-36
Compilation Performance With Radiant Technology 3-36
Applying Radiant Technology to Parts of the Design 3-36
The Configuration File Syntax . 3-37

Configuration File Statement Examples 3-40

Library Mapping Files and Configurations. 3-45
Library Mapping Files. 3-45

Overriding the Search Order in the Library Mapping File. 3-47
Specifying Multiple Library Mapping Files 3-47
Displaying Library Matching . 3-47

v

Resolving ‘include Compiler Directives 3-48
Configurations . 3-48

Configuration Syntax . 3-49
Hierarchical Configurations . 3-51
The -top Compile-Time Option . 3-52
Limitations of Configurations . 3-53

4. Simulating Your Design

Running and Controlling a Simulation . 4-2
Invoking a Simulation at the Command Line 4-2
Invoking a Simulation From DVE. 4-2

Save and Restart. 4-4
Save and Restart Example . 4-4
Save and Restart File I/O. 4-6
Save and Restart With Runtime Options 4-6

Restarting at the CLI Prompt . 4-8

Specifying a Very Long Time Before Stopping Simulation. 4-8

Passing Values From the Runtime Command Line. 4-10

How VCS Prevents Time 0 Race Conditions 4-11

Improving Performance . 4-12

Profiling the Simulation . 4-13
CPU Time Views . 4-14
Memory Usage Views . 4-24

vi

5. Using the Discovery Visual Environment

Overview of DVE Window Configuration. 5-2

DVE Panes . 5-4

Managing DVE Windows. 5-4
Managing Target Panes. 5-4
Docking and Undocking Windows and Panes 5-6

Dragging and Dropping Docked windows 5-7

Using the Menu Bar and Toolbar. 5-7

Setting Display Preferences . 5-10

6. VPD and EVCD File Generation

Advantages of VPD . 6-2

System Tasks and Functions . 6-3
System Tasks to Generate a VPD File. 6-3
System Tasks and Functions for Multi-Dimensional Arrays . . 6-7

Syntax for Specifying MDAs . 6-7
Using $vcdplusmemon and $vcdplusmemoff 6-9
Using $vcdplusmemorydump. 6-18

System Tasks for Capturing Source Statement Execution Data 6-19
Capturing Source Statement Execution 6-19
Source Statement System Tasks 6-21

System Tasks for Capturing Delta Cycle Information. 6-22
System Tasks for Capturing Unique Event Information 6-23

Runtime Options . 6-25
+vpdbufsize to Control RAM Buffer Size 6-25

vii

+vpdfile to Set the Output File Name. 6-26
+vpdfilesize to Control Maximum File Size 6-26
+vpdignore to Ignore $vcdplus Calls in Code 6-27
+vpddrivers to Store Driver Information 6-27
+vpdnoports to Eliminate Storing Port Information 6-28
+vpdnocompress to Bypass Data Compression 6-28
+vpdnostrengths to Not Store Strength Information. 6-29

VPD Methodology . 6-29
Advantages of Separating Simulation From Analysis 6-29
Conceptual Example of Using VPD System Tasks 6-30
VPD On/Off PLI Rules . 6-32
Performance Tips. 6-33

EVCD File Generation. 6-35
Using the runtime option -dump_evcd 6-35

Using System Tasks. 6-36

7. VCD and VPD File Utilities

The vcdpost Utility . 7-2
Scalarizing the Vector Signals . 7-2
Uniquifying the Identifier Codes. 7-3
The vcdpost Utility Syntax . 7-4

The vcdiff Utility . 7-5
The vcdiff Utility Syntax . 7-6

The vcat Utility . 7-12
The vcat Utility Syntax . 7-13

viii

Generating Source Files From VCD Files 7-17
Writing the Configuration File. 7-18

The vcsplit Utility . 7-23
The vcsplit Utility Syntax . 7-23

The vcd2vpd Utility . 7-26
The vcd2vpd Utility Syntax. 7-26

Options for specifying EVCD options 7-27

The vpd2vcd Utility . 7-28
The vcd2vpd Utility Syntax. 7-28

The Command file Syntax . 7-30
Limitations . 7-33

The vpdmerge Utility . 7-33
Restrictions . 7-35
Limitations . 7-36
Value Conflicts . 7-36

8. Unified Command-Line Interface (UCLI)

Compilation and Simulation Options for UCLI. 8-2

Using UCLI . 8-3

UCLI Interactive Commands . 8-4

UCLI Command-Alias File. 8-9

Operating System Commands . 8-9

9. Using the Old Command Line Interface (CLI)

CLI Commands . 9-2

ix

Navigating the Design and Displaying Design Information . . 9-2
Showing and Retrieving Simulation Information 9-4
Setting, Displaying and Deleting Breakpoints 9-7
Displaying Object Data Members . 9-9
Setting and Printing Values of Variables 9-9
Traversing Call-stacks . 9-9
Showing and Terminating Threads . 9-10
Accessing Events. 9-11

Command Files . 9-11

Key Files . 9-13

Debugging a Testbench Using the CLI . 9-13
Non-Graphical Debugging With the CLI. 9-14

10. Post-Processing

VPD . 10-2

eVCD. 10-3

Line Tracing. 10-3

Delta Cycle . 10-3

11. Race Detection

The Dynamic Race Detection Tool . 11-2
Enabling Race Detection . 11-4
Specifying the Maximum Size of Signals in Race Conditions 11-5
The Race Detection Report . 11-5
Post Processing the Report . 11-8

x

Debugging Simulation Mismatches . 11-10

The Static Race Detection Tool . 11-13

12. Delays and Timing

Transport and Inertial Delays . 12-2
Different Inertial Delay Implementations 12-4
Enabling Transport Delays. 12-7

Pulse Control . 12-7
Pulse Control with Transport Delays 12-9
Pulse Control with Inertial Delays . 12-12
Specifying Pulse on Event or Pulse on Detect Behavior 12-16

Specifying the Delay Mode . 12-20

13. SDF Backannotation

Using SDF Files . 13-2

Compiling the ASCII SDF File at Compile-Time 13-3
The $sdf_annotate System Task . 13-3
Limitations on Compiling the SDF File. 13-5
Precompiling an SDF File . 13-7

Creating the Precompiled Version of the SDF file 13-7
Specifying an Alternative Name and Location 13-8

Reading the ASCII SDF File During Runtime 13-10
Performance Considerations . 13-13
Replacing Negative Module Path Delays in SDF Files 13-13
Using the Shorter Delay in IOPATH Entries. 13-14

xi

Disabling CELLTYPE Checking in SDF Files 13-15
The SDF Configuration File . 13-16

Delay Objects and Constructs . 13-17
SDF Configuration File Commands 13-18
SDF Example with Configuration File. 13-25

Understanding the DEVICE Construct . 13-28

Handling Backannotation to I/O Ports . 13-30

Using the INTERCONNECT Construct . 13-31

Multiple Backannotations to Same Delay Site. 13-31

INTERCONNECT Delays . 13-32
Multisource INTERCONNECT Delays 13-32

Omitting the +multisource_int_delays Option. 13-34
Simultaneous Multiple Source Transitions 13-35

Single Source INTERCONNECT Delays 13-36

Min:Typ:Max Delays . 13-37
Specifying Min:Typ:Max Delays at Runtime. 13-38

Using the Configuration File to Disable Timing 13-39

Using the timopt Timing Optimizer . 13-40

Editing the timopt.cfg File . 13-43
Editing Potential Sequential Device Entries. 13-43
Editing Clock Signal Entries. 13-44

14. Negative Timing Checks

The Need for Negative Value Timing Checks 14-2

xii

Negative Timing Checks for XYZ. 14-2
The $setuphold Timing Check Extended Syntax 14-7
Negative Timing Checks for Asynchronous Controls. 14-10
The $recrem Timing Check Syntax . 14-11

Enabling Negative Timing Checks. 14-13

Other Timing Checks Using the Delayed Signals 14-14

Checking Conditions . 14-18

Toggling the Notifier Register . 14-19

SDF Backannotation to Negative Timing Checks 14-19

How VCS Calculates Delays . 14-20

Using Multiple Non-Overlapping Violation Windows 14-23

15. SAIF Support

Using SAIF Files . 15-2

SAIF System Tasks . 15-2

Typical Flow to Dump the Backward SAIF File using System Tasks 15-5

Criteria for Choosing Signals for SAIF Dumping 15-6

16. SWIFT VMC Models and SmartModels

SWIFT Environment Variables . 16-2

Generating Verilog Templates . 16-4
Modifying the Verilog Template File . 16-5

Monitoring Signals in the Model Window 16-8

xiii

Using LMTV SmartModel Window Commands 16-10

Entering Commands Using the SWIFT Command Channel 16-13
Using the CLI to Access the Command Channel. 16-15

Loading Memories at the Start of Runtime 16-15

Compiling and Simulating a Model . 16-16
Changing the Timing of a Model . 16-16

17. Using the PLI

Writing a PLI Application . 17-3

Functions in a PLI Application . 17-4

Header Files for PLI Applications . 17-5

The PLI Table File . 17-6
PLI Specifications . 17-9
ACC Capabilities . 17-11

Specifying ACC Capabilities for PLI Functions. 17-12
Specifying ACC Capabilities for VCS Debugging Features 17-17

Using the PLI Table File . 17-20

Enabling ACC Capabilities . 17-21
Globally Enabling ACC Capabilities. 17-21
Enabling ACC Write Capabilities Using the Configuration File 17-22
Using Only the ACC Capabilities that You Need 17-25

Learning What ACC Capabilities are Used 17-25
Compiling to Enable Only the ACC Capabilities You Need 17-27
Limitations . 17-28

Using VPI Routines . 17-29

xiv

Support for the vpi_register_systf Routine. 17-31
PLI Table File for VPI Routines . 17-32
Integrating a VPI Application With VCS. 17-32

Writing Your Own main() Routine . 17-34

18. DirectC Interface

Using Direct C/C++ Function Calls . 18-3
How C/C++ Functions Work in a Verilog Environment 18-5
Declaring the C/C++ Function . 18-6
Calling the C/C++ Function . 18-12
Storing Vector Values in Machine Memory 18-14
Converting Strings . 18-17
Avoiding a Naming Problem . 18-19

Using Direct Access . 18-20
Using the vc_hdrs.h File . 18-27
Access Routines for Multi-Dimensional Arrays 18-28

UB *vc_arrayElemRef(UB*, U, ...) 18-28
U vc_getSize(UB*,U) . 18-29

Using Abstract Access . 18-29
Using vc_handle . 18-30
Using Access Routines . 18-31

int vc_isScalar(vc_handle) . 18-32
int vc_isVector(vc_handle) . 18-33
int vc_isMemory(vc_handle). 18-34
int vc_is4state(vc_handle) . 18-35
int vc_is2state(vc_handle) . 18-36

xv

int vc_is4stVector(vc_handle). 18-37
int vc_is2stVector(vc_handle). 18-38
int vc_width(vc_handle) . 18-39
int vc_arraySize(vc_handle) . 18-40
scalar vc_getScalar(vc_handle) . 18-40
void vc_putScalar(vc_handle, scalar). 18-40
char vc_toChar(vc_handle) . 18-40
int vc_toInteger(vc_handle) . 18-41
char *vc_toString(vc_handle) . 18-42
char *vc_toStringF(vc_handle, char) 18-43
void vc_putReal(vc_handle, double) 18-44
double vc_getReal(vc_handle). 18-45
void vc_putValue(vc_handle, char *) 18-45
void vc_putValueF(vc_handle, char *, char) 18-46
void vc_putPointer(vc_handle, void*)

void *vc_getPointer(vc_handle) 18-47
void vc_StringToVector(char *, vc_handle). 18-48
void vc_VectorToString(vc_handle, char *). 18-49
int vc_getInteger(vc_handle) . 18-49
void vc_putInteger(vc_handle, int) 18-49
vec32 *vc_4stVectorRef(vc_handle) 18-50
U *vc_2stVectorRef(vc_handle) . 18-51
void vc_get4stVector(vc_handle, vec32 *)

void vc_put4stVector(vc_handle, vec32 *) 18-54
void vc_get2stVector(vc_handle, U *)

void vc_put2stVector(vc_handle, U *). 18-55
UB *vc_MemoryRef(vc_handle) . 18-56
UB *vc_MemoryElemRef(vc_handle, U indx). 18-58
scalar vc_getMemoryScalar(vc_handle, U indx) 18-61
void vc_putMemoryScalar(vc_handle, U indx, scalar) . . . 18-62

xvi

int vc_getMemoryInteger(vc_handle, U indx). 18-62
void vc_putMemoryInteger(vc_handle, U indx, int) 18-64
void vc_get4stMemoryVector(vc_handle, U indx,

vec32 *). 18-64
void vc_put4stMemoryVector(vc_handle, U indx,

vec32 *). 18-66
void vc_get2stMemoryVector(vc_handle, U indx, U *) . . . 18-67
void vc_put2stMemoryVector(vc_handle, U indx, U *) . . . 18-67
void vc_putMemoryValue(vc_handle, U indx, char *). . . . 18-68
void vc_putMemoryValueF(vc_handle, U indx, char, char *) 18-68
char *vc_MemoryString(vc_handle, U indx) 18-69
char *vc_MemoryStringF(vc_handle, U indx, char) 18-70
void vc_FillWithScalar(vc_handle, scalar) 18-72
char *vc_argInfo(vc_handle) . 18-74
int vc_Index(vc_handle, U, ...) . 18-75
U vc_mdaSize(vc_handle, U). 18-76

Summary of Access Routines . 18-77

Enabling C/C++ Functions . 18-81
Mixing Direct And Abstract Access . 18-83
Specifying the DirectC.h File . 18-83
Useful Compile-Time Options . 18-84

Environment Variables. 18-85

Extended BNF for External Function Declarations 18-85

19. Using the VCS / SystemC Cosimulation Interface

Usage Scenario Overview. 19-4
Supported Port Data Types . 19-5

xvii

Verilog Design Containing SystemC Leaf Modules. 19-6
Input Files Required. 19-7
Generating the Wrapper for SystemC Modules 19-8
Instantiating the Wrapper and Coding Style. 19-11
Controlling Time Scale and Resolution in a

SystemC Module Contained in a Verilog Design 19-13
Compiling a Verilog Design Containing SystemC Modules . . 19-14

Using GNU Compilers on Sun Solaris 19-14
Using GNU Compilers on Linux . 19-15

SystemC Designs Containing Verilog Modules 19-15
Input Files Required. 19-16
Generating the Wrapper . 19-17
Instantiating the Wrapper. 19-19
Compiling a SystemC Design Containing Verilog Modules . . 19-20
Elaborating the Design . 19-21
Considerations for Export DPI Tasks 19-22

Use syscan -export_DPI <function-name>. 19-22
Use a Stubs File . 19-23

Specifying Runtime Options to the SystemC Simulation 19-24
Using GNU Compilers on SUN Solaris 19-25
Using GNU Compilers on Linux . 19-25

Using a Port Mapping File . 19-26

Using a Data Type Mapping File . 19-27

Debugging the SystemC Portion of a Design 19-29

Debugging the Verilog Code . 19-29

Debugging Both the Verilog and SystemC Portions of a Design. 19-30

xviii

Transaction Level Interface . 19-31
Interface Definition File . 19-33
Generation of the TLI Adapters . 19-36
Transaction Debug Output. 19-37
Instantiation and Binding . 19-38
Supported Data Types of Formal Arguments. 19-40
Miscellaneous . 19-42

Using the Built-in SystemC Simulator . 19-42

Using a Customized SystemC Installation. 19-43

20. Using OpenVera Assertions

Introducing OVA . 20-2
Built-in Test Facilities and Functions 20-2
Using OVA Directives. 20-3

How Sequences Are Tested Using the assert Directive . . 20-4
How Event Coverage Is Tested Using the cover Directive 20-6

OVA Flow. 20-7

Checking OVA Code With the Linter Option 20-8
Applying General Rules with VCS . 20-8

Linter General Rule Messages. 20-9
Applying Magellan Rules for Formal Verification 20-16

Linter General Rule Messages: . 20-16

Compiling Temporal Assertions Files . 20-19

OVA Runtime Options . 20-21
Functional Code Coverage Options. 20-24

xix

OpenVera Assertions Post-Processing . 20-24
OVAPP Flow . 20-25
Building and Running a Post-Processor 20-26
OVA Post-Processing CLI Commands 20-31
Using Multiple Post-Processing Sessions 20-32
Multiple OVA Post-Processing Sessions in One Directory . . 20-32

Viewing Output Results . 20-41
Viewing Results in a Report File . 20-41
Viewing Results with Functional Coverage 20-42

Using the Default Report . 20-42
Assertion and Event Summary Report 20-44
Command Line Options . 20-45
Customizing the Report with Tcl Commands 20-47

Using OVA with Third Party Simulators . 20-48

Inlining OVA in Verilog . 20-48
Specifying Pragmas in Verilog . 20-49
Methods for Inlining OVA . 20-50

Unit Instantiation Using the Unit-Based Checker Library . 20-52
Instantiating Context-Independent Full Custom OVA. . . . 20-54
Template Instantiation Using the Template-Based

Checker Library . 20-56
Inlining Context-Dependent Full Custom OVA 20-58

Case Checking . 20-59
Context-Dependent Assertion Pragmas. 20-60

General Inlined OVA Coding Guidelines 20-62

Using Verilog Parameters in OVA Bind Statements 20-63

xx

Use Model . 20-63
Enabling Verilog Parameter Expansion 20-64
Limitations on the Input . 20-64
Recommended Methodology . 20-66
Caveats . 20-66

Post-processing Flow. 20-67
Use Model . 20-67

OVA System Tasks and Functions . 20-68
Setting and Retrieving Category and Severity Attributes. . . . 20-69
Starting and Stopping the Monitoring of Assertions 20-70

Global Monitoring . 20-70
Category and Severity-Based Monitoring. 20-73
Name-Based Monitoring. 20-73

Controlling the Response To an Assertion Failure. 20-74
Display Custom Message For an Assertion Failure. 20-75
Task Invocation From the CLI . 20-76
Debug Control Tasks . 20-77
Calls From Within Code. 20-78

Developing a User Action Function 20-82

21. OpenVera Native Testbench

Major Features Supported in Native Testbench OpenVera 21-3
High-level Data Types . 21-3
Flow Control. 21-3
Other Features. 21-4

Getting Started With Native Testbench OpenVera 21-5
Basics of an OpenVera Testbench. 21-6

xxi

Preprocessor Directives . 21-6
Top Level Constructs . 21-7
Program Block . 21-7
"Hello World!" . 21-8

The Template Generator . 21-9

Multiple Program Support . 21-11
Configuration File Model . 21-11
Configuration File. 21-11

Use Model for Multiple Programs. 21-12
Compiling Multiple Programs . 21-13
NTB Options and the Configuration File. 21-15

Summary . 21-19
Example Configuration File . 21-19

Compiling and Running the OpenVera Testbench 21-24
Compiling the Testbench with the OpenVera Design 21-24
Compiling the Testbench Separate From the

OpenVera Design . 21-25
Separate Compilation of Testbench Files for VCS 21-26
Compiling the Design, the Testbench Shell And

the Top-level Verilog Module. 21-27
Loading the Compiled Testbench On simv. 21-28
Limitations . 21-29

Compile-time Options . 21-29
Runtime Options . 21-37
Class Dependency Based OpenVera Source File Reordering 21-41

Circular Dependencies . 21-43
Dependency-based Ordering in the Presence of Encryption21-43

xxii

Using Encrypted Files . 21-44

Testbench Functional Coverage . 21-45
Coverage Models Using Coverage Groups 21-46
Measuring Coverage . 21-49
Controlling Coverage Collection Globally 21-51
Unified Coverage Reporting. 21-53

Coverage Reporting Flow. 21-54
Persistent Storage of Coverage Data and

Post-Processing Tools . 21-56
Unified Coverage Directory and Database Control 21-56

Loading Coverage Data . 21-58
Solver Choice . 21-61
Automatic Solver Orchestration . 21-62

Temporal Assertions . 21-63
Temporal Assertion Flow . 21-65

Adding Assertion Objects to a Testbench. 21-65
Including the Header Files . 21-66
Setting Up the AssertEngine Object. 21-66
Controlling Assertion Reporting . 21-66
Resetting Assertion . 21-67
Instantiating Assertion Objects. 21-67
Controlling Evaluation Attempts . 21-68
Counting Successes and Failures 21-68
Setting Up the AssertEvent Objects 21-69
Instantiating AssertEvent Objects 21-69
Suspending Threads . 21-70
Eliminating AssertEvent Objects 21-70
Terminating the AssertEngine . 21-71

xxiii

Example Testbench . 21-71
Running OpenVera Testbench with OVA 21-74
Running OpenVera Testbench with SVA 21-74
Running OpenVera Testbench with SVA and OVA Together . 21-75

OpenVera-SystemVerilog Testbench Interoperability 21-75
Scope of Interoperability . 21-76
Importing OpenVera types into SystemVerilog 21-77
Data Type Mapping . 21-80

Mailboxes and Semaphores . 21-81
Events . 21-83
Strings . 21-83
Enumerated Types . 21-83
Integers and Bit-Vectors . 21-86
Arrays . 21-87
Structs and Unions . 21-88

Connecting to the Design . 21-89
Mapping Modports to Virtual Ports 21-89
Semantic Issues with Samples, Drives, and Expects . . . 21-93

Miscellaneous Issues . 21-94
Blocking Functions in OpenVera . 21-94

The terminate, wait_child, disable fork, and wait fork
Constructs. 21-94

Constraints and Randomization 21-94
Functional Coverage . 21-95

Use Model . 21-96

Using Reference Verification Methodology with OpenVera. 21-98
Limitations . 21-98

xxiv

Testbench Optimization . 21-99
NTB Performance Profiler . 21-99

Enabling the NTB Profiler. 21-100
Performance Profiler Example . 21-100

VCS Memory Profiler . 21-105
Use Model . 21-106
UCLI Interface . 21-106
CLI Interface. 21-107

Incremental Profiling . 21-107
Only Active Memory Reported . 21-108
VCS Dynamic Memory Profile Report 21-108

22. SystemVerilog Design Constructs

SystemVerilog Data Types . 22-2
Variable Data Types for Storing Integers 22-2
The chandle Data Type . 22-3
User-Defined Data Types. 22-5
Enumerations. 22-5

Methods for Enumerations . 22-6
The $typeof System Function . 22-8
Structures and Unions . 22-10

Structure Expressions . 22-13
SystemVerilog Arrays. 22-14

Multiple Dimensions . 22-15
Indexing and Slicing Arrays . 22-16

SystemVerilog Testbench Constructs Outside Programs . . . 22-18

Writing To Variables. 22-19

xxv

Force and Release on SystemVerilog Variables 22-20
Automatic Variables . 22-21
Multiple Drivers. 22-22
Release Behavior . 22-23
Integer Data Types . 22-24
Unpacked Arrays . 22-26
Structures . 22-27
Using the VPI . 22-28

SystemVerilog Operators . 22-30

New Procedural Statements . 22-31
The unique and priority Keywords in if and case Statements 22-31
The do while Statement . 22-34

SystemVerilog Processes . 22-35
The always_comb Block . 22-35
The always_latch Block . 22-38
The always_ff Block . 22-38
The final Block . 22-39

Tasks and Functions . 22-39
Tasks . 22-40
Functions . 22-41
Passing Arguments by Setting Defaults. 22-44

SystemVerilog Packages. 22-46

Exporting Time Consuming User-Defined Tasks with the
SystemVerilog DPI . 22-50

Hierarchy . 22-54

xxvi

The $root Top-Level Global Declaration Space 22-54
New Data Types for Ports . 22-56
Instantiation Using Implicit .name Connections 22-58
Instantiation Using Implicit .* Connections. 22-58
New Port Connection Rules for Variables 22-59

Ref Ports on Modules . 22-60

Interfaces. 22-62
Using Modports . 22-66
Functions In Interfaces . 22-68

Enabling SystemVerilog . 22-69

Disabling unique And priority Warning Messages 22-69

23. SystemVerilog Assertion Constructs

Immediate Assertions . 23-2

Concurrent Assertions Overview. 23-3
Sequences. 23-3

Using Formal Arguments In A Sequence 23-5
Specifying a Range of Clock Ticks 23-5
Unconditionally Extending a Sequence 23-6
Using Repetition . 23-6
Specifying a Clock . 23-9
Value Change Functions . 23-9
Anding Sequences . 23-10
Intersecting Sequences (And With Length Restriction) . . 23-11
Oring Sequences . 23-11
Only Looking For the First Match Of a Sequence 23-12

xxvii

Conditions for Sequences . 23-12
Specifying That Sequence Match Within Another

Sequence . 23-13
Using the End Point of a Sequence 23-13
Level Sensitive Sequence Controls 23-14

Properties . 23-17
Using Formal Arguments in a Property 23-18
Implications . 23-19
Inverting a Property . 23-21
Past Value Function . 23-22
The disable iff Construct. 23-22

assert Statements . 23-23
assume Statements . 23-24
cover Statements . 23-25
Action Blocks . 23-28
Binding An SVA Module To A Design Module 23-29

Parameter Passing In A bind Directive. 23-31

The VPI For SVA . 23-32

SystemVerilog Assertion Local Variable Debugging 23-33

Controlling How VCS Uses SystemVerilog Assertions 23-35
Compile-Time And Runtime Options 23-36
Ending Simulation at a Number of Assertion Failures 23-41
Disabling SystemVerilog Assertions at Compile-Time 23-42
Entering SystemVerilog Assertions as Pragmas 23-42
Options for SystemVerilog Assertion Coverage. 23-44
Reporting On Assertions Coverage . 23-45

xxviii

Tcl Commands For SVA And OVA Functional
Coverage Reports. 23-49

The assertCovReport Report Files . 23-56
The report.index.html File. 23-57
The tests.html File . 23-62
The category.html File . 23-62
The hier.html File . 23-63

Assertion Monitoring System Tasks. 23-64
Assertion System Functions . 23-68
Using Assertion Categories . 23-68

Using OpenVera Assertion System Tasks 23-69
Using Attributes . 23-70
Stopping And Restarting Assertions By Category 23-71

24. SystemVerilog Testbench Constructs

Enabling Use of SystemVerilog Testbench Constructs 24-1

VCS Flow for SVTB. 24-1

Options For Compiling and Simulating SystemVerilog Testbench
Constructs . 24-2

Compile-Time Options . 24-2
Runtime Options. 24-3
Compile Time or Runtime Options 24-4

The string Data Type . 24-5
String Manipulation Methods . 24-5
String Conversion Methods . 24-8
Predefined String Methods . 24-12

Program Blocks . 24-15

xxix

Arrays . 24-20
Dynamic Arrays . 24-20

The new[] Built-In Function . 24-20
The size() Method . 24-22
The delete() Method. 24-22
Assignments to and from Dynamic Arrays 24-22

Associative Arrays . 24-24
Wildcard Indexes . 24-25
String Indexes. 24-25
Associative Array Assignments and Arguments. 24-26
Associative Array Methods. 24-26

Queues . 24-29
Queue Methods . 24-31

The foreach Loop. 24-34
Array Aggregates (Reduction/Manipulation) Methods in

Constraints . 24-37

Classes . 24-40
Creating an Instance (object) of a Class 24-41

Constructors . 24-42
Assignment, Re-naming and Copying 24-44
Static Properties. 24-45
Global Constant Class Properties . 24-46
Method Declarations: Out of Class Body Declarations 24-47

Class Extensions. 24-49
Subclasses and Inheritance. 24-49

Abstract classes . 24-50
Polymorphism. 24-52

xxx

Scope Resolution Operator :: . 24-54
super keyword . 24-55

Casting. 24-56
Chaining Constructors . 24-58

Accessing Class Members . 24-62
Properties . 24-62
. .

Methods . 24-63
“this” keyword . 24-64

Class Packet Example. 24-66
Unpacked Structures in Classes . 24-66

Random Constraints . 24-68
Random Variables . 24-68
Constraint Blocks. 24-69

External Declaration . 24-72
Inheritance . 24-72
Set Membership . 24-73
Weighted Distribution . 24-75
Implications . 24-76
if else Constraints. 24-78
Global Constraints . 24-79
Default Constraints. 24-80
Variable Ordering . 24-87
Unidirectional Constraints . 24-88
Static Constraint Blocks . 24-99

Randomize Methods . 24-100
randomize() . 24-100
pre_randomize() and post_randomize() 24-100

xxxi

Controlling Constraints. 24-102
Disabling Random Variables . 24-105
In-line Constraints . 24-108
In-line Constraint Checker . 24-109
Random Number Generation. 24-111
Seeding for Randomization . 24-115
randcase Statements . 24-116

Random Sequence Generation. 24-117
RSG Overview . 24-118
Production Declaration . 24-119
Production Controls . 24-122

Weights for Randomization . 24-122
if-else Statements. 24-123
case Statements. 24-125
repeat Loops . 24-126
break Statement . 24-126
return Statement. 24-127

Aspect Oriented Extensions . 24-128
Aspect-Oriented Extensions in SV. 24-130
Processing of AOE as a Precompilation Expansion 24-132

Weaving advice into the target method 24-137
Pre-compilation Expansion details. 24-142

Precedence . 24-143

Array manipulation methods . 24-165
Array ordering methods . 24-165

reverse() . 24-165

xxxii

sort() . 24-166
rsort() . 24-166

Array locator methods . 24-167
find() . 24-167
find_index(). 24-168
find_first() . 24-168
find_first_index(). 24-169
find_last() . 24-170
find_last_index() . 24-170
min() . 24-171
max() . 24-171
unique() . 24-172
unique_index() . 24-173

Array reduction methods . 24-173
sum() . 24-173
product() . 24-174
and() . 24-175
or() . 24-175
xor() . 24-176

Interprocess Synchronization and Communication 24-177
Semaphores . 24-177

Semaphore Methods . 24-179
Mailboxes. 24-180

Mailbox Methods . 24-182
Events . 24-183

Waiting for an Event . 24-183
Persistent Trigger . 24-184
Merging Events . 24-185

xxxiii

Reclaiming Named Events . 24-186
Event Comparison . 24-187

Clocking Blocks . 24-188
Clocking Block Declaration . 24-188
Input and Output Skews . 24-193
Hierarchical Expressions . 24-194
Signals in Multiple Clocking Blocks . 24-194
Clocking Block Scope and Lifetime . 24-195
Clocking Block Events . 24-196
Default Clocking Blocks . 24-196
Cycle Delays . 24-197
Input Sampling. 24-198
Synchronous Events . 24-199
Synchronous Drives. 24-199
Drive Value Resolution. 24-200
Clocking Blocks in SystemVerilog Assertions 24-200
Sequences and Properties in Clocking Blocks 24-201

SystemVerilog Assertions Expect Statements. 24-202

Virtual Interfaces . 24-207
Scope of Support . 24-208
Virtual Interface Modports . 24-208
Driving a Net Using a Virtual Interface 24-209
Virtual Interface Modports and Clocking Blocks 24-209
Array of Virtual Interface . 24-211
Clocking Block . 24-212

xxxiv

Event Expression/Structure . 24-213
Null Comparison . 24-213
Not Yet Implemented . 24-214

Coverage. 24-214
The covergroup Construct . 24-215
Defining a Coverage Point . 24-217

Bins for Value Ranges . 24-217
Bins for Value Transitions. 24-221
Specifying Illegal Coverage Point Values 24-222

Defining Cross Coverage. 24-223
Defining Cross Coverage Bins . 24-224

Cumulative and Instance-based Coverage 24-226
Cumulative Coverage. 24-226
Instance-based Coverage . 24-227

Coverage Options . 24-227
Predefined Coverage Methods . 24-230

Predefined Coverage Group Functions 24-230
Unified Coverage Reporting. 24-237
The Coverage Report . 24-238

The ASCII Text File . 24-238
The HTML File . 24-240

Persistent Storage of Coverage Data and Post-Processing Tools
24-241
Unified Coverage Directory and Database Control 24-241

Loading Coverage Data . 24-243

VCS NTB (SV) Memory Profiler . 24-246
Use Model . 24-246

xxxv

UCLI Interface . 24-247
CLI Interface. 24-247
Incremental Profiling. 24-248
Only Active Memory Reported . 24-248

VCS NTB (SV) Dynamic Memory Profile Report 24-249

The Direct Programming Interface (DPI) 24-251
Limitations . 24-253
Include Files . 24-253

Time Consuming Blocking Tasks . 24-255

25. Source Protection

Encrypting Source Files . 25-3
Encrypt Using Compiler Directives . 25-3
Encrypting Specified Regions . 25-4
Encrypting The Entire Source Description 25-5
Encrypting SDF Files . 25-9
Specifying Encrypted Filename Extensions. 25-10
Specifying Encrypted File Locations 25-10
Multiple Runs and Error Handling . 25-10
Permitting CLI/PLI Access to Encrypted Modules 25-11

Simulating Encrypted Models . 25-12
Using the CLI . 25-12
Using System Tasks. 25-13
Writing PLI Applications . 25-13

Mangling Source Files. 25-14
Creating A Test Case. 25-23

xxxvi

Preventing Mangling of Top-Level Modules. 25-24

Appendix A. VCS Environment Variables

Simulation Environment Variables. A-2

Optional Environment Variables . A-3

Appendix B. Compile-Time Options

Options for Accessing Verilog Libraries B-4
Options for Incremental Compilation B-6
Options for Help and Documentation. B-9
Options for SystemVerilog . B-9
Options for OpenVera Native Testbench B-11
Options for Different Versions of Verilog B-15
Options for Initializing Memories and Regs B-16
Options for Using Radiant Technology. B-16
Options for 64-bit Compilation . B-16
Options for Debugging. B-17
 Options for Finding Race Conditions B-20
Options for Starting Simulation Right After Compilation B-21
Options for Compiling OpenVera Assertions (OVA). B-22
Options for Compiling For Simulation With Vera B-23
Options for Compiling For Coverage Metrics. B-23
Options for Discovery Visual Environment and UCLI B-30
Options for Converting VCD and VPD Files B-31
Options for Specifying Delays . B-32
Options for Compiling an SDF File . B-35

xxxvii

Options for Profiling Your Design. B-37
Options for File Containing Source File Names and Options B-38
Options for Compiling Runtime Options into the

simv Executable . B-39
Options for Pulse Filtering . B-40
Options for PLI Applications . B-41
Options to Enable and Disable Specify Blocks and

Timing Checks . B-42
Options to Enable the VCS DirectC Interface B-43
Options for Negative Timing Checks B-43
Options for Flushing Certain Output Text File Buffers B-44
Options for Simulating SWIFT VMC Models and SmartModels B-45
Options for Controlling Messages . B-45
Options for Cell Definition . B-48
Options for Licensing . B-49
Options for Controlling the Assembler B-50
Options for Controlling the Linker . B-50
Options for Controlling the C Compiler B-51
Options for Source Protection . B-54
Options for Mixed Analog/Digital Simulation B-56
Options for Changing Parameter Values B-56
Checking for X and Z Values in Conditional Expressions . . . B-57
Options to Specify the Time Scale . B-57
General Options. B-58

Enable Verilog 2001 Features . B-58
Enable the VCS/SystemC Cosimulation Interface B-58
Reduce Memory Consumption. B-58

xxxviii

TetraMAX . B-59
Make Accessing an Undeclared Bit an Error Condition . . B-59
Treat Output Ports As Inout Ports B-59
Allow Inout Port Connection Width Mismatches. B-59
Specifying a VCD File. B-59
Memories and Multi-Dimensional Arrays (MDAs) B-60
Specifying a Log File . B-60
Hardware Modeling . B-61
Changing Source File Identifiers to Upper Case B-61
Defining a Text Macro. B-61
Specifying the Name of the Executable File. B-62
Returning The Platform Directory Name B-62
Specifying Native Code Generation B-62
For Long Calls . B-62

Appendix C. Simulation Options

Options for Simulating OpenVera Testbenches C-2
Options for Simulating OpenVera Assertions. C-4
Options for SystemVerilog Assertions C-6
Options for a CLI Command File . C-9
Options for Specifying VERA Object Files C-10
Options for Coverage Metrics . C-10
Options for Enabling and Disabling Specify Blocks C-12
Options for Specifying When Simulation Stops C-13
Options for Recording Output . C-13
Options for Controlling Messages . C-14
Options for Discovery Visual Environment and UCLI C-15
Options for VPD Files . C-15

xxxix

Options for Controlling $gr_waves System Task Operations. C-17
Options for VCD Files . C-18
Options for Specifying Min:Typ:Max Delays C-19
Options for Flushing Certain Output Text File Buffers C-20
Options for Licensing . C-21
General Options. C-22

Viewing the Compile-Time Options Used to
Create the Executable . C-22

Stopping Simulation When the Executable Starts C-22
Recording Where ACC Capabilities are Used C-22
Suppressing the $stop System Task C-23
Enabling User-Defined Plusarg Options. C-23
Enabling Overriding the Timing of a SWIFT SmartModel. C-23
Specifying acc_handle_simulated_net PLI Routine

and MIPD Annotation . C-23

Appendix D. Compiler Directives and System Tasks

Compiler Directives . D-2
Compiler Directives for Cell Definition D-2
Compiler Directives for Setting Defaults D-3
Compiler Directives for Macros . D-3
Compiler Directives for Detecting Race Conditions D-5
Compiler Directives for Delays. D-5
Compiler Directives for Backannotating SDF Delay Values. . D-7
Compiler Directives for Source Protection D-7
Compiler Directives for Controlling Port Coercion D-8
General Compiler Directives . D-8

xl

Compiler Directive for Including a Source File D-8
Compiler Directive for Setting the Time Scale D-9
Compiler Directive for Specifying a Library D-9
Compiler Directive for Maintaining The File Name and Line

Numbers . D-10
Unimplemented Compiler Directives D-10

System Tasks and Functions. D-10
System Tasks for SystemVerilog Assertions Severity D-11
System Tasks for SystemVerilog Assertions Control D-11
System Tasks for SystemVerilog Assertions D-12
System Tasks for VCD Files . D-12
System Tasks for LSI Certification VCD and EVCD Files . . . D-15
System Tasks for VPD Files. D-18
System Tasks for SystemVerilog Assertions D-25
System Tasks for Executing Operating System Commands . D-26
System Tasks for Log Files . D-27
System Tasks for Data Type Conversions D-28
System Tasks for Displaying Information D-28
System Tasks for File I/O. D-29
System Tasks for Loading Memories D-31
System Tasks for Time Scale. D-32
System Tasks for Simulation Control D-32
System Tasks for Timing Checks. D-33
System Tasks for PLA Modeling . D-36
System Tasks for Stochastic Analysis D-36
System Tasks for Simulation Time. D-37

xli

System Tasks for Probabilistic Distribution D-38
System Tasks for Resetting VCS. D-38
General System Tasks and Functions D-39

Checks for a Plusarg . D-39
SDF Files . D-39
Counting the Drivers on a Net . D-40
Depositing Values. D-40
Fast Processing Stimulus Patterns. D-40
Saving and Restarting The Simulation State D-41
Checking for X and Z Values in Conditional Expressions D-41

IEEE Standard System Tasks Not Yet Implemented in VCS . D-42

Appendix E. PLI Access Routines

Access Routines for Reading and Writing to Memories E-2
acc_setmem_int. E-4
acc_getmem_int . E-5
acc_clearmem_int . E-6

Examples . E-6
acc_setmem_hexstr. E-11

Examples . E-12
acc_getmem_hexstr . E-15
acc_setmem_bitstr. E-16
acc_getmem_bitstr. E-17
acc_handle_mem_by_fullname . E-18
acc_readmem . E-19

Examples . E-20
acc_getmem_range . E-21

xlii

acc_getmem_size . E-22
acc_getmem_word_int. E-23
acc_getmem_word_range . E-24

Access Routines for Multidimensional Arrays E-25
tf_mdanodeinfo and tf_imdanodeinfo. E-26
acc_get_mda_range . E-28
acc_get_mda_word_range() . E-29
acc_getmda_bitstr() . E-31
acc_setmda_bitstr() . E-32

Access Routines for Probabilistic Distribution E-33
vcs_random . E-34
vcs_random_const_seed. E-35
vcs_random_seed . E-35
vcs_dist_uniform . E-36
vcs_dist_normal . E-37
vcs_dist_exponential . E-38
vcs_dist_poisson . E-39

Access Routines for Returning a String Pointer to a Parameter Value
E-39
acc_fetch_paramval_str. E-40

Access Routines for Extended VCD Files E-40
acc_lsi_dumpports_all . E-42
acc_lsi_dumpports_call . E-43
acc_lsi_dumpports_close. E-45
acc_lsi_dumpports_flush . E-46

xliii

acc_lsi_dumpports_limit. E-47
acc_lsi_dumpports_misc . E-48
acc_lsi_dumpports_off . E-49
acc_lsi_dumpports_on . E-50
acc_lsi_dumpports_setformat . E-52
acc_lsi_dumpports_vhdl_enable . E-53

Access Routines for Line Callbacks . E-54
acc_mod_lcb_add . E-55
acc_mod_lcb_del . E-57
acc_mod_lcb_enabled. E-58
acc_mod_lcb_fetch . E-59
acc_mod_lcb_fetch2 . E-60
acc_mod_sfi_fetch. E-62

Access Routines for Source Protection. E-64
vcsSpClose . E-68
vcsSpEncodeOff . E-68
vcsSpEncodeOn . E-69
vcsSpEncoding . E-71
vcsSpGetFilePtr . E-72
vcsSpInitialize . E-73
vcsSpOvaDecodeLine . E-74
vcsSpOvaDisable. E-75
vcsSpOvaEnable . E-76
vcsSpSetDisplayMsgFlag . E-78
vcsSpSetFilePtr . E-78
vcsSpSetLibLicenseCode . E-79

xliv

vcsSpSetPliProtectionFlag. E-80
vcsSpWriteChar . E-81
vcsSpWriteString . E-83

Access Routine for Signal in a Generate Block. E-84
acc_object_of_type . E-84

VCS API Routines . E-85
Vcsinit() . E-85
VcsSimUntil() . E-85

1-1

Getting Started

1
Getting Started 1

VCS® is a high-performance, high-capacity Verilog® simulator that
incorporates advanced, high-level abstraction verification
technologies into a single open native platform.

VCS enables you to analyze, compile, and simulate Verilog design
descriptions. It also provides you with a set of simulation and
debugging features to validate your design. These features provide
capabilities for source-level debugging and simulation result viewing.
VCS supports all levels of design descriptions, but is optimized for
the behavioral and register transfer levels.

VCS accelerates complete system verification by delivering the
fastest and highest capacity Verilog simulation for RTL functional
verification.

In addition, VCS supports Synopsys DesignWare IP, the VCS
Verification Library, VMC models, and the Vera testbench tool.

1-2

Getting Started

VCS is also integrated with other third-party tools via the programming
language interface (PLI). Also, the DirectC Interface enables
interaction between Verilog designs and applications written in C or
C++.

VCS is integrated with many third party tools such as testbench tools,
memory model generation tools, acceleration and emulation
systems, and graphical user interfaces.

This chapter covers the following topics:

• What VCS Supports

• Main Components of VCS

• VCSi

• Preparing to Run VCS

• VCS Workflow

• Compiling the Simulation Executable

• Running a Simulation

• Accessing the Discovery AMS Documentation

• Making a Verilog Model Protected and Portable

1-3

Getting Started

What VCS Supports

VCS provides fully featured implementations of the following:

• The Verilog language as defined in the IEEE Standard Hardware
Description Language Based on the Verilog Hardware
Description Language (IEEE Std 1364-1995) and the Standard
Verilog Hardware Description Language (IEEE Std 1364-2001).

• The SystemVerilog 3.1a language (with some exceptions) as
defined in SystemVerilog 3.1a Accellera’s Extensions to Verilog.

In addition, VCS supports interfaces to a variety of other simulators
and models, including (but not limited to) user PLI applications
conforming to IEEE Std 1363-1995, delay calculators, SDF delay
annotation, and Synopsys Logic Modeling SmartModels®.

Main Components of VCS

In addition to its standard Verilog compilation and simulation capabilities,
VCS includes the following integrated set of features and tools:

• SystemVerilog — an extension of the Verilog language that adds
new design, testbench, and assertion constructs. For details on
SVA, see Chapter 23, "SystemVerilog Assertion Constructs",
Chapter 22, "SystemVerilog Design Constructs", and Chapter 24,
"SystemVerilog Testbench Constructs".

1-4

Getting Started

• OpenVera Assertions (OVA) — provides an easy and concise
way to describe sequences of events, and facilities to test for their
occurrence. VCS natively compiles OVA. For details on OVA, see
Chapter 20, "Using OpenVera Assertions" and the OpenVera
Language Reference Manual: Assertions volume. Many of the
implemented SystemVerilog assertions constructs are
functionally comparable to OpenVera assertion constructs.

• OpenVera Native Testbench — a testbench language that is a
subset of the OpenVera testbench language. VCS can natively
compile testbench files written in OpenVera testbench constructs
into the simv executable file, along with Verilog source files and
OpenVera Assertions (OVA) files. For details on OpenVera Native
Testbench, see Chapter 21, "OpenVera Native Testbench".

• Discovery Visualization Environment (DVE) — the new graphical
debugging environment. You can use DVE to trace signals of
interest while viewing annotated values in the source code or
schematic diagrams. You can also compare waveforms, extract
specific signal information, and generate testbenches based on
waveform outputs. For details, see Chapter 5, "Using the
Discovery Visual Environment" and the Discovery Visual
Environment User Guide. DVE is in the process of replacing
VirSim.

• Built-In Coverage Metrics — a comprehensive built-in coverage
analysis functionality that includes condition, toggle, line,
finite-state-machine (FSM), path, and branch coverage. You can
use coverage metrics to determine the quality of coverage of your
verification test and focus on creating additional test cases. You
only need to compile once to run both simulation and coverage
analysis. For details, see the VCS Coverage Metrics User Guide.

1-5

Getting Started

• DirectC Interface — this interface allows you to directly embed
user-created C/C++ functions within your Verilog design
description. This results in a significant improvement in
ease-of-use and performance over existing PLI-based methods.
VCS atomically recognizes C/C++ function calls and integrates
them for simulation, thus eliminating the need to manually create
PLI files.

• Incremental Verilog Compilation — reduces the turnaround time
from design modification by minimizing the amount of
recompilation. This capability enables VCS to automatically
compare the current design against the previously compiled
database; it then recompiles only those portions of the design that
have changed. For details, see “Incremental Compilation” on page
3-3.

• 64-Bit Cross-Compilation and Full 64-Bit Compilation — VCS
offers a choice of methodologies for high-capacity compilation
and simulation. Its -comp64 option invokes a cross-compilation
process that compiles a design on a 64-bit machine, which can
then be simulated on a 32-bit machine. The -full64 option both
compiles and simulates a design on a 64-bit machine.

• Mixed Signal Simulation — Synopsys provides the Discovery
AMS: NanoSim-VCS User Guide and the Discovery AMS:
Enhanced NanoSim-VCS User Guide to NanoSim and VCS users
who need to do mixed signal simulation. See “Accessing the
Discovery AMS Documentation” on page 1-20.

1-6

Getting Started

VCSi

VCSi is offered as an alternate version of VCS. VCS and VCSi are
identical except that VCS is more highly optimized, resulting in greater
speed. VCS and VCSi are guaranteed to provide the exact same
simulation results. VCSi implementation requirements are
summarized as follows:

1. There are separate licenses for VCSi.

2. VCSi is invoked using the vcsi command, instead of the vcs
command.

Note:
Hereafter, all references to VCS in this manual pertain to VCSi as
well.

The +vcsi+lic+vcs compile-time option enables you to run VCSi
with a VCS license when all VCSi licenses are in use, and the
+vcs+lic+vcsi compile-time option enables you to run VCS with
three VCSi licenses.

Preparing to Run VCS

This section outlines the basic steps for preparing to run VCS. It
includes the following topics:

• Obtaining a License

• Setting Up Your Environment

• Setting Up Your C Compiler

1-7

Getting Started

Obtaining a License

You must have a license to run VCS. To obtain a license, contact your
local Synopsys Sales Representative. Your Sales Representative will
need the hostid for your machine.

To start a new license, do the following:

1. Verify that your license file is functioning correctly:

% lmcksum -c license_file_pathname

Running this licensing utility ensures that the license file is not
corrupt. You should see an "OK" for every INCREMENT
statement in the license file.

Note:
The snpslmd platform binaries and accompanying FlexLM utilities
are shipped separately and are not included with this distribution.
You can download these binaries as part of the Synopsys
Common Licensing (SCL) kit from the Synopsys Web Site at:

http://www.synopsys.com/cgi-bin/ASP/sk/smartkeys.cgi

2. Start the license server:

% lmgrd -c license_file_pathname -l logfile_pathname

3. Set the LM_LICENSE_FILE environment variable to point to the
license file. For example:

% setenv LM_LICENSE_FILE /u/edatools/vcs6.0/license.dat

Note:

1-8

Getting Started

- Using multiple port@host in the $LM_LICENSE_FILE can
cause previous VCS releases, which use pre FLEX-LM6.1
daemons, not to work. To work around this problem, put the old
port@host before the new port@host in LM_LICENSE_FILE
variable or simply point to the license file instead of using
port@host, for example:

% setenv LM_LICENSE_FILE 7400@server:7500@server
Here, 7400 is the port on machine "server" where the old license
daemon, viewlgrd, is running, while 7500 is the port on machine
"server" where the new license daemon, snpslmd, is running.

OR

setenv LM_LICENSE_FILE /u/edatools/oldvcs/\
viewlmgrd_license.dat:/u/edatools/vcs/\
snpslmd_license.dat

Setting Up Your Environment

To run VCS, you need to set the following basic environment
variables:

• $VCS_HOME environment variable

When you or someone at your site installed VCS, the installation
created a directory called the installation_dir directory. Set the
VCS_HOME environment variable to the path of this directory as
follows:

% setenv VCS_HOME installation_dir

• PATH environment variable

Set this environment variable to $VCS_HOME/bin. Add the
following directories to your path environment variable:

1-9

Getting Started

% set path=($VCS_HOME /bin\ $VCS_HOME/‘$VCS_HOME/bin/vcs
-platform‘/bin\ $path)

Make sure the path environment variable is set to a bin directory
containing a make or gmake program.

• LM_LICENSE_FILE environment variable

The definition can either be an absolute path name to a license
file or to a port on the license server. Separate the arguments in
this definition with colons in UNIX.

For example:

% setenv LM_LICENSE_FILE 7182@serveroh:/u/net/serveroo/
eda_tools/license.dat

For additional information on environment variables, see Appendix
A, "VCS Environment Variables".

Setting Up Your C Compiler

On Solaris, HP, and Linux, VCS requires a C compiler to link the
executable file that you simulate, and, in some cases, to compile
intermediate files. If this is the case, you will need to set the path to
a C compiler.

Solaris does not come bundled with a C compiler so you must
purchase the C compiler for Solaris or use gcc. VCS assumes the
compiler is located in its default location: /usr/ccs/bin.

HP, Linux, and IBM RS/6000 AIX platforms all come bundled with a
C compiler. VCS assumes the compiler is located in its default
location: /usr/bin.

1-10

Getting Started

You can specify a different location with the VCS_CC environment
variable or with the -cc compile time option.

-v
Displays the version number and exits.

-lib
Displays the library mapping.

-help
Lists the options to show_setup.

VCS Workflow

The process of using VCS to simulate a design consists of the
following tasks:

• Compiling the Simulation Executable

• Running a Simulation

This approach simulates faster and uses less memory than
interpretive simulators. The process of compiling an executable
binary avoids the extra layers and inefficiency of an interpretive
simulation environment.

On Linux, Solaris, and HP platforms, you can use VCS to generate
object code directly without generating C or assembly language files.
Incremental compilation allows you to avoid compiling modules that
have not changed since the last time you compiled them. For more
details on incremental compilation, see “Incremental Compilation” on
page 3-3.

1-11

Getting Started

Note:
For information on coverage features, see the VCS /VCS MX
Coverage Metrics User Guide.

Figure 1-1 illustrates the VCS workflow.

1-12

Getting Started

Figure 1-1 Basic VCS Compilation and Simulation Flow

Simulation simv

Debug

VCS

Simulate

Step1: Compilation

% vcs mem.v cpu.v

Verilog
Code

(mem.v, cpu.v)

Executable

VPD
Files

Step 2: Simulation
% simv

DVE

Command Line
Interface

Interactive Debugging

1-13

Getting Started

Compiling the Simulation Executable

After setting up your environment and preparing your source files,
you are ready to compile a simulation executable. To create this
executable, named simv by default, use the following VCS command
line:

vcs source_files [source_or_object_files] options

where:

source_files
The Verilog, OpenVera assertions, or OpenVera testbench source
files for your design. The file names must be separated by spaces.

source_or_object_files
Optional C files (.c), object files (.o), or archived libraries (.a).
These are DirectC or PLI applications that you want VCS to link
into the binary executable file along with the object files from your
Verilog source files.

options
Compile-time options that control how VCS compiles your Verilog
source files. For details, see “Basic Compile-Time Options” on
page 1-14.

The following is an example command line used at compile-time:

vcs top.v toil.v -RI +v2k

By default, VCS names the executable binary file simv. You can
specify a different name with the -o compile-time option.

1-14

Getting Started

Basic Compile-Time Options

This section outlines some of the basic compile-time options you can
use to control how VCS compiles your Verilog source files. Detailed
descriptions and usage instructions for all compile-time options are
available in Chapter 3, "Compiling Your Design" and Appendix B,
"Compile-Time Options".

-cm [line|cond|fsm|tgl|path|branch]
Specifies compiling for the specified type or types of coverage.
The arguments specify the types of coverage:

line
Compile for line or statement coverage.

cond
Compile for condition coverage.

fsm
Compile for FSM coverage.

tgl
Compile for toggle coverage.

path
Compile for path coverage.

branch
Compile for branch coverage.

If you want VCS to compile for more than one type of coverage,
use the plus (+) character as a delimiter between arguments. For
example:

-cm line+cond+fsm+tgl

1-15

Getting Started

+define+macro=value+
Defines a text macro in your source code to a value or character
string. You can test for this definition in your Verilog source code
using the ‘ifdef compiler directive.

-f filename
Specifies a file name that contains a list of absolute pathnames
for Verilog source files and compile-time options.

+incdir+directory
Specifies the directory or directories that VCS searches for include
files used in the `include compiler directive. More than one
directory may be specified, separated by +.

-I
Compiles for interactive use and instructs VCS to automatically
include +cli (command line interface), -P virsims.tab
(default VirSim PLI table), and -lm (math library). This option
enables the use of system tasks for writing VCD+ files for post-
processing in VirSim.

-line
Enables source-level debugging tasks such as stepping through
the code, displaying the order in which VCS executed lines in your
code, and displaying the last statement executed before
simulation stopped.

-l filename
Specifies a file where VCS records compilation messages. If you
also enter the -R or -RI option, VCS records messages from both
compilation and simulation in the same file.

+nospecify
Suppresses module path delays and timing checks in specify
blocks. This option can significantly improve simulation
performance.

1-16

Getting Started

+notimingcheck
Suppresses timing check system tasks during compilation. This
option can moderately improve simulation performance. The
extent of this improvement depends on the number of timing
checks that VCS ignores.

 -ntb
Enables the use of the OpenVera Testbench language constructs
described in the OpenVera Language Reference Manual: Native
Testbench.

-ova_file filename
Identifies an OVA file as input. This option is not required if the
OVA file name contains a .ova extension.

-P pli.tab
Compiles a user-defined PLI definition table file.

-PP
Compiles a VCD file for interactive debugging while minimizing
the amount of net data for fast post-processing.

-R
Runs the executable file immediately after VCS links it together.
You can add any runtime option to the vcs command line.

-RI
Compiles model for interactive use, invokes the VirSim graphical
user interface immediately after compilation, and pauses
simulation at time zero.

-s
Specifies stopping simulation, and entering the CLI interactive
mode, just as simulation begins. Use this option on the vcs
command line along with the -R and +cli options. The -s option
is also a runtime option on the simv command line.

1-17

Getting Started

-sverilog
Enables the use of SystemVerilog code.

+v2k
Enables language features in the IEEE 1364-2001 standard.

-v filename
Specifies a Verilog library file, in which VCS looks for the modules
and UDP instances that are instantiated, but not defined, in the
source code.

+vc[+abstract][+allhdrs][+list]

Enables the direct call of C/C++ functions in your source code
using the DirectC interface. The optional suffixes specify the
following:

+abstract

Specifies that you are using abstract access through
vc_handles to the data structures for the Verilog arguments.

+allhdrs

Writes the vc_hdrs.h file that contains external function
declarations that you can use in your Verilog code.

+list

Displays all the functions that you called in your Verilog source
code.

-vera
Specifies the standard VERA PLI table file and object library.

-y directory
Specifies a Verilog library directory. VCS looks in the source files
in this directory for the modules and UDP instances that are
instantiated, but not defined, in the source code.

1-18

Getting Started

On Solaris, HP, and Linux machines, VCS can generate object files
from your Verilog source files and does so by default. This is
sometimes called native code generation. On these machines, if you
enter the -gen_asm or -gen_c compile-time options, VCS generates
corresponding intermediate assembly or C files and then assembles
or compiles these intermediate files into object files.

On DEC Alpha, and IBM RS/6000 AIX, VCS always generates
intermediate C files. The -gen_c compile-time option is a default
option on these platforms.

Running a Simulation

To run a simulation, you simply specify the name of the executable
file (produced from the compilation process) at the command line.

The command line syntax for running a simulation is as follows:

executable_file options

Here:

executable_file
The executable file that is created by the vcs command, which
compiles your source code and links your design with VCS to form
the executable.

options
Runtime options that specify how to simulate your design. Some
of the basic runtime options are described in “Basic Runtime
Options” on page 1-19".

For example, the following command line can be used at runtime:

1-19

Getting Started

% simv -l log +notimingcheck

Basic Runtime Options

This section outlines some of the basic runtime options you can use
to control how VCS compiles your Verilog source files. Detailed
descriptions and usage instructions for all runtime options are
available in Chapter 4, "Simulating Your Design" and Appendix C,
"Simulation Options".

Here:

-cm line|cond|fsm|tgl|path|branch
Specifies monitoring for the specified type or types of coverage.
The arguments specify the types of coverage:

line
Monitor for line or statement coverage.

cond
Monitor for condition coverage.

fsm
Monitor for FSM coverage.

tgl
Monitor for toggle coverage.

path
Monitor for path coverage.

branch
Monitor for branch coverage

-l filename
All output of simulation is written to the file you specify as
filename, as well as to the standard output.

1-20

Getting Started

+notimingcheck
Disables timing check system tasks in your design. Using this
option at runtime can improve the simulation performance of your
design, depending on the number of timing checks that this option
disables.

-ova_cov
Enables functional coverage reporting.

-ova_report
Generates an OVA report file in addition to printing results on
screen. The default file name and location is simv.vdb/report/
ova.report but you can specify a different name and location as
an argument to this option.

+vcs+learn+pli
Keeps track of where you use ACC capabilities for debugging
operations so that you can recompile your design and, in the next
simulation, enable them only where you need them. This is useful
because ACC capabilities have a performance cost so you only
want to enable them where you need them. With this option VCS
writes the pli_learn.tab secondary PLI table file. You provide
this file name with the +applylearn compile-time option when
you recompile your design.

Accessing the Discovery AMS Documentation

For detailed information on mixed signal simulation with VCS and
NanoSim, see the Discovery AMS documentation

There are two ways to access the Discovery AMS documentation:

• Using Synopsys Documentation on the Web

1-21

Getting Started

• Using the PDF files in the NanoSim installation

To access the Discovery AMS documentation in Synopsys
Documentation on the Web:

1. Go to www.synopsys.com.

2. Click on SOLVNET.

3. Click on Documentation on the Web.

4. Click the Go button next to Browse.

5. Click on NanoSim.

6. Click on the document titles:

- Discovery AMS NanoSim-VCS User Guide, or

- Discovery AMS Enhanced NanoSim-VCS User Guide

Clicking on the user guide titles displays the user guide in HTML
format.

Clicking on the icon for a PDF file downloads the PDF file
for this user guide.

To access the PDF files in the NanoSim installation:

1. Change directories to the NanoSim_installation_directory/doc/ns/
manuals directory.

2. Load either of the following files into the Acrobat reader:

- e_ns_vcs.pdf for the Discovery AMS: Enhanced NanoSim-VCS
User Guide.

- ns_vcs_mx.pdf for the Discovery AMS: NanoSim-VCS User
Guide

1-22

Getting Started

Making a Verilog Model Protected and Portable

After you have successfully verified your design using VCS, you can
use the Verilog Model Compiler (VMC) to make the design portable
and protected. VMC enables you to secure your design and distribute
it to your partners and internal or external customers without a Non
Disclosure Agreement (NDA).

VMC is a model development tool used to generate portable models,
starting with Verilog source and producing compiled SWIFT models.
SWIFT is a language- and simulator-independent interface that
allows your model to run with any SWIFT-compatible simulators;
more than thirty simulators are now available.

VMC models contain no Verilog source code, so they protect the
intellectual property of the underlying design. This enables model
developers to distribute their models without revealing the contents,
because the models are secure. More importantly, the models are
functionally exact because they are derived from the original Verilog
description of the model.

2-1

Modeling Your Design

2
Modeling Your Design 1

Verilog coding style is the most important factor that affects the
simulation performance of a design. How you write your design can
make the difference between a fast error-free simulation, and one
that suffers from race conditions and poor performance. This chapter
describes some Verilog modeling techniques that will help you code
designs that simulate most efficiently with VCS.

This chapter covers the following topics:

• Avoiding Race Conditions

• Optimizing Testbenches for Debugging

• Avoiding the Debugging Problems From Port Coercion

• Creating Models That Simulate Faster

• Case Statement Behavior

2-2

Modeling Your Design

• Memory Size Limits in VCS

• Using Sparse Memory Models

• Obtaining Scope Information

• Avoiding Circular Dependency

• Designing With $lsi_dumpports for Simulation and Test

Avoiding Race Conditions

A race condition is defined as a coding style for which there is more
than one correct result. Since the output of the race condition is
unpredictable, it can cause unexpected problems during simulation.
It is easy to accidentally code race conditions in Verilog. For example,
in Digital Design with Verilog HDL by Sternheim, Singh, and Trivedi,
at least two of the examples provided with the book (adder and
cachemem) have race conditions. VCS provides some tools for race
detection. For details, see Chapter 11, "Race Detection".

Some common race conditions and ways of avoiding them are
described in the following sections.

Using and Setting a Value at the Same Time

In this example, the two parallel blocks have no guaranteed ordering,
so it is ambiguous whether the $display statement will be executed.

module race;
reg a;
initial begin

a = 0;
#10 a = 1;

2-3

Modeling Your Design

end
initial begin

#10 if (a) $display("may not print");
end

endmodule

The solution is to delay the $display statement with a #0 delay:

initial begin
#10 if (a)

#0 $display("may not print");
end

You can also move it to the next time step with a non-zero delay.

Setting a Value Twice at the Same Time

In this example, the race condition occurs at time 10 because no
ordering is guaranteed between the two parallel initial blocks.

module race;
reg r1;
initial #10 r1 = 0;
initial #10 r1 = 1;
initial

#20 if (r1) $display("may not print");
endmodule

The solution is to stagger the assignments to register r1 by finite
time, so that the ordering of the assignments is guaranteed. Note that
using the nonblocking assignment (<=) in both assignments to r1
would not remove the race condition in this example.

2-4

Modeling Your Design

Flip-Flop Race Condition

It is very common to have race conditions near latches or flip-flops.
Here is one variant in which an intermediate node a between two
flip-flops is set and sampled at the same time:

module test(out,in,clk);
input in,clk;
output out;
wire a;
dff dff0(a,in,clk);
dff dff1(out,a,clk);

endmodule
module dff(q,d,clk);

output q;
input d,clk;
reg q;
always @(posedge clk)
q = d; // race!

endmodule

The solution for this case is straightforward. Use the nonblocking
assignment in the flip-flop to guarantee the order of assignments to
the output of the instances of the flip-flop and sampling of that output.
The change looks like this:

always @(posedge clk)
q <= d; // ok

Or add a nonzero delay on the output of the flip-flop:

always @(posedge clk)
q = #1 d; // ok

Or use a nonzero delay in addition to the nonblocking form:

always @(posedge clk)
q <= #1 d; // ok

2-5

Modeling Your Design

Note that the following change does not resolve the race condition:

always @(posedge clk)
#1 q = d; // race!

The #1 delay simply shifts the original race by one time unit, so that
the intermediate node is set and sampled one time unit after the
posedge of clock, rather than on the posedge of clock. Avoid this
coding style.

Continuous Assignment Evaluation

Continuous assignments with no delay are sometimes propagated
earlier in VCS than in Verilog-XL. This is fully correct behavior, but
exposes race conditions such as the one in the following code
fragment:

assign x = y;
initial begin

y = 1;
#1
y = 0;
$display(x);

end

In VCS, this displays 0, while in Verilog-XL, it displays 1, because the
assignment of the value to x races with the usage of that value by the
$display.

Another example of this type of race condition is the following:

assign state0 = (state == 3'h0);
always @(posedge clk)
begin

state = 0;

2-6

Modeling Your Design

if (state0)
// do something

end

The modification of state may propagate to state0 before the if
statement, causing unexpected behavior. You can avoid this by using
the nonblocking assignment to state in the procedural code as
follows:

state <= 0;
if (state0)

// do something

This guarantees that state is not updated until the end of the time
step, that is, after the if statement has executed.

Counting Events

A different type of race condition occurs when code depends on the
number of times events are triggered in the same time step. For
instance, in the following example, if A and B change at the same
time, it is unpredictable whether count is incremented once or twice:

always @(A or B)
count = count + 1;

Another form of this race condition is to toggle a register within the
always block. If toggled once or twice, the result may be unexpected
behavior.

The solution to this race condition is to make the code inside the
always block insensitive to the number of times it is called.

2-7

Modeling Your Design

Time Zero Race Conditions

The following race condition is subtle but very common:

always @(posedge clock)
$display("May or may not display");

initial begin
clock = 1;
forever #50 clock = ~clock;

end

This is a race condition because the transition of clock to 1 (posedge)
may happen before or after the event trigger (always @(posedge
clock)) is established. Often the race is not evident in the simulation
result because reset occurs at time zero.

The solution to this race condition is to guarantee that no transitions
take place at time zero of any signals inside event triggers. Rewrite
the clock driver in the above example as follows:

initial begin
clock = 1’bx;
#50 clock = 1’b0;
forever #50 clock = ~clock;

end

2-8

Modeling Your Design

Optimizing Testbenches for Debugging

Testbenches typically execute debugging features, for example,
displaying text in certain situations as specified with the $monitor
or $display system tasks. Another debugging feature, which is
typically enabled in testbenches, is writing simulation history files
during simulation so that you can view the results after simulation.
Among other things, these simulation history files record the
simulation times at which the signals in your design change value.
These simulation history files can be either ASCII
Value-Change-Dump (VCD) files that you can input into a number of
third party viewers, or binary VPD files that you can input into DVE.
The $dumpvars system task specifies writing a VCD file and the
$vcdpluson system task specifies writing a VPD file. You can also
input a VCD file to DVE, which translates the VCD file to a VPD file
and then displays the results from the new VPD file. For details on
using DVE, see the Discovery Visual Environment User Guide.

Debugging features significantly slow down the simulation
performance of any logic simulator including VCS. This is particularly
true for operations that make VCS display text on the screen and
even more so for operations that make VCS write information to a
file. For this reason, you’ll want to be selective about where in your
design and where in the development cycle of your design you enable
debugging features. The following sections describe a number of
techniques that you can use to choose when debugging features are
enabled.

2-9

Modeling Your Design

Conditional Compilation

Use ‘ifdef, ‘else, and ‘endif compiler directives in your
testbench to specify which system tasks you want to compile for
debugging features. Then, when you compile the design with the
+define compile-time option on the command line (or when the
‘define compiler directive appears in the source code), VCS will
compile these tasks for debugging features. For example:

initial
begin
`ifdef postprocess
$vcdpluson(0,design_1);
$vcdplustraceon(design_1);
$vcdplusdeltacycleon;
$vcdplusglitchon;
`endif
end

In this case, the vcs command is as follows:

% vcs testbench.v design.v +define+postprocess

The system tasks in this initial block record several types of
information in a VPD file. You can use the VPD file with DVE to
post-process the design. In this particular case, the information is for
all the signals in the design, so the performance cost is extensive.
You would only want to do this early in the development cycle of the
design when finding bugs is more important than simulation speed.

The command line includes the +define+postprocess
compile-time option, which tells VCS to compile the design with these
system tasks compiled into the testbench.

2-10

Modeling Your Design

Later in the development cycle of the design, you can compile the
design without the +define+postprocess compile-time option
and VCS will not compile these system tasks into the testbench. Doing
so enables VCS to simulate your design much faster.

Advantages and Disadvantages

The advantage of this technique is that simulation can run faster than
if you enable debugging features at runtime. When you use
conditional compilation VCS has all the information it needs at
compile-time.

The disadvantage of this technique is that you have to recompile the
testbench to include these system tasks in the testbench, thus
increasing the overall compilation time in the development cycle of
your design.

Synopsys recommends that you consider this technique as a way to
prevent these system tasks from inadvertently remaining compiled
into the testbench, later in the development cycle, when you want
faster performance.

Enabling Debugging Features At Runtime

Use the $test$plusargs system function in place of the ‘ifdef
compiler directives. The $test$plusargs system function checks
for a plusarg runtime option on the simv command line.

Note:
A plusarg option is an option that has a plus (+) symbol as a prefix.

2-11

Modeling Your Design

An example of the $test$plusargs system function is as follows:

initial
if ($test$plusargs("postprocess"))
begin
$vcdpluson(0,design_1);
$vcdplustraceon(design_1);
$vcsplusdeltacycleon;
$vcdplusglitchon;
end

In this technique you do not include the +define compile-time
argument on the vcs command line. Instead you compile the system
tasks into the testbench and then enable the execution of the system
tasks with the runtime argument to the $test$plusargs system
function. So for this example the simv command line is as follows:

% simv +postprocess

During simulation VCS writes the VPD file with all the information
specified by these system tasks. Later you can execute another simv
command line, without the +postprocess runtime option. As a
result, VCS does not write the VPD file, and therefore runs faster.

There is a pitfall to this technique. This system function will match
any plusarg that has the function’s argument as a prefix. For example:

module top;
initial
begin
if ($test$plusargs("a"))
 $display("\n<<< Now a >>>\n");
else if ($test$plusargs("ab"))
 $display("\n<<< Now ab >>>\n");
else if ($test$plusargs("abc"))
 $display("\n<<< Now abc >>>\n");
end
endmodule

2-12

Modeling Your Design

No matter whether you enter the +a, +ab, or +abc plusarg, when you
simulate the executable, VCS always displays the following:

<<< Now a >>>

To avoid this pitfall, enter the longest plusarg first. For example, you
would revise the previous example as follows:

module top;
initial
begin
if ($test$plusargs("abc"))
 $display("\n<<< Now abc >>>\n");
else if ($test$plusargs("ab"))
 $display("\n<<< Now ab >>>\n");
else if ($test$plusargs("a"))
 $display("\n<<< Now a >>>\n");
end
endmodule

Advantages and Disadvantages

The advantage to using this technique is that you do not have to
recompile the testbench in order to stop VCS from writing the VPD
file. This technique is something to consider using, particularly early
in the development cycle of your design, when you are fixing a lot of
bugs and already doing a lot of recompilation.

The disadvantages to this technique are considerable. Compiling
these system tasks, or any system tasks that write to a file, into the
testbench requires VCS to compile the simv executable so that it is
possible for it to write the VPD file when the runtime option is included
on the command line. This means that the simulation runs significantly
slower than if you don’t compile these system tasks into the testbench.
This impact on performance remains even when you don’t include
the runtime option on the simv command line.

2-13

Modeling Your Design

Using the $test$plusargs system function forces VCS to consider
the worst case scenario — plusargs will be used at runtime — and
VCS generates the simv executable with the corresponding overhead
to prepare for these plusargs. The more fixed information VCS has
at compile-time, the more VCS can optimize simv for efficient
simulation. On the other hand, the more user control at runtime, the
more overhead VCS has to add to simv to accept runtime options,
and the less efficient the simulation.

For this reason Synopsys recommends that if you use this technique,
you should plan to abandon it fairly early in the development cycle
and switch to either the conditional compilation technique for writing
simulation history files, or a combination of the two techniques.

Combining the Techniques

Some users find that they have the greatest amount of control over
the advantages and disadvantages of these techniques when they
combine them. Consider the following example:

`ifdef comppostprocess
initial
 if ($test$plusargs("runpostprocess"))
 begin
 $vcdpluson(0,design_1);
 $vcdplustraceon(design_1);
 $vcsplusdeltacycleon;
 $vcdplusglitchon;
 end
`endif

2-14

Modeling Your Design

Here both the +define+comppostprocess compile-time option
and the +runpostprocess runtime option are required for VCS to
write the VPD file. This technique allows you to avoid recompiling just
to prevent VCS from writing the file during the next simulation and
also provides you with a way to recompile the testbench, later in the
development cycle, to exclude these system tasks without first editing
the source code for the testbench.

Avoiding the Debugging Problems From Port Coercion

The first Verilog simulator had a port collapsing algorithm that
removed ports so it could simulate faster. In this simulator, you could
still refer to a collapsed port, but inside the simulator, the port did not
exist.

VCS mimics port collapsing so that an old but reusable design, now
simulated with VCS, will have the same simulation results. For this
reason the default behavior of VCS is to “coerce” all ports to inout
ports.

This port coercion can, for example, result in a value propagating up
the design hierarchy out of a port you declared to be an input port
and unexpectedly driving the signal connected to this input port. Port
coercion, therefore, can cause debugging problems.

Port coercion also results in slower simulation, because with port
coercion VCS must be prepared for bidirectional behavior of input
and output ports as well as inout ports.

2-15

Modeling Your Design

To avoid these debugging problems, and to increase simulation
performance, do the following when writing new models:

1. If you need values to propagate in and out of a port, declare it as
an inout port. If you don’t need this bidirectional behavior, declare
it as an input or output port.

2. Compile the modules with these ports under the ‘noportcoerce
compiler directive.

Creating Models That Simulate Faster

When modeling your design, for faster simulation use higher levels
of abstraction. Behavioral and RTL models simulate much faster that
gate and switch level models. This rule of thumb is not unique to VCS;
it applies to all Verilog simulators and even all logic simulators in
general.

What is unique to VCS are the acceleration algorithms that make
behavioral and RTL models simulate even faster. In fact VCS is
particularly optimized for RTL models for which simulation
performance is critical.

These acceleration algorithms work better for some designs than for
others. Certain types of designs prevent VCS from applying some of
these algorithms. This section describes the design styles that
simulate faster or slower.

The acceleration algorithms apply to most data types and primitives
and most types of statements but not all of them. This section also
describes the data types, primitives, and types of statements that you
should try to avoid.

2-16

Modeling Your Design

VCS is optimized for simulating sequential devices. Under certain
circumstances VCS infers that an always block is a sequential
device and simulates the always block much faster. This section
describes the coding guidelines you should follow to make VCS infer
an always block as a sequential device.

When writing an always block, if you cannot follow the inferencing
rules for a sequential device there are still things that you should keep
in mind so that VCS simulates the always block faster. This section
also describes the guidelines for coding faster simulating always
blocks that VCS infers to be combinatorial instead of sequential
devices.

Unaccelerated Data Types, Primitives, and Statements

VCS cannot accelerate certain data types and primitives. VCS also
cannot accelerate certain types of statements. This section describes
the data types, primitives, and types of statements that you should
try to avoid.

Avoid Unaccelerated Data Types

VCS cannot accelerate certain data types. The following table lists
these data types:

Data Type Description in IEEE
Std 1364-2001

time and realtime Page 22

real Page 22

named event Page 138

trireg net Page 26

integer array Page 22

2-17

Modeling Your Design

Avoid Unaccelerated Primitives

VCS cannot accelerate tranif1, tranif0, rtranif1, rtranif0, tran, and rtran
switches. They are defined in IEEE Std 1364-2001 page 86.

Avoid Calls to User-defined Tasks or Functions Declared in
Another Module

VCS cannot accelerate user-defined tasks or functions declared in
another module. For example:

module bottom (x,y);
.
.
.
always @ y
top.task_indentifier(y,rb);
endmodule

Avoid Strength Specifications in Continuous Assignment
Statements

Omit strength specifications in continuous assignment statements.
For example:

assign net1 = flag1;

Simulates faster than:

assign (strong1, pull0) net1= flag1;

Continuous assignment statements are described on IEEE
1364-2001 pages 69-70.

2-18

Modeling Your Design

Inferring Faster Simulating Sequential Devices

VCS is optimized to simulate sequential devices. If VCS can infer that
an always block behaves like a sequential device, VCS can simulate
the always block much faster.

The IEEE Std 1364-2001 defines always constructs on page 149.
Verilog users commonly use the term always block when referring
to an always construct.

VCS can infer whether an always block is a combinatorial or
sequential device. This section describes the basis on which VCS
makes this inference.

Avoid unaccelerated statements

VCS does not infer an always block to be a sequential device if it
contains any of the following statements:

Statement Description in IEEE Std 1364-2001

force and release
procedural statements

Page 126-127

repeat statements Page 134-135, see the other looping statements
on these pages and consider them as an
alternative.

wait statements, also called
level-sensitive event controls

Page 141

disable statements Page 162-164

fork-join block statements, also
called parallel blocks

Page 146-147

2-19

Modeling Your Design

Using either blocking or nonblocking procedural assignment
statements in the always block does not prevent VCS from inferring
a sequential device, but in VCS blocking procedural assignment
statements are more efficient.

Synopsys recommends zero delay nonblocking assignment
statements to avoid race conditions.

IEEE Std 1364-2001 describes blocking and nonblocking procedural
assignment statements on pages 119-124.

Place Task Enabling Statements in Their Own always Block and
Use No Delays

IEEE Std 1364-2001 defines tasks and task enabling statements on
pages 151-156.

VCS infers that an always block that contains a task enabling
statement is a sequential device only when there are no delays in the
task declaration.

All Sequential Controls Must Be in the Sensitivity List

To borrow a concept from VHDL, the sensitivity list for an always
block is the event control that immediately follows the always
keyword.

IEEE Std 1364-2001 defines event controls on page 138 and
mentions sensitivity lists on page 139.

For correct inference, all sequential controls must be in the sensitivity
list. The following code examples illustrate this rule:

• VCS does not infer the following DFF to be a sequential device:

always @ (d)

2-20

Modeling Your Design

 @ (posedge clk) q <=d;

Even though clk is in an event control, it is not in the sensitivity
list event control.

• VCS does not infer the following latch to be a sequential device:

always begin
 wait clk; q <= d; @ d;
end

There is no sensitivity list event control.

• VCS infers the following latch to be a sequential device:

always @ (clk or d)
 if (clk) q <= d;

The sequential controls, clk and d, are in the sensitivity list event
control.

Avoid Level Sensitive Sensitivity Lists Whose Signals are Used
“Completely”

VCS infers a combinational device instead of a sequential device if
the following conditions are both met:

• The sensitivity list event control is level sensitive

A level sensitive event control does not contain the posedge or
negedge keywords.

• The signals in the sensitivity list event control are used
“completely” in the always block

Used “completely” means that there is a possible simulation event
if the signal has a true or a false (1 or 0) value.

2-21

Modeling Your Design

The following code examples illustrate this rule:

Example 1

VCS infers that the following always block is combinatorial, not
sequential:

always @ (a or b)
 y = a or b

Here the sensitivity list event control is level sensitive and VCS
assigns a value to y whether a or b are true or false.

Example 2

VCS also infers that the following always block is combinatorial, not
sequential:

always @ (sel or a or b)
 if (sel)
 y=a;
 else
 y=b;

Here the sensitivity list event control is also level sensitive and VCS
assigns a value to y whether a, b, or sel are true or false. Note that
the if-else conditional statement uses signal sel completely, VCS
executes an assignment statement whether sel is true or false.

Example 3

VCS infers that the following always block is sequential:

always @ (sel or a or b)
 if (sel)
 y=a;

Here there is no simulation event when signal sel is false (0).

2-22

Modeling Your Design

Modeling Faster always Blocks

Whether VCS infers an always block to be a sequential device or
not, there are modeling techniques you should use for faster
simulation.

Place All Signals Being Read in the Sensitivity List

The sensitivity list for an always block is the event control that
immediately follows the always keyword. Place all nets and
registers, whose values you are assigning to other registers, in the
always block, and place all nets and registers, whose value changes
trigger simulation events, in the sensitivity list control.

Use Blocking Procedural Assignment Statements

In VCS blocking procedural assignment statements are more
efficient.

Synopsys recommends zero delay nonblocking procedural
assignment statements to avoid race conditions.

IEEE Std 1364-2001 describes blocking and nonblocking procedural
assignment statements on pages 119-124.

Avoid force and release Procedural Statements

IEEE Std 1364-2001 defines these statements on pages 126-127. A
few occurences of these statements in combinatorial always blocks
does not noticeably slow down simulation but their frequent use does
lead to a performance cost.

2-23

Modeling Your Design

Using the +v2k Compile-Time Option

The following table lists the implemented constructs in Std 1364-2001
and whether you need the +v2k compile-time option to use them.

Std 1364-2001 Construct Require +v2k
comma separated event control expressions:
always @ (r1,r2,r3)

yes

name-based parameter passing:
modname #(.param_name(value)) inst_name(sig1,...);

yes

ANSI-style port and argument lists:
module dev(output reg [7:0] out1, input wire [7:0]
w1);

yes

initialize a reg in its declaration:
reg [15:0] r2 = 0;

yes

conditional compiler directives:
‘ifndef and ‘elseif

yes

disabling the default net data type:
‘default_nettype

yes

signed arithmetic extensions:
reg signed [7:0] r1;

no

file I/O system tasks:
$fopen $fsanf $scanf and more

no

passing values from the runtime command line:
$value$plusarg system function

yes

indexed part-selects:
reg1[8+:5]=5’b11111;

yes

multi-dimensional arrays:
reg [7:0] r1 [3:0] [3:0];

yes

maintaining file name and line number:
‘line

yes

implicit event control expression lists:
always @*

yes

2-24

Modeling Your Design

Case Statement Behavior

The IEEE Std 1364-2001 standards for the Verilog language state
that you can enter the question mark character (?) in place of the z
character in casex and casez statements. The standard does not
specify that you can also make this substitution in case statements
and you might infer that this substitution is not allowed in case
statements.

VCS, like other Verilog simulators, does not make this inference, and
allows you to also substitute ? for z in case statements. If you do,
remember that z does not stand for "don’t care" in a case statement,
like it does in a casez or casex statement. In a case statement z
stands for the usual high impedance and therefore so does ?.

the power operator:
r1=r2**r3;

yes

attributes:
(* optimize_power=1 *)
module dev (res,out,clk,data1,data2);

yes

generate statements yes

localparam declarations yes

Automatic tasks and functions
task automatic t1();

requires the
-sverilog
compile-time
option

constant functions
localparam lp1 = const_func(p1);

yes

parameters with a bit range
parameter bit [7:0][31:0] P =
{32'd1,32'd2,32'd3,32'd4,32'd5,32'd6,32'd7,32'd8};

requires the
-sverilog
compile-time
option

Std 1364-2001 Construct Require +v2k

2-25

Modeling Your Design

Memory Size Limits in VCS

The bit width for a word or an element in a memory in VCS must be
less than 0x100000 (or 220 or 1,048,576) bits.

The number of elements or words (sometimes also called rows) in a
memory in VCS must be less than 0x3FFF_FFFE-1 (or 230 - 2 or
1,073,741,822) elements or words.

The total bit count of a memory (total number of elements * word
size) must be less than 8 * (1024 * 1024 * 1024 - 2) or 8,573,157,376.

Using Sparse Memory Models

If you design contains a large memory, the simv executable will need
large amounts of machine memory to simulate it. However, if your
simulation only accesses a small number of elements in the design’s
memory, you can use a sparse memory model to significantly reduce
the amount of machine memory that VCS will need to simulate your
design.

You use the /*sparse*/ pragma or metacomment in the memory
declaration to specify a sparse memory model. For example:

reg /*sparse*/ [31:0] pattern [0:10_000_000];
integer i, j;
initial
 begin
 for (j=1; j<10_000; j=j+1)

 for (i=0; i<10_000_000; i=i+1_000)
 pattern[i] = i+j;

 end
endmodule

2-26

Modeling Your Design

In simulations, this memory model used 4 MB of machine memory
with the /*sparse*/ pragma, 81 MB without it. There is a small
runtime performance cost to sparse memory models: the simulation
of the memory with the /*sparse*/ pragma took 64 seconds, 56
seconds without it.

The larger the memory, and the fewer elements in the memory that
your design reads or writes to, the more machine memory you will
save by using this feature. It is intended for memories that contain at
least a few MBs. If your design accesses 1% of its elements you could
save 97% of machine memory. If your design accesses 50% of its
elements, you save 25% of machine memory. Don’t use this feature
if your design accesses more than 50% of its elements because using
the feature in these cases may lead to more memory consumption
than not using it.

Using sparse memory models does not increase the memory size
limits described in the previous section.

Note:

• Sparse memory models cannot be manipulated by PLI
applications through tf calls (the tf_nodeinfo routine issues a
warning for sparse memory and returns NULL for the memory
handle).

• Sparse memory models cannot be used as a personality matrix
in PLA system tasks.

2-27

Modeling Your Design

Obtaining Scope Information

VCS has custom format specifications (IEEE Std 1364-2001 does not
define these) for displaying scope information. It also has system
functions for returning information about the current scope.

Scope Format Specifications

The IEEE Std 1364-2001 describes the %m format specification for
system tasks for displaying information such as $write and
$display. The %m specification tells VCS to display the hierarchical
name of the module instance that contains the system task. If the
system task is in a scope lower than a module instance, it tells VCS
to do the following:

• In named begin-end or fork-join blocks, it adds the block name to
the hierarchical name.

• In user-defined tasks or functions, it considers the hierarchical
name of the task declaration or function definition as the
hierarchical name of the module instance.

VCS has the following additional format specifications for displaying
scope information:

%i
Specifies the same as %m with the following difference: when in a
user-defined task or function, the hierarchical name is the
hierarchical name of the instance or named block containing the
task enabling statement or function call, not the hierarchical name
of the task or function declaration.
If the task enabling statement is in another user-defined task, the
hierarchical name is the hierarchical name of the instance or

2-28

Modeling Your Design

named block containing the task enabling statement for this other
user-defined task.
If the function call is in another user-defined function, the
hierarchical name is the hierarchical name of the instance or
named block containing the function call for this other
user-defined function.
If the function call is in a user-defined task, the hierarchical name
is the hierarchical name of the instance or named block containing
the task enabling statement for this user-defined task.

%-i
Specifies that the hierarchical name is always of a module
instance, not a named block or user-defined task or function. If
the system task (such as $write and $display) is in:

- A named block — the hierarchical name is that of the module
instance that contains the named block

- A user-defined task or function — the hierarchical name is that
of the module instance containing the task enabling statement
or function call

Note:
The %i and %-i format specifications are not supported with the
$monitor system task.

The following commented code example shows what these format
specifications do:

module top;
reg r1;

task my_task;
input taskin;
begin
$display("%m"); // displays "top.my_task"
$display("%i"); // displays "top.d1.named"

2-29

Modeling Your Design

$display("%-i"); // displays "top.d1"
end
endtask

function my_func;
input taskin;
begin
$display("%m"); // displays "top.my_func"
$display("%i"); // displays "top.d1.named"
$display("%-i"); // displays "top.d1"
end
endfunction

dev1 d1 (r1);
endmodule

module dev1(inport);
input inport;

initial
begin:named
reg namedreg;
$display("%m"); // displays "top.d1.named"
$display("%i"); // displays "top.d1.named"
$display("%-i"); // displays "top.d1"
namedreg=1;
top.my_task(namedreg);
namedreg = top.my_func(namedreg);
end

endmodule

2-30

Modeling Your Design

Returning Information About the Scope

The $activeinst system function returns information about the
module instance that contains this system function. The
$activescope system function returns information about the scope
that contains the system function. This scope can be a module
instance, or a named block, or a user-defined task, or a function in a
module instance.

When VCS executes these system functions it does the following:

1. Stores the current scope in a temporary location.

2. If there are no arguments it returns a pointer to the temporary
location. Pointers are not used in Verilog but they are in DirectC
applications.

The possible arguments are hierarchical names. If there are
arguments it compares them from left to right with the current
scope. If an argument matches, the system function returns a
32-bit non-zero value. If none of the arguments match the current
scope, the system function returns a 32-bit zero value.

The following example contains these system functions:

module top;
reg r1;
initial
r1=1;
dev1 d1(r1);
endmodule

module dev1(in);
input in;
always @ (posedge in)
begin:named
if ($activeinst("top.d0","top.d1"))

2-31

Modeling Your Design

 $display("%i");
if ($activescope("top.d0.block","top.d1.named"))
 $display("%-i");
end
endmodule

The following is an example of a DirectC application that uses the
$activeinst system function:

module child;
initial discriminator.t;
endmodule

module top;
child c1();
child c2();
child c3();
child c4();
endmodule

In task t the following occurs:

1. The $activeinst system function returns a pointer to the
current scope, which is passed to the C function showInst. It is a
pointer to a volatile or temporary char buffer containing the name
of the instance.

extern void showInst(input bit[31:0]);

module discriminator;
task t;
reg[31:0] r;
begin
 showInst($activeinst);
 if($activeinst("top.c1", "top.c3"))
 begin
 r = $activeinst;
 $display("for instance %i the pointer is %s", r ? "non-zero" : "zero");
 end
end
endtask

declaration of C function named showInst
$activeinst system function without arguments
passed to the C function

2-32

Modeling Your Design

2. A nested begin block executes only if the current scope is either
top.c1 or top.c3.

3. VCS displays whether $activeinst points to a zero or non-zero
value.

The C code is as follows:

#include <stdio.h>

void showInst(unsigned str_arg)
{
 const char *str = (const char *)str_arg;
 printf("DirectC: [%s]\n", str);
}

Function showInst declares the char pointer str and assigns to it
the value of its parameter, which is the pointer in $activeinst in
the Verilog code. Then with a printf statement it displays the
hierarchical name that str is pointing to. Notice that the function
begins the information it displays with DirectC: so that you can
differentiate it from what VCS displays.

During simulation VCS and the C function display the following:

DirectC: [top.c1]
for instance top.c1 the pointer is non-zero
DirectC: [top.c2]
DirectC: [top.c3]
for instance top.c3 the pointer is non-zero
DirectC: [top.c4]

2-33

Modeling Your Design

Avoiding Circular Dependency

The $random system function has an optional seed argument. You
can use this argument to make the return value of this system function
the assigned value in a continuous assignment, procedural
continuous assignment, or force statement. For example:

assign out = $random(in);

initial
begin
assign dr1 = $random(in);
force dr2 = $random(in);

When you do this, you might set up a circular dependency between
the seed value and the statement, resulting in an infinite loop and a
simulation failure.

This circular dependency doesn’t usually occur but it can occur, so
VCS displays a warning message when you use a seeded argument
with these kinds of statements. This message is as follows:

Warning-[RWSI] $random() with a ’seed’ input
$random in the following statement was called with a ’seed’ input
This may cause an infinite loop and an eventual crash at runtime.
"exp1.v", 24: assign dr1 = $random(in);

The warning message ends with the source file name and line number
of the statement, followed by the statement itself.

This possible circular dependency does not occur either when you
use a seed argument and the return value is the assigned value in a
procedural assignment statement, or when you do not use the seed
argument in a continuous, procedural continuous, or force
statement.

2-34

Modeling Your Design

For example:

assign out = $random();

initial
begin
assign dr1 = $random();
force dr2 = $random();
dr3 = $random(in);

These statements do not generate the warning message.

You can tell VCS not to display the warning message by using the
+warn=noRWSI compile-time argument and option.

Designing With $lsi_dumpports for Simulation and Test

This section is intended to provide guidance when using
$lsi_dumpports with Automatic Test Pattern Generation (ATPG)
tools. ATPG tools many times strictly follow port direction and do not
allow unidirectional ports to be driven from within the device. If you
are not careful while writing the test fixture, the results of
$lsi_dumpports causes problems for ATPG tools.

Note:
See “Signal Value/Strength Codes” on page 2-38. These are
based on the TSSI Standard Events Format State Character set.

2-35

Modeling Your Design

Dealing With Unassigned Nets

Consider the following example:

module test(A);
input A;
wire A;
DUT DUT_1 (A);
// assign A = 1'bz;
initial
$lsi_dumpports(DUT_1,"dump.out");
endmodule

module DUT(A);
input A;
wire A;
child child_1(A);
endmodule

module child(A);
input A;
wire Z,A,B;
and (Z,A,B);
endmodule

In this case, the top level wire A is undriven at the top level. It is an
input which goes to an input in DUT_1, then to an input in CHILD_1
and finally to an input of an AND gate in CHILD_1. When
$lsi_dumpports evaluates the drivers on port A of test.DUT_1, it
finds no drivers on either side of port A of DUT_1, and therefore gives
a code of F, tristate (input and output unconnected).

2-36

Modeling Your Design

The designer actually meant for a code of Z to be returned, input
tristated. To achieve this code, the input A needs to be assigned a
value of z. This is achieved by removing the comment from the line,
// assign A = 1'bz;, in the above code. Now when the code is
executed, VCS is able to identify that the wire A going into DUT_1 is
being driven to a z. With the wire driven from the outside and not the
inside, $lsi_dumpports returns a code of Z.

Code Values at Time 0

Another issue can occur at time 0, before values have been assigned
to ports as you intended. As a result, $lsi_dumpports makes an
evaluation for drivers when all of the users intended assignments
haven't been made. To correct this situation, you need to advance
simulation time just enough to have your assignments take place.
This can be accomplished by adding a #1 before $lsi_dumpports
as follows:

initial
begin
#1 $lsi_dumpports(instance,"dump.out");
end

Cross Module Forces and No Instance Instantiation

In the following example there are two problems.

module test;
initial
begin
force top.u1.a = 1'b0;
$lsi_dumpports(top.u1,"dump.out");
end
endmodule

2-37

Modeling Your Design

module top;
middle u1 (a);
endmodule

module middle(a);
input a;
wire b;
buf(b,a);
endmodule

First, there is no instance name specified for $lsi_dumpports. The
syntax for $lsi_dumpports calls for an instance name. Since the
user didn't instantiate module top in the test fixture, they are left
specifying the MODULE name top. This will produce a warning
message from VCS. Since top appears only once, that instance will
be assumed.

The second problem comes from the cross module reference (XMR)
that the force command uses. Since the module test doesn't
instantiate top, the example uses an XMR to force the desired signal.
The signal being forced is port a in instance u1. The problem here is
that this force is done on the port from within the instance u1. The
user expects this port a of u1 to be an input but when
$lsi_dumpports evaluates the ports for the drivers, it finds that port
a of instance u1 is being driven from inside and therefore returns a
code of L.

To correct these two problems, you need to instantiate top inside
test, and drive the signal a from within test. This is done in the
following way:

module test;
wire a;
initial
begin
force a = 1'b0;

2-38

Modeling Your Design

$lsi_dumpports(test.u0.u1,"dump.out2");
end
top u0 (a);
endmodule

module top(a);
input a;
middle u1 (a);
endmodule

module middle(a);
input a;
wire b;
buf(b,a);
endmodule

By using the method in this example, the port a of instance u1 is
driven from the outside, and when $lsi_dumpports checks for the
drivers it reports a code of D as desired.

Signal Value/Strength Codes

The enhanced state character set is based on the TSSI Standard
Events Format State Character set with additional expansion to
include more unknown states. The supported character set is as
follows:

Testbench Level (only z drivers from the DUT)
D low
U high
N unknown
Z tristate
d low (2 or more test fixture drivers active)
u high (2 or more test fixture drivers active)

DUT Level (only z drivers from the testbench)
L low

2-39

Modeling Your Design

H high
X unknown (don’t care)
T tristate
l low (2 or more DUT drivers active)

Testbench Level (only z drivers from the DUT)
h high (2 or more DUT drivers active

Drivers Active on Both Levels
0 low (both input and output are active with 0

values)
1 high (both input and output are active with 1

values)
? unknown
F tristate (input and output unconnected)
A unknown (input 0 and output unconnected)
a unknown (input 0 and output X)
B unknown (input 1 and output 0)
b unknown (input 1 and output X)
C unknown (input X and output 0)
c unknown (input X and output 1)
f unknown (input and output tristate)

2-40

Modeling Your Design

3-1

Compiling and Elaborating Your Design

3
Compiling Your Design 1

VCS compiles your design before simulation. You can use the vcs
command to compile your designs. The resulting executable is called
simv.

There are several options and techniques that you can use to compile
your design for high performance or easy debugging. Native code
generation is default in VCS.

This chapter covers the following topics:

• Using the vcs Command

• Incremental Compilation

• Triggering Recompilation

• Using Shared Incremental Compilation

• The Direct Access Interface Directory

3-2

Compiling and Elaborating Your Design

• Initializing Memories and Regs

• Initializing Memories and Regs

• Allowing Inout Port Connection Width Mismatches

• Using Lint

• Changing Parameter Values From the Command Line

• Checking for X and Z Values in Conditional Expressions

• Making Accessing an Out of Range Bit an Error Condition

• Compiling Runtime Options Into the simv Executable

• Performance Considerations

• 64-32-Bit Cross-Compilation and Full 64-Bit Compilation

• Using Radiant Technology

• Library Mapping Files and Configurations

Using the vcs Command

To compile your design, use the vcs command. The syntax is as
follows:

% vcs source_files [source_or_object_files] [options]

For example, to compile the top.v and toil.v source files, enter
the following command:

% vcs top.v toil.v

3-3

Compiling and Elaborating Your Design

For a complete description of the syntax of the vcs command, see
Appendix B, "Compile-Time Options".

Incremental Compilation

VCS compiles your source code on a module-by-module basis. By
default, when you recompile the design, VCS recompiles only the
modules that have changed since the last compilation. This is called
incremental compilation.

During compilation VCS creates a subdirectory named csrc to store
the files generated by compilation. These files are as follows:

• A makefile that controls the compilation process.

• The object files output from compilation. VCS links these files with
the simulation engine to create the simv executable. If you use
native code generation (available only on Solaris, HP, and Linux),
VCS generates these files directly.

• Intermediate C or assembly files. If you are not using native code
generation, VCS by default compiles or assembles the object files
for the modules in your design.

In incremental compilation, when you enter a vcs command line,
VCS compares the modules in your source files to the descriptor
information in the generated files from the previous compilation. If a
module’s contents are different from what VCS recorded in the
descriptor information, VCS recompiles the module. If the module’s
contents match what is recorded in the descriptor information, VCS
does not recompile the module.

3-4

Compiling and Elaborating Your Design

Compile-time options that affect incremental compilation all begin
with -M. For more details on these options, see “Options for
Incremental Compilation” on page B-6.

Triggering Recompilation

VCS recompiles a module when you change its contents. The
following conditions also trigger the recompilation of a module:

• Change in the VCS version.

• Changes in the command-line options.

• Change in the target of a hierarchical reference.

• Change in the ports of a module instantiated in the module.

• Change in the calls from a $dumpvars system task to the module.

• Change in a compile-time constant such as a parameter.

The following conditions do not cause VCS to recompile a module:

• Change of time stamp of any source file.

• Change in file name or grouping of modules in any source file.

• Unrelated change in another module in the same source file.

• Nonfunctional changes such as comments or white space.

3-5

Compiling and Elaborating Your Design

Using Shared Incremental Compilation

Shared incremental compilation allows a team of designers working
on a large design to share the generated files for a design in a central
location so that they do not have to recompile the parts of a design
that have been debugged and tested by other members of the team.

To invoke shared incremental compilation, your team can use the
following compile-time options:

-Mlib=dir
This option provides VCS with a central place to look for the
descriptor information before it compiles a module and a central
place to get the object files when it links together the executable.
This option allows you to use the parts of a design that have been
already tested and debugged by other members of your team
without recompiling the modules for these parts of the design.

-Mdir=dir
Specifies the pathname of a central directory where you want VCS
to write the generated files such as option files. This option allows
you to provide other members of your team with the generated
files for new or improved modules in a large design so that other
members do not have to compile those modules.

Suppose, for example, a board designer and a chip designer are
working together on a project. The board designer will use the chip
designer’s chip design in the board design.

The chip designer is responsible for debugging the chip design and
creating a shared design that the board designer can use to debug
the board design without having to recompile the chip design.

3-6

Compiling and Elaborating Your Design

The chip designer needs to know what debug features the board
designer needs in the chip design. The chip designer meets the board
designer and learns that the board designer needs to dump the
signals in a memory submodule in the chip design, so the chip
designer adds a $dumpvars system task to the chip design:

$dumpvars(0,asic.memory);

The chip designer now compiles the chip design using the following
vcs command line:

% vcs -Mdir=path_to_shared_directory other_options
source_files_for_the_chip_design

The chip designer includes the -Mdir option specifying a directory
pathname into which VCS writes the generated files and makes sure
that the board designer can access this directory.

The board designer first copies the source files for the chip design
from the chip designer and then compiles the board design with the
following command line:

% vcs -Mdir=local_dir -Mlib=path_to_shared_directory
other_options source_files_for_the_chip_design
source_files_for_the_board_design

VCS does not recompile the chip design because the board designer
included the -Mlib option telling VCS where to look for descriptor
information to compare to the chip design source files. This descriptor
information tells VCS that it doesn’t need to recompile the chip design
so VCS uses the generated files in this directory to create the simv
executable for simulating the board design

3-7

Compiling and Elaborating Your Design

The board designer includes the -Mdir option to specify a directory
where VCS writes the generated files for the board design but not the
chip design. VCS also uses the generated files in this directory to
create the simv executable for simulating the board design. If the
board designer omits this option, VCS will write the generated files
to a csrc directory in the board designer’s current directory.

For shared incremental compilation to be possible, the board
designer and the chip designer must use the same version of VCS.
If they use different versions, VCS recompiles the chip design.

The Direct Access Interface Directory

When you compile your design with certain options, VCS creates a
simv.daidir in the same location as the simv executable file.

This directory contains database files that describe the structure and
content of your design. VCS uses this database for debugging tasks
such as stepping through the code and the depositing or forcing
values. VCS also uses this database for PLI ACC capabilities.

By default this directory is named simv.daidir and VCS creates it in
the current directory.

If you include the -o compile-time option to change the location and
name of the executable file, VCS creates the Direct Access Interface
directory in the same directory as that executable file. It also gives
that Direct Access Interface directory the same name as the
executable file but with the .daidir file name extension.

3-8

Compiling and Elaborating Your Design

Initializing Memories and Regs

VCS has compile-time options for initializing all bits of memories and
regs to the 0, 1, X, or Z value. These options are:

+vcs+initmem+0|1|x|z
Initializes all bits of all memories in the design.

+vcs+initreg+0|1|x|z
Initializes all bits of all regs in the design.

Note:
+vcs+initmem+, and +vcs+initreg+ options work only for
Verilog portion of the design.

The +vcs+initmem option initializes regular memories and
multi-dimensional arrays of the reg data type. For example:

reg [7:0] mem [7:0][15:0];

The +vcs+initmem option does not initialize multi-dimensional
arrays of any other data type.

The +vcs+initreg option does not initialize registers (variables)
other than the reg data type.

To prevent race conditions, avoid the following when you use these
options:

• Assigning initial values to a regs in their declaration when the
value you assign is not the same as the value specified with the
+vcs+initreg option.

For example:

reg [7:0] r1 8’b01010101;

3-9

Compiling and Elaborating Your Design

• Assigning values to regs or memory elements at simulation time
0 when the value you assign is not the same as the value specified
with the +vcs+initreg or +vcs+initmem option.

For example:

initial
begin
mem[1][1]=8’b00000001;
...

Allowing Inout Port Connection Width Mismatches

By default it is an error condition if you connect a signal to an inout
port and that signal does not have the same bit width as the inout
port. It is a warning condition if you connect such a mismatched signal
to an input or output port.

You can use the +noerrorIOPCWM compile-time option to change
the error condition for an inout port to a warning condition, and thereby
allow VCS to create the simv executable. Consider the following
code:

module test;
wire [7:0] w1;
...
dev dev1 (w1);
...
endmodule

module dev(gk);
inout [15:0] gk;
...
endmodule

3-10

Compiling and Elaborating Your Design

Without the +noerrorIOPCWM compile-time option, VCS displays
the following error message and does not create the simv
executable:

Error-[IOPCWM] Inout Port connection width mismatch
The following 8-bit expression is connected to 16-bit

port "gk" of
module "dev", instance "dev1".

If you include the +noerrorIOPCWM compile-time option, VCS
displays the following warning message and creates the simv
executable:

Warning-[IOPCWM] Inout Port connection width mismatch.
Connecting inout ports to

mismatched width nets has unpredictable results and will
not be permitted in future releases.
The following 8-bit expression is connected to 16-bit

 port "pote" ofmodule "dev", instance "dev1".
Expression: w1
"exp1.v", line_number

Using Lint

The +lint compile-time option displays lint messages. These
messages help you to write very clean Verilog code. The following is
an example of a lint message:

Lint-[GCWM] Gate connection width mismatch

3-11

Compiling and Elaborating Your Design

VCS displays this message when you attach an entire vector reg
instead of a bit-select to an input terminal of a gate. In this message
the text string GCWM is the ID of the message. You can use the ID to
enable or disable the message.

The syntax of the +lint option is as follows:

+lint=[no]ID|none|all,...

Here:

no
Specifies disabling lint messages that have the ID that follows.
There is no space between the keyword no and the ID.

none
Specifies disabling all lint messages. IDs that follow in a comma
separated list are exceptions.

all
Specifies enabling all lint messages. IDs that follow preceded by
the keyword no in a comma separated list are exceptions.

The following examples show how to use this option:

• Enable all lint messages except the message with the GCWM ID:

+lint=all,noGCWM

• Enable the lint message with the NCEID ID:

+lint=NCEID

• Enable the lint messages with the GCWM and NCEID IDs:

+lint=GCWM,NCEID

3-12

Compiling and Elaborating Your Design

• Disable all lint messages. This is the default.

+lint=none

The syntax of the +lint option is very similar to the syntax of the
+warn option for enabling or disabling warning messages. Another
thing these options have in common is that some of their messages
have the same ID. This is because when there is a condition in your
code that causes VCS to display both a warning and a lint message,
the corresponding lint message contains more information than the
warning message and can be considered more verbose.

The number of possible lint messages is not large. They are as
follows:

Lint-[IRIMW] Illegal range in memory word

Lint-[NCEID} Non-constant expression in delay

Lint-[GCWM] Gate connection width mismatch

Lint-[CAWM] Continuous Assignment width mismatch

Lint-[IGSFPG] Illegal gate strength for pull gate

Lint-[TFIPC] Too few instance port connections

Lint-[IPDP] Identifier previously declared as port

Lint-[PCWM] Port connect width mismatch

Lint-[VCDE] Verilog compiler directive encountered

Changing Parameter Values From the Command Line

There are two compile-time options for changing parameter values
from the vcs command line:

3-13

Compiling and Elaborating Your Design

• -pvalue

• -parameters

You specify a parameter with the -pvalue option. It has the following
syntax:

vcs -pvalue+hierarchical_name_of_parameter=value

For example:

vcs source.v -pvalue+test.d1.param1=33

You specify a file with the -parameters option. The file contains
command lines for changing values. A line in the file has the following
syntax:

assign value path_to_the_parameter

Here:

assign
Keyword that starts a line in the file.

value
New value of the parameter.

path_to_the_parameter
Hierarchical path to the parameter. This entry is similar to a Verilog
hierarchical name except that you use forward slash characters
(/), instead of periods, as the delimiters.

The following is an example of the contents of this file:

assign 33 test/d1/param1
assign 27 test/d1/param2

3-14

Compiling and Elaborating Your Design

Note:
The -parameters and -pvalue options do not work with a
localparam or a specparam.

Checking for X and Z Values in Conditional Expressions

The -xzcheck compile-time option tells VCS to display a warning
message when it evaluates a conditional expression and finds it to
have an X or Z value.

A conditional expression is of the following types or statements:

• A conditional or if statement:

if(conditional_exp)
 $display("conditional_exp is true");

• A case statement:

case(conditional_exp)
 1’b1: sig2=1;
 1’b0: sig3=1;
 1’bx: sig4=1;
 1’bz: sig5=1;
endcase

• A statement using the conditional operator:

reg1 = conditional_exp ? 1’b1 : 1’b0;

The following is an example of the warning message that VCS
displays when it evaluates the conditional expression and finds it to
have an X or Z value:

warning ’signal_name’ within scope hier_name in file_name.v:
line_number to x/z at time simulation_time

3-15

Compiling and Elaborating Your Design

VCS displays this warning every time it evaluates the conditional
expression to have an X or Z value, not just when the signal or signals
in the expression transition to an X or Z value.

VCS does not display a warning message when a sub-expression
has the value X or Z, but the conditional expression evaluates to a 1
or 0 value. For example:

r1 = 1’bz;
r2 = 1’b1;
if ((r1 && r2) || 1’b1)
 r3 = 1;

In this example the conditional expression always evaluates to a 1
value so VCS does not display a warning message.

Enabling the Checking

The -xzcheck compile-time option checks all the conditional
expressions in the design and displays a warning message every
time it evaluates a conditional expression to have an X or Z value.
You can suppress or enable these warning messages globally or on
selected modules using $xzcheckoff and $xzcheckon system
tasks. For more details on $xzcheckoff and $xzcheckon system
tasks, see “Checking for X and Z Values in Conditional Expressions”
on page D-41

The -xzcheck compile-time option has an optional argument to
suppress the warning for glitches evaluating to X or Z value. Synopsys
calls these glitches as false negatives. See “Filtering Out False
Negatives” on page 3-16.

3-16

Compiling and Elaborating Your Design

Filtering Out False Negatives

By default, if a signal in a conditional expression transitions to an X
or Z value and then to 0 or 1 in the same simulation time step, VCS
displays the warning.

Example 1

In this example, VCS displays the warning message when reg r1
transitions from 0 to X to 1 during simulation time 1.

Example 4 False Negative Example
module test;
reg r1;

initial
begin
r1=1'b0;
#1 r1=1'bx;
#0 r1=1'b1;
end

always @ (r1)
begin
if (r1)
 $display("\n r1 true at %0t\n",$time);
else
 $display("\n r1 false at %0t\n",$time);
end
endmodule

Example 2

In this example, VCS displays the warning message when reg r1
transitions from 1 to X during simulation time 1.

3-17

Compiling and Elaborating Your Design

Example 5 False Negative Example
module test;
reg r1;

initial
begin
r1=1'b0;
#1 r1<=1'b1;
r1=1'bx;
end

always @ (r1)
begin
if (r1)
 $display("\n r1 true at %0t\n",$time);
else
 $display("\n r1 false at %0t\n",$time);
end

endmodule

If you consider these warning messages to be false negatives, use
the nofalseneg argument to the -xzcheck option to suppress the
messages.

For example:

vcs example.v -xzcheck nofalseneg

If you compile and simulate example1 or example2 with the -
xzcheck compile-time option, but without the nofalseneg
argument, VCS displays the following warning about signal r1
transitioning to an X or Z value:

r1 false at 0
Warning: 'r1' within scope test in source.v: 13 goes to x/
z at time 1

3-18

Compiling and Elaborating Your Design

 r1 false at 1

 r1 true at 1

If you compile and simulate example1 or example2 with the -
xzcheck compile-time option and the nofalseneg argument, VCS
does not display the warning message.

HSOPT Technology

The HSOPT technology improves both the compile-time and runtime
performance of VCS, reduces the amount of memory needed for both
compilation and simulation, and reduces the size of the simv
executable.

HSOPT is an LCA feature requiring a special license.

You enable HSOPT with the -hsopt compile-time option.

Any difference in simulation results could be merely a matter of a
different order of output messages, however they could also be the
result of race conditions.

The designs that benefit the most from HSOPT are as follows:

• designs with many layers of hierarchy

• gate-level designs

• structural RTL-level designs — Using libraries where the cells are
RTL-level code

3-19

Compiling and Elaborating Your Design

• designs with extensive use of timing such as delays, timing
checks, and SDF back annotation, particularly to
INTERCONNECT delays

• designs compiled with -debug_all

The designs that benefit the least from HSOPT are as follows:

• shallow designs — those with only a few layers of hierarchy

• designs without extensive use of timing

HSOPT is developed for Verilog and SystemVerilog code (design,
assertion, and testbench constructs) and supports the following
adjacent technologies:

• mixed HDL (VCS MX)

• OpenVera Native Testbench

• OpenVera Assertions

• AMS (analog mixed-signal)

• 64 bit compilation and simulation

• all types of coverage

• SystemC cosimulation

• Vera

3-20

Compiling and Elaborating Your Design

Making Accessing an Out of Range Bit an Error
Condition

By default it is a warning condition if your code assigns a value to, or
reads the value of, a bit of a signal, or an element in a memory or
multidimensional array, that was not in the declaration of the signal,
memory, or array.

For example:

reg [1:0] r1;
...
initial
r1[2] = 1;

In this case, there is no bit 2 in the declaration of reg r1. VCS displays
a warning message but continues to compile the code and link
together the simv executable. The following is an example of this
warning message:

Warning-[SIOB] Select index out of bounds
 in module module_name

"source_file.v", line_number: signal[bit]

You can use the +vcs+boundscheck compile-time option to tell
VCS to make accessing a bit or element that is outside the declared
range to be an error condition, so that VCS does not create the new
simv executable.

The following is an example of the error message VCS displays when
you enter this option and access an undeclared bit:

Error-[SIOB] Select index out of bounds
 in module module_name

3-21

Compiling and Elaborating Your Design

"source_file.v", line_number: signal[bit]

Like the warning message, the error message includes the module
name where the access occurs, the source file name, the line number,
and the signal name and bit that is outside the declared range, or the
memory or array and the undeclared element.

If you access an element that is not in the declared range of a memory
or a multidimensional array, and include the +vcs+boundscheck
compile-time option, VCS displays the previous error message as
well as the following error message:

Error - [IRIMW] Illegal range in memory word
 Illegal range in memory word shown below
 "source_file.v", line_number: memory[element]
 [element]...

Compiling Runtime Options Into the simv Executable

You can enter some runtime options on the vcs command line or in
the file that you specify with the -f or -F compile-time option and
VCS compiles these runtime options into the simv executable so you
do not need to specify them at runtime.

The runtime options that you can simply enter on the vcs command
line or in the file that you specify with the -f or -F compile-time options
are as follows:

+cliecho +no_pulse_msg

+sdverbose +vcs+finish

+vcs+flush+all +vcs+flush+dump

+vcs+flush+fopen +vcs+flush+log

3-22

Compiling and Elaborating Your Design

You can also enter the following runtime options on the vcs command
line or in the file that you specify with the -f or -F compile-time option,
so that VCS compiles them into the simv executable, BUT you must
precede them with the +plusarg_save compile-time option:

You can also include the -i runtime option, for specifying a file
containing CLI commands, on the vcs command line to be compiled
into the executable if it is preceded by the +plusarg_save option.
However, you cannot enter this runtime option in the file that you
specify with the -f or -F compile-time option.

You can also include the -s runtime option, to stop simulation as
soon as it starts, on the vcs command line to be compiled into the
executable, without the +plusarg_save option, but you cannot
enter this runtime option in the file that you specify with the -f or -F
compile-time option.

+cfgfile +override_model_delays

+vcs+dumpoff +vcs+dumpon

+vcs+dumpvarsoff +vcs+grwavesoff

+vcs+ignorestop +vcs+learn+pli

+vcs+mipd+noalias +vcs+nostdout

+vcs+stop +vera_load

+vera_mload +vpdbufsize

+vpddrivers +vpdfile

+vpdfilesize +vpdnocompress

+vpdnostrengths +vpdports

+vpdupdate

3-23

Compiling and Elaborating Your Design

Several runtime options, such as -cm, -cm_dir, -cm_name,
+notimingcheck, and +no_tchk_msg, are also compile-time
options. When these options appear on the vcs command line or in
the file that you specify with the -f or -F compile-time option, even
if you precede them with the +plusarg_save option, VCS considers
them to be compile-time options. So, there is no way to compile these
runtime options into the simv executable.

For more details on using these runtime options, see

Performance Considerations

When you compile your design there are a number of practices that
can slow down or speed up both compilation and simulation. This
section describes the practices that can speed up both compilation
and simulation and then lists the compile-time options that can
significantly impede or accelerate compilation and simulation.

Using Local Disks

Disk I/O can dominate VCS compile times, so be sure to use a disk
local to the CPU on which you are running the compilation for all
permanent and intermediate storage. It is most important that the csrc
temporary working directory be on a local disk. Use the -Mdir
compile-time option to specify an alternate csrc directory on a local
disk of the host machine in the form: -Mdir=directory

3-24

Compiling and Elaborating Your Design

If the csrc working directory is not located on a local disk, set the
incremental compile directory so that it is. Or change to the local disk
(cd local_disk) and run the compilation there. This ensures that
VCS can quickly access the compilation directory. If the link step takes
more than a few seconds on a small design, then you know that you’re
accessing files over the network.

Managing Temporary Disk Space on UNIX

The temporary disk space partition (/tmp) causes errors if it becomes
full. Two major users of this disk space during a Verilog compile are
VCS and the C compiler. Either of these can cause large amounts of
data to be written to the temporary disk space. Solutions to the
problem are as follows:

• The solution to the C compiler’s use of temporary disk space is
to use the current directory, or other large disk. This is done by
adding the appropriate arguments to the C compiler via the VCS
compile-time argument -CC, as in the following examples for Sun’s
C compiler on SPARC:

vcs -CC "-temp=." a.v
vcs -CC "-temp=/bigdisk" a.v

• You can also set the TMPDIR environment variable to a large disk
location that is different from /tmp.

On Sun SPARC, and most other machines that use a C compiler
other than Sun’s C compiler, the environment variable TMPDIR is
used to specify compiler temporary storage.

3-25

Compiling and Elaborating Your Design

Compile-Time Options That Impede or Accelerate VCS

There are a number of compile-time options that enhance or reduce
compilation and simulation performance. Consider looking for
opportunities when you can use the options that speed up compilation
or simulation and looking for ways to avoid the options that slow down
compilation or simulation.

Compile-Time Options That Slow Down Both Compilation and
Simulation
-debug

Enables line stepping.

+acc
Enables PLI ACC capabilities.

-full64
Compiles in 64-bit mode for 64-bit mode simulation.

Compile-Time Options That Slow Down Simulation
+pathpulse

Enables the PATHPULSE$ specparam in specify blocks.

+pulse_e
Drives an X value on narrow pulses.

+pulse_r
Filters out narrow pulses.

+pulse_int_e
Drives an X value on pulses narrower than interconnect delays.

+pulse_int_r
Filters out pulses narrower than interconnect delays.

3-26

Compiling and Elaborating Your Design

+spl_read
Treats output ports as inout ports.

Compile-Time Options That Slow Down Compilation
-gen_asm

Generates assembly code instead of directly generating native
code. Can increase compilation time up to 20%.

-gen_c
Generates C intermediate code instead of directly generating
native code. Can increase compilation time as much as 3x.

-comp64
Compiles in 64-bit mode for 32-bit simulation.

Compile-Time Options That Slow Down Compilation but Speed
Up Simulation
-O3 or -O4

Applies more than the default level of optimizations when
generating C code intermediate files and compiling them.
Applying more optimizations slows down the C compiler but
speeds up simulation.

Compile-Time Options That Speed Up Compilation but Slow
Down Simulation
-O0

Turns off all optimizations when generating C code intermediate
files and compiling them. Turning off optimizations allows the C
compiler to finish sooner but the design simulates slower without
these optimizations.

3-27

Compiling and Elaborating Your Design

-O1
Applies fewer optimizations when generating C code intermediate
files and compiling them. Applying fewer optimizations allows the
C compiler to finish somewhat sooner but the design simulates
somewhat slower without these optimizations.

Compile-Time Options That Speed Up Both Compilation and
Simulation
+nospecify

Tells VCS to ignore specify blocks. If you have extensive specify
blocks this can increase both compilation and simulation speed.

Compile-Time Options That Speed Up Simulation
+delay_mode_zero

Disables all delays. Can increase simulation speed but your
design will simulate differently.

+notimingcheck
Ignores timing check system tasks.

+nbaopt
Removes intra-assignment delays from nonblocking assignment
statements

Compiling for Debugging or Performance

You can use the -Mdir compile-time option to create different
generated file directories, one directory for debugging and another
for performance.

For example, for debugging enter the following vcs command line:

3-28

Compiling and Elaborating Your Design

% vcs -Mdir=csrc_debug -debug source.v

This command line enables debugging capabilities but also results
in a slower simulating simv executable. VCS writes the generated
files for this simv executable in the directory csrc_debug.

For faster simulation enter the following vcs command line:

% vcs -Mdir=csrc_perf source.v

This command line results in a faster simulating simv executable.
VCS writes the generated files for this simv executable in the
directory csrc_perf.

 64-32-Bit Cross-Compilation and Full 64-Bit
Compilation

Compile and simulate using less than 4 GB of RAM on a 32-bit
machine. However, if you are simulating a very large design, you may
need more than 4 GB of RAM. If this is the case, you can access
more memory by using either a 64-32-bit cross-compilation or full
64-bit compilation process.

VCS provides two types of compilation processes that take advantage
of the additional memory capacity of 64-bit machines:

• 64-32-Bit Cross-Compilation — In this process you use the
-comp64 option to compile a design on a 64-bit machine; then
run the resulting simv on either a 32-bit or 64-bit machine.

• Full 64-Bit Compilation — In this process, you use the -full64
option to analyze and compile a design on a 64-bit machine; then
run the resulting simv on a 64-bit machine.

3-29

Compiling and Elaborating Your Design

Note:

• 64-bit machines have more capacity than 32-bit machines, but
there is a performance trade-off.

• The process of compiling on a 64-bit machine and simulating the
executable on a 32-bit machine, generally known as Cross-
compilation is not yet supported.

• The 64-bit compilation and 64-32-bit cross-compilation processes
are not available on all platforms, and not all features and
capabilities of VCS work with them. Specific requirements can
change with each release so check this information in the VCS
Release Notes ($VCS_HOME/Doc/ReleaseNotes).

• You can include PLI code in either the 64-32-bit cross-compilation
or full 64-bit compilation processes. PLI code compiled with gcc
usually works fine without any restrictions. Do not forget to compile
the PLI code in 64-bit mode to use it with VCS MX for 64-bit
compilation.

Identifying the Source of Memory Consumption

Before running a 64-32-bit cross-compilation or full 64-bit compilation
process, there are some steps you can take to identify and possibly
solve a memory consumption problem.

If VCS encounters a memory problem during compile-time or runtime,
it typically returns one of the following error messages:

Error: out of virtual memory (swap space)
(v2ss1_16384x64cm16_func.v line 1053458)
Error: malloc(1937887600) returned 0: Not enough space

Doing SDF annotation

3-30

Compiling and Elaborating Your Design

Error: malloc(400) returned 0: Not enough space

error: out of virtual memory (swap space)
error: calloc(16384,1) returned 0: Cannot allocate memory

Error-[NOMEM] Out of virtual memory (swap space)!
sbrk(0) returned 0x80f52ea0
datasize limit 2097148 KB
memorysize limit 2097152 KB

If you encounter one of these error messages, there are several
alternative methods you can try that might help adapt to the memory
requirements of your design. These methods, described briefly in the
next section, apply to cases in which you are simulating large, flat,
gate-level designs with no timing or timing checks. If this is not the
case, then you should proceed to the methodology described in
“Running a 64-Bit Compilation and Simulation” on page 3-34.

Minimizing Memory Consumption

The following list contains several ways you can minimize your
compile-time and runtime memory consumption without using the
-full64 or -comp64 options:

• Check the physical memory on your workstation. You can use the
top utility for this. All current operating systems, including Linux,
support 4 GB of memory. Make sure you are using a machine with
enough available memory (that is, even though your machine may
appear to have plenty of memory, if there are other processes
running concurrently on that machine, you won't have access to
the entire memory).

3-31

Compiling and Elaborating Your Design

• Avoid using debug options like -debug, -debug_all...
switches.

• In the pli.tab files, beware of ACC calls that call for global access
(i.e. acc=rw:*)

• Minimize the amount of dumping. Instead of dumping the whole
design, try to limit the scope of dumping to particular modules.
Note that an overhead is incurred if you compile in dumping using
$test$plusargs, even if it is not enabled until runtime.

• If dumping to a VPD file, use +nocelldefinepli+n to limit
dumping to non-library modules.

Contact vcs_support@synopsys.com for details on using these
methods.

Running a 64-32-Bit Cross-Compilation

If you continue to encounter compile-time memory consumption
issues, even after trying the previous methods, then your next step
is to try the 64-32-bit cross-compilation process. This process
compiles a design using a 64-bit address range, which allows the
compilation process to go beyond the 4 GB limit of a 32-bit application.
This process produces a simv that is a 32-bit executable, which
enables you to use your existing 32-bit PLI code and third-party
applications during the simulation.

3-32

Compiling and Elaborating Your Design

Setting up the Compiler and Linker

Before running the 64-32-bit cross-compilation, Synopsys
recommends that you check the VCS Release Notes for currently
supported compilers and linkers. In general, you can use gcc for
compiling. The release notes also indicate the required library and
assembler patches.

Memory Setup

In order to run the 64-32-bit cross-compilation process, make sure
you are running on a machine with at least 8 GB of available memory.
The 8 GB can comprise available physical memory plus available
swap space.

You can check for the amount of available physical memory and swap
space by running the top utility, as shown in the following example:

% top

% 0 processes: 58 sleeping, 1 running, 1 on cpu
CPU states: 95.2% idle, 0.2% user, 4.6% kernel, 0.0%
iowait, 0.0% swap
Memory: 512M real, 294M free, 60M swap in use, 1333M swap free

In general, the amount of swap space should be at least 2.5 times
the amount of physical memory. The more the entire process can run
using physical memory, the less swapping will occur, giving better
overall performance.

If you encounter memory issues, try changing the system limits to
values similar to the following example:

UNIX> datasize 3070000
UNIX> stacksize 200000

3-33

Compiling and Elaborating Your Design

Note that these are only experimental values and you may need to
further adjust them to fit your particular situation.

If you still have memory issues, try running the cross-compilation
process with the +memopt option.

Specifying the Compiler, Linker, and -comp64 Option

When running the 64-32-bit cross-compilation process, you can
specify the compiler and linker in either of two ways:

• Using the path environment variable.

• Using VCS compile-time options -cc and -ld.

VCS assumes that the Sun 64-bit linker is located at the following
location:

/usr/ccs/bin/sparcv9/ld

If VCS can’t find this linker, it uses a 32-bit linker.

To run the 64-32 bit cross-compilation process, include the -comp64
option at the command line, as shown in the following example:

% vcs -comp64 Verilog_source_files

3-34

Compiling and Elaborating Your Design

Running a 64-Bit Compilation and Simulation

If you are encountering memory issues at runtime, you can use the
-full64 option. This option compiles a 64-bit binary executable for
simulating in 64-bit mode. In this case, you need to use a 64-bit
machine at both compile-time and runtime.

Make sure you check the VCS Release Notes for all compatible
platforms for running a 64-bit compilation.

Note that VCS assumes the Sun 64-bit linker is located at the following
location:

/usr/ccs/bin/sparcv9/ld

If VCS can’t find this linker, it uses a 32-bit linker.

The following example shows how to compile a 64-bit simulation:

% vcs -full64 source_files <other compile time options>

Using Radiant Technology

VCS’s Radiant Technology applies performance optimizations to your
design while VCS compiles your source code. These Radiant
optimizations improve the simulation performance of all types of
designs from behavioral and RTL to gate-level designs. Radiant
Technology particularly improves the performance of functional
simulations where there are no timing specifications or when delays
are distributed to gates and assignment statements.

3-35

Compiling and Elaborating Your Design

Compiling With Radiant Technology

You specify Radiant Technology optimizations at compile time.
Radiant Technology has the following compile-time options:

+rad
Specifies using Radiant Technology

+optconfigfile
Specifies applying Radiant Technology optimizations to part of the
design using a configuration file. See “Applying Radiant
Technology to Parts of the Design” on page 3-36.

Known Limitations

Radiant Technology is not applicable to all simulation situations.
Some features of VCS are not available when you use Radiant
Technology.

These limitations are:

• Backannotating SDF Files

You cannot use Radiant Technology if your design backannotates
delay values from either a compiled or an ASCII SDF file at
runtime.

• SystemVerilog

Radiant Technology does not work with SystemVerilog design
construct code, for example, structures and unions, new types of
always blocks, interfaces, or things defined in $root.

3-36

Compiling and Elaborating Your Design

The only SystemVerilog constructs that work with Radiant
Technology are SystemVerilog assertions that refer to signals with
Verilog-2001 data types, not the new data types in SystemVerilog.

Potential Differences in Coverage Metrics

VCS supports coverage metrics with Radiant Technology and you
can enter both the +rad and -cm compile-time options. However,
Synopsys does not recommend comparing coverage between two
simulation runs when only one simulation was compiled for Radiant
Technology.

The Radiant Technology optimizations, though not changing the
simulation results, can change the coverage results.

Compilation Performance With Radiant Technology

Using Radiant Technology incurs longer incremental compile times
because the analysis performed by Radiant Technology occurs every
time you recompile the design even when only a few modules have
changed. However, VCS only performs the code generation phase
on the parts of the design that have actually changed. Therefore the
incremental compile times are longer when you use Radiant
Technology but shorter than a full recompilation of the design.

Applying Radiant Technology to Parts of the Design

The configuration file enables you to apply Radiant optimizations
selectively to different parts of your design. You can enable or disable
Radiant optimizations for all instances of a module, specific instances
of a module, or specific signals.

3-37

Compiling and Elaborating Your Design

You specify the configuration file with the +optconfigfile
compile-time option. For example:

+optconfigfile+file name

Note:
The configuration file is a general purpose file that has other
purposes, such as specifying ACC write capabilities. Therefore to
enable Radiant Technology optimizations with a configuration file,
you must also include the +rad compile-time option.

The Configuration File Syntax

The configuration file contains one or more statements that set
Radiant optimization attributes, such as enabling or disabling
optimization on a type of design object, such as a module definition,
a module instance, or a signal.

The syntax of each type of statement is as follows:

module {list_of_module_identifiers} {list_of_attributes};

or
instance {list_of_module_identifiers_and_hierarchical_
names} {list_of_attributes};

or
tree [(depth)] {list_of_module_identifiers}
{list_of_attributes};

3-38

Compiling and Elaborating Your Design

Here:

module
Keyword that specifies that the attributes in this statement apply
to all instances of the modules in the list, specified by module
identifier.

list_of_module_identifiers
A comma separated list of module identifiers enclosed in curly
braces: { }

list_of_attributes
A comma separated list of Radiant optimization attributes
enclosed in curly braces: { }

instance
Keyword that specifies that the attributes in this statement apply
to:

- All instances of the modules in the list specified by module
identifier.

- All module instances in the list specified by their hierarchical
names and all the other instances as well. VCS determines the
module definition for each module instance specified and
applies the attributes to all instances of the module not just the
specified module instance.

- The individual signals in the list specified by their hierarchical
names.

list_of_module_identifiers_and_hierarchical_names
A comma separated list of module identifiers and hierarchical
names of module instances and signals enclosed in curly braces:
{ }

3-39

Compiling and Elaborating Your Design

tree
Keyword that specifies that the attributes in this statement apply
to all instances of the modules in the list, specified by module
identifier, and also apply to all module instances hierarchically
under these module instances.

depth
An integer that specifies how far down the module hierarchy, from
the specified modules, you want to apply Radiant optimization
attributes. You can specify a negative value. A negative value
specifies descending to the leaf level and counting up levels of
the hierarchy to apply these attributes. This specification is
optional. Enclose this specification in parentheses: ()

The valid Radiant optimization attributes are as follows:

noOpt
Disables Radiant optimizations on the module instance or signal.

noPortOpt
Prevents port optimizations such as optimizing away unused ports
on a module instance.

Opt
Enables all possible Radiant optimizations on the module instance
or signal.

PortOpt
Enables port optimizations such as optimizing away unused ports
on a module instance.

Statements can use more than one line and must end with a
semicolon ;.

The Verilog comment characters /* comment */ and // comment
also work in the configuration file.

3-40

Compiling and Elaborating Your Design

Configuration File Statement Examples

The following are examples of statements in a configuration file.

module statement example
module {mod1, mod2, mod3} {noOpt, PortOpt};

This module statement example disables Radiant optimizations for
all instances of modules mod1, mod2, and mod3, with the exception
of port optimizations.

multiple module statement example
module {mod1, mod2} {noOpt};
module {mod1} {Opt};

In this example of two module statements, the first module statement
disables Radiant optimizations for all instances of modules mod1 and
mod2 and then the second module statement enables Radiant
optimizations for all instances of module mod1. VCS processes
statements in the order in which they appear in the configuration file
so the enabling of optimizations for instances of module mod1 in the
second statement overrides the first statement.

instance statement example
instance {mod1} {noOpt};

In this example, mod1 is a module identifier so the statement disables
Radiant optimizations for all instances of mod1. This statement is the
equivalent of:

module {mod1} {noOpt};

module and instance statement example
module {mod1} {noOpt};

3-41

Compiling and Elaborating Your Design

instance {mod1.mod2_inst1.mod3_inst1,
mod1.mod2_inst1.rega} {noOpt};

In this example, the module statement disables Radiant optimizations
for all instances of module mod1.

The instance statement disables Radiant optimizations for the
following:

• Module mod1 (already disabled by the module statement)

• The module instance with the instance identifier mod2_inst1 in
mod1

• The module instance with the instance identifier mod3_inst1
under module instance mod2_inst1

• Signal rega in module instance mod2_inst1.

3-42

Compiling and Elaborating Your Design

first tree statement example
tree {mod1,mod2} {Opt};

This example is for a design with the following module hierarchy:

The statement enables Radiant Technology optimizations for the
instances of modules mod1 and mod2 and for all the module
instances hierarchically under these instances.

second tree statement example
tree (0) {mod1,mod2} {Opt};

This modification of the previous tree statement includes a depth
specification. A depth of 0 means that the attributes apply no further

module mod1
mod1_inst1

module mod11
mod11_inst1

module mod12
mod12_inst1

module mod111
mod111_inst1

module mod1111
mod1111_inst1

module top

module mod2
mod2_inst1

module mod21
mod21_inst1

module mod3
mod3_inst1

Radiant Technology optimizations
apply to this part of the design

3-43

Compiling and Elaborating Your Design

down the hierarchy than the instances of the specified modules, mod1
and mod2.

A tree statement with a depth of 0 is the equivalent of a module
statement.

third tree statement example

You can specify a negative value for the depth value. When you do,
you specify ascending the hierarchy from the leaf level. For example:

tree (-2) {mod1, mod3} {Opt};

This statement specifies looking down the module hierarchy under
the instances of modules mod1 and mod3 to the leaf level and

module mod1
mod1_inst1

module mod11
mod11_inst1

module mod12
mod12_inst1

module mod111
mod111_inst1

module mod1111
mod1111_inst1

module top

module mod2
mod2_inst1

module mod21
mod21_inst1

module mod3
mod3_inst1

Radiant Technology
optimizations apply
to this part of the
design

3-44

Compiling and Elaborating Your Design

counting up from there. (Leaf level module instances contain no
module instantiation statements.)

In this example the instances of mod1111, mod12, and mod3 are at
a depth of -1 and the instances of mod111 and mod1 are at a depth
of -2. The attributes do not apply to the instance of mod11 because
it is at a depth of -3.

fourth tree statement example

You can disable Radiant optimizations at the leaf level under specified
modules. For example:

tree(-1) {mod1, mod2} {noOpt};

This example disables optimizations at the leaf level, the instances
of modules mod1111, mod12, and mod21, under the instances of
modules mod1 and mod2.

module mod1
mod1_inst1

module mod11
mod11_inst1

module mod12
mod12_inst1

module mod111
mod111_inst1

module mod1111
mod1111_inst1

module top

module mod2
mod2_inst1

module mod21
mod21_inst1

module mod3
mod3_inst1

Radiant Technology
optimizations apply
to these parts of the
design

3-45

Compiling and Elaborating Your Design

Library Mapping Files and Configurations

Library mapping and configurations are an LCA (Limited customer
Availability) feature and requires a special license. For more
information contact your Synopsys Applications Consultant.

Library mapping files are an alternative to the defacto standard way
of specifying Verilog library directories and files with the -v, -y, and
+libext+ext compile-time options and the ‘uselib compiler
directive.

Configurations use the contents of library mapping files to specify
what source code to use to resolve instances in other parts of your
source code.

Library mapping and configurations are described in Std 1364-2001
IEEE Verilog Hardware Description Language. There is additional
information on SystemVerilog in Std 1800-2005 IEEE Standard for
SystemVerilog - Unified Hardware Design, Specification,and
Verification Language.

It specifies that SystemVerilog interfaces can be assigned to a logical
libraries.

Library Mapping Files

A library mapping file enables you to specify logical libraries and
assign source files to these libraries. You can specify one or more
logical libraries in the library mapping file. If you specify more than
one logical library, you are also specifying the search order VCS uses
to resolve instances in your design.

3-46

Compiling and Elaborating Your Design

The following is an example of the contents of a library mapping file:

library lib1 /net/design1/design1_1/*.v;
library lib2 /net/design1/design1_2/*.v;

Note:
Path names can be absolute or relative to the current directory
that contains the library mapping file.

In this example library mapping file there are two logical libraries. VCS
searches the source code assigned to lib1 first to resolve module
instances (or user-defined primitive or SystemVerilog interface
instances) because that logical library is listed first in the library
mapping file.

When you use a library mapping file, source files that are not assigned
to a logical library in this file are assigned to the default logical library
named work.

You specify the library mapping file with the -libmap compile-time
option. Using a library mapping file is a Verilog 2001 feature so when
you use it you must also include the +v2k or -sverilog compile-
time option.

The paths to the Verilog source files in these logical libraries must
also be included on the vcs command line. For example:

vcs +v2k dev.v -libmap lib1.map /net/design1/design1_1/
indev.v /net/design1/design1_2/indev.v

Both the /net/design1/design1_1 and the /net/design1/design1_2
directories contain a file named indev.v for a module named indev,
but VCS uses the module in lib1 to resolve instances in dev.v and the
other module named indev is a second and extraneous top-level
module.

3-47

Compiling and Elaborating Your Design

VCS assigns the source file dev.v to the default logical library called
work.

You can specify either absolute paths or relative paths to the source
files.

Overriding the Search Order in the Library Mapping File

You can use the -liblist logical_library+... compile-time
option to alter the search order VCS uses. If the library mapping file
lists the lib1 logical library first, you can tell VCS to search lib2 first
with the following VCS command line:

vcs +v2k dev.v -libmap lib1.map -new_dr /net/design1/
design1_1/indev.v /net/design1/design1_2/indev.v
-liblist lib2+lib1

Specifying Multiple Library Mapping Files

You can enter multiple -libmap options for multiple library mapping
files. If you do the search order will be based on the order of the logical
libraries in these files and the order in which you enter the files on
the vcs command line.

Displaying Library Matching

You can tell VCS to display how it matches source files to logical
libraries with the -libmap_verbose compile-time option. VCS
display messages similar to the following:

Mapping file gatelib/indev.v to logical library ’gatelib’

3-48

Compiling and Elaborating Your Design

Resolving ‘include Compiler Directives

The source file in a logical library might include the ‘include
compiler directive. if so, you can include the -incdir option on the
line in the library mapping file that declares the logical library, for
example:

library gatelib /net/design1/gatelib/*.v -incdir /net/
design1/spec1lib, /net/design1/spec2lib;

Note:
The +incdir VCS compile-time option, on the vcs command
line, overrides the -incdir option in the library mapping file.

Configurations

Verilog 2001 configurations are sets of rules that specify what source
code is used for particular instances.

Verilog 2001 introduces the concept of configurations and it also
introduces the concept of cells. A cell is like a VHDL design unit. A
module definition is a type of cell, but so is a user-defined primitive.
Similarly, a configuration is also a cell. A SystemVerilog interface and
testbench program block are also types of cells. A configuration uses
the concept of a cell and in fact a cell is a keyword in a configuration.

Configurations do the following:

• Specify a library search order for resolving cell instances (so can
a library mapping file)

• Specifies overrides to the logical library search order for specified
instances

3-49

Compiling and Elaborating Your Design

• Specifies overrides to the logical library search order for all
instances of specified cells

You can define a configuration in a library mapping file or in any type
of Verilog source file.

Configurations can be mapped to a logical library just like any other
type of cell.

Configuration Syntax

A configuration contains the following statements:

config config_identifier;
design [library_identifier.]cell_identifier;
config_rule_statement;
endconfig

Where:

config
Is the keyword that begins a configuration.

config_identifier
Is the name you enter for the configuration.

design
Is the keyword that starts a design statement for specifying the
top of the design.

[library_identifier.]cell_identifier;
Specifies the top-level module (or top-level modules) in the design
and the logical library for this module (modules).

config_rule_statement
Zero, one, or more of the following clauses: default, instance,
or cell.

3-50

Compiling and Elaborating Your Design

endconfig
Is the keyword that ends a configuration.

The default Clause
The default clause specifies the logical libraries in which to search
to resolve a default cell instance. A default cell instance is an instance
in the design that is not specified in a subsequent instance or cell
clause in the configuration.

You specify these libraries with the liblist keyword. The following
is an example of a default clause:

default liblist lib1 lib2;

This default clause specifies resolving default instances in the
logical libraries names lib1 and lib 2.

Note:

- Do not enter a comma (,) between logical libraries.

- The default logical library work, if not listed in the list of logical
libraries, is appended to the list of logical libraries and VCS
searches the source files in work last.

The instance Clause
The instance clause specifies something about a specific instance.
What it specifies depends on the use of the liblist or use
keywords:

liblist
Specifies the logical libraries to search to resolve the instance.

3-51

Compiling and Elaborating Your Design

use
Specifies that the instance is an instance of the specified cell in
the specified logical library.

The following are examples of instance clauses:

instance top.dev1 liblist lib1 lib2;

This instance clause tells VCS to resolve instance top.dev1 with
the cells assigned to logical libraries lib1 and lib2;

instance top.dev1.gm1 use lib2.gizmult;

This instance clause tells VCS that top.dev1.gm1 is an instance of
the cell named gizmult in logical library lib2.

The cell Clause
A cell clause is similar to an instance clause except that it specifies
something about all instances of a cell definition instead of specifying
something about a particular instance. What it specifies depends on
the use of the liblist or use keywords:

liblist
Specifies the logical libraries to search to resolve all instances of
the cell.

use
The specified cell’s definition is in the specified library.

Hierarchical Configurations

A design can have more than one configuration. You can, for example,
define a configuration that specifies the source code you use in

3-52

Compiling and Elaborating Your Design

particular instances in a subhierarchy, then you can define a
configuration for a higher level of the design.

Suppose, for example, a subhierarchy of a design was an eight-bit
adder and you have RTL Verilog code describing the adder in a logical
library named rtllib and you had gate-level code describing the adder
in a logical library named gatelib. Now for some reason, you want the
gate-level code used for the 0 (zero) bit of the adder and the RTL
level code used for the other seven bits. The configuration would be
something like this:

config cfg1;
design aLib.eight_adder;
default liblist rtllib;
instance adder.fulladd0 liblist gatelib;
endconfig

Now you are going to instantiate this eight-bit adder eight times to
make a 64 bit adder. You want to use configuration cfg1 for the first
instance of the eight-bit adder but not in any other instance. A
configuration to do so would be as follows:

config cfg2;
design bLib.64_adder;
default liblist bLib;
instance top.64add0 use work.cfg1:config;
endconfig

The -top Compile-Time Option

VCS has the -top compile-time option for specifying the
configuration that describes the top-level configuration or module of
the design, for example:

vcs -top top_cfg +v2k -new_dr ...
vcs -top test -sverilog -new_dr ...

3-53

Compiling and Elaborating Your Design

The -top compile-time option requires the +v2k or -sverilog
compile-time option and the -new_dr compile-time option.

If you have coded your design to have more than one top-level module
you can enter more than one -top option, or you can append
arguments to the option using the plus delimiter, for example:

-top top_cfg+test+

Using the -top options tells VCS not to create extraneous top-level
modules, one that you don’t specify.

Limitations of Configurations

In the current implementation V2K configurations have the following
limitations:

• You cannot specify source code for user-defined primitives in a
configuration.

• The VPI functionality, described in section 13.6 "Displaying library
binding information" in the Std 1364-2001 IEEE Veerilog Harware
Description LRM, is not implemented.

3-54

Compiling and Elaborating Your Design

4-1

Simulating Your Design

4
Simulating Your Design 1

You can simulate your design with VCS using several options and
techniques, which allow you to focus on either performance or
debugging. You can also use runtime options to save and restart the
simulation as required.

This chapter covers the following topics:

• Running and Controlling a Simulation

• Save and Restart

• Specifying a Very Long Time Before Stopping Simulation

• Passing Values From the Runtime Command Line

• How VCS Prevents Time 0 Race Conditions

• Improving Performance

• Profiling the Simulation

4-2

Simulating Your Design

Running and Controlling a Simulation

This section describes how to simulate your design using the binary
executable generated during compilation.

Invoking a Simulation at the Command Line

To invoke the simulation, enter the following at the command line:

% executable [options]

The options are more than one runtime options that enable you to
control how VCS executes the simulation. For a complete list of VHDL
and Verilog runtime options, see Appendix C, "Simulation Options".

You control and monitor the simulation by using UCLI, CLI or SCL
commands. Detailed descriptions of these commands are available
in Chapter 8, "Unified Command-Line Interface (UCLI)" and Chapter
9, "Using the Old Command Line Interface (CLI)"

Invoking a Simulation From DVE

To open DVE and start the simulation, do the following:

1. From the command line, open DVE.

% dve

4-3

Simulating Your Design

2. Choose Simulator > Setup, then start simulation from the
Simulation Setup dialog box.

3. Browse to the simulation executable or a VPD/VCD file and select
a working directory.

4. Select start and waveform update options.

5. Click OK.

For more information on DVE, see Chapter 5, "Using the Discovery
Visual Environment".

4-4

Simulating Your Design

Save and Restart

VCS provides a save and restart feature that allows checkpoints of
the simulation to be saved at arbitrary times. The resulting checkpoint
files can be executed at a later time, causing simulation to resume at
the point immediately following the save.

Benefits of save and restart include:

• Regular checkpoints for interactively debugging problems found
during long batch runs

• Use of plusargs to start action such as $dumpvars on restart

• Execution of common simulation system tasks such as $reset
just once in a regression

Restrictions of save and restart include:

• Requires extra Verilog code to manage the save and restart

• Must duplicate start-up code if handling plusargs on restart

• File I/O suspend and resume in PLI applications must be given
special consideration

Save and Restart Example

Example 4-1 illustrates the basic functionality of save and restart.

The $save call does not execute a save immediately, but schedules
the checkpoint save at the end of the current simulation time just
before events scheduled with #0 are processed. Therefore, events
delayed with #0 are the first to be processed upon restart.

4-5

Simulating Your Design

Example 4-1 Save and Restart Example
% cat test.v
module simple_restart;
initial begin

#10
$display("one");
$save("test.chk");
$display("two");
#0 // make the following occur at restart
$display("three");
#10
$display("four");

end
endmodule

Now compile the example source file:

% vcs test.v

Now run the simulation:

% simv

VCS displays the following:

one
two
$save: Creating test.chk from current state of simv...
three
four

To restart the simulation from the state saved in the check file, enter:

% test.chk

VCS displays the following:

Restart of a saved simulation
three

4-6

Simulating Your Design

four

Save and Restart File I/O

VCS remembers the files you opened via $fopen and reopens them
when you restart the simulation. If no file with the old file name exists,
VCS opens a new file with the old file name. If a file exists having the
same name and length at time of save as the old file, then VCS
appends further output to that file. Otherwise, VCS attempts to open
a file with file name equal to the old file name plus the suffix .N. If a
file with this name exists, VCS exits with an error.

If your simulation contains PLI routines that do file I/O, the routines
must detect both the save and restart events, closing and reopening
files as needed. You can detect save and restart calls using misctf
callbacks with reasons reason_save and reason_restart.

When running the saved checkpoint file, be sure to rename it so that
further $save calls do not overwrite the binary you are running. There
is no way from within the Verilog source code to determine if you are
in a previously saved and restarted simulation, so you cannot
suppress the $save calls in a restarted binary.

Save and Restart With Runtime Options

If your simulation behavior depends on the existence of runtime
plusargs or any other runtime action (such as reading a vector file),
be aware that the restarted simulation uses the values from the
original run unless you add special code to process runtime events
after the restart action. Depending on the complexity of your
environment and your usage of the save and restart feature, this can
be a significant task.

4-7

Simulating Your Design

For example, if you load a memory image with $loadmemb at the
beginning of the simulation and want to be able to restart from a
checkpoint with a different memory image, you must add Verilog code
to load the memory image after every $save call. This ensures that
at the beginning of any restart the correct memory image is loaded
before simulation begins. A reasonable way to manage this is to
create a task to handle processing arguments, and call this task at
the start of execution, and after each save.

A more detailed example follows to illustrate this. The first run
optimizes simulation speed by omitting the +dump flag. If a bug is
found, the latest checkpoint file is run with the +dump flag to enable
signal dumping.

// file test.v
module dumpvars();
task processargs;

begin
if ($test$plusargs("dump")) begin

$dumpvars;
end

end
end task
//normal start comes here
initial begin

processargs;
end
// checkpoint every 1000 time units
always

#1000 begin
// save some old restarts
$system("mv -f save.1 save.2");
$system("mv -f save save.1");
$save("save");
#0 processargs;

end
endmodule
// The design itself here
module top();

.....
endmodule

4-8

Simulating Your Design

Restarting at the CLI Prompt

The $restart system task allows you to restart the simulation at
the CLI prompt. Enter it with the name of the check file created by
the $save system task. For example:

C1 > $restart("checkfile1");

Specifying a Very Long Time Before Stopping
Simulation

You can use the +vcs+stop+time runtime option to specify the
simulation time when VCS halts simulation. This works if the time
value you specify is less that 232 or 4,294,967,296. You can also use
the +vcs+finish+time runtime option to specify when VCS not
just halts but ends simulation. This is also with the proviso that the
time value be less than 232.

For time values greater than 232 you must follow a special procedure
that uses two arguments to the +vcs+stop or +vcs+finish
runtime options. This procedure is as follows:

1. Subtract 2 X 232 from the large time value.

So, for example if you want a time value of 10,000,000,000 (10
billion):

10,000,000,000-(2*4,294,967,296)=(1,410,065,408)

4-9

Simulating Your Design

This difference is the first argument.

You can let VCS do some of this work for you by using the following
source code:

module wide_time;
time wide;
initial
begin
wide = 64’d10_000_000_000;
$display(“Hi=%0d, Lo=%0d”, wide[63:32], wide[31:0]);
end
endmodule

VCS displays:

Hi=2,Lo=1410065408

2. Divide the large time value by 232.

In this example:

3. Round down this quotient to the whole number. This whole
number is the second argument.

In this example, you round down to 2.

You now have the first and second argument. Therefore, in this
example, to specify stopping simulation at time 10,000,00,000 you
enter the following runtime option:

+vcs+stop+1410065408+2

10 000 000 000, , ,
4 294 967 296, , ,
-- 2.33=

4-10

Simulating Your Design

Passing Values From the Runtime Command Line

The $value$plusargs system function can pass a value to a signal
from the simv runtime command line using a plusarg. The syntax is
as follows:

integer = $value$plusargs("plusarg_format",signalname);

The plusarg_format argument specifies a user-defined runtime
option for passing a value to the specified signal. It specifies the text
of the option and the radix of the value that you pass to the signal.

The following code example contains this system function:

module valueplusargs;
reg [31:0] r1;
integer status;

initial
begin
$monitor("r1=%0d at %0t",r1,$time);
#1 r1=0;
#1 status=$value$plusargs("r1=%d",r1);
end
endmodule

If you enter the following simv command line:

simv +r1=10

The $monitor system task displays the following:

r1=x at 0
r1=0 at 1
r1=10 at 2

4-11

Simulating Your Design

How VCS Prevents Time 0 Race Conditions

At simulation time 0, VCS always executes the always blocks in which
any of the signals in the event control expression, that follows the
always keyword (the sensitivity list), initializes at time 0.

For example, consider the following code:

module top;
reg rst;
wire w1,w2;
initial
rst=1;
bottom bottom1 (rst,w1,w2);
endmodule

module bottom (rst,q1,q2);
output q1,q2;
input rst;
reg rq1,rq2;

assign q1=rq1;
assign q2=rq2;

always @ rst
begin
 rq1=1’b0;
 rq2=1’b0;
 $display("This always block executed!");
end
endmodule

4-12

Simulating Your Design

With other Verilog simulators there are two possibilities at time 0:

• The simulator executes the initial block first, initializing reg rst,
then the simulator evaluates the event control sensitivity list for
the always block and executes the always block because the
simulator initialized rst.

• The simulator evaluates the event control sensitivity list for the
always block, and so far reg rst has not changed value during
this time step so the simulator does not execute the always block.
Then the simulator executes the initial block and initializes rst.
When this happens the simulator does not re-evaluate the event
control sensitivity list for the always block.

Improving Performance

When you simulate your design you can look for ways to improve the
simulation performance. There are runtime options that enable VCS
to simulate faster or slower.

Some runtime options enable VCS to simulate your design faster
because they allow VCS to skip certain operations. You should
consider using these runtime options. They are as follows:

+vcs+ignorestop
Tells VCS to ignore the $stop system tasks in your source code.

+notimingcheck
Disables timing check system tasks. Using this option at compile
time results in even faster simulation than using it at runtime.

4-13

Simulating Your Design

Runtime options that specify writing to a file slow down simulation.
These runtime options are as follows:

-a filename
Appends all output of the simulation to the specified file as well
as sends it to the standard output.

-l filename
Writes all output of the simulation to the specified file as well as
to the standard output.

Other runtime options that specify operations other than the default
operations also slow down simulation to some extent.

Profiling the Simulation

If you include the +prof compile-time option when you compile your
design, VCS generates the vcs.prof file during simulation. This file
contains a profile of the simulation in terms of the CPU time and
memory that it uses.

For CPU time it reports the following:

• The percentage of CPU time used by the VCS kernel, the design,
the SystemVerilog testbench program block, cosimulation
applications using either the DPI or PLI, and the time spent writing
a VCD or VPD file.

• The module instances in the hierarchy that use the most CPU time

• The module definitions whose instances use the most CPU time

• The Verilog constructs in those instances that use the most CPU
time

4-14

Simulating Your Design

For memory usage it reports the following:

• The amount of memory and the percentage of memory used by
the VCS kernel, the design, the SystemVerilog testbench program
block, cosimulation applications using either the DPI or PLI, and
the time spent writing a VCD or VPD file.

• The amount of memory and the percentage of memory that each
module definition uses.

You can use this information to see where in your design you might
be able to modify your code for faster simulation performance.

The profile data in the vcs.prof file is organized into a number of
“views” of the simulation. The vcs.prof file starts with views on CPU
time, followed by views on memory usage.

CPU Time Views

The views on CPU time are as follows:

• The Top Level View

• The Module View

• The Program View

• The Instance View

• The Program to Construct Mapping View

• The Top Level Construct View

• The Construct View Across Design

4-15

Simulating Your Design

The Top Level View
This view shows you how much CPU time was used by:

• Any PLI application that executes along with VCS

• VCS for writing VCD and VPD files

• VCS for internal operations that can’t be attributed to any part of
your design

• The Verilog modules in your design

• A SystemVerilog testbench program block, if used

Example 4-2 Top Level View
===
 TOP LEVEL VIEW
===
 TYPE %Totaltime

 DPI 0.00
 PLI 0.00
 VCD 0.00
 KERNEL 29.06
 MODULES 51.87
 PROGRAMS 21.17
 PROGRAM GC 1.64

In this example there is no PLI application and VCS does not write a
VCD or VPD file. VCS used 51.87% of the CPU time to simulate the
design, 21.94% for a testbench program, and 29.06% for internal
operations, such as scheduling, that VCS cannot attribute to any part
of the design. The designation KERNEL is for these internal
operations. PROGRAM GC is for the garbage collector.

The designation VCD is for the simulation time used by the callback
mechanisms inside VCS for writing either VCD or VPD files.

4-16

Simulating Your Design

If there was CPU time used by a PLI application, you could use a tool
such as gprof or Quantify to profile the PLI application.

The Module View
This view shows you the module definitions whose instances use the
most CPU time. It does not list module definitions whose module
instances collectively use less than 0.5% of the CPU time.

Example 4-3 Module View
===
 MODULE VIEW
===
Module(index) %Totaltime No of Instances Definition

FD2 (1) 62.17 10000 /u/design/
design.v:142.
EN (2) 8.73 1000 /u/design/
design.v:131.

In this example there are two module definitions whose instances
collectively used a significant amount of CPU time, modules FD2 and
EN.

The profile data for module FD2 is as follows:

• FD2 has an index number of 1. Other views that show the
hierarchical names of module instances use this index number.
The index number associates a module instance with a module
definition because module identifiers do not necessarily resemble
the hierarchal names of their instances.

• The instances of module FD2 used 62.17% of the CPU time.

4-17

Simulating Your Design

• There are 10,000 instances of module FD2. The number of
instances is a way to assess the CPU times used by these
instances. For example, as in this case, a high CPU time with a
correspondingly high number of instances tells you that each
instance isn’t using very much CPU time.

• The module header, the first line of the module definition, is in
source file design.v on line 142.

The Program View
The program view shows the simulation time used by the testbench
program, the number of instances, and the line number where is starts
in its source file.

Example 4-4 Program View
==
 PROGRAM VIEW
==
Program(index) %Totaltime No of Instances Definition
--
test (1) 21.17 1 /u/design/test.sv:25.
--

The Module to Construct Mapping View
This view shows you the CPU time used by different types of Verilog
constructs in each module definition in the module view. There are
the following types of Verilog constructs:

• always constructs (commonly called always blocks)

• initial constructs (commonly called initial blocks)

• module path delays in specify blocks

• timing check system tasks in specify blocks

4-18

Simulating Your Design

• combinational logic including gates or built-in primitives and
continuous assignment statements

• user-defined tasks

• user-defined functions

• module instance ports

• user-defined primitives (UDPs)

• Any Verilog code protected by encryption

Ports use simulation time particularly when there are expressions in
port connection lists such as bit or part selects and concatenation
operators.

This view has separate sections for the Verilog constructs for each
module definition in the module view.

4-19

Simulating Your Design

Example 4-5 Module to Construct Mapping View
===
 MODULE TO CONSTRUCT MAPPING
===

 1. FD2

Construct type %Totaltime %Moduletime LineNo

Always 27.44 44.14 design.v : 150-160.
Module Path 23.17 37.26 design.v : 165-166.
Timing Check 11.56 18.60 design.v : 167-168.

 2. EN

Construct type %Totaltime %Moduletime LineNo

Combinational 8.73 100.00 design.v: 137.

For each construct the view reports the percentage of “Totaltime” and
“Moduletime”.

%Totaltime
The percentage of the total CPU time that was used by this construct.

%Moduletime
Each module in the design uses a certain amount of CPU time. This
percentage is the fraction of the module’s CPU time that was used by the
construct.

In the section for module FD2:

4-20

Simulating Your Design

• An always block in this module definition used 27.44% of the
TOTAL CPU time. Of all the CPU time consumed by all instances
of the FD2 module, 44.14% is spent on this construct (44.14% of
62.17% = 27.44%). The always block is in source file design.v
between lines 150 and 160.

If there were another always block in module FD2 that used more
than 0.5% of the CPU time, there would be another line in this
section for it, beginning with the always keyword.

• The module path delays in this module used 23.17% of the TOTAL
CPU time. Of all the CPU time consumed by all instances of the
FD2 module, 37.26% is spent on this construct. These module
path delays can be found on lines 165-166 of the design.v source
file.

• The timing check system tasks in this module used 11.56% of the
TOTAL CPU time. Of all the CPU time consumed by all instances
of the FD2 module, 18.60% is spent on this construct. These
timing check system tasks can be found on lines 167-167 of the
design.v source file.

In the section for module EN, a construct classified as Combinational
used 8.73 of the total CPU time. 100% of the CPU time used by all
instances of EN were used for this combinational construct.

No initial blocks, user-defined functions, or user-defined tasks, ports,
UDPs, or encrypted code in the design used more than 0.5% of the
CPU time. If there were, there would be a separate line for each of
these types of constructs.

4-21

Simulating Your Design

The Instance View
This view shows you the module instances that use the most CPU
time. An instance must use more than 0.5% of the CPU time to be
entered in this view.

Example 4-6 Instance View
===
 INSTANCE VIEW
===
Instance %Totaltime

test.lfsr1000_1.lfsr100_1.lfsr10_1.lfsr_1.en_
1 (2) 0.73

In this example there is only one instance that uses more that 0.5%
of the CPU time.

This instance’s hierarchical name is
test.lfsr1000_1.lfsr100_1.lfsr10_1.lfsr_1.en_1. Long hierarchical
names wrap to the next line.

The instance’s index number is 2, indication that it is an instance of
module EN, which had an index of 2 in the module view.

This instance used 0.73% of the CPU time.

No instance of module FD2 is listed here so no individual instance of
FD2 used more that 0.5% of the CPU time.

Note:
It is very common for no instances to appear in the instance view.
This happens when many instances use some of the simulation
time but none use more than 0.5% of the total simulation time.

4-22

Simulating Your Design

The Program to Construct Mapping View
The program to construct mapping view lists the testbench constructs
that use the most simulation time and list the percentage of the total
simulation they use, and the percentage of the program’s simulation
time each type of construct uses. It also lists the source fine and line
number of the constructs declaration.

Example 4-7 Program to Construct Mapping View
==
 PROGRAM TO CONSTRUCT MAPPING
==

__
 1. test
--
Construct Construct type %Totaltime %Programtime LineNo
--
name1::name2 Program Task 2.85 13.45 /u/design/
vmm.sv : 12668-12901.

var queue.var 2.64 12.45 /u/design/vmm.sv
: 14551-14558.

name3::name4 Program Function 0.99 4.67 /u/design/vmm.sv
: 13890-14215.

The Top Level Construct View
This view shows you the CPU time used by different types of
constructs throughout the design.

4-23

Simulating Your Design

Example 4-8 Top Level Construct View
==
 TOP-LEVEL CONSTRUCT VIEW
--
 Construct %Totaltime
--
 Combinational 28.14
 Task 16.58
 Program Task 9.87
 Always 6.52
 Program Function 5.82
 queue.size 2.64
 Port 2.01
 Object new 1.92
 Initial 0.89
 Program Thread 0.79
 Function 0.76
 queue.name 0.09
 queue.name 0.05
__

The Construct View Across Design
This view shows you the module or program definitions that contain
a type of construct that used more that 0.5% of the CPU time. There
are separate sections for each type of construct and each section
contains a list of the modules or programs that contain that type of
construct.

4-24

Simulating Your Design

Example 4-9 Top Level Construct View
===
 CONSTRUCT VIEW ACROSS DESIGN
===

 1.Always

 Module %TotalTime

 FD2 27.44

 2.Module Path

 Module %TotalTime

 FD2 23.17

 3.Timing Check

 Module %TotalTime

 FD2 11.56

 4.Combinational

 Module %TotalTime

 EN 8.73

Memory Usage Views

The views on memory usage are as follows:

4-25

Simulating Your Design

• Top Level View

• Module View

• The Program View

The Top Level View
This view shows you how much memory was used by:

• Any PLI or DPI application that executes along with VCS

• VCS for writing VCD and VPD files

• VCS for internal operations (known as the kernel) that can’t be
attributed to any part of your design.

• The Verilog modules in your design

• A SystemVerilog testbench program block, if used

Example 4-10 Top Level View
===
// Simulation memory: 2054242 bytes

===
 TOP LEVEL VIEW
===
 TYPE Memory %Totalmemory

 DPI 0 0.00
 PLI 0 0.00
 VCD 0 0.00
 KERNEL 890408 43.34
 MODULES 1163834 56.66
 PROGRAMS 0 0.00
---//

Just before the top level view, VCS writes the total amount of memory
used by the simulation. In this example it’s 2054242 bytes.

4-26

Simulating Your Design

In this example there is no DPI or PLI application and VCS does not
write a VCD or VPD file.

VCS used 1163834 bytes of memory, 56.66% of the total memory, to
simulate the design.

VCS used 890408 bytes of memory, 43.34% of the total memory, for
internal operations, such as scheduling, that can’t be attributed to any
part of the design. The designation KERNEL, is for these internal
operations.

The designation VCD is for the simulation time used by the callback
mechanisms inside VCS for writing either VCD or VPD files.

The Module View
The module view shows the amount of memory used, and the
percentage of memory used, by each module definition.

Example 4-11 Top Level View
===
 MODULE VIEW
===
Module(index) Memory %Totalmemory No of Instances Definition

bigmem (1) 1048704 51.05 2 exp1.v:16.
bigtime (2) 115030 5.60 2 exp1.v:61.
test (3) 100 0.00 1 exp1.v:1.

===

In this example the instances of module bigmem used 1048704 bytes
of memory, 51.05% of the total memory used. The instances of
module bigtime used 115030 bytes of memory, 5.6% of the total
memory used.

4-27

Simulating Your Design

The Program View
The program view shows the amount of memory used, and the
percentage of memory used, by each testbench program.

Example 4-12 Program View
==
 PROGRAM VIEW
==
Program(index) Memory %Totalmemory No of Instances Definition
--
test (1) 4459091 18.74 1 /u/design/test.sv:25.

4-28

Simulating Your Design

5-1

Using the Discovery Visual Environment

5
Using the Discovery Visual Environment 2

This chapter introduces the Discovery Visual Environment (DVE)
graphical user interface. It contains the following sections:

• Overview of DVE Window Configuration

• DVE Panes

• Managing DVE Windows

• Using the Menu Bar and Toolbar

• Setting Display Preferences

For complete information on the use of DVE, see the Discovery Visual
Environment User Guide in your VCS / VCS MX installation.

5-2

Using the Discovery Visual Environment

Overview of DVE Window Configuration

DVE has a completely flexible window model. This model is based
on the concept of the TopLevel window.

A TopLevel window contains a frame, menus, toolbars, status bar,
and pane targets. Any number of TopLevel windows are possible.
The default at startup is one.

A DVE TopLevel window is a frame for displaying design and debug
data. The default DVE window configuration is to display the TopLevel
window with the Hierarchy Browser on the left, the Console pane at
bottom, and the Source window occupying the remaining space. You
can change the default using the preference file, the session file or a
startup script. Figure 5-1 shows the default TopLevel window

5-3

Using the Discovery Visual Environment

Figure 5-1 DVE TopLevel Frame Initial View

Menu Bar

Toolbar

Hierarchy Browser

Source Window

Console Tabs

Console

Tcl Command-line Interface

Data Pane

Target Window
Control

Status Bar

5-4

Using the Discovery Visual Environment

DVE Panes

A TopLevel window can contain any number of panes. A pane is a
window that serves a specific debug purpose. Examples of panes are
Hierarchy, Data, Assertion, Wave, List, Memory, and Schematic.

Panes can be docked on any side ot a TopLevel window or left floating
in the area in the frame not occupied by docked panes (called the
workspace). Panes can also be opened in a new TopLevel frame.

Managing DVE Windows

A DVE TopLevel window can contain any number of DVE windows
and panes. You can choose to display data in one or many DVE
windows and panes by setting defaults, using the status bar window
controls, or docking and undocking windows as you work.

Managing Target Panes

The target policy dictates where panes will be created. On each
TopLevel at the bottom right corner of the frame are target icons
(Figure 5-2). These icons represent pane types.

5-5

Using the Discovery Visual Environment

Figure 5-2 Window targeting icons

Target icons can have the following two states:

• Targeted – Icon has a dart in it, which means an action that
requires a new pane creates that pane in the current frame

• Untargeted – icon has no dart in it, which means an action that
requires a new pane creates a new TopLevel window that contains
that pane.

To open a pane in a new TopLevel window:

1. Click on the icon in the status bar to remove the default dart. .

Source

Targets a new Source pane
in a new TopLevel window .

Schematic

Targets a new Schematic
window pane in a new
TopLevel window.

 Path Schematic

Targets a new Path
Schematic pane in a new
TopLevel window.

Darts indicate targeted windows are attached to the current window.

No dart in targeted Wave window icon

5-6

Using the Discovery Visual Environment

2. Click a corresponding window icon in the toolbar to open a window
of that type. It will not be attached to the current window and will
open in a new TopLevel window.

Docking and Undocking Windows and Panes

You can use the Windows menu to dock and undock windows and
panes.

• Select Windows > Dock in New Row, then select the row position
in which to dock the currently active window.

• Select Windows > Dock in New Column, then select the column
position in which to dock the currently active window.

• Select Undock to detach the currently active window or pane.

General stuff about docked windows such as the hierarchy window.

To delete a window, click the X icon in the corner of the pane. This
is the same for all dockable windows.

Wave

Targets a new Wave pane
in a new TopLevel window

List

Targets a List pane in a new
TopLevel window.

Memory

Targets a new Memory
pane in a new TopLevel
window.

5-7

Using the Discovery Visual Environment

Dark blue color of dock handle (dock handle is the train track that
connects to the X icon) indicates that this docked window is active.
This is the same for all dockable windows. An action must occur such
as a click to make the window active.

Dragging and Dropping Docked windows

Left Click on the dock handle and drag and drop the window to a new
dock location or to a non docked window.

Right click on dock handle brings up a small popup menu:

Using the Menu Bar and Toolbar

The menu bar and toolbar allow you to perform standard simulation
analysis tasks, such as opening and closing a database, moving the
waveform to display different simulation times, or viewing HDL source
code.

Most items in the menu bar correspond to icons or text fields in the
toolbar. For example, you can set the simulation time display in the
waveform by doing either of the following:

Undock Undock the active window.

Dock Left – Docks the selected window to the left wall of the TopLevel
window.
Right – Docks the selected window to the right wall of the TopLevel
window.
Top – Docks the selected window to the top wall of the TopLevel
window. Not recommended..
Bottom – Docks the selected window to the bottom wall of the
TopLevel window.

5-8

Using the Discovery Visual Environment

• Select View>Go To Time, then enter a value in the Go To Time
dialog box, and click Apply or OK.

• Enter a value in the Time text field on the toolbar, then press Enter
on your keyboard.

See Figure 5-3 for an example.

5-9

Using the Discovery Visual Environment

Figure 5-3 Methods for Setting the Simulation Time

Select View>Go To Time, enter a
value in the Go To Time dialog box,
then click Apply or OK.

Enter value in Time text field of the
toolbar, then press the Enter key.

Results: Waveform display
moves to specified
simulation time.

Menu Bar: Toolbar:OR

5-10

Using the Discovery Visual Environment

Setting Display Preferences

You can set preferences to customize the display of DVE windows
and panes.

To customize the display:

1. In the TopLevel window, select Edit > Preferences.

The Application Preferences dialog box displays the Global
Settings category.

2. Select settings as follows:

- Global Settings

Select settings to set the font and font sizes to display in DVE
windows

The default is to log only UCLI commands. To also log GUI
commands select the Log GUI commands in Console window
checkbox.

5-11

Using the Discovery Visual Environment

Select whether to display the exit dialog box when closing DVE.

- Debug Settings – Select signal compare parameters, value
transition, exit dialog box and assertion window docking
defaults, and first frame target setup options..

5-12

Using the Discovery Visual Environment

- Hierarchy Browser – Set the appearance and initial filter states..

- Data Pane – Set the appearance parameters, signal sorting,
signal levels to display, and scroll bar conditions..

5-13

Using the Discovery Visual Environment

- Source window – Specify data and annotation loading options,
line wrap, line number display, tab width, default editor, and
automatic reload of changed source code..

5-14

Using the Discovery Visual Environment

- Schematic window – Set line colors for schematic objects in
Schematic and Path Schematic windows..

- Select the Value Annotations subcategory and set the Port/Pin
visibility and color..

5-15

Using the Discovery Visual Environment

- Waveform window – Set appearance parameters, signal levels
to display, and marker value display settings..

- List window – Sepecify grid display, signal name truncation,
signal levels to display, and column spacing settings..

5-16

Using the Discovery Visual Environment

- Coverage Settings – Set weights for display of line, condition,
toggle, FSM, and cover metrics..

- Coverage Colors – Customize the color display of Source
window cover states and the number of coverage ranges and
their associated colors in the Color Settings window.

5-17

Using the Discovery Visual Environment

3. Click OK to save your selections and close the dialog box, Save
to save your settings and keep the dialog box open, or Reset to
return the default settings.

5-18

Using the Discovery Visual Environment

6-1

VPD and EVCD File Generation

6
VPD and EVCD File Generation 1

VPD and EVCD files contain simulation history data. In Verilog
simulation, $vcdplus system tasks create these files and name them
vcdplus.vpd by default.

You can use system tasks that include the vcdplus name in the tasks,
for example, $vcdpluson, $vcdplusoff, and
$vcdplusfilename, to manipulate VPD files. To generate an
EVCD file, you can use the system tasks $dumports, and
$lsi_dumpports. You can enter these system tasks in Verilog code or
at the Interactive Window command prompt.

You can also also use specific runtime options to control how VPD
files are generated. These runtime options include +vpd in their
names, for example, +vpdbufsize, +vpdignore, etc.

This chapter covers the following topics:

• Advantages of VPD

6-2

VPD and EVCD File Generation

• System Tasks and Functions

• Runtime Options

• VPD Methodology

• EVCD File Generation

Advantages of VPD

VPD offers the following significant advantages over the standard
VCD ASCII format:

• Provides a compressed binary format that dramatically reduces
file size as compared to VCD and other proprietary file formats.

• The VPD compressed binary format dramatically reduces signal
load time.

• Allows data collection for signals or scopes to be turned on and
off during a simulation run, thus, dramatically improving simulation
run time and file size.

• Can save source statement execution data. This allows instant
replay of source execution in the DVE Source Window.

VPD has a set of command line options that affect performance and
file sizes and which allow you to run VPD in the most effective manner.
To optimize VCS performance and VPD file size, consider the size of
the design, the RAM memory capacity of your workstation, swap
space, disk storage limits, and the methodology used in the project.

6-3

VPD and EVCD File Generation

System Tasks and Functions

VPD system tasks capture and save value change data in a binary
format so that you can view the data in the Wave Window, Register
Window, Source Window, and Logic Browser. You can include the
following VPD system tasks in source files or enter them at the DVE
interactive prompt.

System Tasks to Generate a VPD File

Note:
The $vcdpluson and $vcdplusoff system tasks accept the
same arguments as the Verilog $dumpvars system task. Unlike
standard VCD, this lets you turn recording on or off for variables
during the same simulation.

$vcdpluson

The $vcdpluson task begins recording signal value changes of the
specified scopes or signals to the VPD history file.

Syntax:

$vcdpluson (level,scope*,signal*);

Here:

level
Specifies the number of hierarchy scope levels to descend to
record signal value changes (a zero value records all scope
instances to the end of the hierarchy; default is zero).

6-4

VPD and EVCD File Generation

scope
Specifies the name of the scope in which to record signal value
changes (default is all).

signal
Specifies the name of the signal in which to record signal value
changes (default is all).

Note:
In the syntax, * indicates that the argument can have a list of more
than one value (for scopes or signals).

Example 1: Record all signal value changes.

$vcdpluson;

Example 2: Record signal value changes for scope
test.risc1.alureg and all levels below it.

$vcdpluson(test.risc1.alureg);

Example 3: Record two levels of signal value changes: scope (test)
and one level below.

$vcdpluson(2, test);

$vcdplusoff

The $vcdplusoff task stops recording the signal value changes for
specified scopes or signals.

Syntax:

$vcdplusoff (level,scope*,signal*);

Example 1: Turn recording off.

$vcdplusoff();

6-5

VPD and EVCD File Generation

Example 2: Stop recording signal value changes for scope
test.risc1.alu1.

$vcdplusoff(test.risc1.alu1);

Example 3: Stop recording signal value changes for
test.risc1.alu1 and test.risc1.instreg.d1.

$vcdplusoff(test.risc1.alu1, test.risc1.instreg.d1);

Example 4: Stop recording signal value changes for scope
test.risc1.alu1 and 39 levels below. In this example, 40 is a
number large enough to ensure all lower levels are turned off.

$vcdplusoff(40, test.risc1.alu1);

Note:
The $vcdpluson/off commands increment/decrement an
internal counter for each signal to be recorded. If multiple
$vcdpluson commands cause a given signal to be saved, the
signal will continue to be saved until an equivalent number of
$vcdplusoff commands apply to the signal.

$vcdplusflush

The $vcdplusflush task flushes to the VPD data file any value
changes that have been reported by VCS but have not yet been
written to the VPD data file.

Syntax:

$vcdplusflush;

6-6

VPD and EVCD File Generation

$vcdplusautoflushon

When simulation stops, the $vcdplusautoflushon task
automatically flushes to the VPD data file any value changes that
have been reported by VCS but have not yet been written to the VPD
data file.

Syntax:

$vcdplusautoflushon;

$vcdplusautoflushoff

The $vcdplusautoflushoff task turns off the automatic flush
(enabled by the $vcdplusautoflushon task).

Syntax:

$vcdplusautoflushoff;

$vcdplusfile

The $vcdplusfile task specifies a VPD file name. If it does not
specify a name, vcdplus.vpd is the default.

Syntax:

$vcdplusfile ("filename");

$vcdplusclose

The $vcdplusclose task terminates all tracing, flushes data to file,
closes the current VPD file, and resets all default settings.

Syntax:

$vcdplusclose;

6-7

VPD and EVCD File Generation

System Tasks and Functions for Multi-Dimensional
Arrays

This section describes system tasks and functions that provide
visibility into multi-dimensional arrays (MDAs).

There are two ways to view MDA data:

• The first method, which uses the $vcdplusmemon and
$vcdplusmemoff system tasks, records data each time an MDA
has a data change.

• The second method, which uses the $vcdplusmemorydump
system task, stores data only when the task is called.

Syntax for Specifying MDAs

Use the following syntax to specify MDAs using the
$vcdplusmemon, $vcdplusmemoff, and $vcdplusmemorydump
system tasks:

system_task(Mda [, dim1Lsb [, dim1Rsb [, dim2Lsb [, dim2Rsb
[, ... dimNLsb [, dimNRsb]]]]]]);

Here:

system_task
Name of the system task (required). It can be $vcdplusmemon,
$vcdplusmemoff, or $vcdplusmemorydump.

Mda
Name of the MDA to be recorded. It must not be a part select. If
there are no other arguments, then all elements of the MDA are
recorded to the VPD file.

6-8

VPD and EVCD File Generation

dim1Lsb
Name of the variable that contains the left bound of the first
dimension. This is an optional argument. If there are no other
arguments, then all elements under this single index of this
dimension are recorded.

dim1Rsb
Name of variable that contains the right bound of the first
dimension. This is an optional argument.

Note:
The dim1Lsb and dim1Rsb arguments specify the range of the
first dimension to be recorded. If there are no other arguments,
then all elements under this range of addresses within the first
dimension are recorded.

dim2Lsb
This is an optional argument with the same functionality as
dim1Lsb, but refers to the second dimension.

dim2Rsb
This is an optional argument with the same functionality as
dim1Rsb, but refers to the second dimension.

dimNLsb
This is an optional argument that specifies the left bound of the
Nth dimension.

dimNRsb
This is an optional argument that specifies the right bound of the
Nth dimension.

6-9

VPD and EVCD File Generation

Note that MDA system tasks can take 0 or more arguments, with the
following caveats:

• No arguments: The whole design is traversed and all memories
and MDAs are recorded.

Note that this process may cause significant memory usage, and
simulation drag.

• One argument: If the object is a scope instance, all memories/
MDAs contained in that scope instance and its children will be
recorded. If the object is a memory/MDA, that object will be
recorded.

Using $vcdplusmemon and $vcdplusmemoff

You can use the $vcdplusmemon and $vcdplusmemoff tasks to
turn on and off, respectively, the recording of changes within
memories or MDAs in a design. By using these tasks in VCS, you are
able to view changes of memories and MDAs in DVE windows.

Running VCS
In order for VCS to provide MDA data using the $vcdplusmemon
and $vcdplusmemoff tasks, it requires the +memcbk and the +v2k
switches.

VCS example:

vcs -R -I mda.v +memcbk +v2k

MDA declaration example:

reg [1:0] mem [3:0] [6:4];

6-10

VPD and EVCD File Generation

In order for VCS to provide memory data, it requires the +memcbk
switch.

VCS example:

vcs -R -I mda.v +memcbk

Memory declaration example:

reg [1:0] mem [3:0];

Examples

This section provides examples and graphical representations of
various MDA and memory declarations using the $vcdplusmemon
and $vcdplusmemoff tasks.

Example 6-1 MDA and Memory Declaration

Note that mem01 in this example is a three-dimensional array. It has
3x3x3 (27) locations; each location is 8 bits in length.

reg [3:0] addr1L, addr1R, addr2L, addr2R, addr3L, addr3R;

reg [7:0] mem01 [1:3] [4:6] [7:9]

See Figure 6-1 for an graphical representation of Example 6-1.

6-11

VPD and EVCD File Generation

Figure 6-1 Diagram of example: reg [7:0] mem01 [1:3] [4:6] [7:9]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

Dimension 1

1

2

3

Dimension 2

4 5 6 Dimension 3

7

8

9

Note: Unlimited dimensions
can be used.

1

2

3

1

2

3

6-12

VPD and EVCD File Generation

Example 6-2 $vcdplusmemon(mem01, addr1L);

$vcdplusmemon(mem01);
 // Records all elements of mem01 to the VPD file.

addr1L = 2;
$vcdplusmemon(mem01, addr1L);
// Records elements mem01[2][4][7] through mem01[2][6][9]

The elements highlighted by the in the diagram in Figure 6-2
demonstrate Example 6-2.

6-13

VPD and EVCD File Generation

Figure 6-2 Diagram of example: $vcdplusmemon(mem01, addr1L);

Example 6-3 $vcdplusmemon(mem01, addr1L, addr1R)

addr1L = 2;
addr1R = 3;
$vcdplusmemon(mem01, addr1L, addr1R);
// Records elements mem01[2][4][7] through mem01[3][6][9]

The elements highlighted by the in the diagram in Figure 6-3
demonstrate Example 6-3.

1

2

3

1

2

3

Starting bound:
mem01[2][4][7]

Ending bound:
mem01[2][6][9]

9

1

2

3 [76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

8
[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

7

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

4 5 6

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

6-14

VPD and EVCD File Generation

Figure 6-3 $vcdplusmemon(mem01, addr1L, addr1R);

Example 6-4 $vcdplusmemon(mem01, addr1L, addr1R, addr2L);

addr1L = 2;
addr1R = 2;
addr2L = 5;
$vcdplusmemon(mem01, addr1L, addr1R, addr2L);
// Records elements mem01[2][5][7] through mem01[2][5][9]

Starting bound:
mem01[2][4][7]

Ending bound:
mem01[3][6][9]

9

1

2

3

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

8

1

2

3 [76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

1

2

3

7

[76543210] [76543210] [76543210]

4 5 6

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

6-15

VPD and EVCD File Generation

The elements highlighted by the in the diagram in Figure 6-4
demonstrate Example 6-4.

Figure 6-4 $vcdplusmemon(mem01, addr1L, addr1R, addr2L);

Starting bound:
mem01[2][5][7]

Ending bound:
mem01[2][5][9]

[76543210] [76543210] [76543210]

9

1

2

3

[76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

8

1

2

3

[76543210] [76543210] [76543210]

1

2

3

7

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

4 5 6

[76543210] [76543210] [76543210]

6-16

VPD and EVCD File Generation

Example 6-5 $vcdplusmemon(mem01, addr1L, addr1R, addr2L, addr2R)

addr1L = 2;
addr1R = 2;
addr2L = 5;
addr2R = 6;
$vcdplusmemon(mem01, addr1L, addr1R, addr2L, addr2R);
// Records elements mem01[2][5][7] through mem01[2][6][9]

The elements highlighted by the in the diagram in Figure 6-5
demonstrate Example 6-5.

6-17

VPD and EVCD File Generation

Figure 6-5 $vcdplusmemon(mem01, addr1L, addr1R, addr2L, addr2R);

Example 6-6 Selected element: mem01[2][5][8]
addr1L = 2;
addr1R = 2;
addr2L = 5;
addr2R = 5;
addr3L = 8;
addr3R = 8;
$vcdplusmemon(mem01, addr1L, addr1R, addr2L, addr2R, addr3L
);
$vcdplusmemon(mem01, addr1L, addr1R, addr2L, addr2R,

Starting bound:
mem01[2][5][7]

Ending bound:
mem01[2][6][9]

9

1

2

3 [76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

8

1

2

3

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

1

2

3

7

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

4 5 6

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

6-18

VPD and EVCD File Generation

addr3L, addr3R);
// Either command records element mem01[2][5][8]

The element highlighted by the in the diagram in Figure 6-6
demonstrates Example 6-6.

Figure 6-6 Selected element: mem01[2][5][8]

Using $vcdplusmemorydump

The $vcdplusmemorydump task dumps a snapshot of memory
locations. When the function is called, the current contents of the
specified range of memory locations are recorded (dumped).

Selected element:
mem01[2][5][8]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

9

1

2

3

[76543210] [76543210]

[76543210] [76543210] [76543210]

8

1

2

3

[76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

[76543210] [76543210] [76543210]

1

2

3

4 5 6

7

[76543210] [76543210] [76543210]

6-19

VPD and EVCD File Generation

You can specify only once the complete set of multi-dimensional array
elements to be dumped. You can specify multiple element subsets
of an array using multiple $vcdplusmemorydump commands, but
they must occur in the same simulation time. In subsequent simulation
times, $vcdplusmemorydump commands must use the initial set of
array elements or a subset of those elements. Dumping elements
outside the initial specifications results in a warning message.

Within VirSim, multi-dimensional arrays can be expanded in each
dimension in much the same way as memories. By default, only the
portions of the multi-dimensional array that have data are shown in
VirSim.

System Tasks for Capturing Source Statement
Execution Data

The Source Window requires the use of VPD options to save source
hierarchy information and VPD tasks to capture source statement
execution information in VPD files. Capturing source statement
execution allows you to view and trace statement execution in the
Source Window.

Note that saving statement execution data can significantly increase
simulation time and VPD file size.

Capturing Source Statement Execution

The three ways to capture source statement execution are:

1. For viewing in post simulation mode, include
$vcdplustraceon.

6-20

VPD and EVCD File Generation

2. For viewing in post simulation mode, enter the appropriate trace
task at the VCS command line.

3. For viewing in interactive mode in the DVE Source Window,
Capture Line Data must be enabled (it is enabled by default). To
also generate a VPD file for viewing in post simulation mode,
include the appropriate trace task in the source file.

Source File (.v) VPD File

Source
Execution
Data

VCS PLI$vcdplustraceon;

//
$vcdpluson;

VPD File

Source File (.v)

Source
Execution
Data

VCS PLI

>$vcdplustraceon
>$vcdpluson

6-21

VPD and EVCD File Generation

Source Statement System Tasks

Note:
For VCS you must supply the -line option when creating the
simulation executable.

$vcdplustraceon

The $vcdplustraceon task turns on line tracing. The VPD file
saves line trace information.

Syntax:

$vcdplustraceon (<level>,<scope>*);

Here:

level
The number of hierarchy scope levels to descend to record line
tracing (a zero value records all line tracing to the end of the
hierarchy; default is 1 level).

scope
The name of the scope in which to record line tracing (default is
1 level).

Note:
In the syntax * indicates that the argument can have a list of more
than one value (for scopes).

$vcdplustraceoff

The $vcdplustraceoff task turns off line tracing.

Syntax:

$vcdplustraceoff (<level>,<scope>*);

6-22

VPD and EVCD File Generation

Here:

level
The number of hierarchy scope levels to descend to stop
recording line tracing (a zero value stops the recording of all line
tracing to the end of the hierarchy; default is 1 level).

System Tasks for Capturing Delta Cycle Information

You can use the following VPD system tasks to capture and display
delta cycle information in the Wave Window.

$vcdplusdeltacycleon

The $vcdplusdeltacycleon task enables reporting of delta cycle
information from the VCS CLI or the Verilog source code. It must be
followed by the appropriate $vcdpluson/$vcdplusoff tasks.

Glitch detection is automatically turned on when VCS executes
$vcdplusdeltacycleon unless you have previously used
$vcdplusglitchon/off. Once you use $vcdplusglitchon/
off, DVE allows you explicit control of glitch detection.

Syntax:

$vcdplusdeltacycleon;

Note:
Delta cycle collection can start only at the beginning of a time
sample. The $vcdplusdeltacycleon task must precede the
$vcdpluson command to ensure that delta cycle collection will
start at the beginning of the time sample.

6-23

VPD and EVCD File Generation

$vcdplusdeltacycleoff

The $vcdplusdeltacycleoff task turns off reporting of delta
cycle information starting at the next sample time.

Glitch detection is automatically turned off when VCS executes
$vcdplusdeltacycleoff unless you have previously used
$vcdplusglitchon/off. Once you use $vcdplusglitchon/
off, DVE allows you explicit control of glitch detection.

Syntax:

$vcdplusdeltacycleoff;

System Tasks for Capturing Unique Event Information

You can use the following VPD system tasks to capture unique events
and glitch information.

$vcdplusglitchon

The $vcdplusglitchon task turns on checking for zero delay
glitches and other cases of multiple transitions for a signal in one
sample time. Glitch detection is automatically turned on when VCS
executes $vcdplusdeltacycleon unless you have previously
used $vcdplusglitchon/off. Once you use
$vcdplusglitchon/off, DVE allows you explicit control of glitch
detection.

When VCS detects a glitch for a signal, it records a zero delay glitch
event. The default setting is not to perform zero delay glitch detection.

Syntax:

$vcdplusglitchon;

6-24

VPD and EVCD File Generation

$vcdplusglitchoff

The $vcdplusglitchoff task turns off checking for zero
delay glitches. Glitch detection is automatically turned off when VCS
executes $vcdplusdeltacycleoff unless you have previously
used $vcdplusglitchon/off. Once you use
$vcdplusglitchon/off, DVE allows you explicit control of glitch
detection.

Syntax:

$vcdplusglitchoff;

$vcdplusevent

The $vcdplusevent task allows you to record a unique event for a
signal at the current simulation time unit. These events can be
displayed in the Wave Window, Logic Browser, and Register Window.

There can be a maximum of 244 unique events, plus the predefined
"glitch" event, which the PLI automatically generates, and a "Too
many events" event, which is the default name for all unique events
beyond the allowed 244.

Syntax:

$vcdplusevent (<signal>, "<event_name>",
"<severity><shape>");

Here:

signal
Any valid signal name.

6-25

VPD and EVCD File Generation

event_name
A unique string which describes the event. This event name
appears in the status bar of the Wave Window, Logic Browser, or
Register Window when the mouse is placed on the event marker.

severity
A single character with legal values E, W, or I, which indicates the
severity of the event. The severity of the event may be Error,
Warning, or Information respectively. Colors associated with the
severity level are set in the X Resource file. The defaults are
Red=Error, Yellow=Warning, and Green=Information. If the
severity is not interpretable, it defaults to E.

shape
A single character with legal values S, T, or D which indicates the
geometry of the event as drawn by VirSim, and are Square,
Triangle, and Diamond respectively. If the geometry is not
interpretable, it will default to T.

Runtime Options

You can use specific command line options to generate VPD files.
These options allow you to set the RAM buffer size, provide the VPD
default file name, specify the VPD file size, ignore file calls, check
licenses, and control what information is stored.

+vpdbufsize to Control RAM Buffer Size

To gain efficiency, VPD uses an internal buffer to store value changes
before saving them on disk. The +vpdbufsize command modifies
the size of the internal buffer.

6-26

VPD and EVCD File Generation

Syntax:

+vpdbufsize+nn

Here nn is buffer size in megabytes. The minimum size is the size
required to store two value changes per signal and the default size
is the size required to store 15 value changes for each signal (but not
less than 2 megabytes).

Note:
VCS automatically increases the buffer size as needed to comply
with this limit.

+vpdfile to Set the Output File Name

The +vpdfile command allows you to specify the output file name.

Syntax:

+vpdfile+filename

Here filename is the VPD filename (default is vcdplus.vpd). You
must include the full file name with the .vpd extension.

+vpdfilesize to Control Maximum File Size

The +vpdfilesize command creates a VPD file, which never
exceeds a specified file size nn megabytes. When the file size limit
is reached, VPD continues saving simulation history by overwriting
older history.

6-27

VPD and EVCD File Generation

File size is a direct result of circuit size, circuit activity, and the data
being saved. Test cases show that VPD file sizes can range from a
few megabytes to a few hundred megabytes. Many DVE users can
share the same VPD history file, which may be a reason for saving
all time value changes when you simulate a design. You can save
one history file for the design and overwrite it on each subsequent run.

Syntax:

+vpdfilesize+nn

Here nn is the file size in megabytes.

+vpdignore to Ignore $vcdplus Calls in Code

The +vpdignore command instructs VCS to ignore any
$vcdplusxx calls and license checking. By default, VCS checks out
a VPD PLI license if there is a $vcdplusxx task in the Verilog source.
In some cases, this statement is never executed and VPD PLI license
checkout should be suppressed. The +vpdignore command
performs the license suppression.

Syntax:

+vpdignore

+vpddrivers to Store Driver Information

By default, VPD records value changes only for the resolved value
for each net. To also report value changes for all the drivers when
there is more than one driver, use the +vpddrivers option during
simulation. The driver values, for example, enable the Logic Browser
to identify which drivers produce an undesired X on the resolved net.

6-28

VPD and EVCD File Generation

This option affects performance and memory usage for larger designs
or longer runs.

Syntax:

+vpddrivers

+vpdnoports to Eliminate Storing Port Information

By default, VPD stores the port type for each signal. When you use
this option, the Hierarchy Browser views all signals as internal and
not connected to a port.

The +vpdnoports option causes VPD to eliminate storing port
information, which is used by the Hierarchy Browser to show whether
a signal is a port and if so its direction. This option to some extent
reduces simulation initialization time and memory usage for larger
designs.

Syntax:

+vpdnoports

+vpdnocompress to Bypass Data Compression

By default, VPD compresses data as it is written to the VPD file. You
can disable this feature by supplying the +vpdnocompress
command line option.

Syntax:

+vpdnocompress

6-29

VPD and EVCD File Generation

+vpdnostrengths to Not Store Strength Information

By default, VPD stores strength information on value changes to the
VPD file. You can disable this feature by supplying the
+vpdnostrengths command line option. Use of this option may
lead to slight improvements in VCS performance.

Syntax:

+vpdnostrengths

VPD Methodology

The following information explains how to manage the DVE and VPD
functions and how to to optimize simulation and analysis.

Advantages of Separating Simulation From Analysis

Traditionally, interactive debugging has required a user to occupy
one VCS license while simulating, thinking, resimulating, thinking...

Simulating once and efficiently storing as much data as possible
allows for a more efficient debug methodology that has the following
features:

• VCS is used once and then released to other users.

• The analysis tool can go both forwards and backwards in time
and analyze the complete set of data.

• The same set of data can be used by multiple users to debug one
or more problems in parallel.

6-30

VPD and EVCD File Generation

Conceptual Example of Using VPD System Tasks

The example in Figure 6-7, shows the entry of the $vcdplus system
tasks in Module B scope. The dump saves all the variables in Module
B from time 100 to 300, all variables in module C from time 200 to
500, and a single variable in module D1.clk from time 600 to 900.
Zero delay glitch detection is on while value change data is recorded
throughout the simulation. The VPD file stores delta cycle information
starting at the first value change that occurs after time 200 and ending
after the last value change during time 300. At time 700 a unique
event is added to signal D.clk.

Figure 6-7 Example Definition of VPD Signal Capture (Recording)

Methods

You can implement signal data capture (recording) control in the
source code and at the shell command line, as shown in the following
examples.

fork
#0 $vcdplusglitchon;
#100 $vcdpluson (1,B);
#200 $vcdplusdeltacycleon;
#200 $vcdpluson (1,C);
#300 $vcdplusdeltacycleoff;
#300 $vcdplusoff (1,B);
#500 $vcdplusoff (1,C);
#600 $vcdpluson (D.clk);
#700 $vcdplusevent (D.clk, "UserEvent", "IS");
#900 $vcdplusoff (D.clk);

join

Module B

Module C Module D

Module A

6-31

VPD and EVCD File Generation

• Create a task in source:

task sigon_instreg;
begin

$vcdpluson(test.risc1.instreg);
end

endtask

Then call the task from source code.

initial
sigon_instreg;

Or, enter the task name at the DVE interactive
prompt.

C1> sigon_instreg;

• Use a shell command argument to enable task
execution:

vcs -f run.f +signal_on

initial
if ($test$plusargs("signal_on"))

sigon_instreg;
task sigon_instrg;
begin

$vcdpluson(test.risc1.instreg);
end

endtask

6-32

VPD and EVCD File Generation

VPD On/Off PLI Rules

Follow these basic rules while using VPD On/Off PLI system tasks:

• You can insert the $vcdpluson and $vcdplusoff tasks in
source code or enter it at the DVE interactive prompt.

• The $vcdpluson and $vcdplusoff tasks accept one level but
multiple scopes/signals as arguments.

• The $vcdpluson and $vcdplusoff tasks, when applied to the
same signals, toggle the recording on and off. The count for each
signal is accumulative; (+,-). ..on/..on/..off leaves the signal
recording on. For example using the hierarchy of Figure 6-7, the
following command sequence will still report on Module D since
it is added twice but only removed once.

$vcdpluson(A); $vcdpluson(B); $vcdplusoff(D);

• On large designs, you should selectively turn signal data capture
(dumping) on or off. Multiple use of $vcdpluson and
$vcdplusoff allow on and off selection.

• The $vcdpluson and $vcdplusoff tasks executed in the same
simulation time period may execute in any order. To ensure that
one or the other executes last, separate them by at least one
simulation time unit.

• Signals that are turned off may have signal value changes
recorded if a higher/ lower level of the same signal is turned on.

6-33

VPD and EVCD File Generation

Performance Tips

The following tips explain how to manage performance of VCS and
VPD:

• Normally you should save data for all signals that you may require
for analysis. The time range should be such that it very likely
contains the origin of the problem.

• Generally, the bigger you make the RAM buffer size (via the
+vpdbufsize option), the faster the simulation completes its run.
The effects are so dependent on circuit and activity that
rules-of-thumb do not apply. Synopsys suggests doubling the
RAM size for the same simulation on your own design while
measuring VCS performance to get a figure for an appropriate
setting. When making this measurement, compare sizeable
simulation runs to overcome the effects of compile time. Naturally,
the above requires that you have physical memory to
accommodate the simulation. Swapping significantly reduces
performance.

Making the buffer size too large can cause excessive swapping,
which can dramatically slow the simulation.

• Saving line-execution data enables more efficient debug of
behavioral code. Access to such data allows breakpointing on
particular activities in the code and stepping through the exact
execution of the source. Correctly used, the cost of reporting on
line execution data (slower simulation) more than pays for itself
by enabling much faster location of the code deficiencies.

6-34

VPD and EVCD File Generation

• Saving statement execution for an entire design can increase
simulation time by eight times or more. To limit performance
degradation, limit the use of statement saves to certain scopes.
Instead of saving statement execution from time 0, turn on tracing
just prior to the time of a suspected problem and off after that time.

• The file size increases from 200 to 500 percent when saving line
execution data.

• Glitch detection and delta cycle may significantly increase the size
of the VPD file.

• The +vpdports option costs some CPU time and memory in the
initialization. It allows telling ports from internal signals in the
hierarchy browser.

• The +vpddrivers option costs some CPU time and memory
during the simulation. However, it allows visibility to the individual
values of drivers of a multiply driven net.

• You can use the +vpdfilesize option (file wrap) in a verification
environment where stimuli are automatically generated or read
and the results are verified by the testbench. Then, you can stop
the simulation when an error occurs, and the required history data
will remain even in the relatively small file that is left.

6-35

VPD and EVCD File Generation

EVCD File Generation

You can create an EVCD file for the entire design in the following
ways:

• Using the runtime option -dump_evcd

• Using system tasks

Using the runtime option -dump_evcd

-dump_evcd writes an EVCD file for the instance/s specified as
arguments to this option. You can specify more than one instance
separated by “:” as shown below:

% executable -dump_evcd /top/dev1/intr1:/top/dev1/intr2

The above example dumps the port information of the modules intr1
and intr2. .

Use the compile time option -enableEvcd, to use -dump_evcd
during runtime.

VCS, by default generates the EVCD file in the current working
directory as “output.evcd” suffixed with the process id. However, you
can overwrite this default file name using the runtime option
-dump_evcd_output filename.

6-36

VPD and EVCD File Generation

Using System Tasks

You can use $dumpports or $lsi_dumports system tasks to
generate EVCD files. Using system tasks you can generate multiple
EVCD files for various module instances of the design. See Appendix
D,”Compiler Directives and System Tasks”.

7-1

VCD and VPD File Utilities

7
VCD and VPD File Utilities 1

VCS comes with a number of utilities for processing VCD and VPD
files. You can use these utilities to perform tasks like creating
alternative VCD files, comparing the simulation data in two VCD,
EVCD, or VPD files, easily viewing the data in a VCD file, and
generating a VCD, EVCD, or VPD file that contains a selected subset
of value changes found in a given input VCD, EVCD, or VPD file.

Note:
All the utilities are available in $VCS_HOME/bin.

This chapter describes these utilities in the following sections:

• The vcdpost Utility

• The vcdiff Utility

• The vcat Utility

• The vcsplit Utility

7-2

VCD and VPD File Utilities

• The vcd2vpd Utility

• The vpd2vcd Utility

• The vpdmerge Utility

The vcdpost Utility

You use the vcdpost utility to generate an alternative VCD file that
has the following characteristics:

• Contains value change and transition times for each bit of a vector
net or register, recorded as a separate signal. This is called
“scalarizing” the vector signals in the VCD file.

• Avoids sharing the same VCD identifier code with more than one
net or register. This is called “uniquifying” the identifier codes.

Scalarizing the Vector Signals

The VCD format does not support a mechanism to dump part of a
vector. For this reason, if you enter a bit select or a part select for a
net or register as an argument to the $dumpvars system task, VCS
records value changes and transition times for the entire net or
register in the VCD file. For example, if you enter the following in your
source code:

$dumpvars(1,mid1.out1[0]);

Here mid1.out1[0]is a bit select of a signal because you need to
examine the transition times and value changes of this bit. VCS
however writes a VCD file that contains the following:

7-3

VCD and VPD File Utilities

$var wire 8 ! out1 [7:0] $end

Therefore all the value changes and simulation times for signal out1
are for the entire signal and not just for the 0 bit.

The vcdpost utility can create an alternative VCD file that defines a
separate $var section for each bit of the vector signal. The results
are as follows:

$var wire 8 ! out1 [7] $end
$var wire 8 " out1 [6] $end
$var wire 8 # out1 [5] $end
$var wire 8 $ out1 [4] $end
$var wire 8 % out1 [3] $end
$var wire 8 & out1 [2] $end
$var wire 8 ’ out1 [1] $end
$var wire 8 (out1 [0] $end

What this means is that the new VCD file contains value changes and
simulation times for each bit.

Uniquifying the Identifier Codes

In certain circumstances, to enable better performance, VCS assigns
the same VCD file identifier code to more than one net or register, if
these nets or registers have the same value throughout the
simulation. For example:

$var wire 1 ! ramsel_0_0 $end
$var wire 1 ! ramsel_0_1 $end
$var wire 1 ! ramsel_1_0 $end
$var wire 1 ! ramsel_1_1 $end

Here VCS assigns the ! identifier code to more than one net.

7-4

VCD and VPD File Utilities

Some back-end tools from other vendors fail when you input such a
VCD file. You can use the vcdpost utility to create an alternative VCD
file in which the identifier codes for all nets and registers, including
the ones without value changes, are unique. For example:

$var wire 1 ! ramsel_0_0 $end
$var wire 1 " ramsel_0_1 $end
$var wire 1 # ramsel_1_0 $end
$var wire 1 $ ramsel_1_1 $end

The vcdpost Utility Syntax

The syntax for the vcdpost utility is as follows:

vcdpost [+scalar] [+unique] input_VCD_file output_VCD_file

Here:

+scalar
Specifies creating separate $var sections for each bit in a vector
signal. This option is the default option and you include it on the
command line when you also include the +unique option and
want to create a VCD file that both scalarizes the vector nets and
uniquifies the identifier codes.

+unique
Specifies uniquifying the identifier codes. When you include this
option without the +scalar option, vcdpost uniquifies the
identifier codes without scalarizing the vector signals.

input_VCD_file
The name of the VCD file created by VCS.

output_VCD_file
The name of the alternative VCD file created by the vcdpost utility.

7-5

VCD and VPD File Utilities

The vcdiff Utility

The vcdiff utility compares two dump files and reports any differences
it finds. The dump file can be of type VCD, EVCD or a VPD.

Note:
vcdiff utility cannot compare dump files of different type.

Dump files consist of two sections:

• A header section that reflects the hierarchy (or some subset) of
the design that was used to create the dump file.

• A value change section, which contains all of the value changes
(and times when those value changes occurred) for all of the
signals referenced in the header.

The vcdiff utility always performs two diffs. First, it compares the
header sections and reports any signals/scopes that are present in
one dump file but are absent in the other.

The second diff compares the value change sections of the dump
files, for signals that appear in both dump files. The vcdiff utility
determines value change differences based on the final value of the
signal in a time step.

7-6

VCD and VPD File Utilities

The vcdiff Utility Syntax

The syntax of the vcdiff utility is as follows:

vcdiff first_dump_file second_dump_file
[-noabsentsig] [-absentsigscope scope] [-absentsigiserror]
[-allabsentsig][-absentfile filename][-matchtypes] [-ignorecase]
[-min time] [-max time] [-scope instance] [-level level_number]
[-include filename] [-ignore filename] [-strobe time1 time2]
[-prestrobe] [-synch signal] [-synch0 signal] [-synch1 signal]
[-when expression] [-xzmatch] [-noxzmatchat0]
[-compare01xz] [-xumatch] [-xdmatch] [-zdmatch] [-zwmatch]
[-showmasters] [-allsigdiffs] [-wrapsize size]
[-limitdiffs number] [-ignorewires] [-ignoreregs] [ingorereals]
[-ignorefunctaskvars][-ignoretiming units] [-ignorestrength]
[-geninclude [filename]] [-spikes]

Options for Specifying Scope/Signal Hierarchy

The following options control how the the vcdiff utility compares the
header sections of the dump files:

-noabsentsig
Does not report any signals that are present in one dump file but
are absent in the other.

-absentsigscope [scope]
Reports only absent signals in the given scope.

-absentfile [file]
Prints the full path names of all absent scopes/signals to the given
file, as opposed to stdout.

-absentsigiserror
If this option is present and there are any absent signals in either
dump file, then vcdiff returns an error status upon completion even
if it doesn’t detect any value change differences. If this option is
not present, absent signals do not cause an error.

7-7

VCD and VPD File Utilities

-allabsentsig
Reports all absent signals. If this option is not present, by default,
vcdiff reports only the first 10 absent signals.

-ignorecase
Ignores the case of scope/signal names when looking for absent
signals. In effect, it converts all signal/scope names to uppercase
before comparison.

-matchtypes
Reports mismatches in signal data types between the two dump
files.

Options for Specifying Scope(s) to be Value Change Diffed

By default, vcdiff compares the value changes for all signals that
appear in both dump files. The following options limit value change
comparisons to specific scopes.

-scope [scope]
Changes the top level scope to be value change diffed from the
top of the design to the indicated scope. Note, all child scopes/
signals of the indicated scope will be diffed unless modified by the
-level option (below).

-level N
Limits the depth of scope for which value change diffing occurs.
For example, if -level 1 is the only command line option, then
vcdiff diffs the value changes of only the signals in the top level
scope in the dump file.

-include [file]
Reports value change diffs only for those signals/scopes given in
the specified file. The file contains a set of full path specifications
of signals and/or scopes, one per line.

7-8

VCD and VPD File Utilities

-ignore [file]
Removes any signals/scopes contained in the given file from
value change diffing. The file contains a set of full path
specifications of signals and/or scopes, one per line.

Note:
The vcdiff utility applies the -scope/-level options first. It then
applies the -include option to the remaining scopes/signals,
and finally applies the -ignore option.

Options for Specifying When to Perform Value Change Diffing

The following options limit when vcdiff detects value change
differences:

-min time
Specifies the starting time (in simulation units) when value change
diffing is to begin (by default, time 0).

-max time
Specifies the stopping time (in simulation units) when value
change diffing will end. By default, this occurs at the latest time
found in either dump file.

-strobe first_time delta_time
Only checks for differences when the strobe is true. The strobe
is true at first_time (in simulation units) and then every
delta_time increment thereafter.

-prestrobe
Used in conjunction with -strobe, tells vcdiff to look for
differences just before the strobe is true.

7-9

VCD and VPD File Utilities

-when expression
Reports differences only when the given when expression is true.
Initially this expression can consist only of scalar signals,
combined via and, or, xor, xnor, and not operators and employ
parentheses to group these expressions. You must fully specify
the complete path (from root) for all signals used in expressions.

-synch signal
Checks for differences only when the given signal changes value.
In effect, the given signal is a "clock" for value change diffing,
where diffs are only checked for on transitions (any) of this signal.

-synch0 signal
As -sync (above) except that it checks for diffs when the given
signal transitions to ’0’.

-synch1
As -sync (above) except that it checks for diffs only when the
given signal transitions to ’1’.

Note:
The -max, -min and -when options must all be true in order for
vcdiff to report a value change difference.

7-10

VCD and VPD File Utilities

Options for Filtering Differences

The following options filter out value change differences that are
detected under certain circumstances. For the most part, these
options are additive.

-ignoretiming time
Ignores the value change when the same signal in one of the VCD
files has a different value from the same signal in the other VCD
file for less than the specified time. This is to filter out signals that
have only slightly different transition times in the two VCD files.
The vcdiff utility reports a change when there is a transition to a
different value in one of the VCD files and then a transition back
to a matching value in that same file.

-ignoreregs
Does not report value change differences on signals that are of
type register.

-ignorewires
Does not report value change differences on signals that are of
type wire.

 -ignorereals
Does not report value change differences on signals that are of
type real.

-ignorefunctaskvars
Does not report value change differences on signals that are
function or task variables.

-ignorestrength (EVCD only)
EVCD files contain a richer set of signal strength and directionality
information than VCD or even VPD files. This option ignores the
strength portion of a signal value when checking for differences.

7-11

VCD and VPD File Utilities

-compare01xz (EVCD only)
Converts all signal state information to equivalent 4-state values
(0, 1, x, z) before difference comparison is made (EVCD files only).
Also ignores the strength information.

-xzmatch
Equates x and z values.

-xumatch (9-state VPD file only)
Equates x and u (uninitialized) values.

-xdmatch (9-state VPD file only)
Equates x and d (dontcare) values.

-zdmatch (9-state VPD file only)
Equates z and d (dontcare) values.

-zwmatch (9-state VPD file only)
Equates z and w (weak 1) values. In conjunction with -xzmatch
(above), this option causes x and z value to be equated at all times
EXCEPT time 0.

Options for Specifying Output Format

The following options change how value change differences are
reported.

-allsigdiffs
By default, vcdiff only shows the first difference for a given signal.
This option reports all diffs for a signal until the maximum number
of diffs is reported (see -limitdiffs).

 -wrapsize columns
Wraps the output of vectors longer than the given size to the next
line. By default, this value is 64.

7-12

VCD and VPD File Utilities

-showmasters (VCD, EVCD files only)
Shows collapsed net masters. VCS can split a collapsed net into
several sub-nets when this has a performance benefit. This option
reports the master signals when the master signals (first signal
defined on a net) are different in the two dump files.

-limitdiffs number_of_diffs
By default, vcdiff stops after the first 50 diffs are reported. This
option overrides that default. Setting this value to 0 causes vcdiff
to report all diffs.

-geninclude filename
Produces a separate file of the given name in addition to the
standard vcdiff output. This file contains a list of signals that have
at least one value change difference. The format of the file is one
signal per line. Each signal name is a full path name. You can use
this file as input to the vcat tool with vcat’s -include option.

-spikes
A spike is defined as a signal that changes multiple times in a
single time step. This option annotates with #’s the value change
differences detected when the signal spikes (glitches). It keeps
and reports a total count of such diffs.

The vcat Utility

The format of a VCD or a EVCD file, although a text file, is written to
be read by software and not by human designers. VCS includes the
vcat utility to enable you to more easily understand the information
contained in a VCD file.

7-13

VCD and VPD File Utilities

The vcat Utility Syntax

The vcat utility has the following syntax:

vcat VCD_filename [-deltaTime] [-raw] [-min time] [-max time]
[-scope instance_name] [-level level_number]
[-include filename] [-ignore filename] [-spikes] [-noalpha]
[-wrapsize size] [-showmasters] [-showdefs] [-showcodes]
[-stdin] [-vgen]

Here:

-deltaTime
Specifies writing simulation times as the interval since the last
value change rather than the absolute simulation time of the signal
transition. Without -deltaTime a vcat output looks like this:

--- TEST_top.TEST.U4._G002 ---
 0 x
 33 0
 20000 1
 30000 x
 30030 z
 50030 x
 50033 1
 60000 0
 70000 x
 70030 z

With -deltaTime a vcat output looks like this:

--- TEST_top.TEST.U4._G002 ---
 0 x
 33 0
 19967 1
 10000 x
 30 z
 20000 x
 3 1
 9967 0

7-14

VCD and VPD File Utilities

 10000 x
 30 z

-raw
Displays “raw” value changed data, organized by simulation time,
rather than signal name.

-min time
Specifies a start simulation time from which vcat begins to display
data.

-max time
Specifies an end simulation time up to which vcat displays data.

-scope instance_name
Specifies a module instance. The vcat utility displays data for all
signals in the instance and all signals hierarchically under this
instance.

-level level_number
Specifies the number of hierarchical levels for which vcat displays
data. The starting point is either the top-level module or the
module instance you specify with the -scope option.

-include filename
Specifies a file that contains a list of module instances and signals.
The vcat utility only displays data for these signals or the signals
in these module instances.

-ignore filename
Specifies a file that contains a list of module instances and signals.
However, the vcat utility does NOT display data for these signals
or the signals in these module instances.

7-15

VCD and VPD File Utilities

-spikes
Indicates all zero-time transitions with the >> symbol in the
left-most column. In addition, prints a summary of the total number
of spikes seen at the end of the vcat output. The following is an
example of the new output:

 --- DF_test.logic.I_348.N_1 ---
 0 x
 100 0
 120 1
 >>120 0
 4000 1
 12000 0
 20000 1

 Spikes detected: 5
-noalpha

By default vcat displays signals within a module instance in
alphabetical order. This option disables this ordering.

-wrapsize size
Specifies value displays for wide vector signals, how many bits to
display on a line before wrapping to the next line.

-showmasters
Specifies showing collapsed net masters

-showdefs
Specifies displaying signals but not their value changes or the
simulation time of these value changes.

-showcodes
Specifies displaying the signal’s VCD file identifier code.

-stdin
Enables you to use standard input, such as piping the VCD file
into vcat, instead of specifying the filename.

7-16

VCD and VPD File Utilities

-vgen
Generates from a VCD file two types of source files for a module
instance: one that models how the design applies stimulus to the
instance, and the other that models how the instance applies
stimulus to the rest of the design. See "Generating Source Files
From VCD Files" on page 7-17.

The following is an example of the output from the vcat utility:

vcat exp1.vcd

exp1.vcd: scopes:6 signals:12 value-changes:13

--- top.mid1.in1 ---
 0 1

--- top.mid1.in2 ---
 0 xxxxxxxx
 10000 00000000

--- top.mid1.midr1 ---
 0 x
 2000 1

--- top.mid1.midr2 ---
 0 x
 2000 1

In this output you see, for example, that signal top.mid1.midr1 at time
0 had a value of X and at simulation time 2000 (as specified by the
$timescale section of the VCD file, which VCS derives from the
time precision argument of the ‘timescale compiler directive) this
signal transitioned to 1.

7-17

VCD and VPD File Utilities

Generating Source Files From VCD Files

The vcat utility can generate Verilog source files that are one of the
following:

• A module definition that succinctly models how a module instance
is driven by a design, that is, a concise testbench module that
instantiates the specified instance and applies stimulus to that
instance the way the entire design does. This is called testbench
generation.

• A module definition that mimics the behavior of the specified
instance to the rest of the design, that is, it has the same output
ports as the instance and in this module definition the values from
the VCD file are directly assigned to these output ports. This is
called module generation.

Note:
The vcat utility can only generate these source files for instances
of module definitions that do not have inout ports.

Testbench generation enables you to focus on a module instance,
applying the same stimulus as the design does but at faster simulation
because the testbench is far more concise than the entire design.
You can substitute module definitions at different levels of abstraction
and use vcdiff to compare the results.

Module generation enables you to use much faster simulating
“canned” modules for a part of the design to enable the faster
simulation of other parts of the design that need investigation.

7-18

VCD and VPD File Utilities

The name of the generated source file from testbench generation
begins with testbench followed by the module and instance names
in the hierarchical name of the module instance, separated by
underscores. For example testbench_top_ad1.v.

Similarly, the name of the generated source file from module
generation begins with moduleGeneration followed by the module
and instance names in the hierarchical name of the module instance,
separated by underscores. For example
moduleGeneration_top_ad1.v.

You enable vcat to generate these files by doing the following:

1. Writing a configuration file.

2. Running vcat with the -vgen command line option.

Writing the Configuration File

The configuration file is named vgen.cfg by default and vcat looks for
it in the current directory. This file needs three types of information
specified in the following order:

1. The hierarchical name of the module instance.

2. Specification of testbench generation with the keyword
testbench or specification of module generation with the
keyword moduleGeneration.

3. The module header and the port declarations from the module
definition of the module instance.

You can use Verilog comments in the configuration file.

7-19

VCD and VPD File Utilities

The following is an example of a configuration file:

Example 7-1 Configuration File
top.ad1
testbench
//moduleGeneration
module adder (out,in1,in2);
input in1,in2;
output [1:0] out;

You can use a different name and location for the configuration file
but if you do you must enter it as an argument to the -vgen option.
For example:

vcat filename.vcd -vgen /u/design1/vgen2.cfg

Example 7-2 Source Code

Consider the following source code:

module top;
reg r1,r2;
wire int1,int2;
wire [1:0] result;

initial
begin
$dumpfile("exp3.vcd");
$dumpvars(0,top.pa1,top.ad1);
#0 r1=0;
#10 r2=0;
#10 r1=1;
#10 r2=1;
#10 r1=0;
#10 r2=0;
#10 r1=1;
#10 r2=1;
#10 r1=0;
#10 r2=0;

7-20

VCD and VPD File Utilities

#10 r1=1;
#10 r2=1;
#10 r1=0;
#10 r2=0;
#100 $finish;
end

passer pa1 (int1,int2,r1,r2);
adder ad1 (result,int1,int2);
endmodule

module passer (out1,out2,in1,in2);
input in1,in2;
output out1,out2;

assign out1=in1;
assign out2=in2;
endmodule

module adder (out,in1,in2);
input in1,in2;
output [1:0] out;

reg r1,r2;
reg [1:0] sum;

always @ (in1 or in2)
begin
r1=in1;
r2=in2;
sum=r1+r2;
end

assign out=sum;
endmodule

7-21

VCD and VPD File Utilities

Notice that the stimulus from the testbench module named test
propagates through an instance of a module named passer before
it propagates to an instance of a module named adder. The vcat
utility can generate a testbench module to stimulate the instance of
adder in the same exact way but in a more concise and therefore
faster simulating module.

If we use the sample vgen.cfg configuration file in Example 7-1 and
enter the following command line:

vcat filename.vcd -vgen

The generated source file, testbench_top_ad1.v, is as follows:

module tbench_adder ;
wire [1:0] out ;
reg in2 ;
reg in1 ;
initial #131 $finish;
initial $dumpvars;
initial begin
 #0 in2 = 1’bx;
 #10 in2 = 1’b0;
 #20 in2 = 1’b1;
 #20 in2 = 1’b0;
 #20 in2 = 1’b1;
 #20 in2 = 1’b0;
 #20 in2 = 1’b1;
 #20 in2 = 1’b0;
end
initial begin
 in1 = 1’b0;
 forever #20 in1 = ~in1 ;
end
adder ad1 (out,in1,in2);
endmodule

7-22

VCD and VPD File Utilities

This source file uses significantly less code to apply the same stimulus
with the instance of module passer omitted.

If we revise the vgen.cfg file to have vcat do module generation, the
generated source file, moduleGeneration__top_ad1.v, is as follows:

module adder (out,in1,in2) ;
input in2 ;
input in1 ;
output [1:0] out ;
reg [1:0] out ;
initial begin
 #0 out = 2’bxx;
 #10 out = 2’b00;
 #10 out = 2’b01;
 #10 out = 2’b10;
 #10 out = 2’b01;
 #10 out = 2’b00;
 #10 out = 2’b01;
 #10 out = 2’b10;
 #10 out = 2’b01;
 #10 out = 2’b00;
 #10 out = 2’b01;
 #10 out = 2’b10;
 #10 out = 2’b01;
 #10 out = 2’b00;
end
endmodule

Notice that the input ports are stubbed and the values from the VCD
file are assigned directly to the output port.

7-23

VCD and VPD File Utilities

The vcsplit Utility

The vcsplit utility generates a VCD, EVCD, or VPD file that contains
a selected subset of value changes found in a given input VCD,
EVCD, or VPD file (the output file has the same type as the input file).
You can select the scopes/signals to be included in the generated
file either via a command line argument, or a separate "include" file.

The vcsplit Utility Syntax

The vcsplit utility has the following syntax:

vcsplit [-o output_file] [-scope selected_scope_or_signal]
[-include include_file] [-min min_time] [-max max_time]
[-level n] [-ignore ignore_file] input_file [-v] [-h]

Here:

-o output_file
Specifies the name of the new VCD/EVCD/VPD file to be
generated. If output_file is not specified, vcsplit creates the
file with the default name vcsplit.vcd.

-scope selected_scope_or_signal
Specifies a signal or scope whose value changes are to be
included in the output file. If a scope name is given, then all signals
and sub-scopes in that scope are included.

-include include_file
Specifies the name of an include file that contains a list of signals/
scopes whose value changes are to be included in the output file.

7-24

VCD and VPD File Utilities

The include file must contain one scope or signal per line. Each
presented scope/signal must be found in the input VCD, EVCD,
or VPD file. If the file contains a scope, and separately, also
contains a signal in that scope, vcsplit includes all the signals in
that scope, and issues a warning.

Note:
If you use both -include and -scope options, vcsplit uses
all the signals and scopes indicated.

input_file
Specifies the VCD, EVCD, or VPD file to be used as input.

Note:
If the input file is either VCD or EVCD, and it is not specified,
vcsplit takes its input from stdin. The vcsplit utility has this stdin
option for VCD and EVCD files so that you can pipe the output
of gunzip to this tool. If you try to pipe a VPD file through stdin,
vcsplit exits with an error message.

-min min_time
Specifies the time to begin the scan.

-max max_time
Specifies the time to stop the scan.

-ignore ignore_file
Specifies the name of the file that contains a list of signals/scopes
whose value changes are to be ignored in the output file.

If you specify neither include_file nor
selected_scope_or_signal, then vcsplit includes all the
value changes in the output file except the signals/scopes in the
ignore_file.

7-25

VCD and VPD File Utilities

If you specify an include_file and/or a
selected_scope_or_signal, vcsplit includes all value
changes of those signals/scopes that are present in the
include_file and the selected_scope_or_signal but
absent in ignore_file in the output file. If the ignore_file
contains a scope, vcsplit ignores all the signals and the scopes
in this scope.

-level n
Reports only n levels hierarchy from top or scope. If you specify
neither include_file nor selected_scope_or_signal,
vcsplit computes n from the top level of the design. Otherwise, it
computes n from the highest scope included.

-v
Displays the current version message.

-h
Displays a help message explaining usage of the vcsplit utility.

Note:
In general, any command line error (such as illegal arguments)
that VCS detects causes vcsplit to issue an error message and
exit with an error status. Specifically:

- If there are any errors in the -scope argument or in the include
file (such as a listing a signal or scope name that does not exist
in the input file), VCS issues an error message, and vcsplit exits
with an error status.

- If VCS detects an error while parsing the input file, it reports an
error, and vcsplit exits with an error status.

- If you do not provide either a -scope, -include or -ignore
option, VCS issues an error message, and vcsplit exits with an
error status.

7-26

VCD and VPD File Utilities

Limitations
• MDAs are not supported.

• Bit/part selection for a variable is not supported. If this usage is
detected, the vector will be regarded as all bits are specified.

The vcd2vpd Utility

The vcd2vpd utility converts a VCD file generated using $dumpvars
or any CLI or SCL dump commands to a VPD file.

The vcd2vpd Utility Syntax

vcd2vpd [-bmin_buffer_size] [-fmax_output_filesize] [-h]
[-m] [-q] [+delatcycle] [+glitchon] [+nocompress]
[+nocurrentvalue] [+bitrangenospace] [+vpdnoreadopt]
[+dut+dut_sufix] [+tf+tf_sufix] vcd_file vpd_file

Here:

-bmin_buffer_size

Minimum buffer size in KB used to store Value Change Data
before writing it to disk.

-fmax_output_filesize

Maximum output file size in KB. Wrap around occurs if the
specified file size is reached.

-h

Translate hierarchy information only.

7-27

VCD and VPD File Utilities

-m

Give translation metrics during translation.

-q

Suppress printing of copyright and other informational messages.

+deltacycle

Add delta cycle information to each signal value change.

+glitchon

Add glitch event detection data.

+nocompress

Turn data compression off.

+nocurrentvalue

Do not include object's current value at the beginning of each
VCB.

+bitrangenospace

Support non-standard VCD files that do not have white space
between a variable identifier and it's bit range

+vpdnoreadopt

Turn off read optimization format.

Options for specifying EVCD options

+dut+dut_sufix

Modifies the string identifier for the Device Under Test (DUT) half
of the spilt signal. Default is "DUT".

+tf+tf_sufix

7-28

VCD and VPD File Utilities

Modifies the string identifier for the Test-Fixture half of the spilt
signal. Default is "TF".

+indexlast

Appends the bit index of a vector bit as the last element of the
name.

vcd_file

Specify the vcd filename or use "-" to indicate VCD data to be
read from stdin.

vpd_file

Specify the VPD file name. You can also specify the path and the
filename of the VPD file, else the VPD file will be generated with
the specified name in the current working directory.

The vpd2vcd Utility

The vpd2vcd utility converts a VPD file generated using the system
task $vcdpluson or any CLI or SCL dump commands to a VCD or
EVCD file.

The vcd2vpd Utility Syntax

vcd2vpd [-h] [-q] [-s] [-x] [-xlrm] [+zerodelayglitchfilter]
[+morevhdl] [+start+value] [+end+value]
[+dumpports+instance] [-f cmd_filename] vpd_file vcd_file

Here:

-h

Translate hierarchy information only.

7-29

VCD and VPD File Utilities

-q

Suppress the copyright and other informational messages.

-s

Allow sign extension for vectors. Reduces the file size of the
generated vcd_file.

-x

Expand vector variables to full length when displaying $dumpoff
value blocks.

-xlrm

Convert upper case VHDL objects to lower case.

+zerodelayglitchfilter

Zero delay glitch filtering for multiple value changes within the
same time unit.

+morevhdl

Translates the VHDL types of both directly mappable and those
that are not directly mappable to verilog types.

Note:
This switch may create a nonstandard VCD file.

+start+time

Translate the value changes starting after the specified start time.

+end+time

Translate the value changes ending before the specified end time.

Note:
Specify both start time and end time to translate the value changes
occuring between start and end time.

7-30

VCD and VPD File Utilities

+dumpports+instance

Generate an EVCD file for the specified module instance. If the
path to the specified instance contains escaped identifiers, then
the full path must be enclosed in single quotes.

-f cmd_filename

Specify a command file containing commands to limit the design
converted to VCD or EVCD. The syntax for this file is explained
in the following section.

The Command file Syntax

Using a command file, you can:

• generate a VCD file for the whole design or for the specified
instance/s.

• generate only the port information for the specified instance/s.

• generate an EVCD file for the specified instance/s.

Before writing a command file, please note the following:

• All commands must start as a first word in the line, and the
arguments for these commands should be written in the same line.

Example:
dumpvars 1 adder4

• All comments must start with “//”.

Example:
//Add your comment here
dumpvars 1 adder4

7-31

VCD and VPD File Utilities

• All comments written after a command, must be preceded by a
space.

Example:
dumpvars 1 adder4 //can write your comment here

A command file can contain the following commands:

dumpports instance [instance1 instance2]

Specify an instance for which an EVCD file has to be generated.
You can generate an EVCD file for more than one instance by
specifying the instance names separated by a space. You can
also specify multiple dumpports command in the same
command file

dumpvars [level] [instance instance1 instance2]

Specify an instance for which a VCD file has to be generated.
[level] is a numeric value indicating the number of levels to
traverse down the specified instance. If not specified, or if the
value specified is "0", then all the instances under the specified
instance will be dumped.

You can generate a VCD file for more than one instance by
specifying the instance names separated by a space. You can
also specify multiple dumpvars command in the same command
file.

If this command is not specified or the command has no
arguments, then a VCD file will be generated for the whole design.

7-32

VCD and VPD File Utilities

dumpvcdports [level] instance [instance1 instance2]

Specify an instance whose port values are dumped to a VCD file.
[level] is a numeric value indicating the number of levels to
traverse down the specified instance. If not specified, or if the
value specified is "0", then the port values of all the instances
under the specified instance will be dumped.

You can generate a dump file for more than one instance by
specifying the instance names separated by a space. You can
also specify multiple dumpvcdports command in the same
command file.

Note:
dumpvcdports splits the inout ports of type wire into two
separate variables:

- one shows the value change information driven into the port.
VCS adds a suffix _DUT to the basename of this variable.

- the other variable shows the value change information driven
out of the port. VCS adds a suffix _TB to the basename of this
variable.

dutsuffix DUT_suffix

Specify a string to change the suffix added to the variable name
that shows the value change date driven out of the inout port. The
default value is _DUT. The suffix can also be enclosed within
double quotes.

tbsuffix TB_suffix

Specify a string to change the suffix added to the variable name
that shows the value change date driven into the inout port. The
default value is _TB. The suffix can also be enclosed within
double quotes.

7-33

VCD and VPD File Utilities

starttime start_time

Specify the start time to start dumping the value change data to
the VCD file. If this command is not specified the start time will be
the start time of the VPD file.

Note:
Only one +start command is allowed in a command file.

endtime end_time

Specify the end time to stop dumping the value change data to
the VCD file. If this command is not specified the end time will be
the end time of the VPD file.

Note:
Only one +end command is allowed in a command file, and must
be equal to or greater than the start time.

Limitations

• dumpports is mutually exclusive with either the dumpvars or
dumpvcdports commands. The reason is dumpports
generates an EVCD file while both dumpvars and
dumpvcdports generates standard VCD files.

• Escaped identifiers must include the trailing space.

• Any error parsing the file will cause the translation to terminate.

The vpdmerge Utility

Using vpdmerge utility, you can merge different VPD files storing
simulation history data for different simulation times, or parts of the
design hierarchy into one large VPD file. For example in the DVE

7-34

VCD and VPD File Utilities

Wave Window in Figure 7-1, there are three signal groups for the
same signals in different VPD files.

Figure 7-1 DVE Wave Window with Signal Groups from Different VPD Files

Signal group test is from a VPD file from the first half of a simulation,
signal group test_1 is from a VPD file for the second half of a
simulation, and signal group test_2 is from the merged VPD file.

The syntax for the vpdmerge command line is as follows:

vpdmerge [-h] [-q] [-hier] [-v] -o merged_VPD_filename
 input_VPD_filename input_VPD_filename ...

Here:

-h
Displays a list of the valid options and their purpose.

-o merged_VPD_filename
Specifies the name of the output merged VPD file. This option is
required.

7-35

VCD and VPD File Utilities

-q
Specifies quiet mode, disables the display of most output to the
terminal.

-hier
Specifies that you are merging VPD files for different parts of the
design, instead of the default condition, without this option, which
is merging VPD files from different simulation times.

-v
Specifies verbose mode, enables the display of warning and error
messages.

Restrictions

There are the following restrictions for the vpdmerge utility:

• To read the merged VPD file, DVE must have the same or later
version than that of the vpdmerge utility.

• VCS must have written the input VPD files on the same platform
as the vpdmerge utility.

• The input VPD files cannot contain delta cycle data (different
values for a signal during the same time step).

• The input VPD files cannot contain named events.

• The merged line stepping data does not always accurately replay
scope changes within a time step.

• If you are merging VPD files from different parts of the design,
using the -hier option, the VPD files must be for distinctly
different parts of the design, they cannot contain information for
the same scope.

7-36

VCD and VPD File Utilities

Limitations

The verbose option -v may not display error or warning messages
in the following scenarios:

• If the reference signal completely or coincidentally overlaps the
compared signal.

• During hierarchy merging, if the design object already exists in
the merged file.

During hierarchy merging, the -heir option may not display error
or warning messages in the following scenarios.

• If the start and end times of the two dump files are the same.

• If the datatype of the hierarchical signal in the dump files do not
match

Value Conflicts

If the vpdmerge utility encounters conflicting values for the same
signal, with the same hierarchical name, in different input VPD files,
if does the following when writing the merged VPD file:

• If the signals have the same end time, vpdmerge uses the values
from the first input VPD file that you entered on the command line.

• If the signals have different end times, vpdmerge uses the values
for the signal with the greatest end time.

In cases where there are value conflicts, the -v option displays
messages about these conflicts.

7-37

VCD and VPD File Utilities

7-38

VCD and VPD File Utilities

8-1

Unified Command-Line Interface

8
Unified Command-Line Interface (UCLI) 2

The Unified Command-Line Interface (UCLI) enables consistent
interactive simulation and post-processing using the UCLI interactive
command language common to the following Synopsys verification
technologies:

• VCS

• SystemVerilog

• NTB (OpenVera Language)

• DVE (Debug GUI)

UCLI is compatible with Tcl 8.3.

This chapter covers the following topics:

• Compilation and Simulation Options for UCLI

• Using UCLI

8-2

Unified Command-Line Interface

• UCLI Interactive Commands

• UCLI Command-Alias File

• Operating System Commands

Compilation and Simulation Options for UCLI

The VCS compilation and simulation options for UCLI are:

Compilation
-debug

Enables UCLI for interactive or post processing simulations. This
option does not enable line stepping and setting of line
breakpoints.

-debug_all

Enables UCLI for interactive simulations including line stepping,
setting time, position, or trigger-type breakpoints, and the full
debug mode.

Simulation
-ucli

Invokes UCLI for interactive simulations or debugging.

-l logFilename

Captures simulation output, and UCLI interactive commands used
during simulation and responses to the commands.

-i inputFilename

Reads UCLI interactive commands from an interactive command
file.

8-3

Unified Command-Line Interface

-k keyFilename

Records interactive commands used during a simulation to the
file named KeyFilename, which can be used as the interactive
command file in subsequent simulations.

Using UCLI

You can invoke UCLI as follows:

1. Compile a design with vcs using the -debug option.

2. Start the simulation with simv using the -ucli option.

To compile and simulate a design so that it results in an interactive
simulation using UCLI, do the following:

Compilation
% vcs [vcs_options] -debug file1.v [file2.v] [file3.v]

Simulation
% simv [simv_options] -ucli

8-4

Unified Command-Line Interface

UCLI Interactive Commands

The following is a list of the UCLI interactive commands:

Tool Invocation Commands
start exe_name [options]

Invokes the simulation executable exe_name with the specified
options.

restart [options]
Restarts simulations.

Session Management Commands
save [file_name]

Saves simulation state in file file_name.

restore [file_name]
Restores a simulation state saved in file file_name.

Note:
Simulations run in UCLI mode can only be saved and restored
from the UCLI prompt, not using $save/$restart in Verilog, and
cannot be restarted by running the simulator with "-r savefile", nor
by executing the save file.

Tool Advancing Commands
step

Advances the simulation by one line.

next
For Verilog designs, next has the same functionality as step.

8-5

Unified Command-Line Interface

run [-relative | -absolute time] [-posedge |
-negedge | -change] [path_name]
Advances simulation to a point specified by time or edge of signal
path_name.

finish
Terminates a simulation, but remains in Tcl debug environment.

Navigation Commands
scope [-up [level] | active] [path_name]

Shows or sets current scope to instance path_name.

thread [thread_id][-active][-attach thread_id]
Displays thread with ID thread_id or all threads when no ID is
provided.

Signal/Variable/Expression Commands
get path_name [-radix radix]

Returns current value of signal/variable/net/reg path_name.

change [path_name value]
Deposits value on signal/variable/net/reg path_name.

force path_name value [time { , value time }*
[-repeat delay]][-cancel time][-deposit]
[-freeze]
Forces signal/variable/net/reg path_name with value value.

release [path_name]
Releases signal/variable/net/reg path_name from the value
assigned using force command.

sexpr [-radix] [expression]
Displays the result in base radix of expression expression.

8-6

Unified Command-Line Interface

call [$cmd(...)]
Calls a Verilog task.

Tool Environment Array Commands
senv [element]

Displays the environment array element element.

Breakpoint Commands
stop [-file file_name] [-line num] [-instance

path_name][-thread thread_id][-condition
expression]
Sets and displays breakpoints based on file file_name, source
code line with number num, instance path_name, thread with ID
thread_id or condition expression.

Signal Value and Memory Dump Specification Commands
dump [-file file_name] -add [list_of_path_names

-fid fid -depth levels | object -aggregates
-close] [-file file_name] [-autoflush on] [-file
file_name][-interval seconds] [-fid fid]
Dumps values of signals/variables/nets/regs listed in
list_of_path_names in file file_name.

memory [-read|-write nid] [-file file_name] [-radix
radix] [-start start_address] [-end end_address]
Loads or writes memory from or to file file_name, respectively,
between locations start_address and end_address.

Design Query Commands
show [-options] path_name

Displays value of object path_name. Also provides full static
information of instances and objects.

8-7

Unified Command-Line Interface

drivers path_name [-full]
Displays drivers of object path_name.

loads path_name [-full]
Displays load on object path_name.

Macro Control Routines
do [-trace|-traceall] file_name [macro

parameters][-trace|-traceall [on|off]]
Reads macro file file_name.

onbreak [commands]
Executes one or more commands when a breakpoint, $stop task
or Ctrl-c is encountered while executing a macro file.

onerror [commands]
Executes one or more commands when an error is encountered
while executing a macro file.

pause
Interrupts execution of a macro file.

resume
Resumes execution of a macro file after a breakpoint, error or
pause.

abort [n | all]
Stops execution of a macro file and discards remaining
commands in it.

status [file | line]
Displays stack of nested macro files, along with file names and
position of interruption in each.

8-8

Unified Command-Line Interface

Helper Routine Commands
help -[full command]

Displays information on all commands or specified command.

alias [UCLI_command]
Creates an alias alias for command UCLI command.

config
Displays current settings of all variables.

Specman Interface Command
sn

Switches to Specman prompt.

8-9

Unified Command-Line Interface

UCLI Command-Alias File

You can call UCLI commands with aliases defined in a
command-alias file. You can either create this file or use the default
command-alias file.

Default Alias File

The default alias file .uclirc in the VCS installation directory
contains default aliases for UCLI commands. You can edit this file to
add custom aliases for UCLI commands. By default, UCLI looks for
the alias file at the following three places in the given order:

• Current work directory

• User’s home directory

• VCS installation directory

Operating System Commands

Operating System (OS) commands can be used at the UCLI prompt
as follows:

ucli% exec OS_command

In the interactive mode, OS commands run automatically. To disable
automatic execution of OS commands, set the auto_noexec
variable as follows:

set ::auto_noexec anything

8-10

Unified Command-Line Interface

9-1

Using the Old Command Line Interface (CLI)

9
Using the Old Command Line Interface (CLI) 1

VCS provides the non-graphical debugger or CLI (Command Line
Interface) for debugging your design. This chapter covers the
following topics:

• CLI Commands

• Command Files

• Key Files

• Debugging a Testbench Using the CLI

Note:
There now is a Unified Command Line Interface for debugging
commands. It is unified in that the same command line interface
works for VCS, VCS MX, and Vera. It has more commands than
the CLI. See Chapter 8, "Unified Command-Line Interface
(UCLI)".

9-2

Using the Old Command Line Interface (CLI)

CLI Commands

You can use basic Command Language Interface (CLI) commands
to perform the following tasks:

• Navigate the design and display design information

• Show and retrieve simulation information

• Set, display and delete breakpoints

• Display object data members

• Set and print values of variables

• Traverse call-stacks

• Show and terminate threads

• Access events

Navigating the Design and Displaying Design
Information

help

Displays the list of all commands and their meanings.

info

Displays time and scope information.

For example:

cli> info
Current time is 100000
Current thread is #3
Current scope is memsys_test_top

9-3

Using the Old Command Line Interface (CLI)

line

Toggles line tracking.

For example:

cli> line
Line tracking is now ON.
cli> line
Line tracking is now OFF.

list [-n | n]

Lists 10 lines starting with the current line.

-n

Lists n lines above the current position.

n

Lists n lines starting with the current line.

print %[b|c|t|f|e|g|d|h|x|m|o|s|v] net_or_reg
Shows the current value of net or register in the specified format.

next

Next line.

step [-thread thread-id | up]

When entered without a qualifier, moves through all traceable
lines according to the order of event execution.

-thread thread-id

Steps in the specified thread while skipping statements in
other threads.

For example:

cli_15 > step -thread
mem_add1[10011011] is 10011011
[memsys0.vr:91]

9-4

Using the Old Command Line Interface (CLI)

up

Steps out of current automatic task or function.

For example:

cli_65 > step up
Time break at time 100200 breakpoint #1 break #50
##100250
[cpu.vr:79]

Showing and Retrieving Simulation Information

show [drivers|loads|ports|scopes|variables|break|?]

drivers net_or_reg
Shows the value and strength of the net or register. For nets it
also shows the line number in the source code of the statement
that is the source of the value that propagated to this net.

For example:

cli_24 > show drivers ramData
ramData[7] (ram_test_top.dut.u3) = StX
StX <- (ram_test_top.dut.u3) sram.v: 10 (ASSIGN)
ramData[6] (ram_test_top.dut.u3) = StX
StX <- (ram_test_top.dut.u3) sram.v: 10 (ASSIGN)
ramData[5] (ram_test_top.dut.u3) = StX
StX <- (ram_test_top.dut.u3) sram.v: 10 (ASSIGN)
ramData[4] (ram_test_top.dut.u3) = StX
StX <- (ram_test_top.dut.u3) sram.v: 10 (ASSIGN)
ramData[3] (ram_test_top.dut.u3) = StX
StX <- (ram_test_top.dut.u3) sram.v: 10 (ASSIGN)
ramData[2] (ram_test_top.dut.u3) = StX
StX <- (ram_test_top.dut.u3) sram.v: 10 (ASSIGN)
ramData[1] (ram_test_top.dut.u3) = StX
StX <- (ram_test_top.dut.u3) sram.v: 10 (ASSIGN)
ramData[0] (ram_test_top.dut.u3) = StX
StX <- (ram_test_top.dut.u3) sram.v: 10 (ASSIGN)

9-5

Using the Old Command Line Interface (CLI)

loads nid

Displays the loads for the specified signal.

For example:

cli_23>show loads ramData
ramData[7] (ram_test_top.dut.u3) = StX
ramData[6] (ram_test_top.dut.u3) = StX
ramData[5] (ram_test_top.dut.u3) = StX
ramData[4] (ram_test_top.dut.u3) = StX
ramData[3] (ram_test_top.dut.u3) = StX
ramData[2] (ram_test_top.dut.u3) = StX
ramData[1] (ram_test_top.dut.u3) = StX
ramData[0] (ram_test_top.dut.u3) = StX

ports
Shows the port identifiers of the instance, that is, the current
scope and whether they are input, output, or inout ports, listed
as IN, OUT, and INOUT.

scopes
Shows the module instances in the current scope by their
module identifier and module instance identifier.

variables
Shows the nets and registers declared in the current scope.

break
Lists the hierarchical names of the nets and registers with a
breakpoint and the breakpoint number for these breakpoints.

?
Displays this list of arguments to the show command and briefly
describes what they do.

For example:

cli> show variables
Int vtb_temp_int2

9-6

Using the Old Command Line Interface (CLI)

show [allvariables|mailboxes|semaphores|threadsevent]

allvariables

Shows nets and registers in the current module and its
parents.

For example:

cli> show allvariables
listing variables for :
memsys_test_top.vshell.\cpu::release_bus
.unnamed$$_29

 Int vtb_temp_int2
 listing variables for :
 memsys_test_top.vshell.\cpu::release_bus
 listing variables for : memsys_test_top.vshell
 Wire SystemClock
 Wire \memsys.adxStrb
 Wire [7:0] \memsys.busAddr
 Wire [7:0] \memsys.busData
 Wire \memsys.busRdWr_N
 Wire \memsys.clk
 Wire [1:0] \memsys.grant
 Wire [1:0] \memsys.request
 Wire \memsys.reset
 Class arb0
 Class arb1
 Class cpu0
 Class cpu1
 listing variables for : memsys_test_top
 Reg SystemClock
 Wire adxStrb
 Wire [7:0] busAddr
 Wire [7:0] busData
 Wire busRdWr_N
 Wire clk
 Wire [1:0] grant
 Wire [1:0] request
 Wire reset

9-7

Using the Old Command Line Interface (CLI)

mailboxes [m_id]

Displays information about all mailboxes or the identified
mailbox.

semaphores [n_id]

Displays information about all semaphores or the identified
semaphore.

For example:

 cli_33 > show semaphore
 semaphore id = 1 keys available 0
 blocked threads:
 thread #2: memsys0.vr: 65

thread [t_id]

Displays all threads or the identified thread and the status.

For example:

 cli_32 > show thread
 thread #1 memsys_test_top.vshell.check_all
 [ready] memsys0.vr: 99
 thread #2 memsys_test_top.vshell.check_all
 [blocked] memsys0.vr: 65
 thread #3 memsys_test_top.vshell.\cpu::release_bus
 .unnamed$$_29 [current] cpu.vr: 73

event n_id

Shows the changes in value for the identified event.

Setting, Displaying and Deleting Breakpoints

break # relative time |[@posedge|@negedge]signal

Sets a repeating breakpoint.

9-8

Using the Old Command Line Interface (CLI)

break -thread thread_id

Sets breakpoint in the specified thread.

break at file:lineno/lineno -thread thread_id

Sets breakpoint at the line number of the file and thread
mentioned.

break at filename:lineno

Sets a breakpoint in the identified file at the specified line
number.

break in class:task/function

Sets a breakpoint in class at the identified task or function.

For example:

cli_55 > break in check_all
set break #6 in check_all

break in scope

Sets a breakpoint in the specified scope.

break in scope -thread thread_id

Sets a breakpoint in the scope of the thread.

show break

 Displays all the break points

delete breakpoint_number | all

Deletes the identified breakpoint or all breakpoints.

tbreak [#relative_time| ##absolute_time| @posedge|
@negedge] net_or_reg
Sets a one shot breakpoint. This command is identical to the once
command.

9-9

Using the Old Command Line Interface (CLI)

Displaying Object Data Members

print this

In Vera code, prints the current object data members.

For example:

cli_141 > break in cpu::new
set break #1 in cpu::new
cli_142 > print this
this = {
localarb: <Class Type bus_arb>
cpu_id: 00000000
address: 69
data: 30
delay: 00000003
}

Setting and Printing Values of Variables

set variable = value

Sets variable values.

print variable

Displays variable values.

Traversing Call-stacks

stack

Prints task/function call traceback.

For example:

cli_129 > stack
#0 in \cpu::release_bus at cpu.vr:73

9-10

Using the Old Command Line Interface (CLI)

#1 in check_all at memsys0.vr:68
#2 in memsys_test at memsys0.vr:19
#3 in memsys_test_top.vshell

upstack

Goes up the call stack.

For example:

cli_131 > upstack
#1 in check_all at memsys0.vr:68

downstack

Goes down the call stack.

For example:

cli_132 > downstack
#0 in \cpu::release_bus at cpu.vr:73

Showing and Terminating Threads

show thread [thread_id]

Prints information about the specified threads.

For example:

li_119 > show thread 2
thread #2
memsys_test_top.vshell.\cpu::release_bus
[ready] cpu.vr: 73

thread thread_id

Options context to the task specified. thread_id is blocked

terminate [thread_id]

Terminates the specified thread.

9-11

Using the Old Command Line Interface (CLI)

Accessing Events

trigger(0|1|2|3|4, event variable)

Triggers an event in the testbench according to the following:

0 -> Off

1 -> On

2 -> One shot

3 -> One blast

4 -> Handshake

Command Files

It is possible to create, in the working directory, a .vcsrc file containing
CLI commands that VCS executes on entry to the CLI. This is useful
for specifying alias commands to customize the command language.
Any CLI command can appear in this file.

Within the CLI, use the source command at any time to read in a file
that contains CLI commands. The -i runtime option is shorthand to
specify a source file to be read upon entry to the CLI.

If a .vcsrc file exists in the working directory when a simulation is run,
the executable reads it and executes commands at time zero before
executing any commands in a -i file.

Example 9-1 Interactive Debugging Example

The following is an example of the use of the interactive debugger:

% more a.v

9-12

Using the Old Command Line Interface (CLI)

module top;
reg a;
reg [31:0] b;
initial begin

a = 0;
b = 32’b0;
#10
if (a) b = 32’b0;

end
endmodule
% vcs +cli+2 a.v

<<Details of VCS compilation omitted.>>

% simv -s
$stop at time 0
cli_0 > scope
Current scope is top
cli_1 > show var
Reg a
Reg [31:0] b
cli_2 > once #1
cli_3 > .
Time break at time 1 breakpoint #1 tbreak ##1
cli_4 > print a
a: 0
cli_5 > set a=1
cli_6 > print a
a: 1
cli_7 > tbreak b
cli_8 > .
Value break time 10 breakpoint #2 tbreak top.b
cli_9 > print b
b: 00000001
cli_10 > quit
$finish at simulation time 10

V C S S i m u l a t i o n R e p o r t
Time: 10
CPU Time: 0.150 seconds; Data structure size: 0.0Mb

9-13

Using the Old Command Line Interface (CLI)

Key Files

When you enter CLI commands (or commands in the DVE Interactive
window), VCS by default records these commands in the vcs.key file
that it writes in the current directory.

The purpose of this file is to enable you to quickly enter all of the
interactive commands from another simulation of your design by
including the -i runtime option with this file as its argument.

You can use the -k runtime option to specify a different name or
location for the vcs.key file. You can also use this option to tell VCS
not to write this file. For details on using the -i and -k runtime options,
see Appendix C, "Simulation Options".

Debugging a Testbench Using the CLI

The interactive non-graphical debugging command line interface
(CLI) capability in VCS also covers testbench files. It is similar in
concept to UNIX debuggers such as dbx and gdb. You can enter the
CLI at runtime for debugging a testbench, provided you have enabled
the CLI at compile time. The command language not only allows you
to set breakpoints, examine the values of registers and wires, and
change register values, but also enables you to examine testbench
objects and data types. Since the CLI covers both the design and the
testbench, you can cross over from the design into the testbench or
vice-versa during the debug process.

9-14

Using the Old Command Line Interface (CLI)

Non-Graphical Debugging With the CLI

In order to use the CLI:

• Enable it at compile time with the options +cli and -line.

• Include the -s on the runtime command line (e.g. simv -s).

For example:

When compiling both the testbench and the design together, the
command lines are:

% vcs -ntb +cli -line sram.v sram.test_top.v sram.vr
% simv -s

When compiling the testbench separately from the design, the
command lines are:

% vcs -ntb_cmp +cli -line -ntb_sname sram_test sram.vr
% vcs -ntb_vl +cli -line sram.v sram.test_top.v sram.vshell
% simv -s +ntb_load=./libtb.so

Using the CLI, Example 1

Example 9-2 is a testbench, containing mailboxes and triggers. It is
in the file memsys1.vr, which is a part of the Native Testbench tutorial
example in your VCS installation under $VCS_HOME/doc/examples/
nativetestbench/tutorial.

Example 9-2 Testbench Containing Mailboxes and Triggers
#define OUTPUT_SKEW #1
#define INPUT_SKEW #-1
#define INPUT_EDGE PSAMPLE
#include <vera_defines.vrh>

#include “memsys.if.vrh”

9-15

Using the Old Command Line Interface (CLI)

#include “port_bind.vr”
#include “cpu.vr”

program memsys_test
{ // Start of memsys_test

 cpu cpu0 = new (arb0, 0);
 cpu cpu1 = new (arb1, 1);

 init_ports();
 reset_sequence();
 check_all() ;

} // end of program memsys_test

// Don’t allow inputs to dut to float
task init_ports () {
 printf(“Task init_ports\n”);
 @(posedge memsys.clk);
 memsys.request = 2’b00;
 memsys.busRdWr_N = 1’b1;
 memsys.adxStrb = 1’b0;
 memsys.reset = 1’b0;
}

task reset_sequence () {
 printf(“Task reset_sequence\n”);
 memsys.reset = 0;
 @1 memsys.reset = 1;
 @10 memsys.reset = 0;
 @1 memsys.grant == 2’b00; //check if grants are 0’s
}

task check_all () {

 integer mboxId, randflag;
 event CPU1done;

 printf(“Task check_all:\n”);
 mboxId = alloc(MAILBOX, 0, 1);

9-16

Using the Old Command Line Interface (CLI)

 fork
 {// fork process for CPU 0
 repeat(256) {
 randflag = cpu0.randomize();
 cpu0.request_bus();
 cpu0.writeOp();
 cpu0.release_bus();
 mailbox_put(mboxId, cpu0.address);
 mailbox_put(mboxId, cpu0.data);
 mailbox_put(mboxId, cpu0.delay);
 sync(ALL, CPU1done);
 trigger(OFF, CPU1done);
 cpu0.delay_cycle();
 }
 }

 {// fork process for CPU 1
 repeat(256) {
 mailbox_get(WAIT, mboxId, cpu1.address, CHECK);
 mailbox_get(WAIT, mboxId, cpu1.data, CHECK);
 mailbox_get(WAIT, mboxId, cpu1.delay, CHECK);
 cpu1.request_bus();
 cpu1.readOp();
 if (memsys.busData == cpu1.data)
 printf(“\nThe read and write cycles finished
successfully\n\n”);
 else
 printf(“\nThe memory has been corrupted\n\n”);
 cpu1.release_bus();
 trigger(ON, CPU1done);
 cpu1.delay_cycle();
 }
 }
 join
}

Use the following command line to compile the design and the
testbench in Example 9-2:

%vcs -ntb +cli -line -f memsys.f memsys.test_top.v memsys1.vr

9-17

Using the Old Command Line Interface (CLI)

Use the following command line to run the simulation with debug:

% simv -s

The following is the output while using the CLI:

Chronologic VCS simulator copyright 1991-2003
Contains Synopsys proprietary information.
Compiler version 7.1_Beta2; Runtime version 7.1_Beta2; Oct
16 16:55 2003

$stop at time 0
cli_0 > break in memsys_test
set break #1 in memsys_test

cli_1 > break in check_all
set break #2 in check_all

cli_2 > break at memsys1.vr69:
set break #3 at memsys1.vr:69

cli_3 > cont
Constructing new CPU.
WARNING: Ignoring seed value 0. Seeding with value 1. Seed
must be greater than 0.
Constructing new CPU.
Scope break at time 0 breakpoint #1 break in
memsys_test_top.vshell.memsys_test

cli_4 >.
Task init_ports
Task reset_sequence
Scope break at time 1250 breakpoint #2 break in
memsys_test_top.vshell.check_all

cli_5 > .
Task check_all:
CPU 0 requests bus on arb0
CPU 0 writeOp: address 0b data df
CPU0 is writing
WRITE address = 00b, data = 0df

9-18

Using the Old Command Line Interface (CLI)

CPU 0 releases bus on arb0
Line break at time 2050 breakpoint #3 break at memsys1.vr:69

cli_6 >show mailboxes
mailbox id: 1 data available: 1
 data: -->1
 blocked threads: NONE

cli_7 > quit
$finish at simulation time 2050
 V C S S i m u l a t i o n R e p o r t

Using the CLI, Example 2

Example 9-3 is a testbench containing semaphores. It is in the file
memsys0.vr, which is a part of the Native Testbench tutorial example
in your VCS installation under $VCS_HOME/doc/examples/
nativetestbench/tutorial.

Example 9-3 Testbench Containing Semaphores
#define OUTPUT_EDGE PHOLD
#define OUTPUT_SKEW #1
#define INPUT_SKEW #-1
#define INPUT_EDGE PSAMPLE
#include <vera_defines.vrh>

#include “memsys.if.vrh”
#include “port_bind.vr”
#include “cpu.vr”

program memsys_test
{ // Start of memsys_test

 cpu cpu0 = new (arb0, 0);
 cpu cpu1 = new (arb1, 1);

 init_ports();
 reset_sequence();
 check_all() ;

9-19

Using the Old Command Line Interface (CLI)

} // end of program memsys_test

// Don’t allow inputs to dut to float
task init_ports () {
 printf(“Task init_ports\n”);
 @(posedge memsys.clk);
 memsys.request = 2’b00;
 memsys.busRdWr_N = 1’b1;
 memsys.adxStrb = 1’b0;
 memsys.reset = 1’b0;
}

task reset_sequence () {
 printf(“Task reset_sequence\n”);
 memsys.reset = 0;
 @1 memsys.reset = 1;
 @10 memsys.reset = 0;
 @1 memsys.grant == 2’b00; //check if grants are 0’s
}

task check_all () {

 integer semaphoreId, randflag;
 event CPU1done;
 bit[7:0] mem_add0[], mem_add1[];

 printf(“Task check_all:\n”);
 semaphoreId = alloc(SEMAPHORE, 0, 1, 1);

 fork
 {// fork process for CPU 0
 repeat(256) {
 randflag = cpu0.randomize();
 printf(“\n THE RAND MEM0 ADD IS %b \n\n”, cpu0.address);
 if (mem_add0[cpu0.address] !== cpu0.address)
 {
 mem_add0[cpu0.address] = cpu0.address;
 printf(“\n mem_add0[%b] is %b \n\n”, cpu0.address,
mem_add0[cpu0.address]);
 }
 else
 {

9-20

Using the Old Command Line Interface (CLI)

 printf(“\nThe memory0 address is being
repeated\n\n”);
 printf(“\n mem_add0[%b] is %b \n\n”, cpu0.address,
mem_add0[cpu0.address]);
 }
 semaphore_get(WAIT, semaphoreId, 1);
 cpu0.request_bus();
 cpu0.writeOp();
 cpu0.release_bus();
 cpu0.request_bus();
 cpu0.readOp();
 cpu0.release_bus();
 semaphore_put(semaphoreId, 1);
 cpu0.delay_cycle();
 }
 }

 {// fork process for CPU 1
 repeat(256) {
 randflag = cpu1.randomize();
 printf(“\n THE RAND MEM1 ADD IS %b \n\n”, cpu1.address);
 if (mem_add1[cpu1.address] !== cpu1.address)
 {
 mem_add1[cpu1.address] = cpu1.address;
 printf(“\n mem_add1[%b] is %b \n\n”, cpu1.address,
mem_add1[cpu1.address]);
 }
 else
 {
 printf(“\nThe memory1 address is being
repeated\n\n”);
 printf(“\n mem_add1[%b] is %b \n\n”, cpu1.address,
mem_add1[cpu1.address]);
 }
 semaphore_get(WAIT, semaphoreId, 1);
 cpu1.request_bus();
 cpu1.writeOp();
 cpu1.release_bus();
 cpu1.request_bus();
 cpu1.readOp();
 cpu1.release_bus();
 semaphore_put(semaphoreId, 1);

9-21

Using the Old Command Line Interface (CLI)

 cpu1.delay_cycle();
 }
 }
 join
}

Use the following command line to compile the design and the
testbench:

% vcs -ntb +cli -f memsys.f memsys.test_top.v memsys0.vr

Use the following command line to run the simulation with debug:

% simv -s

The following is the output while using the CLI:

Chronologic VCS simulator copyright 1991-2003
Contains Synopsys proprietary information.
Compiler version 7.1_Beta2; Runtime version 7.1_Beta2; Oct
16 17:09 2003

$stop at time 0
cli_0 > break in memsys_test
set break #1 in memsys_test

cli_1 >break in check_all
set break #2 in check_all

cli_2 > break at memsys0.vr:99
set break #3 at memsys0.vr:99

cli_3 >cont
Constructing new CPU.
WARNING: Ignoring seed value 0. Seeding with value 1. Seed
must be greater than 0.
Constructing new CPU.
Scope break at time 0 breakpoint #1 break in
memsys_test_top.vshell.memsys_test

cli_4 > .

9-22

Using the Old Command Line Interface (CLI)

Task init_ports
Task reset_sequence
Scope break at time 1250 breakpoint #2 break in
memsys_test_top.vshell.check_all

cli_5 >.
Task check_all:

 THE RAND MEM0 ADD IS 00001011

 mem_add0[00001011] is 00001011

CPU 0 requests bus on arb0

 THE RAND MEM1 ADD IS 10010111

 mem_add1[10010111] is 10010111

CPU 0 writeOp: address 0b data df
CPU0 is writing
WRITE address = 00b, data = 0df
CPU 0 releases bus on arb0
CPU 0 requests bus on arb0
CPU 0 readOp: address 0b data df
READ address = 00b, data = 0df
CPU 0 releases bus on arb0
CPU 0 Delay cycle value: 1
CPU 1 requests bus on arb1
delay = 1

 THE RAND MEM0 ADD IS 10110001

 mem_add0[10110001] is 10110001

CPU 1 writeOp: address 97 data f1
CPU1 is writing
WRITE address = 097, data = 0f1
CPU 1 releases bus on arb1
CPU 1 requests bus on arb1

9-23

Using the Old Command Line Interface (CLI)

CPU 1 readOp: address 97 data f1
READ address = 097, data = 0f1
CPU 1 releases bus on arb1
Line break at time 5050 breakpoint #3 break at memsys0.vr:99

cli_6 > show semaphores
semaphore id = 1 keys available 0
 blocked threads:
 thread #3: memsys0.vr: 91

cli_7 > quit
$finish at simulation time 5850
 V C S S i m u l a t i o n R e p o r t
3

9-24

Using the Old Command Line Interface (CLI)

10-1

Post-Processing

10
Post-Processing 2

• Use the $vcdpluson system task to generate VPD files. For
more details on this system task, see "System Tasks for VPD
Files" in Appendix D.

If you enable it, the VPD file contains simulation results from the
design. The $vcdplustraceon system task records the order
in which the source code lines are executed. Therefore, you can
see the order in post processing. You can enter these system
tasks either in your Verilog source code or at the CLI prompt using
a different syntax. The default name of the generated VPD file is
vcdplus.vpd.

This chapter describes the simulation history file formats and how
you generate them. It covers the following:

• VPD

• eVCD

10-2

Post-Processing

• Line Tracing

• Delta Cycle

• Verilog HDL offers the advantage of having the ability to access
any internal signals from any other hierarchical block without
having to route it through the user interface.

• You can generate an EVCD file using the $dumpports or
$lsi_dumports system tasksSee “Verilog HDL offers the
advantage of having the ability to access any internal signals from
any other hierarchical block without having to route it through the
user interface.” on page 10-4.

VPD

You can create a single VPD file for the entire design using the
$vcdpluson system task. To create a dump file, use the $dumpvars
system task. To enable post-processing for the design, use the -PP
option as a compile-time option.

Delta Dumping Supported in VPD Files

VCS supports delta dumping in VPD files for post-processing using
the $vcdplusdeltacycleon system task.

The $vcdplusevent system task displays, in DVE, a symbol on the
signal’s waveform and in the Logic Browser. The event_name
argument appears in the status bar when you click on the symbol.
E|W|I specifies severity. E for error, displays a red symbol, W for
warning, displays a yellow symbol, I for information, displays a green
symbol.

10-3

Post-Processing

Syntax:

$vcdplusevent(net_or_reg,"event_name", "<E|W|I><S|T|D>");

eVCD

You can use $dumpports or $lsi_dumports system tasks to
generate EVCD files. Using system tasks you can generate multiple
EVCD files for various module instances of the design.

Line Tracing

You can enable line tracing for the design using -debug_all or
-debug as a compile-time option. The -debug_all option greatly
degrades the simulation performance and therefore you should use
it only for debugging. You can also use -PP -line as compile-time
options, instead of -debug_all.

Delta Cycle

VCS supports delta dumping in VPD files for post-processing using
the $vcdplusdeltacycleon system task. Like other system tasks,
this task can either be used in the design or can be entered at the
CLI prompt. However, to enable delta cycle dumping,
$vcdplusdeltacycleon should be entered before entering the
$vcdpluson system task.

10-4

Post-Processing

Verilog HDL offers the advantage of having the ability to access any
internal signals from any other hierarchical block without having to
route it through the user interface.

11-1

Race Detection

11
Race Detection 1

VCS provides a dynamic race detection tool that finds race conditions
during simulation and a static race detection too that finds race
conditions by analyzing source code during compilation. This chapter
describes these two tools in the following sections:

• The Dynamic Race Detection Tool

• The Static Race Detection Tool

11-2

Race Detection

The Dynamic Race Detection Tool

The dynamic race detection tool finds two basic types of race
conditions during simulation:

• read - write race condition
This occurs when a procedural assignment in one always or initial
block, or a continuous assignment assigns a signal’s value to
another signal (read) at the same time that a procedural
assignment in another always or initial block, or another
continuous assignment assigns a new value to that signal (write).
For example:

initial
#5 a = 0; // write operation to signal a

initial
#5 b = a; // read operation of signal a

In this example, at simulation time 5, there is both a read and a
write operation on signal a. When simulation time 5 is over you
do not know if signal b will have the value 0 or the previous value
of signal a.

• write - write race condition
This occurs when a procedural assignment in one always or initial
block, or a continuous assignment assigns a value to a signal
(write) at the same time that a procedural assignment in another
always or initial block, or another continuous assignment assigns
a value to that signal (write). For example:

initial
#5 a = 0; // write operation to signal a

initial
#5 a = 1; // write operation of signal a

11-3

Race Detection

In this example, at simulation time 5, different initial blocks assign
0 and 1 to signal a. When simulation time 5 is over you do not
know if signal a’s value is 0 or 1.

Finding these race conditions is important because in Verilog
simulation you cannot control the order of execution of statements in
different always or initial blocks or continuous assignments that
execute at the same simulation time. This means that a race condition
can produce different simulation results when you simulate a design
with different, but both properly functioning, Verilog simulators.

Even worse, a race condition can result in different simulation results
with different versions of a particular simulator, or with different
optimizations or performance features of the same version of a
simulator.

Also sometimes modifications in one part of a design can cause
hidden race conditions to surface even in unmodified parts of a
design, thereby causing different simulation results from the
unmodified part of the design.

The indications of a race condition are the following:

• When simulation results do not match when comparing simulators

• When design modifications cause inexplicable results

• When simulation results do not match between different
simulation runs of the same simulator, when different versions or
different optimization features of that simulator are used

11-4

Race Detection

Therefore even when a Verilog design appears to be simulating
correctly and you see the results you want, you should look for race
conditions and remove them so that you will continue to see the same
simulation results from an unrevised design well into the future. Also
you should look for race conditions while a design is in development.

VCS can help you find these race conditions by writing report files
about the race conditions in your design.

VCS writes the reports at runtime but you enable race detection at
compile-time with a compile-time option.

The reports can be lengthy for large designs. You can post-process
the report to generate another shorter report that is limited, for
example, to only part of the design or to only between certain
simulation times.

Enabling Race Detection

When you compile your design you can enable race detection during
simulation for your entire design or part of your design.

The +race compile-time option enables race detection for your entire
design.

The +racecd compile-time option enables race detection for the part
of your design that is enclosed between the ‘race and ‘endrace
compiler directives.

11-5

Race Detection

Specifying the Maximum Size of Signals in Race
Conditions

You use the +race_maxvecsize compile-time option to specify the
largest vector signal for which the dynamic race detection tool looks
for race conditions. The syntax is as follows:

+race_maxvecsize=size

For example, if you enter the following vcs command line:

vcs source.v +race +race_maxvecsize=32

This command line specifies running the dynamic race detection tool
during simulation and looking for race conditions, of both the
read-write and write-write types, for signals with 32 bits or fewer.
Notice that the command line still requires the +race compile-time
option to enable the dynamic race detection tool to start at runtime.

The Race Detection Report

While VCS simulates your design it writes race detection reports to
the files race.out and race.unique.out.

The race.out file contains a line for all race conditions it finds at all
times throughout the simulation. If VCS executes two different
statements in the same time step several times, the race.out file
contains a line for each of those several times.

The race.unique.out file contains lines only for race conditions that
are unique, and which have not been reported in a previous line.

11-6

Race Detection

Note:
The race.unique.out is automatically created by the PostRace.pl
Perl script after simulation. This script needs a perl5 interpreter.
The first line of the script points to perl at a specific location, see
"Modifying the PostRace.pl Script" on page 11-10. If that location
at your site is not a perl5 interpreter, the script fails with syntax
errors.

The report describes read-write and write-write race conditions. The
following is an example of the contents of a small race.out file:

 Synopsys Simulation VCS RACE REPORT

0 "c": write test (exp1.v: 5) && read test (exp1.v:23)
1 "a": write test (exp1.v: 16) && write test (exp1.v:10)
1 "c": write test (exp1.v: 5) && read test (exp1.v:17)

 END RACE REPORT

The following explains a line in the race.out file:

Simulation time
when VCS detected
the race condition

Identifier of the
signal whose
value change is in
the race condition

Shorthand term for
assigning a value to
the signal

Identifier of the
module definition
where VCS finds the
write operation

1 "c": write test (exp1.v: 5) && read test (exp1.v:17)

Filename and line
number where VCS
finds the write operation

Delimiter between
information for a
a write and a read
operation or between
two write operations

Identifier of the
module definition
where VCS finds
the read operation.

Filename and line
number where VCS
finds the read operation

Shorthand term for
using a signal’s
value in another operation

11-7

Race Detection

The following is the source file, with line numbers added, for this race
condition report:

1. module test;
2. reg a,b,c,d;
3.
4. always @(a or b)
5. c = a & b;
6.
7. always
8. begin
9. a = 1;
10. #1 a = 0;
11. #2;
12. end
13.
14. always
15. begin
16. #1 a = 1;
17. d = b | c;
18. #2;
19. end
20.
21. initial
22. begin
23. $display("%m c = %b",c);
24. #2 $finish;
25. end
26. endmodule

As stipulated in race.out:

• At simulation time 0 there is a procedural assignment to reg c on
line 5 and also $display system task displays the value of reg
c on line 23.

• At simulation time 1 there is a procedural assignment to reg a on
line 10 and another procedural assignment to reg a on line 16.

11-8

Race Detection

• Also at simulation time 1 there is a procedural assignment to reg
c on line 5 and the value of reg c is in an expression that is
evaluated in a procedural assignment to another register on line
17.

Races of No Consequence

Sometimes race conditions exist, such a write-write race to a signal
at the same simulation time, but the two statements that are assigning
to the signal are assigning the same value. This is a race of no
consequence and the race tool indicates this with **NC at the end of
the line for the race in the race.out file.

0 "r4": write test (nc1.v: 40) && write test
(nc1.v:44)**NC
20 "r4": write test (nc1.v: 40) && write test
(nc1.v:44)**NC
40 "r4": write test (nc1.v: 40) && write test
(nc1.v:44)**NC
60 "r4": write test (nc1.v: 40) && write test (nc1.v:44)
80 "r4": write test (nc1.v: 40) && write test
(nc1.v:44)**NC

Post Processing the Report

VCS comes with the PostRace.pl Perl script that you can use to
post-process the race.out report to generate another report that
contains a subset of the race conditions in the race.out file. You
include options on the command line for the PostRace.pl script to
specify this subset. These options are as follows:

-hier module_instance
Specifies the hierarchical name of a module instance. The new
report lists only the race conditions found in this instance and all
module instances hierarchically under this instance.

11-9

Race Detection

-sig signal
Specifies the signal that you want to examine for race conditions.
You can only specify one signal and must not include a
hierarchical name for the signal. If two signals in different module
instances have the same identifier, the report lists race conditions
for both signals.

-minmax min max
Specifies the minimum, or earliest, simulation time and the
maximum, or latest, simulation time in the report

-nozero
Omits race conditions that occur at simulation time 0.

-uniq
Omits race conditions that also occurred earlier in the simulation.
The output is the same as the contents of the race.unique.out file.

-f filename
Specifies the name of the input file. Use this option if you changed
the name of the race.out file

-o filename
The default name of the output file is race.out.post. If you want a
different name, specify it with this option.

You can enter more than one of these options on the PostRace.pl
command line.

If you enter an option more than once, the script uses the last of these
multiple entries.

The report generated by the PostRace.pl script is in the race.out.post
file unless you specify a different name with the -o option.

11-10

Race Detection

The following is an example of the command line:

PostRace.pl -minmax 80 250 -f mydesign.race.out -o
mydesign.race.out.post

In this example the output file is named mydesign.race.out.post and
reports on the race conditions between 80 and 250 time units. The
post-process file is named mydesign.race.out.

Modifying the PostRace.pl Script

The first line of the PostRace.pl Perl script is as follows:

#! /usr/local/bin/perl

If Perl is installed at a different location at your site you need to modify
the first line of this script. This script needs a perl5 interpreter. You
will find this script at: vcs_install_dir/bin/PostRace.pl

Debugging Simulation Mismatches

A design can contain several race conditions where many of them
behave the same in different simulations so they are not the cause
of a simulation mismatch. For a simulation mismatch you want to find
the “critical races,” the race conditions that cause the simulation
mismatch. This section describes how to do this.

Add system tasks to generate VCD files to the source code of the
simulations that mismatch. Recompile them with the +race or
+racecd options and run the simulations again.

11-11

Race Detection

When you have two VCD files, find their differences with the vcdiff
utility. This utility is located in the vcs_install_dir/bin directory. The
command line for vcdiff is as follows:

vcdiff vcdfile1.dmp vcdfile2.dmp -options > output_filename

If you enter the vcdiff command without arguments, you see usage
information including the options.

Method 1: If the Number of Unique Race Conditions is Small

A unique race condition is a race condition that can occur several
times during simulation but only the first occurrence is reported in the
race.unique.out file. If there aren’t many lines in the race.unique.out
file than the number of unique race conditions is small. If so, for each
signal in the race.unique.out file:

1. Look in the output file from the vcdiff utility. If the signal values
are different, you have found a critical write-write race condition.

2. If the signal values are not different, look for the signals that are
assigned the value of this signal or assigned expressions that
include this signal (read operations).

3. If the values of these other signals are different at any point in the
two simulations, note the simulation times of these differences on
the other signals, and post process the race.out file looking for
race conditions in the first signal at around the simulation times
of the value differences on the other signals. Specify simulation
times just before and just after the time of these differences with
the -minmax option. Enter:

PostRace.pl -sig first_signal -minmax time time2

If the race.out.post file contains the first signal, then it is a critical
race condition and must be corrected.

11-12

Race Detection

Method 2: If the Number of Unique Races is Large

If there are many lines in the race.unique.out file then there are a
large number of unique race conditions. If so, one method of finding
the critical race conditions is to do the following:

1. Look in the output file from the vcdiff utility for the simulation time
of the first difference in simulation values.

2. Post process the race.out file looking for races at the time of the
first simulation value difference. Specify simulation times just
before and just after the time of these differences with the
-minmax option. Enter:

PostRace.pl -minmax time time2

3. For each signal in the resulting race.out.post file:

a. If the simulation values differ in the two simulations, then the
race condition in the race.out.post file is a critical race condition.

b. If the simulation values are not different, check the signals that
are assigned the value of this signal or assigned expressions
that include this signal. If the values of these other signals are
different then the race condition in the race.out.post file is a
critical race condition.

Method 3: An Alternative When the Number of Unique Race
Conditions is Large
1. Look in the output file from the vcdiff utility for the simulation time

of the first difference in simulation values.

2. For each signal that has a difference at this simulation time:

a. Traverse the signal dependency backwards in the design until
you find a signal whose values are the same in both simulations.

11-13

Race Detection

b. Look for a race condition on that signal at that time. Enter:

PostRace.pl -sig signal -minmax time time2

If there is a race condition at that time on that signal, it is a
critical race condition.

The Static Race Detection Tool

It is possible for a group of statements to combine to form a loop such
that the loop will be executed more than once by other Verilog
simulators but only once by VCS. This is a race condition.

These situations come about when level sensitive “sensitivity lists”
(event controls that immediately following the always keyword in an
always block and which also do not contain the posedge or
negedge keywords) and procedural assignment statements in these
always blocks combine with other statements, such as continuous
assignment statements or module instantiation statements, to form a
potential loop. We have found that these situations do not occur if
these always blocks contain delays or other timing information, non-
blocking assignment statements, or PLI calls through user-defined
system tasks.

You start the static race detection tool with the +race=all
compile-time option (not the +race compile-time option).

After compilation the static race detection tool writes the file named
race.out.static that reports on the race conditions it finds.

The following is a excerpt from a line numbered source code example
that shows such an always block that combines with other
statements to form a loop:

11-14

Race Detection

 35 always @(A or C) begin
 36 D = C;
 37 B = A;
 38 end
 39
 40 assign C = B;

The race.out.static file from the compilation of this source code
follows:

Race-[CLF] Combinational loop found
 "source.v", 35: The trigger ’C’ of the always block
can cause
 the following sequence of event(s) which can again
trigger
 the always block.
 "source.v", 37: B = A;
 which triggers ’B’.
 "source.v", 40: assign C = B;
 which triggers ’C’.

12-1

Delays and Timing

12
Delays and Timing 1

This chapter covers the following topics:

• Transport and Inertial Delays

• Pulse Control

• Specifying the Delay Mode

12-2

Delays and Timing

Transport and Inertial Delays

Delays can be categorized into transport and inertial delays.

Transport delays allow all pulses that are narrower than the delay to
propagate through. For example, Figure 12-1 shows the waveforms
for an input and output port of a module that models a buffer with a
module path delay of seven time units between these ports. The
waveform on top is that of the input port and the waveform underneath
is that of the output port. In this example you have enabled transport
delays for module path delays and specified that a pulse three time
units wide can propagate through (how this is done is explained in
"Enabling Transport Delays" on page 12-7 and "Pulse Control" on
page 12-7).

Figure 12-1 Transport Delay Waveforms

At time 0 a pulse three time units wide begins on the input port. This
pulse is narrower than the module path delay of seven time units, but
this pulse propagates through the module and appears on the output
port after seven time units. Similarly another narrow pulse begins on
the input port at time 3 and it also appears on the output port seven
time units later.

12-3

Delays and Timing

You can apply transport delays on all module path delays and all SDF
INTERCONNECT delays backannotated to a net from an SDF file.
For more details on SDF backannotation, see Chapter 15.

Inertial delays, in contrast, filter out all pulses that are narrower than
the delay. Figure 12-2 shows the waveforms for the same input and
output ports when you have not enabled transport delays for module
path delays.

Figure 12-2 Inertial Delay Waveforms

The pulse that begins at time 0 that is three time units wide does not
propagate to the output port because it is narrower than the seven
time unit module path delay. Neither does the narrow pulse that
begins at time 3. Note that the wide pulse that begins at time 6 does
propagate to the output port.

Gates, switches, MIPDs, and continuous assignments only have
inertial delays and inertial delays are the default type of delay for
module path delays and INTERCONNECT delays backannotated
from an SDF file to a net.

12-4

Delays and Timing

Different Inertial Delay Implementations

For compatibility with the earlier generation of Verilog simulators,
inertial delays have two different implementations, one for primitives
(gates, switches and UDPs), continuous assignments, and MIPDs
(Module Input Port Delays) and the other for module path delays and
INTERCONNECT delays backannotated from an SDF file to a net.
For more details on SDF backannotation, see Chapter 15. There is
also a third implementation that is for module path and
INTERCONNECT delays and pulse control, see "Pulse Control" on
page 12-7.

Inertial Delays for Primitives, Continuous Assignments, and
MIPDs

Both implementations were devised to filter out narrow pulses but the
one for primitives, continuous assignments, and MIPDs can produce
unexpected results. For example, Figure 12-3 shows the waveforms
for nets connected to the input and output terminals of a buf gate
with a delay of five time units.

In this implementation there can never be more than one scheduled
event on an output terminal. To filter out narrow pulses, the trailing
edge of a pulse can alter the value change but not the transition time
of the event scheduled by the leading edge of the pulse if the event
has not yet occurred.

12-5

Delays and Timing

Figure 12-3 Gate Terminal Waveforms

In the example illustrated in Figure 12-3, the following occurs:

1. At time 3 the input terminal changes to 0. This is the leading edge
of a three time unit wide pulse. This event schedules a value
change to 0 on the output terminal at time 8 because there is a
#5 delay specification for the gate.

2. At time 6 the input terminal toggles to 1. This implementation
keeps the scheduled transition on the output terminal at time 8
but alters the value change to a value of 1.

3. At time 8 the output terminal transitions to 1. This transition might
be unexpected because all pulses on the input have been
narrower than the delay but this is how this implementation works.
There is now no event scheduled on the output and a new event
can now be scheduled.

4. At time 9 the input terminal toggles to 0 and the implementation
schedules a transition of the output to 0 at time 14.

5. At time 12 the input terminal toggles to 1 and the value change
scheduled on the output at time 14 changes to a 1.

12-6

Delays and Timing

6. At time 14 the output is already 1 so there is no value change.
The narrow pulse on the input between time 9 and 12 is filtered
out. This implementation was devised for these narrow pulses.
There is now no event scheduled for the output.

7. At time 15 the input toggles to 0 and this schedules the output to
toggle to 0 at time 20.

Inertial Delays for Module Path Delays and INTERCONNECT
Delays

The implementation of inertial delays for module path delays and SDF
INTERCONNECT delays is that if the event scheduled by the leading
edge of a pulse is scheduled for a later simulation time or, in other
words, has not yet occurred, the event scheduled by the trailing edge,
at the end of the specified delay and at a new simulation time, replaces
the event scheduled by the leading edge. All narrow pulses are filtered
out.

Note:

- SDF INTERCONNECT delays follow this implementation if you
include the +multisource_int_delays compile-time
option. If you do not include this option, VCS uses an MIPD to
model the SDF INTERCONNECT delay and the delay uses the
inertial delay implementation for MIPDs. See
"INTERCONNECT Delays" on page 13-32.

- VCS enables more complex and flexible pulse control
processing when you include the +pulse_e/number and
+pulse_r/number options, see "Pulse Control" on page
12-7.

12-7

Delays and Timing

Enabling Transport Delays

Transport delays are never the default delay.

You can specify transport delays on module path delays with the
+transport_path_delays compile-time option. For this option to
work you must also include the +pulse_e/number and +pulse_r/
number compile-time options. See "Pulse Control" on page 12-7.

You can specify transport delays on a net to which you backannotate
SDF INTERCONNECT delays with the +transport_int_delays
compile-time option. For this option to work you must also include the
+pulse_int_e/number and +pulse_int_r/number
compile-time options. See "Pulse Control" on page 12-7.

The +pulse_e/number, +pulse_r/number, +pulse_int_e/
number, and +pulse_int_r/number options define specific
thresholdsfor pulse width, which let you tell VCS to filter out only some
of the pulses and let the other pulses through. See "Pulse Control" on
page 12-7.

Pulse Control

So far we’ve seen that with pulses narrower than a module path or
INTERCONNECT delay, you have the option of filtering all of them
out by using the default inertial delay or allowing all of them to
propagate through, by specifying transport delays. VCS also provides
a third option - pulse control. With pulse control you can:

• Allow pulses that are slightly narrower than the delay to propagate
through.

12-8

Delays and Timing

• Have VCS replace even narrower pulses with an X value pulse
on the output and display a warning message.

• Have VCS then filter out and ignore pulses that are even narrower
that the ones for which it propagates an X value pulse and displays
an error message.

You specify pulse control with the +pulse_e/number and
+pulse_r/number compile-time options for module path delays
and the +pulse_int_e/number and +pulse_int_r/number
compile-time options for INTERCONNECT delays.

The +pulse_e/number option’s number argument specifies a
percentage of the module path delay. VCS replaces pulses whose
widths that are narrower than the specified percentage of the delay
with an X value pulse on the output or inout port and displays a
warning message.

Similarly, the +pulse_int_e/number option’s number argument
specifies a percentage of the INTERCONNECT delay. VCS replaces
pulses whose widths are narrower than the specified percentage of
the delay with an X value pulse on the inout or output port instance
that is the load of the net to which you backannotated the
INTERCONNECT delay. It also displays a warning message.

The +pulse_r/number option’s number argument also specifies a
percentage of the module path delay. VCS filters out the pulses whose
widths are narrower than the specified percentage of the delay. With
these pulses there is no warning message; VCS simply ignores these
pulses.

Similarly, the +pulse_int_r/number option’s number argument
specifies a percentage of the INTERCONNECT delay. VCS filters out
pulses whose widths are narrower than the specified percentage of
the delay. There is no warning message with these pulses.

12-9

Delays and Timing

You can use pulse control with transport delays (see "Pulse Control
with Transport Delays" on page 12-9) or inertial delays (see "Pulse
Control with Inertial Delays" on page 12-12).

When a pulse is narrow enough for VCS to display a warning message
and propagate an X value pulse, you can set VCS to do one of the
following:

• Place the starting edge of the X value pulse on the output, as soon
as it detects that the pulse is sufficiently narrow, by including the
+pulse_on_detect compile-time option.

• Place the starting edge on the output at the time when the rising
or falling edge of the narrow pulse would have propagated to the
output. This is the default behavior.

See "Specifying Pulse on Event or Pulse on Detect Behavior" on page
12-16.

Also when a pulse is sufficiently narrow to display a warning message
and propagate an X value pulse, you can have VCS propagate the
X value pulse but disable the display of the warning message with
the +no_pulse_msg runtime option.

Pulse Control with Transport Delays

You specify transport delays for module path delays with the
+transport_path_delays, +pulse_e/number, and
+pulse_r/number options. You must include all three of these
options.

12-10

Delays and Timing

You specify transport delays for INTERCONNECT delays on nets
with the +transport_int_delays, +pulse_int_e/number,
and +pulse_int_r/number options. You must include all three of
these options.

If you want VCS to propagate all pulses, no matter how narrow,
specify a 0 percentage. If you want VCS to, for example, replace
pulses that are narrower than 80% of the delay with a X value pulse
(and display a warning message) and filter out pulses that are
narrower than 50% of the delay, enter the +pulse_e/80 and
+pulse_r/50 or +pulse_int_e/80 and +pulse_int_r/50
compile-time options.

Figure 12-4 shows the waveforms for the input and output ports for
an instance of a module that models a buffer with a ten time unit
module path delay. The vcs command line contains the following
compile-time options:

+transport_path_delays +pulse_e/80 +pulse_r/50

Figure 12-4 Pulse Control with Transport Delays

In the example illustrated in Figure 12-4 the following occurs:

1. At time 20 the input port toggles to 1.

12-11

Delays and Timing

2. At time 29 the input port toggles to 0 ending a nine time unit wide
value 1 pulse on the input port.

3. At time 30 the output port toggles to 1. The nine time unit wide
value 1 pulse that began at time 20 on the input port is propagating
to the output port because we have enabled transport delays and
nine time units is more than 80% of the ten time unit module path
delay.

4. At time 39 the input port toggles to 1 ending a ten time unit wide
value 0 pulse. Also at time 39 the output port toggles to 0. The
ten time unit wide value 0 pulse that began at time 29 on the input
port is propagating to the output port.

5. At time 46 the input port toggles to 0 ending a seven time unit
wide value 1 pulse.

6. At time 49 the output port transitions to X. The seven time unit
wide value 1 pulse that began at time 39 on the input port has
propagated to the output port but VCS has replaced it with an X
value pulse because seven time unit is less than 80% of the
module path delay. You also see at this time the following warning
message:

Warning : Time = 49; Pulse flagged as an error in
module_instance_name, value = StE.
Path: input_port --->output_port = 10;

7. At time 56 the input port toggles to 1 ending a ten time unit wide
value 0 pulse. Also at time 56 the output port toggles to 0. The
ten time unit wide value 0 pulse that began at time 46 on the input
port is propagating to the output port.

8. At time 60 the input port toggles to 0 ending a four time unit wide
value 1 pulse. Four time units is less than 50% of the module path
delay so VCS filters out this pulse and no indication of it appears
on the output port.

12-12

Delays and Timing

Pulse Control with Inertial Delays

You can enter the +pulse_e/number and +pulse_r/number or
+pulse_int_e/number and +pulse_int_r/number options
without the +transport_path_delays or
+transport_int_delays options. When you do you are
specifying pulse control for inertial delays on module path delays and
INTERCONNECT delays.

There is a special implementation of inertial delays with pulse control
for module path delays and INTERCONNECT delays. In this
implementation value changes on the input can schedule two events
on the output.

The first of these two scheduled events always causes a change on
the output. The type of value change on the output is determined by
the following:

• If the first event is scheduled by the leading edge of a pulse whose
width is equal to or wider than the percentage specified by the
+pulse_e/number number option, the value change on the
input propagates to the output.

• If the pulse is not wider than percentage specified by the
+pulse_e/number number option, but is wider that the
percentage specified by the +pulse_r/number option, the value
change is replaced by an X value.

• If the pulse is not wider than percentage specified by the
+pulse_r/number option, the pulse is filtered out.

The second scheduled event is always tentative. If another event
occurs on the input before the first event occurs on the output, that
additional event on the input cancels the second scheduled event
and schedules a new second event.

12-13

Delays and Timing

Figure 12-5 shows the waveforms for the input and output ports for
an instance of a module that models a buffer with a ten time unit
module path delay. The vcs command line contains the following
compile-time options:

+pulse_e/0 +pulse_r/0

Specifying 0 percentages here means that the trailing edge of all
pulses can change the second scheduled event on the output.
Specifying 0 does not mean that all pulses propagate to the output
because this implementation has its own way of filtering out short
pulses.

Figure 12-5 Pulse Control with Inertial Delays

In the example illustrated in Figure 12-5 the following occurs:

1. At time 20 the input port transitions to 0. This schedules a
transition to 0 on the output port at time 30, ten time units later as
specified by the module path delay. This is the first scheduled
event on the output port. This event is not tentative, it will occur.

2. At time 23 the input port toggles to 1. This schedules a transition
to 1 on the output port at time 33. This is the second scheduled
event on the output port. This event is tentative.

12-14

Delays and Timing

3. At time 26 the input port toggles to 0. This cancels the current
scheduled second event and replaces it by scheduling a transition
to 0 at time 36. The first scheduled event is a transition to 0 at
time 30 so the new second scheduled event isn’t really a transition
on the output port. This is how this implementation filters out
narrow pulses.

4. At time 29 the input port toggles to 1. This cancels the current
scheduled second event and replaces it by scheduling a transition
to 1 at time 39.

5. At time 30 the output port transitions to 0. The second scheduled
event on the output becomes the first scheduled event and is
therefore no longer tentative.

6. At time 39 the output port toggles to 1.

Typically, however, you will want to specify that VCS replace or reject
certain narrow pulses. Figure 12-6 shows the waveforms for the input
and output ports for an instance of the same module with a ten time
unit module path delay. The vcs command line contains the following
compile-time options:

+pulse_e/60 +pulse_r/40

Figure 12-6 Pulse Control with Inertial Delays and a Narrow Pulses

12-15

Delays and Timing

In the example illustrated in Figure 12-6 the following occurs:

1. At simulation time 20 the input port transitions to 0. This schedules
the first event on the output port, a transition to 0 at time 30.

2. At simulation time 30 the input port toggles to 1. This schedules
the output port to toggle to 1 at time 40. Also at simulation time
30 the output port transitions to 0. It doesn’t matter which of these
events happened first. At the end of this time there is only one
scheduled event on the output.

3. At simulation time 36 the input port toggles to 0. This is the trailing
edge of a six time unit wide value 1 pulse. The pulse is equal to
the width specified with the +pulse_e/60 option so VCS
schedules a second event on the output, a value change to 0 on
the output at time 46.

4. At simulation time 40 the output toggles to 1 so now there is only
one event scheduled on the output, the value change to 0 at time
46.

5. At simulation time 46 the input toggles to 1 scheduling a transition
to1 at time 56 on the output. Also at time 46 the output toggles to 0.
There is now only one event scheduled on the output.

6. At time 50 input port toggles to 0. This is the trailing edge of a four
time unit wide value 1 pulse. The pulse is not equal to the width
specified with the +pulse_e/60 option but is equal to the width
specified with the +pulse_r/40 option so VCS changes the first
scheduled event from a change to 1 to a change to X at time 56
and schedules a second event on the output, a transition to 0 at
time 60.

7. At time 56 the output transitions to X and VCS displays the error
message:

Warning: time = 56; Pulse Flagged as error in

12-16

Delays and Timing

module_instance_name, Value = StE
port_name ---> port_name = 10;

8. At time 60 the output transitions to 0.

Pulse control sometimes blurs the distinction between inertial and
transport delays. In this example the results would have been the
same if you also included the +transport_path_delays option.

Specifying Pulse on Event or Pulse on Detect Behavior

Asymmetric delays, such as different rise and fall times for a module
path delay, can cause schedule cancellation problems for pulses.
These problems persist when you specify transport delay and can
persist for a wide range of percentages that you specify for the pulse
control options.

For example for a module that models a buffer, if you specify a rise
time of 4 and a fall time of 6 for a module path delay a narrow value
0 pulse can cause scheduling problems, as illustrated in Figure 12-7.

Figure 12-7 Asymmetric Delays and Scheduling Problems

12-17

Delays and Timing

Here you include the +pulse_e/100 and +pulse_r/0 options. The
scheduling problem is that the leading edge of the pulse on the input,
at time 10, schedules a transition to 0 on the output at time 16; but
the trailing edge, at time 11, schedules a transition to 1 on the output
at time 15.

Obviously the output has to end up with a value of 1 so VCS can’t
allow the events scheduled at time 15 and 16 to occur in sequence;
if it did the output would end up with a value of 0. This problem persists
when you enable transport delays and whenever the percentage
specified in the +pulse_r/number option is low enough to enable
the pulse to propagate through the module.

To circumvent this problem, when a later event on the input schedules
an event on the output that is earlier than the event scheduled by the
previous event on the input, VCS cancels both events on the output.

This ensures that the output ends up with the proper value but what
it doesn’t do is indicate that something happened on the output
between times 15 and 16. You might want to see an error message
and an X value pulse on the output indicating there was an undefined
event on the output between these simulation times. You see this
message and the X value pulse if you include the +pulse_on_event
compile-time option, specifying pulse on event behavior, as illustrated
in Figure 12-8. Pulse on event behavior calls for an X value pulse on
the output after the delay and when there are asymmetrical delays
scheduling events on the output that would be canceled by VCS , to
output an X value pulse between those events instead.

12-18

Delays and Timing

Figure 12-8 Using +pulse_on_event

In most cases where the +pulse_e/number and +pulse_r/
number options already create X value pulses on the output, also
including the +pulse_on_event option to specify pulse on event
behavior will make no change on the output.

Pulse on detect behavior, specified by the +pulse_on_detect
compile-time option, displays the leading edge of the X value pulse
on the output as soon as events on the input, controlled by the
+pulse_e/number and +pulse_r/number options, schedule an
X value pulse to appear on the output. Pulse on detect behavior differs
from pulse on event behavior in that it calls for the X value pulse to
begin before the delay elapses. Figure 12-9 illustrates pulse on detect
behavior.

Figure 12-9 Using +pulse_on_detect

12-19

Delays and Timing

In this example, by including the +pulse_on_detect option, VCS
causes the leading edge of the X value pulse on the output to begin
at time 11 because of an unusual event that occured on the output
between times 15 and 16 because of the rise at simulation time 11.

Using pulse on detect behavior can also show you when VCS has
scheduled multiple events for the same simulation time on the output
by starting the leading edge of an X value pulse on the output as soon
as VCS has scheduled the second event.

For example, a module that models a buffer has a rise time module
path delay of 10 time units and a fall time module path delay of 4 time
units. Figure 12-10 shows the waveforms for the input and output port
when you include the +pulse_on_detect option.

Figure 12-10 Pulse on Detect Behavior Showing Multiple Transitions

In the example illustrated in Figure 12-10 the following occurs:

1. At simulation time 0 the input port transitions to 0 scheduling the
first event on the output, a transition to 0 at time 4.

2. At time 4 the output transitions to 0.

3. At time 10 the input transitions to 1 scheduling a transition to 1 on
the output at time 20.

12-20

Delays and Timing

4. At time 16 the input toggles to 0 scheduling a second event on
the output at time 20, a transition to 0. This event also is the trailing
edge of a six time unit wide value 1 pulse so the first event changes
to a transition to X. There is more than one event for different
value changes on the output at time 20, so VCS begins the leading
edge of the X value pulse on the output at this time.

5. At time 20 the output toggles to 0, the second scheduled event at
this time.

If you did not include the +pulse_on_detect option, or substituted
the +pulse_on_event option, you would not see the X value pulse
on the output between times 16 and 20.

Pulse on detect behavior does not just show you when asymmetrical
delays schedule multiple events on the output. Other kinds of events
can cause multiple events on the output at the same simulation time,
such as different transition times on two input ports and different
module path delays from these input ports to the output port. Pulse
on detect behavior would show you an X value pulse on the output
starting when the second event was scheduled on the output port.

Specifying the Delay Mode

It is possible for a module definition to include module path delay that
does not equal the cumulative delay specifications in primitive
instances and continuous assignment statements in that path.
Example 12-11 shows such a conflict.

12-21

Delays and Timing

Example 12-11 Conflicting Delay Modes
‘timescale 1 ns / 1 ns
module design (out,in);
output out;
input in;
wire int1,int2;

assign #4 out=int2;

buf #3 buf2 (int2,int1),
 buf1 (int1,in);

specify
(in => out) = 7;
endspecify
endmodule

In Example 12-11, the module path delay is seven time units but the
delay specifications distributed along that path add up to ten time
units.

If you include the +delay_mode_path compile-time option, VCS
ignores the delay specifications in the primitive instantiation and
continuous assignment statements and uses only the module path
delay. In Example 12-11, it would use the seven time unit delay for
propagating signal values through the module.

If you include the +delay_mode_distributed compile-time
option, VCS ignores the module path delays and uses the delay in
the delay specifications in the primitive instantiation and continuous
assignment statements. In Example 12-11, it uses the ten time unit
delay for propagating signal values through the module.

12-22

Delays and Timing

There are other modes that you can specify:

• If you include the +delay_mode_unit compile-time option, VCS
ignores the module path delays and changes the delay
specification in all primitive instantiation and continuous
assignment statements to the shortest time precision argument
of all the ‘timescale compiler directives in the source code. (The
default time unit and time precision argument of the ‘timescale
compiler directive is 1 s). In Example 12-11 the ‘timescale
compiler directive has a precision argument of 1 ns. VCS might
use this 1 ns as the delay, but if the module definition is used in
a larger design and there is another ‘timescale compiler
directive in the source code with a finer precision argument, then
VCS uses the finer precision argument.

• If you include the +delay_mode_zero compile-time option, VCS
changes all delay specifications and module path delays to zero.

• If you include none of the compile-time options described in this
section, when, as in Example 12-11, the module path delay does
not equal the distributed delays along the path, VCS uses the
longer of the two.

13-1

SDF Backannotation

13
SDF Backannotation 1

This chapter covers the following topics:

• Using SDF Files

• Compiling the ASCII SDF File at Compile-Time

• Reading the ASCII SDF File During Runtime

• INTERCONNECT Delays

• Min:Typ:Max Delays

• Using the Configuration File to Disable Timing

• Using the timopt Timing Optimizer

• Editing the timopt.cfg File

13-2

SDF Backannotation

Using SDF Files

The OVI Standard Delay File (SDF) specification provides a standard
ASCII file format for representing and applying delay information.
VCS supports the OVI versions 1.0, 1.1, 2.0, 2.1, and 3.0 of this
specification.

In the SDF format a tool can specify intrinsic delays, interconnect
delays, port delays, timing checks, timing constraints, and pulse
control (PATHPULSE).

When VCS reads an SDF file it “backannotates” delay values to the
design, that is, it adds delay values or changes the delay values
specified in the source files. You tell VCS to backannotate delay
values with the $sdf_annotate system task.

There are twomethods that you can use to backannotate delay values
from an SDF file:

• Compiling the SDF file at compile time.
This method is preferable in almost all cases and VCS does this
by default.

• Reading the ASCII SDF file at run time
This method remains chiefly for compatibility purposes.

13-3

SDF Backannotation

Compiling the SDF file, when you compile your Verilog source files,
creates binary data files that VCS reads when it executes a
$sdf_annotate system task at runtime. VCS reads binary data files
much faster than ASCII SDF files. The additional compile time will
always be less than the time saved at run time. There are, however,
limitations on your design when you compile an SDF file. If you cannot
circumvent these limitations you can use the method of telling VCS
to read the ASCII SDF file when it executes a $sdf_annotate system
task.

When you use an SDF file to backannotate delay values you can also
use an SDF configuration file. In this file you can specify, among other
things, the selection of minimal, typical, or maximal delay values in
min:typ:max delay value triplets, and the scaling of these delay
values. You can then specify these delay value operations for your
entire design and on a module by module basis.

Compiling the ASCII SDF File at Compile-Time

At compile time, VCS automatically compiles the SDF file you specify
as the first argument to the $sdf_annotate system task in your
design.

This method saves you simulation time. However, in some cases you
may need to disable the automatic compilation of SDF files with the
+oldsdf compile-time option.

The $sdf_annotate System Task

You use the $sdf_annotate system task to tell VCS to backannotate
delay values from an SDF file to your Verilog design.

13-4

SDF Backannotation

The syntax for the $sdf_annotate system task is as follows:

$sdf_annotate ("sdf_file"[, module_instance]
[,"sdf_configfile"][,"sdf_logfile"][,"mtm_spec"]
[,"scale_factors"][,"scale_type"]);

Where:

"sdf_file"
Specifies the path to the SDF file.

module_instance
Specifies the scope where backannotation starts. The default is
the scope of the module instance that calls $sdf_annotate.

"sdf_configfile"
Specifies the SDF configuration file.

"sdf_logfile"
Specifies the SDF log file to which VCS sends error messages
and warnings. By default VCS displays no more than ten warning
and ten error messages about backannotation and writes no more
than that in the log file you specify with the -l option. However,
if you specify an SDF log file with this argument, the SDF log file
receives all messages about backannotation. You can also use
the +sdfverbose runtime option to enable the display of all
backannotation messages

"mtm_spec"
Specifies which delay values of min:typ:max triplets VCS
backannotates. Specify MINIMUM, TYPICAL, MAXIMUM or
TOOL_CONTROL (default).

"scale_factors"
Specifies the multiplier for the minimum, typical and maximum
components of delay triplets. It is a colon separated string of three
positive, real numbers "1.0:1.0:1.0" by default.

13-5

SDF Backannotation

"scale_type"
Specifies the delay value from each triplet in the SDF file for use
before scaling. Possible values: "FROM_TYPICAL",
"FROM_MIMINUM", "FROM_MAXIMUM", "FROM_MTM" (default).

Limitations on Compiling the SDF File

VCS cannot compile your SDF file in the following situations:

• When you do not use a string literal to specify the SDF file in the
$sdf_annotate system task, for example, when you assign the
SDF file name to a register and enter the register as the first
argument to the $sdf_annotate system task.

• When you include the scale_type, or scale_factor
arguments in the $sdf_annotate system task.

If your design contains either of these situations, you must use the
method of reading the ASCII SDF file during runtime and include the
+oldsdf compile-time option.

Example 13-1 Compiling the SDF File Example

The following Verilog model, in source file ex.v, does not contain
either of these situations:

`timescale 1ns / 1ns

module test();
wire in, out, clk, out1;
 initial $sdf_annotate("./ex.sdf");

leafA leaf1(out, in, clk);
leafB leaf2(out1, out, clk);

endmodule

module leafA(out,D,CK);
output out;

13-6

SDF Backannotation

input CK, D;

specify
 (D *> out) = (1,2);
 (CK *> out) = (3);
endspecify
endmodule

module leafB(out,D,CK);
output out;
input D;
input CK;

buf(out,D);

endmodule

The following is the SDF file, ex.sdf, for the Verilog model.

(DELAYFILE
 (DESIGN "test")
 (VENDOR "")
 (DIVIDER .)
 (VOLTAGE :1:)
 (PROCESS "typical")
 (TEMPERATURE:1:)
 (TIMESCALE1ns)
 (CELL
 (CELLTYPE "leafB")
 (INSTANCE leaf2)
 (DELAY
 (ABSOLUTE
 (PORT D (1:2:3)))
)
)
 (CELL
 (CELLTYPE "leafA")
 (INSTANCE leaf1)
 (DELAY
 (ABSOLUTE
 (IOPATH D out (7)))

13-7

SDF Backannotation

)
)
)

The following is the vcs command line that compiles both the Verilog
source file and the SDF file:

vcs +compsdf ex.v

You do not have to specify the ex.sdf file, or any SDF table file, on
the vcs command line. When VCS compiles the SDF file it creates
binary data files in the simv.daidir directory. VCS reads these
binary files when it executes the $sdf_annotate system task.

Precompiling an SDF File

Whenever you compile your design, if your design backannotates
SDF data, VCS parses either the ASCII text SDF file or the
precompiled version of the ASCII text SDF file that VCS can make
from the original ASCII text SDF file. VCS does this even if the SDF
file is unchanged and already compiled into a binary version by a
previous compilation, and even when you are using incremental
compilation and the parts of the design backannotated by the SDF
file are unchanged.

VCS can parse the precompiled SDF file much faster than it can parse
the ASCII text SDF file, so for large SDF files it’s a good idea to have
VCS create a precompiled version of the SDF file.

Creating the Precompiled Version of the SDF file

To create the precompiled version of the SDF file, include the
+csdf+precompile option on the vcs command line.

13-8

SDF Backannotation

By default the +csdf+precompile option creates the precompiled
SDF file in the same directory as the ASCII text SDF file and
differentiates the precompiled version by appending "_c" to its
extension. For example, if the /u/design/sdf directory contains a
design1.sdf file, using the +csdf+precompile option creates the
precompiled version of the file named design1.sdf_c in the
/u/design/sdf directory.

After you have created the precompiled version of the SDF file you
no longer need to include the +csdf+precompile option on the vcs
command line unless there is a change in the SDF file. Continuing to
include it, however, such as in a script that you run every time you
compile your design, would have no effect when the precompiled
version is newer than the ASCII text SDF file, but would create a new
precompiled version of the SDF file whenever the ASCII text SDF file
changes. Therefore this option is intended to be used in scripts for
compiling your design.

When you recompile your design, VCS finds the precompiled SDF
file in the same directory as the SDF file specified in the
$sdf_annotate system task. You can also specify the precompiled
SDF file in the $sdf_annotate system task.

Specifying an Alternative Name and Location

You can use the +csdf+precomp+dir+directory option to
specify the directory path where you want VCS to write the
precompiled SDF file. When you do, make sure that you have already
created all directories in the path because VCS does not create
directories that are specified with this option.

You can use the +csdf+precomp+ext+ext option to specify an
alternative to the "_c" character string addition to the filename
extension of the precompiled SDF file.

13-9

SDF Backannotation

For example, in the /u/designs/mydesign directory are the design.v
and design.sdf files and the sdfhome directory. If you enter the
following command line:

vcs design.v +csdf+precompile +csdf+precomp+dir+sdfhome
+csdf+precomp+ext+_precompiled

VCS creates the design.sdf_precompiled file in the sdfhome
directory.

Now that the precompiled file is not in the default location and does
not have the default filename extension, in subsequent compilations
you must tell VCS its new location and name. There are two ways to
do this:

1. Continue to include the location and name options on the vcs
command line in subsequent compilations. In this example you
would always include +csdf+precomp+dir+sdfhome and
+csdf+precomp+ext+_precompiled.

This method does not require you to make a change in the source
code. You can just add these options to a script you run whenever
you compile your design.

2. Change the filename argument in the $sdf_annotate system
task to the precompiled file. In this example you would change:

$sdf_annotate("design.sdf");

to:

$sdf_annotate("sdfhome/design.sdf_precompiled");

13-10

SDF Backannotation

Reading the ASCII SDF File During Runtime

You can use the ACC capability support that is part of the PLI interface
to tell VCS to read the ASCII SDF file when it executes the
$sdf_annotate system task.

To do this, include the +oldsdf compile-time option and create a PLI
table file that maps the $sdf_annotate system task to the C function
sdf_annotate_call (automatically provided with VCS) and
indicates which modules will be annotated and what types of
constructs will be annotated.

For faster simulation enable, in the PLI table, only the ACC
capabilities you need. These capabilities are as follows:

tchk:
Annotate to timing checks (sdf SETUP, HOLD, etc.)

gate:
Annotate to gate primitives (sdf DEVICE)

mp:
Annotate propagation delays to module paths (sdf IOPATH)

mip:
Annotate propagation delays to module input port delays (sdf
PORT and INTERCONNECT)

mipb:
Annotate to module input port bit delays (sdf PORT and
INTERCONNECT)

prx:
Annotate pulse rejection and error delays to module paths
(sdf PATHPULSE)

13-11

SDF Backannotation

For example, the SDF annotation of module paths contained within
the hierarchy of a module named myasic requires a PLI table such
as this:

$sdf_annotate call=sdf_annotate_call acc+=mp,prx:myasic+

If possible, take advantage of the %CELL wildcard scope to add the
needed ACC capabilities to library cells only, which are often the only
cells requiring SDF annotation:

$sdf_annotate call=sdf_annotate_call acc+=mp, prx:%CELL

For methodologies requiring delay annotation in the sub-hierarchy of
cells, use:

$sdf_annotate call=sdf_annotate_call acc+=mp, prx:%CELL+

When running vcs use the -P compile-time option to specify this PLI
table, as you would to specify any user task or function implemented
in a custom PLI application. You do not need to provide the function
sdf_annotate_call as it is part of the VCS product by default.

% vcs -P sdf.myasic.tab myasic.v +oldsdf

Example 13-2 Reading the ASCII SDF File Example

The following Verilog model, in source file ex2.v, contains a
specparam in its specify block:

‘timescale 1 ns / 1 ns
module top;
reg in;
leaf leaf1(in,out);
initial begin

$sdf_annotate(“ex2.sdf”,top);
$monitor($time,,in,,out);

in = 0;
#100 $finish;

13-12

SDF Backannotation

end
endmodule
module leaf(in,out);
input in;
output out;
buf(out,in);
specify

specparam mpath_d=1.0;
(in => out) = (mpath_d);

endspecify
endmodule

The following is the SDF file, ex2.sdf, for the Verilog model:

(DELAYFILE
(TIMESCALE 1 ns)

(CELL
(CELLTYPE “leaf”)
(INSTANCE leaf1)
(DELAY
(ABSOLUTE
(IOPATH in out (5))))))

In this file the SDF construct IOPATH corresponds to a Verilog module
path delay. The delay value specified is 5. The time unit, specified by
the TIMESCALE construct, makes the annotated delay value to the
module path delay 5 ns.

The PLI table file, ex2.tab contains the following:

$sdf_annotate call=sdf_annotate_call acc=mp:top+

We specify the PLI table file on the vcs command line:

vcs -P ex2.tab ex2.v

We see the successful backannotation of the delay value when we
execute the simv executable and see transition times and values from
the $monitor system task:

13-13

SDF Backannotation

0 0 x
5 0 0
$finish at simulation time 100
V C S S i m u l a t i o n R e p o r t
Time: 100 ns
CPU Time: 0.100 seconds; Data structure size: 0.0Mb

Performance Considerations

Because the compiler must make large quantities of information
about the structure of the design available at run time in order to allow
annotation, you must consider simulation efficiency when using SDF
annotation. Keep in mind the following:

• For annotation capabilities gate, mp, and tchk, there is overhead
only if the modules actually contain the related constructs.

• For module input port delays, significant compile and runtime
overhead can be incurred if annotation is enabled on ports that
will not be annotated.

• Enabling port bit annotation increases the overhead.

Use the %CELL wildcard scope as shown in the previous section (or
%CELL+ if all the annotated cells are below the $sdf_annotate call)
to annotate only those modules that require SDF annotation ACC
capabilities.

Replacing Negative Module Path Delays in SDF Files

VCS does not backannotate negative module path delays from
IOPATH entries in SDF files. By default VCS substitutes a 0 delay for
these negative delays.You can tell VCS to instead use the module
path delay specified in a module’s specify block by including the
+old_iopath compile-time option.

13-14

SDF Backannotation

Using the Shorter Delay in IOPATH Entries

It is valid syntax in an SDF file to have two IOPATH entries for the
same pair of ports but one entry for a rising edge on the input or inout
port and another entry for a falling edge on the input or inout port. For
example:

(IOPATH (posedge inport) outport (3) (6))
(IOPATH (negedge inport) outport (5) (4))

These entries specify backannotating the following delay values to
the module path delay between the port named inport and the port
named outport:

• If a rising edge on inport results in a rising edge on outport, then
the module path delay is three.

• If a rising edge on inport results in a falling edge on outport, then
the module path delay is six.

• If a falling edge on inport results in a rising edge on outport, then
the module path delay is five.

• If a falling edge on inport results in a falling edge on outport, then
the module path delay is four.

13-15

SDF Backannotation

VCS does not however backannotate the module path delay values
as specified. Instead VCS backannotates the shorter of the
corresponding delays in the two IOPATH entries. Therefore the
following behavior occurs during simulation when a value propagates
from inport to outport:

• When the value propagation results in a rising edge on outport,
the module path delay from inport to outport is three, no matter
whether the value propagation began with a rising or falling edge
on inport, because three is shorter than five.

• When the value propagation results in a falling edge on outport,
the module path delay from inport to outport is four, no matter
whether the value propagation began with a rising or falling edge
on inport, because four is shorter than six.

In this example there are two delay values in the two IOPATH entries
for the same pair of ports, for a rising and falling edge on the output
or inout port, but VCS would also backannotate the shorter of the
corresponding delay values if the IOPATH entries each had only one
delay value or each had three or six delay values (delay value lists
with 12 values are not implemented).

VCS does this, backannotates the shorter of the corresponding delay
values, to be compatible with the earlier generation of Verilog
simulators, Cadence’s Verilog-XL.

Disabling CELLTYPE Checking in SDF Files

Sometimes when you merge smaller designs into a larger design you
discover that you have more than one module in the larger design
with the same identifier or name. When this happens you must resolve
the conflict by editing your Verilog source code to rename one of the
modules that shares the same identifier.

13-16

SDF Backannotation

If an SDF file backannotates delay values to an instance of a module
that must be renamed, the CELLTYPE entry in the SDF file for the
instance will contain the old identifier of the module, and ordinarily
this would cause VCS to display the following error message:

SDF Error: Instance instance_name is CELLTYPE of
"new_module_identifier" not "old_module_identifier",
ignoring

In this situation, to avoid editing the SDF file, include the
+sdf_nocheck_celltype compile-time option on the vcs
command line.

The SDF Configuration File

You can use the configuration file to control the following on a module
type basis as well as a global basis:

• min:typ:max selection

• Scaling

• Turnoff delay determination

• MIPD (module-input-delay) approximation policy for cases of
‘overlapping’ annotations to the same input port.

Additionally, there is a mapping command you can use to redirect the
target of IOPATH and TIMINGCHECK statements from the scope of the
INSTANCE to a specific IOPATH or TIMINGCHECK in its subhierarchy
for all instances of a specified module type.

13-17

SDF Backannotation

Delay Objects and Constructs

The mapping from SDF statements to simulation objects in VCS is
fixed, as shown in Table 13-1.

Table 13-1 VCS Simulation Delay Objects/Constructs
SDF Constructs VCS Simulation Object

Delays
PATHPULSE module path pulse delay
GLOBALPATHPULSE module path pulse reject/error delay
IOPATH module path delay
PORT module input port delay
INTERCONNECT module input port delay or,

intermodule path delay when
+multisource_int_delays
specified

NETDELAY module input port delay
DEVICE primitive and module path delay

Timing-checks
SETUP $setup timing-check limit
HOLD $hold timing-check limit
SETUPHOLD $setup and $hold timing-check

limit
RECOVERY $recovery timing-check limit
SKEW $skew timing-check limit
WIDTH $width timing-check limit
PERIOD $period timing-check limit
NOCHANGE ignored
PATHCONSTRAINT ignored
SUM ignored
DIFF ignored

13-18

SDF Backannotation

SDF Configuration File Commands

This section explains the commands used in SDF configuration files,
with syntax and examples.

approx_command:

The INTERCONNECT_MPID keyword selects the INTERCONNECT
delays in the SDF file that are mapped to MIPDs in VCS. It can specify
one of the following to VCS:

MINIMUM
Annotates, to the MIPD for the input or inout port instance, the
shortest delay of all the INTERCONNECT delay value entries in
the SDF file that specify a connection to the input or inout port.

MAXIMUM
Annotates, to the MIPD for the input or inout port instance, the
longest delay of all the INTERCONNECT delay value entries in
the SDF file that specify a connection to the input or inout port.

AVERAGE
Annotates, to the MIPD for the input or inout port instance, the
average delay of all the INTERCONNECT delay value entries in
the SDF file that specify a connection to the input or inout port.

LAST
Annotates, to the MIPD for the input or inout port instance, the
delays in the last INTERCONNECT entry in the SDF file that
specifies a connection to the input or inout port.

The default approximation is MAXIMUM.

SKEWCONSTRAINT ignored

Table 13-1 VCS Simulation Delay Objects/Constructs
SDF Constructs VCS Simulation Object

13-19

SDF Backannotation

Syntax:

INTERCONNECT_MIPD = MINIMUM | MAXIMUM | AVERAGE | LAST;

Example:

INTERCONNECT_MIPD=LAST;

map_command:

This command maps the SDF constructs to VCS Simulation Delay
Objects.

Note:
Refer to Table 13-1: VCS Simulation Delay Objects/Constructs.

Syntax:

sdf_construct = veritool_map ;
sdf_construct : IOPATH | PORT | INTERCONNECT | NETDELAY |
DEVICE | SETUP | HOLD | SETUPHOLD | RECOVERY | SKEW | WIDTH
| PERIOD | NOCHANGE | PATHPULSE | GLOBALPATHPULSE
veritool_map : IGNORE | INTERMOD_PATH | MIPD | CELL | USE

Example:

INTERCONNECT=MIPD;
PATHPULSE=IGNORE;

mtm_command:

Annotates the minimum, typical, or maximum delay value. Specifies
one of the following keywords:

MINIMUM
Annotates the minimum delay value

13-20

SDF Backannotation

TYPICAL
Annotates the typical delay value

MAXIMUM
Annotates the maximum delay value

TOOL_CONTROL
Delay value is determined by the command line options of the
Verilog tool (+mindelays, +typdelays, or +maxdelays)

The default for min_typ_max is TOOL_CONTROL.

Syntax:

MTM = MINIMUM | TYPICAL | MAXIMUM | TOOL_CONTROL;

Example:

MTM=MAXIMUM;

scale_command:
• SCALE_FACTORS - Set of three real number multipliers that

scale the timing information in the SDF file to the minimum, typical,
and maximum timing information that is backannotated to the
Verilog tool. The multipliers each represent a positive real number,
for example 1.6:1.4:1.2

• SCALE_TYPE - Selects one of the following keywords to scale
the timing specification in the SDF file to the minimum, typical,
and maximum timing that is backannotated to the Verilog tool:

FROM_MINIMUM
Scales from the minimum timing specification in the SDF file.

FROM_TYPICAL
Scales from the typical timing specification in the SDF file.

13-21

SDF Backannotation

FROM_MAXIMUM
Scales from the maximum timing specification in the SDF file.

FROM_MTM
Scales directly from the minimum, typical, and maximum timing
specifications in the SDF file.

Syntax:

SCALE_FACTORS = number : number : number ;
SCALE_TYPE = FROM_MINIMUM | FROM_TYPICAL | FROM_MAXIMUM |
FROM_MTM ;

Example:

 SCALE_FACTORS=100:0:9;
 SCALE_TYPE=FROM_MTM;
 SCALE_FACTORS=1.1:2.1:3.1;
 SCALE_TYPE=FROM_MINIMUM;

turnoff_command:

The turnoff_command keyword globally specifies which delays the
SDF annotator uses. It uses one of the following for a given object:

MINIMUM
Minimum of the rise and fall delay value.

MAXIMUM
Maximum of the rise and fall delay value.

AVERAGE
Average of the rise and fall delay value.

FROM_FILE
The SDF annotator uses the turn-off delays in the SDF file. If you
do not specify FROM_FILE or if you specify FROM_FILE, but the
SDF files does not contain the turn-off delay, the turn-off delay is
set to min (rise,fall).

13-22

SDF Backannotation

Syntax:

TURNOFF_DELAY = FROM_FILE | MINIMUM | MAXIMUM | AVERAGE ;

Example:

TURNOFF_DELAY=FROM_FILE;

modulemap_command:

Redirects the delay object of IOPATH or TIMINGCHECK SDF
statements for all instances of a specified module type to a different
module path or timing check object in the same or lower scope.

Syntax:

MODULE verilog_id { list_of_module_mappings } ;

Here, verilog_id is the name of a specific type of module (not
instance name) specified in the corresponding Verilog description.

list_of_module_mappings:
mtm_command | scale_command | map_inner_command

The mtm and scale commands are as defined earlier. Note that using
these commands as arguments for the module_map_command
affects only the IOPATH, DEVICE, and TIMINGCHECK information
annotated to a specific type of module.

Syntax:

MAP_INNER = verilog_id ;
| systchk = ADD { list_of_systchk }
| systchk = ADD { list_of_systchk }
| systchk = OVERRIDE { list_of_systchk }
| systchk = IGNORE ;
| path_declaration = ADD { list_of_path_declaration }
| path_declaration = OVERRIDE { list_of_path_declaration }

13-23

SDF Backannotation

| path_declaration = IGNORE ;

The SDF annotator uses hierarchical_path as the Verilog hierarchical
path name of a submodule within module_type. The paths specified
in the SDF file are mapped to module_type. This path applies to all
path delays and timing checks specified for this module in the SDF
file including those mapped with ADD and OVERRIDE.

ADD
Adds to the mapping specifications of the SDF file. The original_
timing specification is mapped to new_timing, the Verilog HDL
syntax of a path delay or timing check.

OVERRIDE
Replaces the mapping specifications of the SDF file. The
original_timing specification is mapped to new_timing, the Verilog
HDL syntax of a path delay or timing check.

 IGNORE
Ignores the mapping specifications in the SDF file. In all cases,
the hierarchical_path name is applied to any new_timing
specification before they are annotated to VCS.

list_of_systchk : systchk ';' | list_of_systchk systchk ';'
systchk: '$setup' '(' systchk_arg ',' systchk_arg ',' expression opt_notifier ')'

|'$hold' '(' systchk_arg ',' systchk_arg ',' expression
opt_notifier ')'

|'$setuphold' '(' systchk_arg ',' systchk_arg ',' expression ','
expression opt_notifier ')'

|'$recovery' '(' systchk_arg ',' systchk_arg ',' expression
opt_notifier ')'

|'$period' '(' systchk_arg ',' expression opt_notifier ')'
|'$width' '(' systchk_arg ',' expression ',' expression

opt_notifier ')'
|'$skew' '(' systchk_arg ',' systchk_arg ',' expression

opt_notifier ')'
|'$nochange' '(' systchk_arg ',' systchk_arg ',' expression ','

expression opt_notifier ')'
opt_notifier: ',' expression | ',' | ;
systchk_arg: expression

| expression '&&&' timing_check_condition
| timing_check_event_control specify_terminal_descriptor
| timing_check_event_control specify_terminal_descriptor

'&&&' timing_check_condition

13-24

SDF Backannotation

timing_check_condition: expression
list_of_path_declaration: path_declaration ';'

| list_of_path_declaration path_declaration ';'
path_declaration: opt_if '(' list_of_path_in_td path_type list_of_path_out_td
')'

| opt_if '(' list_of_path_in_td path_type '('
list_of_path_out_td ')' ')'
opt_if: 'if' '(' expression ')' | ;
opt_edge: timing_check_event_control | ;
timing_check_event_control': 'posedge' | 'negedge' | 'edge'

'[' edge_descriptor_list ']'
edge_descriptor_list: edge_descriptor

| edge_descriptor_list ',' edge_descriptor
edge_descriptor : '01' | '10' | '0x' | 'x1' | '1x' | 'x0'
path_type: '=>' | '-' '=>' | '+' '=>' | '*>' | '-' '*>' | '+' '*>'
list_of_path_out_td: list_of_path_out_td ','

specify_out_terminal_descriptor | specify_out_terminal_descriptor
specify_out_terminal_descriptor: '(' specify_terminal_descriptor data_op
expression ')'

| specify_terminal_descriptor
data_op : ':' | '-' ':' | '+' ':'

list_of_path_in_td: list_of_path_in_td ','
opt_edge_specify_terminal_descriptor

| opt_edge_specify_terminal_descriptor ;
opt_edge_specify_terminal_descriptor : opt_edge

specify_terminal_descriptor ;
specify_terminal_descriptor: verilog_id | verilog_id '[' expression ']

| verilog_id '[' expression ':' expression ']' ;
expression : primary | unary_op primary

| expression '+' expression | expression '-' expression
| expression '*' expression | expression '/' expression
| expression '%' expression | expression '==' expression
| expression '!=' expression | expression '===' expression
| expression '!==' expression | expression '&&' expression
| expression '||' expression | expression '<' expression
| expression '<=' expression | expression '>' expression
| expression '>=' expression | expression '&' expression
| expression '|' expression | expression '^' expression
| expression '^~' expression | expression '~^' expression
| expression '>>' expression | expression '<<' expression
| expression '?' expression ':' expression

unary_op : '!' | '~' | '+' | '-' | '&' | '~&' | '|' | '~|' | '^' | '~^' | '^~'

primary : number | lident | lident '[' number ']'
| lident '[' number ':' number ']' | '{' cat_expr_list '}'
| '{' expression '{' cat_expr_list '}' '}' | '(' expression ')'

cat_expr_list: cat_expr_list ',' expression | expression

lident: identifier

13-25

SDF Backannotation

identifier: verilog_id | identifier_head verilog_id

identifier_head : verilog_id '.' | identifier_head verilog_id '.'

number : "Any sized or unsized literal decimal, octal, binary, hex, or real number"

verilog_id : "Any legal escaped or non-escaped Verilog identifier (excluding
range selection portion in square brackets)."

Example:

MODULE sub {
// scale_commads
SCALE_TYPE=FROM_MTM;
SCALE_FACTORS=1:2:3;
// mtm_commads
MTM=MINIMUM;
// map_inner_commands
MAP_INNER = X;
(i1 *> o1) = IGNORE;
(i *> o1) = ADD { (ib *> oa); }
(i1 *> o1) = ADD { (ia *> oa); }
(i1 *> o1) = ADD { (ia *> oa); }
(i1 *> o1) = ADD { (ib *> ob); }
if (i2==1) (i2 *> o2) = ADD { (ib *> ob); }

}

SDF Example with Configuration File

The following example uses the VCS SDF configuration file sdf.cfg:

// test.v - test sdf annotation
`timescale 1ns/1ps
module test;
initial begin

$sdf_annotate("./test.sdf",test, "./sdf.cfg",,,,);
end
wire out1,out2;
wire w1,w2;
reg in;
reg ctrl,ctrlw;

13-26

SDF Backannotation

sub Y (w1,w2,in,in,ctrl,ctrl);
sub W (out1,out2,w1,w2,ctrlw,ctrlw);
initial begin

$display(" i c ww oo");
$display("ttt n t 12 12");
$monitor($realtime,,,in,,ctrl,,w1,w2,,out1,out2);

end
initial begin

ctrl = 0;// enable
ctrlw = 0;
in = 1'bx; //stabilize at x;
#100 in = 1; // x-1
#100 ctrl = 1; // 1-z
#100 ctrl = 0; // z-1
#100 in = 0; // 1-0
#100 ctrl = 1; // 0-z
#100 ctrl = 0; // z-0
#100 in = 1'bx; // 0-x
#100 ctrl = 1; // x-z
#100 ctrl = 0; // z-x
#100 in = 0; // x-0
#100 in = 1; // 0-1
#100 in = 1'bx; // 1-x

end
endmodule
`celldefine
module sub(o1,o2,i1,i2,c1,c2);
output o1,o2;
input i1,i2;
input c1,c2;
bufif0 Z(o1,i1,c1);
bufif0 (o2,i2,c2);
specify

(i1,c1 *> o1) = (1,2,3,4,5,6);
// 01 = 1, 10 = 2, 0z = 3, z1 = 4, 1z = 5, z0 = 6
if (i2==1'b1) (i2,c2 *> o2) = (7,8,9,10,11,12);

 // 01 = 7, 10 = 8, z1 = 10, 1z = 11, z0 = 12
endspecify
subsub X ();
endmodule
`endcelldefine
module subsub(oa,ob,ib,ia);

13-27

SDF Backannotation

input ia,ib;output oa,ob;
specify

(ia *> oa) = 99.99;
(ib *> ob) = 2.99;

endspecify
endmodule

SDF File: test.sdf
(DELAYFILE
(SDFVERSION "3.0")
(DESIGN "sdftest")
(DATE "July 14, 1997")
(VENDOR "Synopsys")
(PROGRAM "manual")
(VERSION "4.0")
(DIVIDER .)
(VOLTAGE)
(PROCESS "")
(TEMPERATURE)
(TIMESCALE 1 ns)
(CELL (CELLTYPE "sub")
(INSTANCE *)
(DELAY (ABSOLUTE
(IOPATH i1 o1
(10:11:12)(13:14:15)(16:17:18)(19:20:21)(22:23:24)(25:26:2
7))
(COND (i2==1) (IOPATH i2 o2
(10:11:12)(13:14:15)(16:17:18)(19:20:21)(22:23:24)(25:26:2
7)))
))
)
)
SDF Configuration File: sdf.cfg
INTERCONNECT=MIPD;
PATHPULSE=IGNORE;
INTERCONNECT_MIPD=MAXIMUM;
MTM=TOOL_CONTROL;
SCALE_FACTORS=100:0:9;
SCALE_TYPE=FROM_MTM;
TURNOFF_DELAY=FROM_FILE;
MTM = TYPICAL;
SCALE_TYPE=FROM_MINIMUM;
SCALE_FACTORS=1.1:2.1:3.1;

13-28

SDF Backannotation

MODULE sub {
SCALE_TYPE=FROM_MTM;
SCALE_FACTORS=1:2:3;
MTM=MINIMUM;
MAP_INNER = X;
(i1 *> o1) = IGNORE;
(i1 *> o1) = ADD { (ia *> oa); }
(i1 *> o1) = ADD { (ib *> ob); }
if (i2==1) (i2 *> o2) = ADD { (ib *> ob); }
}

Understanding the DEVICE Construct

The DEVICE construct specifies the intrinsic delay of a cell or gate.
When VCS reads a DEVICE construct, it backannotates the pin-to-
pin delay generics throughout the cell. How VCS handles the DEVICE
construct depends on whether or not the construct includes an output
port name.

• If DEVICE includes an output port name (for example, (DEVICE
Out1 (1:2:3)), VCS assigns the timing value only to those pin-to-
pin delay generics in the cell with that output port name as their
destination. For example, during backannotation of the device in
Figure 13-3, if the DEVICE construct is

DEVICE Out1 (1:2:3) (1:2:3)

VCS assigns the timing value only to the following generics:

tpdIn1_Out1_R, tpdIn1_Out1_F, tpdIn2_Out1_R, and
tpdIn2_Out1_F

It ignores the generics such as tpdIn1_Out2_R, tpdIn1_Out2_F,
tpdIn2_Out2_R, and tpdIn2_Out2_F.

13-29

SDF Backannotation

• If DEVICE does not include an output port name, VCS assigns
the value to all the pin-to-pin delay (tpd) generics in the cell. For
example, if the DEVICE construct is

DEVICE (1:2:3)

VCS assigns the timing value to all the following generics:

tpdIn1_Out1_R, tpdIn2_Out1_R, tpdIn1_Out2_R,
tpdIn2_Out2_R, tpdIn1_Out1_F, tpdIn2_Out1_F,
tpdIn1_Out2_F, and tpdIn2_Out2_F.

Figure 13-3 Cell with Four Possible pin-to-pin Timing Arcs

13-30

SDF Backannotation

Handling Backannotation to I/O Ports

SDF Reader might incorrectly handle the DEVICE construct for an
output I/O port if the DEVICE construct does not include an output
port name. Consider Figure 13-4; Port B is an I/O port of the instance
U1 of type IO_CELL. If the DEVICE construct is

DEVICE (1:2:3)

VCS assigns the timing value to the generics tpdIn1_B_R,
tpdIn2_B_R, tpdIn1_C_R, tpdIn2_C_R, tpdIn1_B_F, tpdIn2_B_F,
tpdIn1_C_F, and tpdIn2_C_F.

Also, it incorrectly assigns timing values to the following generics
because port B is an I/O port:

tpdB_In1_R, tpdB_In1_F, tpdB_In2_R, and tpdB_In2_F

Figure 13-4 Specifying Delays for an I/O Port in a Device

13-31

SDF Backannotation

To handle I/O ports, use the INTERCONNECT construct instead of
the DEVICE construct.

Using the INTERCONNECT Construct

The INTERCONNECT construct represents the actual or estimated
delay in the wire between devices.

The following SDF specifies the loading for Figure 13-4:

(INSTANCE CELLTYPE)
(DELAY
(ABSOLUTE
(INTERCONNECT U1/B A (2:3:4))))

In the above statements, the interconnect must be reflected at the
input of the next stage (which is actually the load or tester in this case).
Since this is not available for simulation purposes, this interconnect
is added to the output of the previous stage.

But the intent of the SDF entry was to backannotate to all generics
that use B as an output port. In this case, the following SDF entry
yields correct backannotation:

(DEVICE B (1:2:3))

Multiple Backannotations to Same Delay Site

VCS backannotates source to load delays onto the delay site
associated with the load port. Therefore, there are multiple delay
entries, from different source ports to the same load port. In such
cases, you can specify the delay value that you want to backannotate.

13-32

SDF Backannotation

The SDFPOLICY variable allows you to select the backannotation
delay value. You can set this variable to MIN, MAX, or MINOMAX.
The default value is MAX for backwards compatibility. If you specify
a value other than MIN, MAX, or MINOMAX, VCS issues a warning
and uses MAX as the default value.

INTERCONNECT Delays

INTERCONNECT entries in an SDF file are for backannotating delays
to a net that connects two or more module instance ports.

If that net has more than one driver, for example, when a net connects
more than one output port to an input port, you can use an SDF file
to backannotate different delays between the input port and each of
the output ports. Doing so is called backannotating multisource
INTERCONNECT delays.

If that net has only one driver, you are backannotating single source
INTERCONNECT delays. There is an option for multisource
INTERCONNECT delays that can be handy for single source
INTERCONNECT delays. See "Single Source INTERCONNECT
Delays" on page 13-36.

Multisource INTERCONNECT Delays

Figure 13-1 shows a multisource net, a net with more than one driver.

13-33

SDF Backannotation

Figure 13-1 Net with Multiple Drivers

The SDF file could specify different delays between output port lout1
and input port rightin and output port botout and input port
rightin. The ports do not have to be on the same hierarchical level.

An example for the entries that specify these different delays is as
follows:

(CELL
 (CELLTYPE "stim")
 (INSTANCE stim)
 (DELAY
 (ABSOLUTE
 (INTERCONNECT stim.left1.bot1.botout stim.right1.rightin (2))
 (INTERCONNECT stim.left1.lout1 stim.right1.rightin(1))
)
)
)

These entries specify a 2 time unit delay between the output port
botout and the input port rightin, and a 1 time unit delay between
output port lout1 and input port rightin.

module stim

module instance left1 module instance

module
botout

lout1

lout2

rightin

net intinstance
bot1

right1

13-34

SDF Backannotation

Note:
In delay value lists in delay definition entries in an SDF file, you
can list one, two, three, or six delay values. Lists of twelve values,
that also specify delays for transitions to and from X are not yet
implemented.

The +multisource_int_delays compile-time option tells VCS to
use a special algorithm for multisource INTERCONNECT delays.
This algorithm simulates different delays from each of the multisource
output or inout ports to the load input or inout port, or in other words,
true pin to pin delays.

Omitting the +multisource_int_delays Option

If you omit the +multisource_int_delays option, VCS uses an
older algorithm that creates an MIPD (Module Input Port Delay) to
model the INTERCONNECT delay. Omitting the option, therefore,
has the following drawbacks:

• If you specify multiple sources with multiple INTERCONNECT
entries for connecting more than one output or inout port instances
to a particular input or inout port instance, this algorithm uses the
longest delays in these INTERCONNECT entries for the delays
in the MIPD so the delay propagating from all sources will be the
same.

• MIPDs only take three delay values for transitions to 1, to 0, and
to Z. If your INTERCONNECT entry has six delay values, the
MIPD only uses the first three so the Z to 1 delay is the same as
the 0 to 1 delay, the 1 to Z delay is the same as the 0 t0 Z delay,
and the Z to 0 delay is the same as the 1 to 0 delay.

13-35

SDF Backannotation

Simultaneous Multiple Source Transitions

When there are simultaneous transitions on more than one source
port instance, the algorithm for the +multisource_int_delays
option applies the shortest delay to all of these transitions instead of
the one specified in the SDF file.

For example, if the SDF file specifies the following:

(CELL
 (CELLTYPE "stim")
 (INSTANCE stim)
 (DELAY
 (ABSOLUTE
 (INTERCONNECT stim.left1.bot1.botout stim.right1.rightin (2))
 (INTERCONNECT stim.left1.lout1 stim.right1.rightin(1))
)
)
)

Here the delay values are reversed from the previous SDF example.
The delay from output port botout to rightin is 2 and the delay
from output port lout1 to rightin is 1.

Figure 13-2 shows the waveforms for these ports and for net int that
connects these ports and to which you backannotate the
INTERCONNECT delay.

Figure 13-2 Simultaneous Source Transitions

13-36

SDF Backannotation

Figure 13-2 illustrates the following series of events:

1. At time 10 output port lout1 transitions to 1. Net int transitions
therefore to X and there is a two time unit delay before this X value
propagates through int to port rightin.

2. At time 15 port lout1 transitions to 0, net int transitions to 0
and port rightin transactions to 0 two time units later.

3. At time 25 both output ports lout1 and botout transitions to 1.
So does net int. Input port rightin transitions to 1 only one
time unit later even though there is a two time unit delay between
lout1 and rightin. The algorithm applied the shortest delay,
one time unit, to the simultaneous transitions at time 25 on lout1
and botout.

Single Source INTERCONNECT Delays

If the INTERCONNECT entries in your SDF file connect no more than
one output or inout port to each of the input or inout ports in your
design you should consider including the
+multisource_int_delays compile-time option that is used for
multisource INTERCONNECT delays.

If you omit the +multisource_int_delays option, VCS uses an
older algorithm that creates a MIPD (Module Input Port Delay) to
model the INTERCONNECT delay. MIPDs only take three delay
values for transitions to 1, to 0, and to Z. If your INTERCONNECT
entry has six delay values, the MIPD only uses the first three so the
Z to 1 delay is the same as the 0 to 1 delay, the 1 to Z delay is the
same as the 0 t0 Z delay, and the Z to 0 delay is the same as the 1
to 0 delay.

13-37

SDF Backannotation

Note:
In delay value lists in delay definition entries in an SDF file, you
can list one, two, three, or six delay values. VCS does not yet
support lists of twelve values, that also specify delays for
transitions to and from X.

Min:Typ:Max Delays

You can enter min:typ:max delay value triplets wherever you can
enter a delay specification. For example:

assign #(4:10:14) w1=r1;

Here the minimum delay value is 4, the typical delay value is 10, and
the maximum delay value is 14.

You can also enter min:typ:max delay value triplets in delay value in
entries for different kinds of delays in SDF files. For example, if an
SDF file specifies the following:

(CELL
 (CELLTYPE "stim")
 (INSTANCE stim)
 (DELAY
 (ABSOLUTE
 (INTERCONNECT stim.left1.lout1

stim.right1.rightin(6:10:14))
)
)
)

The INTERCONNECT delay on the net that connects the specified
port instances has a minimum delay of 6, a typical delay of 10, and
a maximum delay of 14. You can enter min:typ:max delays for delay
values in other kinds of delays such as IOPATH or PORT.

13-38

SDF Backannotation

Include the +mindelays compile-time option to specify using the
minimum delay of the min:typ:max delay value triplet either in delay
specification or in the delay value in entries in an SDF file.

Include the +maxdelays compile-time option to specify using the
maximum delay.

By default VCS uses the typical delays. You can specify using the
typical delays with the +typdelays compile-time option.

In the case of SDF files, the mtm_spec argument to the
$sdf_annotate system task overrides the +mindelays,
+typdelays, or +maxdelays options.

Specifying Min:Typ:Max Delays at Runtime

If you have either of the following:

• An SDF file that backannotates delays to your design when
simulation starts and which contains delay values that are
min:typ:max delay value triplets

• Module path delays or timing check delays in your Verilog source
code are min:typ:max delay value triplets

There is a method that enables you to specify using minimum, typical,
or maximum delays at runtime instead of at compile-time.

This method is to use the +allmtm compile-time option and use the
+mindelays, +typdelays, and +maxdelays options at runtime
instead of at compile-time.

13-39

SDF Backannotation

Using the +allmtm compile-time option tells VCS to write three
different compiled SDF files when VCS compiles the ASCII text SDF
file. One has the minimum delays from the min:typ:max delay value
triplets, another has the typical delays, and the third has the maximum
delays. You specify which one to backannotate delays from at runtime
with the +mindelays, +typdelays, or +maxdelays runtime
options.

Using the +allmtm compile-time option also tells VCS to prepare the
executable so that you can use the +mindelays, +typdelays, or
+maxdelays options at runtime to specify using the minimum,
typical, or maximum delay values in the min:typ:max delay value
triplets in the module path and timing check delays in your source
code.

When you use the +allmtm compile-time option, the +typdelays
option is the default at runtime.

This method does not apply to other delay specifications in your
source code that might contain min:typ:max delay value triplets, such
as gate delays or delays in continuous assignments.

Using the Configuration File to Disable Timing

You can use the VCS configuration file to disable module path delays,
specify blocks, and timing checks for module instances that you
specify as well as all instances of module definitions that you specify.
You use the instance, module, and tree statements to do this just as
you do for applying Radiant Technology. See "The Configuration File
Syntax" on page 3-37 for details on how to do this. The attribute
keywords for timing are as follows:

13-40

SDF Backannotation

noIopath
Specifies disabling the module path delays in the specified module
instances.

noSpecify
Specifies disabling the specify blocks in the specified module
instances.

noTiming
Specifies disabling the timing checks in the specified module
instances.

Using the timopt Timing Optimizer

The timopt timing optimizer can yield large speedups for full-timing
gate-level designs. Timopt makes its optimizations based on the clock
signals and sequential devices that it identifies in the design. Timopt
is particularly useful when you use SDF files because SDF files can’t
be used with RadiantTechnology (+rad).

You enable timopt with the +timopt+clock_period
compile-time option, where the argument is the shortest clock period
(or clock cycle) of the clock signals in your design. For example:

+timopt+100ns

This options specifies that the shortest clock period is 100ns.

Timopt first displays the number of sequential devices that it finds in
the design and the number of these sequential devices to which it
might be able to apply optimizations. For example:

Total Sequential Elements : 2001
Total Sequential Elements 2001, Optimizable 2001

13-41

SDF Backannotation

Timopt then displays the percentage of identified sequential devices
to which it can actually apply optimizations followed by messages
about the optimization process.

TIMOPT optimized 75 percent of the design
Starting TIMOPT Delay optimizations
Done TIMOPT Delay Optimizations
DONE TIMOPT

The next step is to simulate the design and see if the optimizations
applied by timopt produce a satisfactory increase in performance.
If you are not satisfied there are additional steps that you can take to
get more optimizations from timopt.

If timopt was able to identify all the clock signals and all the
sequential devices with an absolute certainty it simply applies its
optimizations. If timopt is uncertain about a number of clock signals
and sequential devices then you can use the following process to
maximize timopt optimizations:

1. Timopt writes a configuration file named timopt.cfg in the current
directory that lists the signals and sequential devices it’s not sure
of.

2. You review and edit this file, validating that the signals in the file
are or are not clock signals and that the module definitions in it
are or are not sequential devices. If you do not need to make any
changes in the file, go to step 5. If you do make changes, go to
step 3.

3. Compile your design again with the +timopt+clock_period
compile-time option.

13-42

SDF Backannotation

Timopt will make the additional optimizations that it did not make
because it was unsure of the signals and sequential devices in
the timopt.cfg file that it wrote during the first compilation.

4. Look at the timopt.cfg file again:

- If timopt wrote no new entries for potential clock signals or
sequential devices, go to step 5.

- If timopt wrote new entries but you make no changes to the
new entries, go to step 5.

- If you make modifications to the new entries, return to step 3.

5. Timopt does not need to look for any more clock signals and it
can assume that the timopt.cfg file correctly specifies clock signal
and sequential devices. Now it just needs to apply the latest
optimizations. Compile your design one more time including the
+timopt compile-time option but without its +clock_period
argument.

6. You now simulate your design using timopt optimizations.
Timopt monitors the simulation. Timopt makes its optimizations
based on its analysis of the design and information in the
timopt.cfg file. If during simulation it finds that its assumptions are
incorrect, for example the clock period for a clock signal is
incorrect, or there is a port for asynchronous control on a module
for a sequential device, timopt displays a warning message like
the following:

+ Timopt Warning: for clock testbench.clockgen..clk:
TimePeriod 50ns Expected 100ns

13-43

SDF Backannotation

Editing the timopt.cfg File

When editing the timopt.cfg file, first edit the potential sequential
device entries. Edit the potential clock signal only when you have
made no changes to the entries for sequential devices.

Editing Potential Sequential Device Entries

The following is an example of sequential devices that timopt was
not sure of:

// POTENTIAL SEQUENTIAL CELLS
// flop {jknpn} {,};
// flop {jknpc} {,};
// flop {tfnpc} {,};

You can remove the comment marks for the module definitions that
are in fact model sequential devices and which provide the clock port,
clock polarity, and optionally asynchronous ports.

A modified list might look like the following:

flop { jknpn } { CP, true};
flop { jknpc } { CP, true, CLN};
flop { tfnpc } { CP, true, CLN};

In this example CP is the clock port and the keyword true indicates
that the sequential device is triggered on the posedge of the clock
port and CLN is an asynchronous port.

If you uncomment any of these module definitions, then timopt
might identify additional clock signals that drive these sequential
devices. To enable timopt to do this:

13-44

SDF Backannotation

1. Remove the clock signal entries from the timopt.cfg file

2. Recompile the design with the same +timopt+clock_period
compile-time option.

Timopt will write new clock signal entries in the timopt.cfg file.

Editing Clock Signal Entries

The following is an example of the clock signal entries:

clock {
 // test.badClock , // 1
 test.goodClock // 2000
} {100ns};

These clock signals have a period of 100 ns or longer. This time value
comes from the +clock_period argument that you added to the
+timopt compile-time option when you first compiled the design.
The entry for the signal test.badClock is commented out because it
connects to a small percentage of the sequential devices in the
design, in this case only 1 of the 2001 sequential devices that it
identified in the design. The entry for the signal test.goodClock is not
commented out because it connects to a large percentage of the
sequential devices, in this case 2000 of the 2001 sequential devices
in the design.

If a commented out clock signal is a clock signal that you want
timopt to use when it optimizes the design in a subsequent
compilation, then remove the comment characters from in front of the
signal’s hierarchical name.

14-1

Negative Timing Checks

14
Negative Timing Checks 1

Negative timing checks are either $setuphold timing checks with
negative setup or hold limits, or $recrem timing checks with negative
recovery or removal limits.

This chapter describes their purpose, how they work, and how to use
them in the following sections:

• The Need for Negative Value Timing Checks

• The $setuphold Timing Check Extended Syntax

• The $recrem Timing Check Syntax

• Enabling Negative Timing Checks

• Checking Conditions

• Toggling the Notifier Register

• SDF Backannotation to Negative Timing Checks

14-2

Negative Timing Checks

• How VCS Calculates Delays

• Using Multiple Non-Overlapping Violation Windows

The Need for Negative Value Timing Checks

Negative Timing Checks for XYZ

The $setuphold timing check defines a timing violation window of
a specified amount of simulation time before and after a reference
event, such as a transition on some other signal like a clock signal,
in which a data signal must remain constant. A transition on the data
signal, called a data event, during the specified window is a timing
violation. For example:

$setuphold (posedge clock, data, 10, 11, notifyreg);

Here VCS reports the timing violation if there is a transition on signal
data less that 10 time units before, or less than 11 time units after,
a rising edge on signal clock. When there is a timing violation VCS
toggles a notifier register, in this example reg notifyreg. You could
use this toggling of a notifier register to output an X value from a
device, such as a sequential flop, when there is a timing violation.

14-3

Negative Timing Checks

Figure 14-1 Positive Setup and Hold Limits

Here both the setup and hold limits have positive values. When this
happens the violation window straddles the reference event.

There are cases where the violation window cannot straddle the
reference event at the inputs of an ASIC cell. Such a case occurs
when:

• The data event takes longer than the reference event to propagate
to a sequential device in the cell

• Timing must be accurate at the sequential device

• You need to check for timing violations at the cell boundary

It also occurs when the opposite is true, that is when the reference
event takes longer than the data event to propagate to the sequential
device.

setup
limit

hold
limit

violation window

reference
event

data
event

data
event

clock

data

010 11

14-4

Negative Timing Checks

When this happens, use the $setuphold timing check in the
top-level module of the cell to look for timing violations when signal
values propagate to that sequential device. In this case, you need to
use negative setup or hold limits in the $setuphold timing check.

Figure 14-2 ASIC Cell with Long Propagation Delays on Reference Events

When this happens the violation window shifts at the cell boundary
so that it no longer straddles the reference event. It shifts to the right
when there are longer propagation delays on the reference event.
This right shift requires a negative setup limit:

$setuphold (posedge clock, data, -10, 31, notifyreg);

Figure 14-3 illustrates this scenario.

causes

long

delay

causes short delay

clock

data

clk

d

q

14-5

Negative Timing Checks

Figure 14-3 Negative Setup Limit

Here the $setuphold timing check is in the specify block of the
top-level module of the cell. It specifies that there is a timing violation
if there is a data event between 10 and 31 time units after the
reference event on the cell boundary.

This is giving the reference event a “head start” at the cell boundary,
anticipating that the delays on the reference event will allow the data
events to “catch up” at the sequential device inside the cell.

Note:
When you specify a negative setup limit, its value must be less
than the hold limit.

setup
limit

hold
limit

violation window

reference
event

data
event

data
event

clock

data

0 10 31

14-6

Negative Timing Checks

Figure 14-4 ASIC Cell with Long Propagation Delays on Data Events

The violation window shifts to the left when there are longer
propagation delays on the data event. This left shift requires a
negative hold limit:

$setuphold (posedge clock, data, 31, -10, notifyreg);

Figure 14-5 illustrates this scenario.

Figure 14-5 Negative Hold Limit

causes

long

delay

causes short delay
clock

data

clk

d

q

setup
limit

hold
limit

violation window

reference
event

data
event

data
event

clock

data

031 10

14-7

Negative Timing Checks

Here the $setuphold timing check is in the specify block of the top-
level module of the cell. It specifies that there is a timing violation if
there is a data event between 31 and 10 time units before the
reference event on the cell boundary.

This is giving the data events a “head start” at the cell boundary,
anticipating that the delays on the data events will allow the reference
event to “catch up” at the sequential device inside the cell.

Note:
When you specify a negative hold limit, its value must be less than
the setup limit.

To implement negative timing checks, VCS creates delayed versions
of the signals that carry the reference and data events and an
alternative violation window where the window straddles the delayed
reference event.

You can specify the names of the delayed versions using the
extended syntax of the $setuphold system task or let VCS name
them internally.

The extended syntax also allows you to specify expressions for
additional conditions that must be true for a timing violation to occur.

The $setuphold Timing Check Extended Syntax

The $setuphold timing check has the following extended syntax:

$setuphold(reference_event, data_event, setup_limit,
hold_limit, notifier, [timestamp_cond, timecheck_cond,
delayed_reference_signal, delayed_data_signal]);

14-8

Negative Timing Checks

The following additional arguments are optional:

timestamp_cond
This argument specifies the condition which determines whether
or not VCS reports a timing violation.
In the setup phase of a $setuphold timing check, VCS records
or “stamps” the time of a data event internally so that when a
reference event occurs, it can compare the times of these events
to see if there is a setup timing violation. If the condition specified
by this argument is false, VCS does not record or “stamp” the data
event so there cannot be a setup timing violation.
Similarly, in the hold phase of a $setuphold timing check, VCS
records or “stamps” the time of a reference event internally so that
when a data event occurs it can compare the times of these events
to see if there is a hold timing violation. If the condition specified
by this argument is false, VCS does not record or “stamp” the
reference event so there cannot be a hold timing violation.

 timecheck_cond
This argument specifies the condition which determines whether
or not VCS reports a timing violation.
In the setup phase of a $setuphold timing check, VCS
compares or “checks” the time of the reference event with the time
of the data event to see if there is a setup timing violation. If the
condition specified by this argument is false, VCS does not make
this comparison and so there is no setup timing violation.
Similarly, in the hold phase of a $setuphold timing check, VCS
compares or “checks” the time of a data event with the time of a
reference event to see if there is a hold timing violation. If the
condition specified by this argument is false, VCS does not make
this comparison and so there is no hold timing violation.

delayed_reference_signal
The name of the delayed version of the reference signal.

14-9

Negative Timing Checks

delayed_data_signal
The name of the delayed version of the data signal.

The following example demonstrates how to use the extended syntax:

$setuphold(ref, data, -4, 10, notifr1, stampreg===1, , d_ref,
d_data);

In this example, the timestamp_cond argument specifies that reg
stampreg must equal 1 for VCS to “stamp” or record the times of
data events in the setup phase or “stamp” the times of reference
events in the hold phase. If this condition is not met, and stamping
does not occur, VCS will not find timing violations no matter what the
time of these events is. Also in the example, the delayed versions of
the reference and data signals are named d_ref and d_data.

You can use these delayed signal versions of the signals to drive
sequential devices in your cell model. For example:

module DFF(D,RST,CLK,Q);
input D,RST,CLK;
output Q;
reg notifier;
DFF_UDP d2(Q,dCLK,dD,dRST,notifier);
specify
 (D => Q) = 20;
 (CLK => Q) = 20;
 $setuphold(posedge CLK,D,-5,10,notifier,,,dCLK,dD);
 $setuphold(posedge CLK,RST,-8,12,notifier,,,dCLK,

dRST);
endspecify
endmodule

primitive DFF_UDP(q,clk,data,rst,notifier);
output q; reg q;
input data,clk,rst,notifier;

table
// clock data rst notifier state q
// ------------------------------
 r 0 0 ? : ? : 0 ;

14-10

Negative Timing Checks

 r 1 0 ? : ? : 1 ;
 f ? 0 ? : ? : - ;
 ? ? r ? : ? : 0 ;
 ? * ? ? : ? : - ;
 ? ? ? * : ? : x ;
endtable
endprimitive

In this example the DFF_UDP user-defined primitive is driven by the
delayed signals dClk, dD, dRST, and the notifier reg.

Negative Timing Checks for Asynchronous Controls

The $recrem timing check is for checking how close asynchronous
control signal transitions are to clock signals. Like the setup and hold
limits in $setuphold timing checks, the $recrem timing check has
recovery and removal limits. The recovery limit specifies how much
time must elapse after a control signal toggles from its active state
before there is an active clock edge. The removal limit specifies how
much time must elapse after an active clock edge before the control
signal can toggle from its active state.

In the same way as a reference signal like a clock signal and data
signal can have different propagation delays from the cell boundary
to a sequential device inside the cell, there be different propagation
delays between the clock signal and the control signal. For this reason
there can be negative recovery and removal limits in the $recrem
timing check.

14-11

Negative Timing Checks

The $recrem Timing Check Syntax

The $recrem timing check syntax is very similar to the extended
syntax for $setuphold:

$recrem(reference_event, data_event, recovery_limit,
removal_limit, notifier, [timestamp_cond, timecheck_cond,
delayed_reference_signal, delayed_data_signal]);

reference_event
Typically the reference event is the active edge on a control signal,
such as a clear signal. Specify the active edge with the posedge
or negedge keyword.

data_event
Typically the data event occurs on a clock signal. Specify the
active edge on this signal with the posedge or negedge keyword.

recovery_limit
Specifies how much time must elapse after a control signal, like
a clear signal, toggles from its active state (the reference event),
before there is an active clock edge (the data event).

removal_limit
Specifies how much time must elapse after an active clock edge
(the data event), before the control signal can toggle from its active
state (the reference event).

notifier
A register whose value VCS toggles when there is a timing
violation.

14-12

Negative Timing Checks

timestamp_cond
This argument specifies the condition which determines whether
or not VCS reports a timing violation.
In the recovery phase of a $recrem timing check, VCS records
or “stamps” the time of a reference event internally so that when
a data event occurs it can compare the times of these events to
see if there is a recovery timing violation. If the condition specified
by this argument is false, VCS does not record or “stamp” the
reference event so there cannot be a recovery timing violation.
Similarly, in the removal phase of a $recrem timing check, VCS
records or “stamps” the time of a data event internally so that when
a reference event occurs it can compare the times of these events
to see if there is a removal timing violation. If the condition
specified by this argument is false, VCS does not record or
“stamp” the data event so there cannot be a removal timing
violation.

 timecheck_cond
This argument specifies the condition which determines whether
or not VCS reports a timing violation.
In the recovery phase of a $recrem timing check, VCS compares
or “checks” the time of the data event with the time of the reference
event to see if there is a recovery timing violation. If the condition
specified by this argument is false, VCS does not make this
comparison and so there is no recovery timing violation.
Similarly, in the removal phase of a $recrem timing check, VCS
compares or “checks” the time of a reference event with the time
of a data event to see if there is a removal timing violation. If the
condition specified by this argument is false, VCS does not make
this comparison and so there is no removal timing violation.

delayed_reference_signal
The name of the delayed version of the reference signal, typically
a control signal.

14-13

Negative Timing Checks

delayed_data_signal
The name of the delayed version of the data signal, typically a
clock signal.

Enabling Negative Timing Checks

To use a negative timing check you must include the +neg_tchk
compile-time option when you compile your design. If you omit this
option, VCS changes all negative limits to 0.

If you include the +no_notifier compile-time option with the
+neg_tchk option, you only disable notifier toggling. VCS still
creates the delayed versions of the reference and data signals and
displays timing violation messages.

Conversely, if you include the +no_tchk_msg compile-time option
with the +neg_tchk option, you only disable timing violation
messages. VCS still creates the delayed versions of the reference
and data signals and toggles notifier regs when there are timing
violations.

If you include the +neg_tchk compile-time option but also include
the +notimingcheck or +nospecify compile-time options, VCS
does not compile the $setuphold and $recrem timing checks into
the simv executable. However, it does create the signals that you
specified in the delayed_reference_signal and
delayed_data_signal arguments, and you can use these to drive
sequential devices in the cell. Note that there is no delay on these
"delayed" and they have the same transition times as the signals
specified in the reference_event and data_event arguments.

14-14

Negative Timing Checks

Similarly, if you include the +neg_tchk compile-time option and then
include the +notimingcheck runtime option instead of the
compile-time option, you disable the $setuphold and $recrem
timing checks that VCS compiled into the executable. At compile time
VCS creates the signals that you specified in the
delayed_reference_signal and delayed_data_signal
arguments, and you can use them to drive sequential devices in the
cell, but the +notimingcheck runtime option disables the delay on
these “delayed” versions.

Other Timing Checks Using the Delayed Signals

When you enable negative timing limits in the $setuphold and
$recrem timing checks, and have VCS create delayed versions of
the data and reference signals, by default the other timing checks
also use the delayed versions of these signals. You can prevent the
other timing checks from doing this with the +old_ntc compile-time
option.

Having the other timing checks use the delayed versions of these
signals is particularly useful when the other timing checks use a
notifier register to change the output of the sequential element to X.
Example 14-1 illustrates this:

Example 14-1 Notifier Register Example for Delayed Reference and Data
Signals

`timescale 1ns/1ns

module top;
 reg clk, d;
 reg rst;
 wire q;

14-15

Negative Timing Checks

 dff dff1(q, clk, d, rst);

 initial begin
$monitor($time,,clk,,d,,q);
rst = 0; clk = 0; d = 0;
#100 clk = 1;
#100 clk = 0;
#10 d = 1;
#90 clk = 1;
#1 clk = 0; // width violation
#100 $finish;

 end
endmodule

module dff(q, clk, d, rst);
 output q;
 input clk, d, rst;
 reg notif;

 DFF_UDP(q, d_clk, d_d, d_rst, notif);

 specify
$setuphold(posedge clk, d, -10, 20, notif, , , d_clk,

 d_d);
$setuphold(posedge clk, rst, 10, 10, notif, , , d_clk,

 d_rst);
$width(posedge clk, 5, 0, notif);

 endspecify
endmodule

primitive DFF_UDP(q,data,clk,rst,notifier);
output q; reg q;
input data,clk,rst,notifier;

table
// clock data rst notifier state q
// ------------------------------
 r 0 0 ? : ? : 0 ;
 r 1 0 ? : ? : 1 ;
 f ? 0 ? : ? : - ;
 ? ? r ? : ? : 0 ;
 ? * ? ? : ? : - ;

14-16

Negative Timing Checks

 ? ? ? * : ? : x ;
endtable
endprimitive

In this example, if you include the +neg_tchk compile-time option,
the $width timing check uses the delayed version of signal clk,
named d_clk, and the following sequence of events occurs:

1. At time 311 the delayed version of the clock transitions to 1,
causing output q to toggle to 1.

2. At time 312 the narrow pulse on the clock causes a width violation:

"test1.v", 31: Timing violation in top.dff1
$width(posedge clk:300, : 301, limit: 5);

The timing violation message looks like it occurs at time 301 but
you do not see it until time 312.

3. Also at time 312, reg notif toggles from X to 1. This changes
output q from 1 to X. There are no subsequent changes on output
q.

Figure 14-2 Other Timing Checks Using the Delayed Versions

14-17

Negative Timing Checks

If you include the +neg_tchk compile-time option and also the
+old_ntc compile-time option, the $width timing check does not
use the delayed version of signal clk and the following sequence of
events occurs:

1. At time 301 the narrow pulse on signal clk causes a width
violation:

"test1.v", 31: Timing violation in top.dff1
$width(posedge clk:300, : 301, limit: 5);

2. Also at time 301 the notifier reg named notif toggles from X to
1. This in turn changes the output q of the user-defined primitive
DFF_UDP and module instance dff1 from 0 to X.

3. At time 311 the delayed version of signal clk, named d_clk,
reaches the user-defined primitive DFF_UDP changing the output
q to 1 erasing the X value on this output.

Figure 14-3 Other Timing Checks Not Using the Delayed Versions

14-18

Negative Timing Checks

The timing violation, as represented by the X value, is lost to the
design. If a module path delay that is greater than ten time units was
used for the module instance, the X value would not appear on the
output at all.

For this reason Synopsys does not recommend using the +old_ntc
compile-time option. It exists only for unforeseen circumstances.

Checking Conditions

VCS evaluates the expressions in the timestamp_cond and
timecheck_cond arguments either when there is a value change
on the original reference and data signals at the cell boundary, or
when the value changes propagate from the delayed versions of
these signals at the sequential device inside the cell. It decides when
to evaluate the expressions depending on which signals are the
operands in these expressions. Note the following:

• If the operands in these expressions are neither the original or
delayed versions of the reference or data signals, and if these
operands are signals that do not change value between value
changes on the original reference and data signals and their
delayed versions, then it does not matter when VCS evaluates
these expressions.

• If the operands in these expressions are delayed versions of the
original reference and data signals, then you want VCS to
evaluate these expressions when there are value changes on the
delayed versions of the reference and data signals. VCS does
this by default.

14-19

Negative Timing Checks

• If the operands in these expressions are the original reference
and data signals and not the delayed versions, then you want VCS
to evaluate these expressions when there are value changes on
the original reference and data signals. To specify evaluating
these expressions when the original reference and data signals
change value, include the +NTC2 compile-time option.

Toggling the Notifier Register

VCS waits for a timing violation to occur on the delayed versions of
the reference and data signals before toggling the notifier register.
Toggling means the following value changes:

• X to 0

• 0 to 1

• 1 to 0

VCS does not change the value of the notifier register if you have
assigned a Z value to it.

SDF Backannotation to Negative Timing Checks

You can backannotate negative setup and hold limits from SDF files
to $setuphold timing checks and negative recovery and removal
limits from SDF files to $recrem timing checks, if the following
conditions are met:

• You included the arguments for the names of the delayed
reference and data signals in the timing checks.

14-20

Negative Timing Checks

• You compiled your design with the +neg_tchk compile-time
option.

• For all $setuphold timing checks the positive setup or hold limit
is greater than the negative setup or hold limit.

• For all $recrem timing checks the positive recovery or removal
limit is greater than the negative recovery or removal limit.

As documented in the OVI SDF3.0 specification:

• TIMINGCHECK statements in the SDF file backannotate timing
checks in the model which match the edge and condition
arguments in the SDF statement.

• If the SDF statement specifies SCOND or CCOND expressions, they
must match the corresponding timestamp_cond or
timecheck_cond in the timing check declaration for
backannotation to occur.

• If there is no SCOND or CCOND expressions in the SDF statement,
all timing checks that otherwise match are backannotated.

How VCS Calculates Delays

This section describes how VCS calculates the delays of the delayed
versions of reference and data signals. It does not describe how you
use negative timing checks; it is supplemental material intended for
users who would like to read more about how negative timing checks
work in VCS.

14-21

Negative Timing Checks

VCS uses the limits you specify in the $setuphold or $recrem
timing check to calculate the delays on the delayed versions of the
reference and data signals. For example:

$setuphold(posedge clock,data,-10,20, , , , del_clock,
del_data);

This specifies that the propagation delays on the reference event (a
rising edge on signal clock), are more than 10 but less than 20 time
units more than the propagation delays on the data event (any
transition on signal data).

So when VCS creates the delayed signals, del_clock and
del_data, and the alternative violation window that straddles a rising
edge on del_clock, VCS uses the following relationship:

20 > (delay on del_clock - delay on del_data) > 10

There is no reason to make the delays on either of these delayed
signals any longer than they have to be so the delay on del_data
is 0 and the delay on del_clock is 11. Any delay on del_clock
between 11 and 19 time units would report a timing violation for the
$setuphold timing check.

Multiple timing checks, that share reference or data events, and
specified delayed signal names, can define a set of delay
relationships. For example:

$setuphold(posedge CP,D,-10,20, notifier, , ,
 del_CP, del_D);

$setuphold(posedge CP,TI,20,-10, notifier, , ,
 del_CP, del_TI);

$setuphold(posedge CP,TE,-4,8, notifier, , ,
 del_CP, del_TE);

14-22

Negative Timing Checks

Here:

• The first $setuphold timing check specifies the delay on
del_CP is more than 10 but less than 20 time units more than
the delay on del_D.

• The second $setuphold timing check specifies the delay on
del_TI is more than 10 but less than 20 time units more than the
delay on del_CP.

• The third $setuphold timing check specifies the delay on
del_CP is more than 4 but less than 8 time units more than the
delay on del_TE.

Therefore:

• The delay on del_D is 0 because its delay does not have to be
more than any other delayed signal.

• The delay on del_CP is 11 because it must be more than 10 time
units more than the 0 delay on del_D.

• The delay on del_TE is 4 because the delay on del_CP is 11.
That 11 makes the possible delay on del_TE larger than 3 but
less than 7. The delay cannot be 3 or less because the delay on
del_CP is less than 8 time units more that the delay on del_TE.
VCS makes the delay 4 because it always uses the shortest
possible delay.

• The delay on del_TI is 22 because it must be more than 10 time
units more that the 11 delay on del_CP.

14-23

Negative Timing Checks

In unusual and rare circumstances multiple $setuphold and
$recrem timing checks, including those that have no negative limits,
can make the delays on the delayed versions of these signals
mutually exclusive. When this happens VCS repeats the following
procedure until the signals are no longer mutually exclusive:

1. Sets one negative limit to 0.

2. Recalculates the delays of the delayed signals.

Using Multiple Non-Overlapping Violation Windows

The +overlap compile-time option enables accurate simulation of
multiple violation windows for the same two signals when the following
conditions occur:

• The violation windows are specified with negative delay values
that are backannotated from an SDF file.

• The violation windows do not converge or overlap.

The default behavior of VCS when these conditions are met is to
replace the negative delay values with zeros so that the violation
windows overlap. Consider the following code example:

‘timescale 1ns/1ns
module top;
reg in1, clk;
wire out1;

FD1 fd1_1 (.d(in1), .cp(clk), .q(out1));

initial
begin
 $sdf_annotate("overlap1.sdf");
in1 = 0;

14-24

Negative Timing Checks

 #45 in1=1;
end

initial
begin
 clk=0;
 #50 clk = 1;
 #50 clk = 0;
end
endmodule

module FD1 (d, cp, q);
input d, cp;
output q;
wire q;
reg notifier;
reg q_reg;

always @(posedge cp)
q_reg = d;

assign q = q_reg;

specify
 $setuphold(posedge cp, negedge d, 40, 30, notifier);
 $setuphold(posedge cp, posedge d, 20, 10, notifier);
endspecify
endmodule

The SDF file contains the following to backannotate negative delay
values:

(CELL
 (CELLTYPE "FD1")
 (INSTANCE top.fd1_1)
 (TIMINGCHECK
 (SETUPHOLD (negedge d) (posedge cp) (40) (-30))
 (SETUPHOLD (posedge d) (posedge cp) (20) (-10))
)
)

14-25

Negative Timing Checks

So the timing checks are now:

$setuphold(posedge cp, negedge d, 40, -30, notifier);
$setuphold(posedge cp, posedge d, 20, -10, notifier);

The violation windows and the transitions that occur on signals
top.fd1_1.cp and top.fd1_1.d are shown in Figure 14-4.

Figure 14-4 Non-Overlapping Violation Windows

setup
limit

hold
limit

violation

reference
event

data
event

cp

d

040 1020

window

30

setup
limit

hold
limit

violation
window

5

for falling
edge on d

for rising
edge on d

time before
reference event

5010 403020 45simulation time

14-26

Negative Timing Checks

The $setuphold timing checks now specify:

• A violation window for a falling edge on signal d between 40 and
30 time units before a rising edge on signal cp

• A violation window for a rising edge on signal d between 20 and
10 time units before a rising edge on signal cp

The testbench module top applies stimulus so that the following
transitions occur:

1. A rising edge on signal d at time 45

2. A rising edge on signal cp at time 50

The rising edge on signal d at time 45 is not inside the violation window
for a rising edge on signal d. If you include the +overlap
compile-time option you will not see a timing violation. This behavior
is what you want because there is no transition in the violation
windows so VCS should not display a timing violation.

The +overlap option tells VCS not to change the violation windows,
just like it would if the windows overlapped.

If you omit the +overlap option VCS does what Verilog simulators
traditionally do, which is both pessimistic and inaccurate:

1. During compilation VCS replaces the -30 and -10 negative delay
values in the $setuphold timing checks with 0 values. It displays
the following warning:

Warning: Negative Timing Check delays did not converge,
Setting minimum constraint to zero and using approximation
solution (
"sourcefile",line_number_of__second_timing_check)

14-27

Negative Timing Checks

VCS alters the violation windows:

- For the falling edge the window starts 40 time units before the
reference event and ends at the reference event.

- For the rising edge the window starts 20 time units before the
reference event and also ends at the reference event.

VCS alters the windows so that they overlap or converge.

2. During simulation, at time 50, the reference event, VCS displays
the timing violation:

"sourcefile.v", line_number_of_second_timing_check:
Timing violation in top.fd1_1
 $setuphold(posedge cp:50 posedge d:45, limits (20,0)
);

The rising edge on signal d is in the altered violation window for
a rising edge on d that starts 20 time units before the reference
event and now ends at the reference event. The rising edge on
signal d occurs five time units before the reference event.

14-28

Negative Timing Checks

15-1

SAIF Support

15
SAIF Support 2

The Synopsys Power Compiler enables you to perform power
analysis and power optimization for your designs by entering the
power command at the vcs prompt. This command outputs
Switching Activity Interchange Format (SAIF) files for your design.

SAIF files support signals and ports for monitoring as well as
constructs such as generates, enumerated types, records, array of
arrays, and integers.

This chapter covers the following topics:

• Using SAIF Files

• SAIF System Tasks

• Typical Flow to Dump the Backward SAIF File using System Tasks

• Criteria for Choosing Signals for SAIF Dumping

15-2

SAIF Support

Using SAIF Files

VCS has native SAIF support so you no longer need to specify any
compile-time options to use SAIF files. If you want to switch to the
old flow of dumping SAIF files with the PLI, you can continue to give
the option -P $VPOWER_TAB $VPOWER_LIB to VCS, and the flow
will not use the native support.

Note the following when using VCS native support for SAIF files:

• VCS does not need any additional switches.

• VCS does not need a Power Compiler specific tab file (and the
corresponding library)

• VCS does not need any additional settings.

• Functionality is built into VCS.

By default VCS does not monitor library cells, the modules in Verilog
library files or directories. You can tell VCS to monitor these cells with
the +vcs+saif_libcell compile-time option.

SAIF System Tasks

This section describes SAIF system tasks that you can use at the
command line prompt.

$set_toggle_region

Specifies a module instance (or scope) for which VCS records
switching activity in the generated SAIF file. Syntax:

 $set_toggle_region(instance[, instance]);

15-3

SAIF Support

$toggle_start

Instructs VCS to start monitoring switching activity.

Syntax:

$toggle_start();

$toggle_stop

Instructs VCS to stop monitoring switching activity.

Syntax

$toggle_stop();

$toggle_reset

Sets the toggle counter to 0 for all the nets in the current toggle
region.

Syntax:

$toggle_reset();

$toggle_report

Reports switching activity to an output file.

Syntax:

$toggle_report(outputFile, synthesisTimeUnit, scope);

This task has a slight change in native SAIF implementation
compared to PLI-based implementation. VCS considers only the
arguments specified here for processing. Other arguments have
no meaning.

VCS does not report signals in modules defined under the
‘celldefine compiler directive.

15-4

SAIF Support

$read_lib_saif

Allows you to read in a SDPD library forward SAIF file. It registers
the state and path dependent information on the scope. It also
monitors the internal nets of the design.

Syntax:

$read_lib_saif(<inputFile>);

$read_rtl_saif

Allows you to read in an RTL forward SAIF file. It registers
synthesis invariant elements by reading forward SAIF file. By
default, it doesn't register internal nets. If neither $read_lib_saif
nor $read_rtl_saif is specified, then also all the internal nets will
be monitored.

Syntax:

$read_rtl_saif(<inputFile>, [, testbench_path_name]);

$set_gate_level_monitoring

Allows you to turn on/off the monitoring of nets in the design if
both $read_lib_saif and $read_rtl_saif are present in the design.

Syntax:

$set_gate_level_monitoring("on" | "off" | "rtl_on");

"rtl_on"
All reg type of objects are monitored for toggles. Net
type of objects are monitored only if it is a cell highconn. This
is the default monitoring policy.

"off"
net type of objects are not monitored.

"on"
reg type of objects are monitored only if it is a cell hiconn.

15-5

SAIF Support

For more details on these task calls, refer to the Power Compiler
User Guide.

Note:
The $read_mpm_saif, $toggle_set, and $toggle_count
tasks in the PLI-based vpower.tab file are obsolete and no longer
supported.

Typical Flow to Dump the Backward SAIF File using
System Tasks

To generate a backward SAIF file using forward RTL SAIF file, do
the following:

initial begin
$read_rtl_saif(<inputFile>, <Scope>);
$set_toggle_region(<Scope>);
// initialization of Verilog signals, and then:
$toggle_start;
// testbench
$toggle_stop;
$toggle_report(<outputFile>, timeUnit, <Scope>);

end

To generate a backward SAIF file without using the forward RTL SAIF
file, do the following:

initial begin
$set_gate_level_monitoring("rtl_on");
$set_toggle_region(<Scope>);
// initialization of Verilog signals, and then:
$toggle_start;
// testbench
$toggle_stop;
$toggle_report(<outputFile>, timeUnit, <Scope>);

end

15-6

SAIF Support

To generate an SDPD backward SAIF file using a forward SAIF file,
do the following:

initial begin
$read_lib_saif(<inputFile>);
$set_toggle_region(<Scope>);
// initialization of Verilog signals, and then:
$toggle_start;
// testbench
$toggle_stop;
$toggle_report(<outputFile>, timeUnit, <Scope>);

end

To generate a non-SDPD backward SAIF file without using SAIF files,
do the following:

initial begin
$set_gate_level_monitoring("on");
$set_toggle_region(<Scope>);
// initialization of Verilog signals, and then:
$toggle_start;
// testbench
$toggle_stop;
$toggle_report(<outputFile>, timeUnit, <Scope>);

end

Criteria for Choosing Signals for SAIF Dumping

VCS supports only scalar wire and reg, as well as vector wire and
reg, for monitoring. It does not consider wire/reg declared within
functions, tasks and named blocks for dumping. Also, it does not
support bit selects and part selects as arguments to
$set_toggle_region or $toggle_report. In addition, it
monitors cell hiconns based on the policy.

15-7

SAIF Support

15-8

SAIF Support

16-1

SWIFT VMC Models and SmartModels

16
SWIFT VMC Models and SmartModels 1

VMC models are secure, protected, and portable models of Verilog
designs. They contain no Verilog code. SmartModels are models from
Synopsys that model devices from various vendors. SWIFT is the
interface for both of these kinds of models. VCS enables you to
instantiate both these kinds of models in your design and simulate
them as part of your design. The steps you take are as follows:

1. Set the SWIFT environment variables.

2. Generate a Verilog template file for the model. You use this
template file to instantiate the model.

3. Enable the monitoring of signals inside the model through the
model window.

4. Enter commands for the model in your source code using the
LMTV window commands or the SWIFT command channel.

16-2

SWIFT VMC Models and SmartModels

5. Compile the design with compile-time options for the SWIFT
interface and then simulate your design.

This chapter describes these steps in the following topics:

• SWIFT Environment Variables

• Generating Verilog Templates

• Monitoring Signals in the Model Window

• Using LMTV SmartModel Window Commands

• Entering Commands Using the SWIFT Command Channel

• Loading Memories at the Start of Runtime

• Compiling and Simulating a Model

Note:
The information in this chapter is provided as a convenience to
the Synopsys model user. It includes basic information about
simulating Synopsys models. This chapter is not, however, the
authoritative source on this subject. More complete and
sometimes more up-to-date information can be found in the
Simulator Configuration Guide for Synopsys Models. This guide
is available on-line in PDF format at http://www.synopsys.com/
products/lm/doc/smartmodel/manuals/simcfg.pdf or http://
www.synopsys.com/products/lm/doc/hardwaremodel/manuals/
simcfg.pdf

SWIFT Environment Variables

You set some SWIFT environment variables on all platforms. Others
you set only on certain platforms.

16-3

SWIFT VMC Models and SmartModels

All Platforms

You must set the LMC_HOME environment variable to the directory
where you installed the models. For example:

setenv LMC_HOME /u/tools/swiftR41

Set the VCS_SWIFT_NOTES environment variable to 1. For
example:

setenv VCS_SWIFT_NOTES 1

Setting this environment variable enables the display of messages
from models including messages that tell you if the model is correctly
loaded. For example, if PCL code contains printf commands, during
the simulation the microprocessor controlled by the PCL code prints
out the model messages.

Setting this environment variable is optional but Synopsys
recommends that you always set it when you are debugging your
design.

Solaris Platform

For the Solaris platform, set the environment variable
LD_LIBRARY_PATH. If you have already set this environment
variable for some other application, you can add to the definition of
this environment variable as follows:

setenv LD_LIBRARY_PATH ${LMC_HOME}/lib/sun4Solaris.lib:
${LD_LIBRARY_PATH}

If you haven’t already set this environment variable, enter the
following:

setenv LD_LIBRARY_PATH ${LMC_HOME}/lib/sun4Solaris.lib

16-4

SWIFT VMC Models and SmartModels

HP Platform

For the HP platform, set the SHLIB_PATH environment variable. If
you have already set this environment variable for some other
application, you can add to the definition of this environment variable
as follows:

setenv SHLIB_PATH ${LMC_HOME}/lib/hp700.lib:${SHLIB_PATH}

If you haven’t already set this environment variable, enter the
following

setenv SHLIB_PATH ${LMC_HOME}/lib/hp700.lib

Linux

For the Linux platform, set the LD_LIBRARY_PATH environment
variable as follows:

% setenv LD_LIBRARY_PATH $LMC_HOME/lib/
x86_linux.lib:$LD_LIBRARY_PATH

Generating Verilog Templates

You can generate the Verilog template for the model using the
-lmc-swift-template option. The vcs command line to do this
is as follows:

vcs -lmc-swift-template modelname

16-5

SWIFT VMC Models and SmartModels

This command generates a Verilog template file named
modelname.swift.v. For example, if you enter the following vcs
command:

vcs -lmc-swift-template xc4062xl_432

VCS writes the xc4062xl_432.swift.v file in the current directory.

The Verilog template file contains a Verilog module definition that
contains:

• The special $vcs_swift user-defined system task for the
SWIFT interface that enables you to use the command channel
to the SWIFT interface to pass commands to the model and see
messages from the model.

• Declarations for window regs that enable you to see the value of
and, in some cases, deposit values to signals in the model. See
"Monitoring Signals in the Model Window" on page 16-8.

• Declarations for regs that you use to pass commands to the
model.

• Port and reg declarations and assignment statements that are
part of a Verilog shell for the model.

When you instantiate the module definition in this Verilog template
file, you instantiate the model.

Modifying the Verilog Template File

You can make certain modifications to the contents of the Verilog
template file.

16-6

SWIFT VMC Models and SmartModels

The modifications you can make are as follows:

Reordering ports in the module header

If, for example, the module header is as follows:

module xyz (IO0, IO1, IO2, IO3, IO4);

You can reorder the ports:

module xyz (IO4, IO3, IO2, IO1, IO0);

Concatenating ports in the module header

You can concatenate ports in the module header, for example:

module xyz ({IO4, IO3, IO2, IO1}, IO0);

Doing so enables you to connect vector signals to the model as
follows:

wire [3:0] bus4;
...
xyz xyz1(bus4, ...

Naming concatenation expressions in the module header

In Verilog you can name concatenation expressions in the port
connection list in a module header. For example:

module xyz (.IO({IO4, IO3, IO2, IO1}), IO0);

This allows you to use name based connections in the module
instantiation statement, as follows:

wire [3:0] bus4;
..
xyz xyz1(sig1, .IO(bus4), ...

16-7

SWIFT VMC Models and SmartModels

Redefining Parameters

The Verilog template file contains a number of parameters that are
used for specifying model attributes. In some cases you can modify
the parameter definition. For example, the template file contains the
following parameter definition:

parameter DelayRange = "MAX";

This parameter specifies using the maximum delays of min:typ:max
delay triplets in the model. You can change the definition to "TYP"
or "MIN". There is an alternative to editing the DelayRange
parameter definition; see "Changing the Timing of a Model" on page
16-16.

For another example, the template file for a memory model might
contain the following parameter definition:

parameter MemoryFile = "memory";

If you know that all instances of this model will need to load memory
file mem.dat, you can change this to:

parameter MemoryFile = "mem.dat";

You can also use defparam statements to change these parameter
definitions. For example, if an instance of a memory model has an
instance name of test.design.mem1 and this model must load
memory file mem1.dat, you can enter the following in the test fixture
module:

defparam design.mem1.MemoryFile = "mem1.dat";

16-8

SWIFT VMC Models and SmartModels

For more information on SmartModel attributes that are parameters
in the Verilog template file, see the SmartModel Library Simulator
Interface Manual.

Monitoring Signals in the Model Window

SWIFT VMC models and SmartModels can have a window that
enables you to see the values of certain signals inside the model. For
some models you can also deposit values on these signals. The
model-specific data sheet lists which signals that you can monitor in
the window and whether you can also deposit values to these signals.

When you generate the Verilog template file for a model, VCS
declares window regs in the template file that correspond to these
signals inside the model window. By monitoring the window regs, you
monitor the corresponding signals in the model. Assigning values to
these window regs deposits values to the corresponding signals in
the model.

To enable VCS to declare these regs for SmartCircuit models, do the
following:

1. Create the file listing the SmartCircuit windows. Refer to the
SmartModel Library Users Manual for a description of how to do
this.

2. Create a soft link or copy the Model Control File (MCF) to a file
named scf in the current directory. VCS uses this file to load the
netlist for the SmartCircuit model that contains the signals in the
window.

16-9

SWIFT VMC Models and SmartModels

The following are examples of these regs in the Verilog template file:

//Generating SmartModel Windows data
 reg [1:0] GEN_CCLK_SPEED;
 reg [4:0] LENGTH_CNT_WIDTH;
 reg [10:0] FRAME_SIZE;
 reg [12:0] DEVICE_FRAMES;
 reg [3:0] CRC_ERROR_CHK;
 reg SYNC_TO_DONE;
 reg [3:0] DONE_ACTIVE;
 reg [3:0] IO_ACTIVE;
 reg [3:0] DEVICE_STATE;
 reg CONFIGURATIONMODE;

You enable and disable the monitoring of these window regs with the
special $swift_window_monitor_on and
$swift_window_monitor_off system tasks. The syntax for
these system tasks are as follows:

$swift_window_monitor_on("instance_name"[,"window_reg",
"window_reg",...]);
$swift_window_monitor_off("instance_name"[,"window_reg",
"window_reg",...]);

Here:

The following are examples of using these system tasks:

Example 1
$swift_window_monitor_on("test.design.xc4062xl_432_1");

instance_name Specifies the hierarchical name of the instance of the module
definition in the Verilog template file.

window_reg The identifier of the window reg in the Verilog template file.
If you do not specify a window reg in these system tasks, you
enable or disable the monitoring of all the window regs in the
instance.

16-10

SWIFT VMC Models and SmartModels

This example enables the monitoring of all window regs in the module
instance for the model with the hierarchical name
test.design.xc4062xl_432_1.

Example 2
$swift_window_monitor_on("test.design.xc4062xl_432_1",
"GEN_CCLK_SPEED","LENGTH_CNT_WIDTH");

This example enables the monitoring of the window regs
GEN_CCLK_SPEED and LENGTH_CNT_WIDTH in the module
instance test.design.xc4062xl_432_1.

After you enable monitoring or depositing with these system tasks
you must specify the monitoring with, for example, the $monitor
system task, and depositing values with procedural assignments to
these window regs.

Using LMTV SmartModel Window Commands

VCS supports a number of the Logic Model to Verilog (LMTV)
SmartModel window commands that were implemented as a
command interface between SmartModels and the previous
generation of Verilog simulators. These commands are user-defined
system tasks that we provide for simulating with SmartModels. They
also work with VMC models.

These system tasks are as follows:

$lm_monitor_enable
Enables SmartModel windows for one or more window elements
in a specified model instance. This system task is functionally

16-11

SWIFT VMC Models and SmartModels

equivalent to the $swift_window_monitor_on system task
described in "Monitoring Signals in the Model Window" on page
16-8. Its syntax is as follows:

$lm_monitor_enable(regname,instance_name,
"window_element")

$lm_monitor_disable
Disables SmartModel windows for one or more window elements
in a specified model instance. This system task is functionally
equivalent to the $swift_window_monitor_off system task
described in "Monitoring Signals in the Model Window" on page
16-8. Its syntax is as follows:

$lm_monitor_disable(regname,instance_name,
"window_element")

$lm_command
Sends a command to the session or to a model instance. You use
this system task to pass Model and Session commands to a
SmartModel, SmartBrowser commands to a SmartCircuit model,
and PCL commands to a microprocessor model. Its syntax is as
follows:

$lm_command ("session_cmmd_string" |
"instance_name","model_cmmd_string");

$lm_dump_file
Dumps the memory contents of the specified instance into the
specified file. This works only for memory models. Overwrites the
specified file if it already exists. Using this system task eliminates
the read cycles required to verify the success of a test. Its syntax
is as follows:

$lm_dump_file("instance_name","filename"
[,"MEMORY"]);

16-12

SWIFT VMC Models and SmartModels

$lm_load_file
Loads the memory contents of a file into an instance (the contents
of this file are in a specific memory dump format). The instance
can be either a programmable device or a memory model. Using
this system task eliminates the write cycles required to set up the
contents of the model. You can also use this system task to load
a model control file (MCF) during simulation. Its syntax is as
follows:

$lm_load_file("instance_name","filename"
[,"MEMORY|JEDEC|PCL|SCF|MCF"]);

Model, Session, PCL, and SmartBrowser commands are described
in the SmartModel Library User’s Manual.

Note:
The instance_name argument in the $lm_monitor_enable
and $lm_monitor_disable system tasks is not enclosed in
quotation marks whereas the quotation marks are required in the
$lm_command, $lm_dump_file, and $lm_load_file
system tasks.

For complete and authoritative information on these LMTV
SmartModel window commands, see the SmartModel Library
Simulator Interface Manual. The information on these commands is
in the interface information for Verilog-XL but this information is also
good for VCS. VCS supports these tasks to make it easy for people
to move from Verilog-XL to VCS.

You can access these documents at http://www.synopsys.com/
products/lm/docs.

16-13

SWIFT VMC Models and SmartModels

Note:
VCS does not support two-dimensional windows for memory
models and therefore has not implemented other LMTV window
commands.

Entering Commands Using the SWIFT Command
Channel

As an alternative to using the LMTV window commands, you can use
the SWIFT command channel to pass commands to a SmartModel
or a VMC model.

The command channel works by assigning these commands and
toggling the values of command channel regs declared in the Verilog
template file. The regs to which you assign these values are as
follows:

Reg Description
cmd$str The reg to which you assign the command

do$model$cmd When you assign a value of 1 to this reg, the model
executes all Model, SmartBrowser, and LMTV
commands assigned to reg cmd$str.

do$session$cmd When you assign a value of 1 to this reg, the model
executes all Session commands assigned to reg
cmd$str.

log$file The reg to which you assign a logfile name. The model
writes to this logfile when log$on has a value of 1.

log$on When you assign a value of 1 to this reg you enable the
model to write to the logfile you assigned to reg
log$file.

16-14

SWIFT VMC Models and SmartModels

The following is an example of an initial block that passes commands
through the command channel:

initial
begin
#1 circuit.model.cmd$str = "show doc";
circuit.model.do$model$cmd=1 ; // 1
#1 circuit.model.do$model$cmd=0 ;
#1 circuit.model.cmd$str = "show timing unit";
circuit.model.do$model$cmd = 1;
#1 circuit.model.do$model$cmd=0 ;
#1 circuit.model.cmd$str = "show version";
circuit.model.do$model$cmd = 1;
#1;
end

The Verilog template files for SmartModel memory models also
contain the following reg declarations that allow you to write or dump
the contents of a memory to a file:

For example, if you had a memory model with the hierarchical name
top.asic.mem1 and you wanted to dump its contents to file
mem1.1k.dump at time 1000, and mem1.2k.dump at time 2000, you
could use the following initial block in your test fixture module:

initial
begin
#1000 top.asic.mem1.mem$dump$file = "mem1.1k.dump";
top.asic.mem1.domemdump = 1;
#1000 top.asic.mem1.mem$dump$file = "mem1.2k.dump";
top.asic.mem1.domemdump = 1;
end

mem$dump$file The reg to which you assign the name of the file into which
the memory model writes its contents. The model writes
to this file when domemdump has a value of 1.

domemdump Enables writing the memory models contents to the file.

16-15

SWIFT VMC Models and SmartModels

Using the CLI to Access the Command Channel

You can also use the CLI to access the command channel during
simulation. For example:

cli_0> set circuit.model.cmd$str = "show doc";
cli_1> once #1;
cli_2> .
cli_3> set circuit.model.do$model$cmd=1;
cli_4> once #1;
cli_5> .

Loading Memories at the Start of Runtime

SmartModel memory models have an attribute called MemoryFile.
You can use this attribute to load the contents of a file into these
memories at runtime. To do so use a defparam statement. For
example:

defparam
test.designinst.modelinst.MemoryFile="mem_vec_file";

Here VCS treats the attribute as if it were a parameter in an instance.

This method enables you to load a memory when simulation starts.
To load a memory after simulation starts use the LMTV window
command $lm_load_file system task. Refer to "Using LMTV
SmartModel Window Commands" on page 16-10.

16-16

SWIFT VMC Models and SmartModels

Compiling and Simulating a Model

If your design instantiates a SmartModel or a VMC model, you
compile your design with the -lmc-swift compile-time option. Be
sure to also include the Verilog template file on the vcs command
line. For example:

vcs -lmc-swift xc4062xl_432.swift.v test.v design.v

This command line results in an executable file named simv. Enter
this executable file on a command line to simulate the design that
instantiates the model:

simv

Changing the Timing of a Model

You can enter the +override_model_delays runtime option in
combination with either the +mindelays, +typdelays, or
+maxdelays option to override the DelayRange parameter in the
template file that specifies the timing used by the model.

If you use this method, all the SmartModel models in your design will
use either the minimum, typical, or maximum delays specified by the
+mindelays, +typdelays, or +maxdelays option.

If you want to use different timing options in different models in your
design you must edit the template files for each model to change the
DelayRange parameter definition to either "MIN", "TYP", or
"MAX".

17-1

Using the PLI

17
Using the PLI 2

PLI is the programming language interface (PLI) between C/C++
functions and VCS. It helps to link applications containing C/C++
functions with VCS so that they execute concurrently. The C/C++
functions in the application use the PLI to read and write delay and
simulation values in the VCS executable, and VCS can call these
functions during simulation.

VCS has implemented the TF and ACC routines for the PLI. It has
also implemented the VPI procedural interface routine to some
extent.

VCS also supports a number of ACC routines that are not part of the
IEEE Verilog language reference manual. These routines access:

• Reading and writing to memories

• Multi-dimensional arrays

17-2

Using the PLI

• Probabilistic distribution

• Returning a string pointer to a parameter value

• Extended VCD files

• Line callbacks

• Source protection

• Signal in a generate block

ACC routines, which access the values in a design, changing, for
example, the delay values of module paths or the simulation values
of individual signals, are more powerful that the TF routines which
operate only on data passed to them. However, the ACC routines
also have a greater performance cost. The ability of ACC routines to
traverse the entire design and make extensive value changes
requires VCS to omit powerful performance optimizations so that it is
possible for the ACC routines to make these changes.

This performance cost of the ACC routines is a major consideration
in VCS performance. There are ways to limit this performance cost
and doing so is an important step in developing a PLI application that
uses ACC routines.

This chapter covers the following topics:

• Writing a PLI Application

• Functions in a PLI Application

• Header Files for PLI Applications

• The PLI Table File

• Enabling ACC Capabilities

17-3

Using the PLI

• Using VPI Routines

• Writing Your Own main() Routine

Writing a PLI Application

When writing a PLI application, you need to do the following:

1. Write the C/C++ functions of the application calling the TF and
ACC routines that Synopsys has implemented to access data
inside VCS.

2. Associate user-defined system tasks and system functions with
the C/C++ functions in your application. VCS will call these
functions when it compiles or executes these system tasks or
system functions in the Verilog source code. In VCS, associate
the user-defined system tasks and system functions with the C/
C++ functions in your application using a PLI table file (see "The
PLI Table File" on page 17-6). In this file you can also limit the
scope and operations of the ACC routines for faster performance.

3. Enter the user-defined system tasks and functions in the Verilog
source code.

4. Compile and simulate your design, specifying the table file and
including the C/C++ source files (or compiled object files or
libraries) so that the application is linked with VCS in the simv
executable. If you include object files, use the -cc and -ld
options to specify the compiler and linker that generated them.
Linker errors occur if you include a C/C++ funtion in the PLI table
file but omit the source code for this function at compile-time.

17-4

Using the PLI

To use the debugging features, do the following:

1. Write a PLI table file, limiting the scope and operations of the ACC
routines used by the debugging features.

2. Compile and simulate your design, specifying the table file.

These procedures are not mutually exclusive. It is, for example, quite
possible that you have a PLI application that you write and use during
the debugging phase of your design. If so you can write a PLI table
file that both:

• Associates user-defined system tasks or system functions with
the functions in your application and limits the scope and
operations of the ACC routines called by your functions for faster
performance.

• Limits scope and operations of the ACC routines called by the
debugging features in VCS.

Functions in a PLI Application

When you write a PLI application you typically write a number of
functions. The following are PLI functions that VCS expects with a
user-defined system task or system function:

• The function that VCS calls when it executes the user-defined
system task. Other functions are not necessary but this call
function must be present. It’s not unusual for there to be more
than one call function. You’ll need a separate user-defined system
task for each call function. If the function returns a value then you
must write a user-defined system function for it instead of a
user-defined system task.

17-5

Using the PLI

• The function that VCS calls during compilation to check if the
user-defined system task has the correct syntax. You can omit
this check function.

• The function that VCS calls for miscellaneous reasons such as
the execution of $stop, or $finish, or other reasons such a
value change. When VCS calls this function it passes a reason
argument to it that explains why VCS is calling it. You can omit
this miscellaneous function.

These functions are the ones you tell VCS about in the PLI table file;
apart from these PLI applications can have several more functions
that are called by other functions.

Note:
You do not specify a function to determine the return value size
of a user-defined system function; instead you specify the size
directly in the PLI table file.

Header Files for PLI Applications

For PLI applications you need to include one or more of the following
header files:

acc_user.h
For PLI Applications whose functions call IEEE Standard ACC
routines as documented in the IEEE Verilog language reference
manual.

vcsuser.h
For PLI applications whose functions call IEEE Standard TF
routines as documented in the IEEE Verilog language reference
manual.

17-6

Using the PLI

vcs_acc_user.h
For PLI applications whose functions call the special ACC routines
implemented exclusively for VCS.

You will find these header files at $VCS_HOME/platform/lib, where
platform is the platform you are using, such as
sun_sparc_solaris_5.7.

The header file for the VPI routines is $VCS_HOME/include/
vpi_user.h; see "Using VPI Routines" on page 17-29.

The PLI Table File

The PLI table file (commonly called the pli.tab file) has two purposes:

• To associate user-defined system tasks and system functions
with functions in a PLI application, so VCS calls these functions
when it compiles or executes the system task or function.

• To limit the scope and operation of the ACC routines called by the
debugging features. If this is all that you need to do in the PLI
table file, see "Specifying ACC Capabilities for PLI Functions" on
page 17-12 and "Specifying ACC Capabilities for VCS Debugging
Features" on page 17-17.

When writing a PLI application, after you write the functions for the
application, you need to write a PLI table file. This file contains a line
for each user-defined system task or system function your application
needs. Each line should contain the following information:

• The name of the user-defined system task or system function.
This name begins with the dollar sign $.

17-7

Using the PLI

• The PLI specifications for the user-defined system task or system
function. These specifications must include the call function. For
user-defined system functions, they must also include the size of
the return value.

These specifications can also include the check and
miscellaneous functions. There are a number of other PLI
specifications, such as the one that allows the entering of the
user-defined system task on the command line. You can also
enter these specifications on a line in the PLI table file.

• The ACC capabilities that you want to enable for the functions,
particularly the call function, for the user-defined system task or
system function. When you specify ACC capabilities you specify
the types of ACC operations that the ACC routines will perform
and where in the design they can perform these operations.
Entering ACC capabilities to limit ACC routine scope and
operations is optional but recommended to enhance
performance.

The syntax for a line in a PLI table file is as follows:

$name PLI_specifications [ACC_capabilities]

Here:

$name
The name of the user-defined system task or system function

PLI_specifications
One or more specifications such as the name of the C function
VCS calls when it executes the user-defined system task or
system function. For a list of valid PLI specifications, see "PLI
Specifications" on page 17-9.

17-8

Using the PLI

ACC_capabilities
Specifications for ACC capabilities to be added, removed, or
changed in various parts of the design hierarchy. For details on
ACC capabilities, see "ACC Capabilities" on page 17-11.

17-9

Using the PLI

PLI Specifications

The valid PLI specifications are as follows:

call=function
Specifies the name of call function. This specification is required.

check=function
Specifies the name of check function.

misc=function
Specifies the name of misc function.

data=integer
Specifies the data value passed as first argument to call, check,
and misc routines. The default is 0. Use this argument if you want
more than one user-defined system task or system function to use
the same call, check, or misc function. Specify a different integer
for each user-defined system task or system function in the PLI
table file that uses the same call, check, or misc function.

size=number
Specifies the size of returned value in bits. This specification is
required for user-defined system functions. You can omit this
specification or specify 0 in the PLI specifications for a
user-defined system function. For user-defined system functions,
specify a decimal value for the number or bits. For example:
size=64. If the user-defined system function returns a real value,
specify r. For example: size=r

args=number
Specifies the number of arguments to the user-defined system
task or system function.

minargs=number
Specifies the minimum number or arguments.

17-10

Using the PLI

maxargs=number
Specifies the maximum number or arguments.

nocelldefinepli
Disables the dumping of value change and simulation time data,
from modules defined under the ‘celldefine compiler
directive, into the VPD file created by the $vcdpluson system
task. You make this change in the line for the $xvcs system task
in the virsims.tab, virsims_dki.tab, and virsims_pp.tab files in the
$VCS_HOME/virsims_support/vcdplus directory. It doesn’t make
sense for you to use this specification in a PLI table file for any
other PLI application.
This capability is intended for batch simulation only.

persistent
Enables you to enter the user-defined system task on the CLI or
DVE command line without including any of the +cli
compile-time options.

The following are example lines in PLI table files that contain PLI
specifications (the ACC capabilities parts are omitted):

Example 1
$val_proc call=val_proc check=check_proc misc=misc_proc

In this line, VCS calls the function named val_proc when it executes
the associated user-defined system task named $val_proc. It calls
the check_proc function at compile-time to see if the user-defined
system task has the correct syntax, and calls the misc_proc function
in special circumstances like interrupts.

17-11

Using the PLI

Example 2
$value_passer size=0 args=2 call=value_passer persistent

In this line, there is an associated user-defined system task (because
it has a return size of 0). The system task takes two arguments. When
VCS executes the $value_passer system task it calls the function
named value_passer, and you can enter the system task on the CLI
command line without including the +cli compile-time option.

Example 3
$set_true size=16 call=set_true

In this line, there is an associated user-defined system function that
returns a 15 bit return value. VCS calls the function named set_true
when it executes this system function.

Note:
Do not enter blank spaces inside a PLI specification. The following
copy of the last example of PLI specifications does not work:

$set_true size = 16 call = set_true

ACC Capabilities

You can specify ACC capabilities in a PLI table file for the following
reasons:

• To specify the ACC capabilities for the PLI functions associated
with your user-defined system task or system function. To do this,
specify the ACC capabilities on a line in a PLI table file after the
name of the user-defined system task or system function and its
PLI specifications. See "Specifying ACC Capabilities for PLI
Functions" on page 17-12 for more details.

17-12

Using the PLI

• To specify the ACC capabilities that the debugging features of
VCS can use. To do this, specify ACC capabilities alone on a line
in a PLI table file, without an associated user-defined system task
or system function. See "Specifying ACC Capabilities for VCS
Debugging Features" on page 17-17 for more details.

When you specify ACC capabilities, you specify both of the following:

• The ACC capabilities you want to enable or disable.

• The part or parts of the design that you want this enabling or
disabling to occur.

In many ways, specifying ACC capabilities for your PLI functions, and
specifying them for VCS debugging features, is the same, but the
capabilities that you enable, and the parts of the design to which you
can apply them are different.

Specifying ACC Capabilities for PLI Functions

The format for specifying ACC capabilities is as follows:

acc=|+=|-=|:=capabilities:module_names[+]|%CELL|%TASK|*

Here:

acc
Keyword that begins a line for specifying ACC capabilities.

=|+=|-=|:=
Operators for adding, removing, or changing ACC capabilities.
The operators in this syntax are as follows:

=
A shorthand for +=.

17-13

Using the PLI

+=
Specifies adding the ACC capabilities that follow to the parts of
the design that follow, as specified by module name,
%CELL,%TASK, or * wildcard character.

-=
Specifies removing the ACC capabilities that follow from the
parts of the design that follow, as specified by module name,
%CELL,%TASK, or * wildcard character.

:=
Specifies changing the ACC capabilities of the parts of the
design that follow, as specified by module name, %CELL,%TASK,
or * wildcard character, to only those in the list of capabilities
on this specification. A specification with this operator can
change the capabilities specified in a previous specification.

capabilities
Comma-separated list of ACC capabilities. The ACC capabilities
that you can specify for the functions in your PLI specifications
are as follows:

r or read
Reads the values of nets and registers in your design.

rw or read_write
Both reads from and writes to the values of registers or variables
(but not nets) in your design.

wn
Enables writing values to nets.

cbk or callback
To be called when named objects (nets registers, ports) change
value.

17-14

Using the PLI

cbka or callback_all
To be called when named and unnamed objects (such as
primitive terminals) change value.

frc or force
Forces values on nets and registers.

prx or pulserx_backannotation
Sets pulse error and pulse rejection percentages for module
path delays.

s or static_info
Enables access to static information, such as instance or signal
names and connectivity information. Signal values are not static
information.

tchk or timing_check_backannotation
Backannotates timing check delay values.

gate or gate_backannotation
Backannotates delay values on gates.

mp or module_path_backannotation
Backannotates module path delays.

mip or module_input_port_backannotation
Backannotates delays on module input ports.

mipb or module_input_port_bit_backannotation
Backannotates delays on individual bits of module input ports.

module_names
Comma-separated list of module identifiers (or names).
Specifying modules enables, disables, or changes (depending on
the operator) the ability of the PLI function to use the ACC
capability in all instances of the specified module.

17-15

Using the PLI

+
Specifies adding, removing, or changing the ACC capabilities for
not only the instances of the specified modules but also the
instances hierarchically under the instances of the specified
modules.

%CELL
Enables, disables, or changes (depending on the operator) the
ability of the PLI function to use the ACC capability in all instances
of module definitions compiled under the ‘celldefine compiler
directive and all module definitions in Verilog library directories
and library files (as specified with the -y and -v compile-time
options).

%TASK
Enables, disables, or changes (depending on the operator) the
ability of the PLI function to use the ACC capability in all instances
of module definitions that contain the user-defined system task or
system function associated with the PLI function.

*
Enables, disables, or changes (depending on the operator) the
ability of the PLI function to use the ACC capability throughout the
entire design. Using wildcard characters could seriously impede
the performance of VCS.

Note:
There are no blank spaces when specifying ACC capabilities.

The following examples are the PLI specification examples from the
previous section with ACC capabilities added to them. The examples
wrap to more than one line, but when you edit your PLI table file, be
sure there are no line breaks in these lines.

Example 1
$val_proc call=val_proc check=check_proc misc=misc_proc

17-16

Using the PLI

acc+= rw,tchk:top,bot acc-=tchk:top

This example adds the ACC capabilities for reading and writing to
nets and registers, and for backannotating timing check delays, to
these PLI functions, and enables them to do these things in all
instances of modules top and bot. It then removes the ACC
capability for backannotating timing check delay values from these
PLI functions in all instances of module top.

Example 2
$value_passer size=0 args=2 call=value_passer persistent
acc+=rw:%TASK acc-=rw:%CELL

This example adds the ACC capability to read from and write to the
values of nets and registers to these PLI functions. It enables them
to do these things in all instances of modules declared in module
definitions that contain the $value_passer user-defined system task.
The example then removes the ACC capability to read from and write
to the values of nets and registers, from these PLI functions, in module
definitions compiled under the ‘celldefine compiler directive and
all module definitions in Verilog library directories and library files.

Example 3
$set_true size=16 call=set_true acc+=rw:*

This example adds the ACC capability to read from and write to the
values of nets and registers to the PLI functions. It enables them to
do this throughout the entire design.

17-17

Using the PLI

Specifying ACC Capabilities for VCS Debugging
Features

The format for specifying ACC capabilities for VCS debugging
features is as follows:

acc=|+=|-=|:=capabilities:module_names[+]|%CELL|*

Here:

acc
Keyword that begins a line for specifying ACC capabilities.

=|+=|-=|:=
Operators for adding, removing, or changing ACC capabilities.

capabilities
Comma separated list of ACC capabilities.

module_names
Comma-separated list of module identifiers. The specified ACC
capabilities will be added, removed, or changed for all instances
of these modules.

+
Specifies adding, removing, or changing the ACC capabilities for
not only the instances of the specified modules but also the
instances hierarchically under the instances of the specified
modules.

%CELL
Specifies all modules compiled under the ‘celldefine compiler
directive and all modules in Verilog library directories and library
files (as specified with the -y and -v compile-time options.)

*
Specifies all modules in the design. Using a wildcard character is
no more efficient than using the +cli compile-time option.

17-18

Using the PLI

The ACC capabilities and the interactive commands they enable are
as follows:

ACC Capability What it enables your PLI functions to do

r or read For specifying “reads” in your design, it enables commands
for doing the following (the actual CLI commands
described are in parentheses):

• Creating an alias for another CLI command (alias)

• Displaying CLI help (? and help)

• Specifying the radix of displayed simulation values
(oformat)

• Displaying simulation values (print)

• Descending and ascending the module hierarchy
(scope)

• Depositing values on registers (set)

• Displaying the set breakpoints on signals (show break)

• Displaying the port names of the current location, and the
current module instance or scope, in the module
hierarchy (show ports)

• Displaying the names of instances in the current module
instance or scope (show scopes)

• Displaying the nets and registers in the current scope
(show variables)

• Moving up the module hierarchy (upscope)

• Deleting an alias for another CLI command (unalias)

• Ending the simulation (finish)

rw or read_write For specifying “reads and writes” in your design but r
enables everything that rw does. A longer way to specify
this capability is with the read_write keyword.

17-19

Using the PLI

Example 1

The following specification enables many interactive commands
including those for displaying the values of signals in specified
modules and depositing values to the signals that are registers:

acc+=r:top,mid,bot

Notice that there are no blank spaces in this specification. Blank
spaces cause a syntax error.

cbk or callback Commands for doing the following (the actual CLI
commands described are in parentheses):

• Setting a repeating breakpoint. In other words always
halting simulation, when a specified signal changes value
(always or break)

• Setting a one shot breakpoint. In other words halting
simulation the next time the signal changes value but not
the subsequent times it changes value (once or tbreak)

• Removing a breakpoint from a signal (delete)

• Showing the line number or number in the source code
of the statement or statements that causes the current
value of a net (show drivers)

A longer way to specify this capability is with the callback
keyword.

frc or force Commands for doing the following, (the actual CLI
commands described are in parentheses):
• Forcing a net or a register to a specified value so that this

value cannot be changed by subsequent simulation
events in the design (force)

• Releasing a net or register from its forced value
(release)

A longer way to specify this capability is with the force
keyword.

ACC Capability What it enables your PLI functions to do

17-20

Using the PLI

Example 2

The following specifications enable most interactive commands for
most of the modules in a design. They then change the ACC
capabilities preventing breakpoint and force commands in instances
of modules in Verilog libraries and modules designated as cells with
the ‘celldefine compiler directive.

acc+=rw,cbk,frc:top+ acc:=rw:%CELL

Here the first specification enables the interactive commands that are
enabled by the rw, cbk, and frc capabilities for module top, which
in this example is the top-level module of the design, and all module
instances under it. The second specification limits the interactive
commands for the specified modules to only those enabled by the rw
(same as r) capability.

Using the PLI Table File

You specify the PLI table file with the -P compile-time option, followed
by the name of the PLI table file (by convention, the PLI table file has
a .tab extension). For example:

-P pli.tab

When you enter this option on the vcs command line, you can also
enter C source files, or compiled .o object files or .a libraries on the
vcs command line, to specify the PLI application that you want to link
with VCS. For example:

vcs -P pli.tab pli.c my_design.v

17-21

Using the PLI

One advantage to entering .o object files and .a libraries is that you
do not have to recompile the PLI application every time you compile
your design.

Enabling ACC Capabilities

As well as specifying ACC capabilities in only specific parts of your
design (as described in "The PLI Table File" on page 17-6), VCS
allows you to enable ACC capabilities throughout your design. It also
enables you to specify selected write capabilities using a
configuration file. Since enabling ACC capabilities has an adverse
effect on performance VCS also allows you to enable only the ACC
capabilities you need.

Globally Enabling ACC Capabilities

You can enter the +acc+level_number compile-time option to
globally enable ACC capabilities throughout your design.

Note:
Using the +acc+level_number option significantly impedes the
simulation performance of your design. Synopsys recommends
that you use a PLI table file to enable ACC capabilities for only
the parts of your design where you need them. For more details
on doing this, see "The PLI Table File" on page 17-6.

17-22

Using the PLI

The level_number in this option specifies more and more ACC
capabilities as follows:

+acc+1 or +acc
Enables all capabilities except value change callbacks and delay
annotation.

+acc+2
Above, plus value change callbacks.

+acc+3
Above, plus module path delay annotation.

+acc+4
Above, plus gate delay annotation.

Enabling ACC Write Capabilities Using the
Configuration File

You specify the configuration file with the +optconfigfile
compile-time option. For example:

+optconfigfile+filename

The VCS configuration file enables you to enter statements that
specify:

• Using the optimizations of Radiant Technology on part of a design

• Enabling PLI ACC write capabilities for all memories in the design,
disabling them for the entire design, or enabling them for part or
parts of the design hierarchy

• Four state simulation for part of a design

17-23

Using the PLI

The entries in the configuration file override the ACC write-enabling
entries in the PLI table file.

The syntax of each type of statement in the configuration file to enable
ACC write capabilities is as follows:

set writeOnMem;

or
set noAccWrite;

or
module {list_of_module_identifiers} {accWrite};

or
instance {list_of_module_instance_hierarchical_names}
{accWrite};

or
tree [(depth)] {list_of_module_identifiers} {accWrite};

Here:

set
Keyword preceding a property that applies to the entire design.

writeOnMem
Enables ACC write to memories (any single or multi-dimensional
array of the reg data type) throughout the entire design.

noAccWrite
Disables ACC write capabilities throughout the entire design.

accWrite
Enables ACC write capabilities.

17-24

Using the PLI

module
Keyword specifying that the accWrite attribute in this statement
applies to all instances of the modules in the list, specified by
module identifier.

list_of_module_identifiers
Comma-separated list of module identifiers (also called module
names).

instance
Keyword specifying that the accWrite attribute in this statement
applies to all instances in the list.

list_of_module_instance_hierarchical_names
Comma-separated list of module instance hierarchical names.

tree
Keyword specifying that the accWrite attribute in this statement
applies to all instances of the modules in the list, specified by
module identifier, and also applies to all module instances
hierarchically under these module instances.

depth
An integer that specifies how far down the module hierarchy from
the specified modules you want to apply the accWrite attribute.
You can specify a negative value. A negative value specifies
descending to the leaf level and counting up levels of the hierarchy
to apply these attributes. This specification is optional. Enclose
this specification in parentheses: ()

17-25

Using the PLI

Using Only the ACC Capabilities that You Need

There are compile-time and runtime options that enable VCS and PLI
applications to use only the ACC capabilities they need and no more
than they need. The procedure to use these options is as follows:

1. Use the +vcs+learn+pli runtime option to tell VCS to keep
track of, or learn, the ACC capabilities that are used by different
modules in your design. VCS uses this information to create a
secondary PLI table file, named pli_learn.tab, that you can use to
recompile your design so that subsequent simulations only use
the ACC capabilities that they need.

2. Tell VCS to apply what it has learned in the next compilation of
your design, and specify the secondary PLI table file, with the
+applylearn+filename compile-time option (if you omit
+filename from the +applylearn compile-time option, VCS
uses the pli_learn.tab secondary PLI table file).

3. Simulate again with a simv executable in which only the ACC
capabilities you need are enabled.

Learning What ACC Capabilities are Used

You include the +vcs+learn+pli runtime option to tell VCS to learn
the ACC capabilities that were used by the modules in your design
and write them into a secondary PLI table file named pli_learn.tab.

We call this file a secondary PLI table file because it does not replace
the first PLI table file that you used (if you used one). This file does
however modify what ever ACC capabilities are specified in a first PLI
table file, or other means of specifying ACC capabilities, so that you
enable only the ACC capabilities you need in subsequent simulations.

17-26

Using the PLI

You should look at the contents of the pli_learn.tab file that VCS writes
to see what ACC capabilities were actually used during simulation.
The following is an example of this file:

////////////////// SYNOPSYS INC ////////////////
// PLI LEARN FILE
// AUTOMATICALLY GENERATED BY VCS(TM) LEARN MODE
//
acc=r:testfixture

//SIGNAL STIM_SRLS:r
acc=rw:SDFFR

//SIGNAL S1:rw

The following line in this file specifies that during simulation the ACC
read capability was needed for signals in the module named
testfixture.

acc=r:testfixture
//SIGNAL STIM_SRLS:r

The comment lets you know that the only signal for which this
capability was needed was the signal named STIM_SRLS. This line
is in the form of a comment because the syntax of the PLI table file
does not permit specifying ACC capabilities on a signal by signal
basis.

The following line in this file specifies that during simulation the ACC
read and write capabilities were needed for signals in the module
named SDFFR, specifically for the signal named S1.

acc=rw:SDFFR
//SIGNAL S1:rw

17-27

Using the PLI

Signs of a Potentially Significant Performance Gain
You might see one of following comments in the pli_learn.tab file:

//!VCS_LEARNED: NO_ACCESS_PERFORMED
This indicates that none of the enabled ACC capabilities were
used during the simulation.

//!VCS_LEARNED: NO_DYNAMIC_ACCESS_PERFORMED
This indicates that only static information was accessed through
ACC capabilities and there was no value change information
during simulation.

These comments mean there is a potentially significant performance
gain when you apply the ACC capabilities in the pli_learn.tab file.

Compiling to Enable Only the ACC Capabilities You
Need

After you have run the simulation to learn what ACC capabilities were
actually used by your design, you can then recompile the design with
the information you have learned so the resulting simv executable
uses only the ACC capabilities that you need.

When you recompile your design, include the +applylearn
compile-time option.

If for some reason you renamed the pli_learn.tab file that VCS writes
when you include the +vcs+learn+pli runtime option, specify the
new filename in the compile-time option by appending it to the option
with the following syntax:

+applylearn+filename

17-28

Using the PLI

When you recompile your design with the +applylearn
compile-time option, it is important that you also re-enter all the
compile-time options that you used for the previous compilation. For
example, if in a previous compilation you specified a PLI table file
with the -P compile-time option, specify this PLI table file again, using
the -P option, along with the +applylearn option.

Note:
If you change your design after VCS writes the pli_learn.tab file,
and you want to make sure that you are using only the ACC
capabilities you need, you will need to have VCS write another
one, by including the +vcs+learn+pli runtime option and then
compile your design again with the +applylearn option.

Limitations

VCS is not able to keep track of all ACC capabilities. The capabilities
it can keep track of, and specify in the pli_learned.tab file, are as
follows:

• r - read

• rw - read and write

• cbk - callbacks

• cbka - callback all including unnamed objects

• frc - forcing values on signals

The +applylearn compile-time option does not work if you also use
any of the following compile-time options:

• +cli because this option does not specify what information will
be accessed through CLI commands.

17-29

Using the PLI

• +multisource_int_delays or +transport_int_delays
because interconnect delays need global ACC capabilities.

If you enter the +applylearn compile-time option more than once
on the vcs command line, VCS ignores all but the first one.

Using VPI Routines

To enable VPI capabilities in VCS, you must include the +vpi
compile-time option. For example:

vcs +vpi test.v -P test.tab test.c

The header file for the VPI routines is $VCS_HOME/include/
vpi_user.h.

You can register your user defined system tasks/function-related
callbacks using the vpi_register_systf VPI routine, see "Support for
the vpi_register_systf Routine" on page 17-31.

You can also use a PLI .tab file to associate your user defined system
tasks with your VPI routines, see "PLI Table File for VPI Routines" on
page 17-32.

VCS has not implemented everything specified for VPI routines in the
IEEE Verilog language reference manual because some routines
would be rarely used and some of the data access operations of other
routines would be rarely used. The unimplemented routines are as
follows:

• vpi_get_data

• vpi_put_data

• vpi_sim_control

17-30

Using the PLI

Object data model diagrams in the IEEE Verilog language reference
manual specify that some VPI routines should be able to access data
that is rarely needed. These routines and the data they can’t access
are as follows:

vpi_get_value

- Cannot retrieve the value of var select objects (diagram 26.6.8
Variables) and func call objects (diagram 26.6.18 Task, function
declaration).

- Cannot retrieve the value of VPI operators (expressions) unless
they are arguments to system tasks or system functions.

- Cannot retrieve the value of UDP table entries (vpiVectorVal
not implemented).

vpi_put_value
Cannot set the value of var select objects (diagram 26.6.8
Variables) and primitive objects (diagram 26.6.13 Primitive, prim
term).

vpi_get_delays
Cannot retrieve the values of continuous assign objects (diagram
26.6.24 Continuous assignment) or procedurally assigned
objects.

vpi_put_delays
Cannot put values on continuous assign objects (diagram 26.6.24
Continuous assignment) or procedurally assigned objects.

vpi_register_cb
Cannot register the following types of callbacks that are defined
for this routine:

cbEndOfSimulation cbError cbPliError

cbTchkViolation cbSignal cbForce

17-31

Using the PLI

Also the cbValueChange callback is not supported for the
following objects:

- A memory or a memory word (index or element)

- VarArray or VarSelect

Support for the vpi_register_systf Routine

VCS supports the vpi_register_systf VPI access routine. To use it you
need to make an entry in the vpi_user.c file. You can copy this file
from $VCS_HOME/etc/vpi. The following is an example:

In this example:

• The routine named register_me is externally declared.

• It is also included in the array named vlog_startup_routines.

• The last entry in the array is zero.

cbRelease cbAssign cbDeassign

/*==
 Copyright (c) 2003 Synopsys Inc
==*/

/* Fill your start up routines in this array, Last entry
should be
zero, use -use_vpiobj to pick up this file */
extern void register_me();
void (*vlog_startup_routines[])() = {

register_me,
0 /* Last Entry */

}; entry here

17-32

Using the PLI

You specify this file with the -use_vpiobj compile-time option. For
example:

vcs any.c any.v -use_vpiobj vpi_user.c +cli+3 +vpi

PLI Table File for VPI Routines

The PLI table file for VPI routines works the same way, and with the
same syntax as a PLI table file for user-defined system tasks that
execute C functions, which call PLI ACC routines. The following is an
example of such a PLI table file:

$set_mipd_delays call=PLIbook_SetMipd_calltf
check=PLIbook_SetMipd_compiletf
acc=mip,mp,gate,tchk,rw:test+

Note that this entry includes acc= even though the C functions in the
PLI specification call VPI routines instead of ACC routines. The
syntax has not changed; you use the same syntax for enabling ACC
and VPI routines.

This PLI table file is for a example file named set_mipd_delays_vpi.c
that is available with The Verilog PLI Handbook by Stuart Sutherland,
Kluwer Academic Publishers, Boston, Dordrect, and London.

Integrating a VPI Application With VCS

If you create one or more shared libraries for a VPI application, the
application should not contain the array named
vlog_startup_routines.

17-33

Using the PLI

Instead you enter the -load compile-time option to specify the
registration routine. The syntax is as follows:

-load shared_library:registration_routine

You do not have to specify the pathname of the shared library if that
path is part of your LD_LIBRARY_PATH environment variable.

The following are some examples of using this option:

• -load lib1:my_register

The my_register() routine is in lib1.so. The location of lib1.so is in
the LD_LIBRARY_PATH environment variable.

• -load lib1:my_register,new_register

The registration routines my_register() and new_register() are in
lib1.so.The location of lib1.so is in the LD_LIBRARY_PATH
environment variable.

• -load lib1:my_register -load lib2:new_register

The registration routine my_register() is in lib1.so and the second
registration routine new_register() is in lib2.so. The path to both
of these libraries are in the LD_LIBRARY_PATH environment
variable. You can enter more than one -load option to specify
multiple shared libraries and their registration routines.

• -load lib1.so:my_register

The registration routine my_register() is in lib1.so. The location of
lib1.so is in the LD_LIBRARY_PATH environment variable.

17-34

Using the PLI

• -load /usr/lib/mylib.so:my_register

The registration routine my_register() is in lib1.so, which is in /usr/
lib/mylib.so, and not in the LD_LIBRARY_PATH environment
variable.

Writing Your Own main() Routine

You write your own main() routine if you wrote your PLI application
in C++ code or if your standard C code application does some
processing before starting the simv executable.

When you write your own main() routine you must include the -e
compile-time option on the vcs command line. The syntax is as
follows:

-e new_name_for_main

For example:

vcs -P my_main.tab my_main.cc -e SimvMain source.v

The contents of my_main.cc is as follows:

#if defined(__cplusplus)
extern "C" {
#endif

extern int SimvMain(int argc, char *argv[]);
extern void vcs_atexit (void(*pfun)(int code));

#if defined(__cplusplus)
}
#endif

17-35

Using the PLI

static void do_cleanup(int code)
{
 /* do simv post-processing work */
}

int main(int argc, char *argv[])
 {
 /* Startup code (if any) goes here. */

 vcs_atexit(do_cleanup); /* Register callback */

 SimvMain(argc, argv); /* Run simv */

 return 0; /* Never gets here */
 }

Note that SimvMain does not return, it calls exit() directly. If you need
to do any post-processing, you can register at-exit functions using
vcs_atexit().

The function you pass to vcs_atexit() is called with the exit status. If
you make multiple calls to vcs_atexit(), your functions are called in
the reverse order of registration.

Note:
You cannot use this feature when using the VCS/ SystemC
cosimulation interface.

17-36

Using the PLI

18-1

DirectC Interface

18
DirectC Interface 3

DirectC is an extended interface between Verilog and C/C++. It is an
alternative to the PLI that, unlike the PLI, enables you to do the
following:

• More efficiently pass values between Verilog module instances
and C/C++ functions by calling the functions directly, along with
actual parameters, in your Verilog code.

• Pass more kinds of data between Verilog and C/C++. With the
PLI you can only pass Verilog information to and from a C/C++
application. With DirectC you do not have this limitation.

With DirectC, for example, you can model a simulation environment
for your design in C/C++ in which you can pass pointers from the
environment to your design and store them in Verilog signals, then
at a later simulation time pass these pointers to the simulation
environment.

18-2

DirectC Interface

Similarly you can use DirectC to develop applications to run with VCS
to which you can pass pointers to the location of simulation values
for your design.

DirectC is an alternative to, but not a replacement for, the PLI. You
can do things with the PLI that you cannot do with DirectC. For
example there are PLI TF and ACC routines to implement a callback
to start a C/C++ function when a Verilog signal changes value. You
cannot do this with DirectC.

You can use direct C/C++ function calls for existing and proven C
code as well as C/C++ code that you write in the future. You can also
use them without much rewriting of, or additions to, your Verilog code.
You call them like you call (or enable) a Verilog function or Verilog
task.

This chapter describes the DirectC interface in the following sections:

• Using Direct C/C++ Function Calls

• Using Direct Access

• Using Abstract Access

• Enabling C/C++ Functions

• Environment Variables

• Extended BNF for External Function Declarations

18-3

DirectC Interface

Using Direct C/C++ Function Calls

To enable a direct call of a C/C++ function during simulation, do the
following:

1. Declare the function in your Verilog code.

2. Call the function in your Verilog code.

3. Compile your Verilog and C/C++ code using compile-time options
for DirectC.

However there are complications to this otherwise straightforward
procedure.

DirectC allows the invocation of C++ functions that are declared in
C++ using the extern "C" linkage directive. The extern "C"
directive is necessary to protect the name of the C++ function from
being mangled by the C++ compiler. Plain C functions do not undergo
mangling, and therefore do not need any special directive.

The declaration of these functions involves specifying a direction for
the parameters of the C function. This is because, in the Verilog
environment, they become analogous to Verilog tasks as well as
functions. Verilog tasks are like void C functions in that they don’t
return a value. Verilog tasks do however have input, output, and inout
arguments, whereas C function parameters do not have explicitly
declared directions. See "Declaring the C/C++ Function" on page
18-6.

18-4

DirectC Interface

There are two access modes for C/C++ function calls. These modes
don’t make much difference in your Verilog code; they only pertain
to the development of the C/C++ function. They are as follows:

• The slightly more efficient direct access mode - This mode has
rules for how values of different types and sizes are passed to
and from Verilog and C/C++. This mode is explained in detail in
"Using Direct Access" on page 18-20

• The slightly less efficient but with better error handling abstract
access mode - In this implementation VCS creates a descriptor
for each actual parameter of the C function. You access these
descriptors using a specially defined pointer called a handle. All
formal arguments are handles. DirectC comes with a library of
accessory functions for using these handles. This mode is
explained in detail in "Using Abstract Access" on page 18-29

The abstract access library of accessory functions contains
operations for reading and writing values and for querying about
argument types, sizes, etc. An alternative library, with perhaps
different levels of security or efficiency, can be developed and used
in abstract access without changing your Verilog or C/C++ code.

If you have an existing C/C++ function that you want to use in a Verilog
design you consider using direct access and see if you really need
to edit your C/C++ function or write a wrapper so that you can use
direct access inside the wrapper. There is a small performance gain
by using direct access compared to abstract access.

If you are about to write a C/C++ function to use in a Verilog design,
first decide how you wish to use it in your Verilog code and write the
external declaration for it, then decide which access mode you want.
You can change the mode later with perhaps a small change in your
Verilog code.

18-5

DirectC Interface

Using abstract access is “safer” because the library of accessory
functions for abstract access has error messages to help you to debug
the interface between the C/C++ and Verilog. With direct access,
errors simply result in segmentation faults, memory corruption, etc.

Abstract access can be generalized more easily for your C/C++
function. For example, with open arrays you can call the function with
8-bit arguments at one point in your Verilog design and call it again
some place else with 32-bit arguments. The accessory functions can
manage the differences in size. With abstract access you can have
the size of a parameter returned to you. With direct access you must
know the size.

How C/C++ Functions Work in a Verilog Environment

Like Verilog functions, and unlike Verilog tasks, no simulation time
elapses during the execution of a C/C++ function.

C/C++ functions work in two-state and four-state simulation and in
some cases work better in two-state simulation. Short vector values,
32-bits or less, are passed by value instead of by reference. Using
two-state simulation makes a difference in how you declare a C/C++
function in your Verilog code.

The parameters of C/C++ functions, are analogous to the arguments
of Verilog tasks. They can be input, output, or inout just like the
arguments of Verilog tasks. You don’t specify them as such in your
C code, but you do when you declare them in your Verilog code.
Accordingly your Verilog code can pass values to parameters
declared to be input or inout, but not output, in the function declaration
in your Verilog code, and your C function can only pass values from
parameters declared to be inout or output, but not input, in the function
declaration in your Verilog code.

18-6

DirectC Interface

If a C/C++ function returns a value to a Verilog register (the C/C++
function is in an expression that is assigned to the register) the return
value of the C/C++ function is restricted to the following:

• The value of a scalar reg or bit

Note:
In two state simulation a reg has a new name, bit.

• The value of the C type int

• A pointer

• A short, 32 bits or less, vector bit

• The value of a Verilog real which is represented by the C type
double

So C/C++ functions cannot return the value of a four-state vector reg,
long (longer than 32 bits) vector bit, or Verilog integer,
realtime, or time data type. You can pass these type of values
out of the C/C++ function using a parameter that you declare to be
inout or output in the declaration of the function in your Verilog code.

Declaring the C/C++ Function

A partial EBNF specification for external function declaration is as
follows:

source_text ::= description +

description ::= module | user_defined_primitive | extern_declaration

extern_declaration ::= extern access_mode ? attribute ? return_type function_id
 (extern_func_args ?) ;

access_mode ::= ("A" | "C")

18-7

DirectC Interface

attribute ::= pure

return_type ::= void | reg | bit | DirectC_primitive_type
| small_bit_vector

small_bit_vector ::= bit [(constant_expression : constant_expression)]

extern_func_args ::= extern_func_arg (, extern_func_arg) *

extern_func_arg ::= arg_direction ? arg_type arg_id ?
arg_direction ::= input | output | inout

arg_type ::= bit_or_reg_type | array_type | DirectC_primitive_type

bit_or_reg_type ::= (bit | reg) optional_vector_range ?

optional_vector_range ::= [(constant_expression : constant_expression) ?]

array_type ::= bit_or_reg_type array [(constant_expression :
 constant_expression) ?]

DirectC_primitive_type ::= int | real | pointer | string

Here:

extern
Keyword that begins the declaration of the C/C++ function
declaration.

access_mode
Specifies the mode of access in the declaration. Enter C for direct
access, or A for abstract access. Using this entry enables some
functions to use direct access and others to use abstract access.

attribute
An optional attribute for the function.
The pure attribute enables some optimizations. Enter this
attribute if the function has no side effects and is dependent only
on the values of its input parameters.

return_type
The valid return types are int, bit, reg, string, pointer, and
void. See Table 18-1 for a description of what these types specify.

18-8

DirectC Interface

small_bit_vector
Specifies a bit-width of a returned vector bit. A C/C++ function
cannot return a four state vector reg but it can return a vector
bit if its bit-width is 32 bits or less.

function_id
The name of the C/C++ function.

direction
One of the following keywords: input, output, inout. These
keywords specify in a C/C++ function the same thing that they
specify in a Verilog task; see Table 18-2.

arg_type
The valid argument types are real, reg, bit, int, pointer,
string.

[bit_width]
Specifies the bit-width of a vector reg or bit that is an argument
to the C/C++ function. You can leave the bit-width open by
entering [].

array
Specifies that the argument is a Verilog memory.

[index_range]
Specifies a range of elements (words, addresses) in the memory.
You can leave the range open by entering [].

arg_id
The Verilog register argument to the C/C++ function that becomes
the actual parameter to the function.

18-9

DirectC Interface

Note:
Argument direction, i.e. input, output, inout applies to all
arguments that follow it until the next direction occurs; the default
direction is input.

Table 18-1 C/C++ Function Return Types
Return Type What it specifies
int The C/C++ function returns a value for type int.

bit The C/C++ function returns the value of a bit, which is a Verilog
reg in two state simulation, if it is 32 bits or less.

reg The C/C++ function returns the value of a Verilog scalar reg.

string The C/C++ function returns a pointer to a character string.

pointer The C/C++ function returns a pointer.

void The C/C++ function does not return a value

Table 18-2 C/C++ Function Argument Directions
keyword What it specifies
input The C/C++ function can only read the value or address of the

argument. If you specify an input argument first, you can omit
the keyword input.

output The C/C++ function can only write the value or address of the
argument.

inout The C/C++ function can both read and write the value or address
of the argument.

18-10

DirectC Interface

Example 1
extern "A" reg return_reg (input reg r1);

This example declares a C/C++ function named return_reg. This
function returns the value of a scalar reg. When we call this function,
the value of a scalar reg named r1 is passed to the function. This
function uses abstract access.

Example 2
extern "C" bit [7:0] return_vector_bit (bit [7:0] r3);

This example declares a C/C++ function named
return_vector_bit. This function returns an 8-bit vector bit (a reg
in two state simulation). When we call this function, the value of an
8-bit bit (a reg in two state simulation) named r3 is passed to the
function. This function uses direct access.

Table 18-3 C/C++ Function Argument Types
keyword What it specifies
real The C/C++ function reads or writes the address of a Verilog real

data type.

reg The C/C++ function reads or writes the value or address of a
Verilog reg.

bit The C/C++ function reads or writes the value or address of a
Verilog reg in two state simulation.

int The C/C++ function reads or writes the address of a C/C++ int
data type.

pointer The C/C++ function reads or writes the address that a pointer
is pointing to.

string The C/C++ function reads from or writes to the address of a
string.

18-11

DirectC Interface

The keyword input is omitted. This keyword can be omitted if the
first argument specified is an input argument.

Example 3
extern string return_string();

This example declares a C/C++ function named return_string.
This function returns a character string and takes no arguments.

Example 4
extern void receive_string(input string r5);

This example declares a C/C++ function named receive_string.
It is a void function. At some time earlier in the simulation, another C/
C++ function passed the address of a character string to reg r5. When
we call this function, it reads the address in reg r5.

Example 5
extern pointer return_pointer();

This example declares a C/C++ function named return_pointer.
When we call this function, it returns a pointer.

Example 6
extern void receive_pointer (input pointer r6);

This example declares a C/C++ function named receive_pointer.
When we call this function the address in reg r6 is passed to the
function.

Example 7
extern void memory_reorg (input bit [32:0] array [7:0] mem2,
output bit [32:0] array [7:0] mem1);

18-12

DirectC Interface

This example declares a C/C++ function named memory_reorg.
When we call this function the values in memory mem2 are passed to
the function. After the function executes, new values are passed to
memory mem1.

Example 8
extern void incr (inout bit [] r7);

This example declares a C/C++ function named incr. When we call
this function the value in bit r7 is passed to the function. When it
finishes executing it passes a new value to bit r7. We did not specify
a bit width for vector bit r7. This allows us to use various sizes in the
parameter declaration in the C/C++ function header.

Example 9
extern void passbig (input bit [63:0] r8,
 output bit [63:0] r9);

This example declares a C/C++ function named passbig. When we
call this function the value in bit r8 is passed by reference to the
function because it is more than 32 bits; see "Using Direct Access" on
page 18-20. When it finishes executing, a new value is passed by
reference to bit r9.

Calling the C/C++ Function

After declaring the C/C++ function you can call it in your Verilog code.
You call a void C/C++ function in the same manner as you call a
Verilog task-enabling statement, that is, by entering the function
name and its arguments, either on a separate line in an always or
initial block, or in the procedural statements in a Verilog task or
function declaration. Unlike Verilog tasks, you can call a C/C++
function in a Verilog function.

18-13

DirectC Interface

You call a non-void (returns a value) C/C++ function in the same
manner as you call a Verilog function call, that is, by entering its name
and arguments, either in an expression on the RHS of a procedural
assignment statement in an always or initial block, or in a Verilog
task or function declaration.

Examples
r2=return_reg(r1);

The value of scalar reg r1 is passed to C/C++ function return_reg.
It returns a value to reg r2.

r4=return_vector_bit(r3);

The value of vector bit r3 is passed to C/C++ function
return_vector_bit. It returns a value to vector bit r4.

r5=return_string();

The address of a character string is passed to reg r5.

receive_string(r5);

The address of a character string in reg r5 is passed to C/C++
function receive_string.

r6=return_pointer();

The address pointed to in a pointer in C/C++ function
return_pointer is passed to reg r6.

get_pointer(r6);

The address in reg r6 is passed to C/C++ function get_pointer.

18-14

DirectC Interface

memory_reorg(mem1,mem2);

In this example all the values in memory mem2 are passed to C/C++
function memory_reorg and when it finishes executing, it passed
new values to memory mem1.

incr(r7);

In this example the value of bit r7 is passed to C/C++ function incr
and when it finishes executing, it passes new a new value to bit r7.

Storing Vector Values in Machine Memory

Users of direct access need to know how vector values are stored in
memory. This information is also helpful for users of abstract access.

Verilog four-state simulation values (1, 0, x, and z) are represented
in machine memory with data and control bits. The control bit
differentiates between the 1 and x and the 0 and z values, as shown
in the following table:

When a routine returns Verilog data to a C/C++ function, how that
data is stored depends on whether it is from a two or four-state value
and whether it is from a scalar, a vector, or from an element in a
Verilog memory.

Simulation Value Data Bit Control Bit
1 1 0
x 1 1
0 0 0
z 0 1

18-15

DirectC Interface

For a four-state vector (denoted by the keyword reg) the Verilog data
is stored in type vec32, which for abstract access is defined as follows:

typedef unsigned int U;
typedef struct { U c; U d;} vec32;

So type vec32* has two members of type U; member c is for control
bits and member d is for data bits.

For a two state vector bit the Verilog data is stored in type U*.

Vector values are stored in arrays of chunks of 32 bits. For four-state
vectors there are chunks of 32 bits for data values and 32 bits for
control values. For two-state vectors there are chunks of 32 bits for
data values.

Figure 18-4 Storing Vector Values

Long vectors, more than 32 bits, have their value stored in more than
one group of 32 bits and can accessed by chunk. Short vectors, 32
bits or less, are stored in a single chunk.

control data

data

four state

two state

18-16

DirectC Interface

For long vectors the chunk for the least significant bits come first,
followed by the chunks for the more significant bits.

Figure 18-5 Storing Vector Values of More Than 32 Bits

In an element in a Verilog memory, for each eight bits in the element
there is a data byte and a control byte with an additional set of bytes
for remainder bit, so if a memory had 9 bits it would need two data
bytes and two control bytes. If it had 17 bits it would need three data
bytes and three control bytes. All the data bytes precede the control
bytes. Two-state memories have both data and control bytes but the
bits in the control bytes always have a zero value.

Figure 18-6 Storing Verilog Memory Elements in Machine Memory

control data

data

four state

two state

control data

data data data

Chunk for the least significant bits

0 1 2 3 4 5

data data data control control control

18-17

DirectC Interface

Converting Strings

There are no *true* strings in Verilog and a string literal, like
"some_text," is just a notation for vectors of bits, based on the same
principle as binary, octal, decimal, hexadecimal numbers. So there
is a need for a conversion between the two representations of
"strings": the C-style representation (which actually is a pointer to the
sequence of bytes terminated with null byte) and the Verilog vector
encoding a string.

DirectC comes with the vc_ConvertToString() routine that you can
use to convert a Verilog string to a C string. Its syntax is as follows:

void vc_ConvertTo String(vec32 *, int, char *)

There are scenarios in which a string is created on the Verilog side
and is passed to C code and therefore has to be converted from
Verilog representation to C representation. Consider the following
example:

extern void WriteReport(string result_code, /* other
stuff */);

Example of valid call:

WriteReport("Passes",);

Example of incorrect code:

reg [100*8:1] message;
...
message = "Failed";
...
WriteReport(message,);

18-18

DirectC Interface

This call causes a core dump because the function expects a pointer
and gets some random bits instead.

It may happen that a string, or different strings, are assigned to a
signal in Verilog code and their values are passed to C. For example:

task DoStuff(...., result_code); ... output reg [100*8:1]
result_code;
begin
...
if (...) result_code = "Bus error";
...
if (...) result_code = "Erroneous address";
...
else result_code = "Completed");
end
endtask

reg [100*8:1] message;

....
DoStuff(..., message);

You cannot directly call the function as follows:

WriteReport(message, ...)

There are two solutions:

Solution 1: Write a C wrapper function, pass "message" to this
function and perform the conversion of vector to C string in C, calling
vc_ConvertToString.

18-19

DirectC Interface

Solution 2: Perform the conversion on the Verilog side. This requires
some additional effort, as the memory space for a C string has to be
allocated as follows:

extern "C" string malloc(int);
extern "C" void vc_ConvertToString(reg [], int, string);
// this function comes from DirectC library

reg [31:0] sptr;
...
// allocate memory for a C-string
sptr = malloc(8*100+1);
//100 is the width of 'message', +1 is for NULL terminator
// perform conversion
vc_ConvertToString(message, 800, sptr);
WriteReport(sptr, ...);

Avoiding a Naming Problem

In a module definition do not call an external C/C++ function with the
same name as the module definition. The following is an example of
the type of source code you should avoid:

extern void receive_string (input string r5);
...
module receive_string;
...
always @ r5
begin
...
receive_string(r5);
...
end
endmodule

18-20

DirectC Interface

Using Direct Access

Direct access was implemented for C/C++ routines whose formal
parameters are of the following types:

Some of these type identifiers are standard C/C++ types; the ones
that aren’t were defined with the following typedef statements:

typedef unsigned int U;
typedef unsigned char UB;
typedef unsigned char scalar;
typedef struct {U c; U d;} vec32;

The type identifier you use depends on the corresponding argument
direction, type, and bit-width that you specified in the declaration of
the function in your Verilog code. The following rules apply:

• Direct access passes all output and inout arguments by reference,
so their corresponding formal parameters in the C/C++ function
must be pointers.

• Direct access passes a Verilog bit by value only if it is 32 bits or
less. If it is larger than 32 bits, direct access passes the bit by
reference so the corresponding formal parameters in the C/C++
function must be pointers if they are larger than 32 bits.

• Direct access passes a scalar reg by value. It passes a vector reg
direct access by reference, so the corresponding formal
parameter in the C/C++ function for a vector reg must be a pointer.

int int* double* void* void**

char* char** scalar scalar*

U* vec32 UB*

18-21

DirectC Interface

• An open bit-width for a reg makes it possible for you to pass a
vector reg, so the corresponding formal parameter for a reg
argument, specified with an open bit-width, must be a pointer.
Similarly an open bit-width for a bit makes it possible for you to
pass a bit larger than 32 bits, so the corresponding formal
parameter for a bit argument specified with an open bit width must
be a pointer.

• Direct access passes by value the following types of input
arguments: int, string, and pointer.

• Direct access passes input arguments of type real by reference.

The following tables show the mapping between the data types you
use in the C/C++ function and the arguments you specify in the
function declaration in your Verilog code.

Table 18-7 For Input Arguments
argument type C/C++ formal

parameter data type
Passed by

int int value

real double* reference

pointer void* value

string char* value

bit scalar value

reg scalar value

bit [] - 1-32 bit wide vector U value

bit [] - open vector, any vector wider than
32 bits

U* reference

reg [] - 1-32 bit wide vector vec32* reference

array [] - open vector, any vector wider
than 32 bits

UB* reference

18-22

DirectC Interface

In direct access the return value of the function is always passed by
value. The data type of the returned value is the same as the input
argument.

Example 1

Consider the following C/C++ function declared in the Verilog source
code:

extern reg return_reg (input reg r1);

Here the function named return_reg returns the value of a scalar
reg. The value of a scalar reg is passed to it. The header of the C/
C++ function is as follows:

extern "C" scalar return_reg(scalar reti);
scalar return_reg(scalar reti);

Table 18-8 For Output and Inout Arguments
argument type C/C++ formal

parameter data type
Passed by

int int* reference

real double* reference

pointer void** reference

string char** reference

bit scalar* reference

reg scalar* reference

bit [] - any vector, including open vector U* reference

reg[] - any vector, including open vector vec32* reference

array[] - any array, 2 state or 4 state, including
open array

UB* reference

18-23

DirectC Interface

If return_reg() is a C++ function, it must be protected from name
mangling, as follows:

extern "C" scalar return_reg(scalar reti);

Note:
The extern "C" directive has been omitted in subsequent
examples, for brevity.

A scalar reg is passed by value to the function so the parameter is
not a pointer. The parameter’s type is scalar.

Example 2

Consider the following C/C++ function declared in the Verilog source
code:

extern "C" bit [7:0] return_vector_bit (bit [7:0] r3);

Here the function named return_vector_bit returns the value of
a vector bit. The "C" entry specifies direct access. Typically a
declaration includes this when some other functions use abstract
access. The value of an 8-bit vector bit is passed to it. The header of
the C/C++ function is as follows:

U return_vector_bit(U returner);

A vector bit is passed by value to the function because the vector bit
is less than 33 bits so the parameter is not a pointer. The parameter’s
type is U.

18-24

DirectC Interface

Example 3

Consider the following C/C++ function declared in the Verilog source
code:

extern void receive_pointer (input pointer r6);

Here the function named receive_pointer does not return a
value. The argument passed to it is declared to be a pointer. The
header of the C/C++ function is as follows:

void receive_pointer(*pointer_receiver);

A pointer is passed by value to the function so the parameter is a
pointer of type void, a generic pointer. Here we don’t need to know
the type of data that it points to.

Example 4

Consider the following C/C++ function declared in the Verilog source
code:

extern void memory_rewriter (input bit [1:0] array [1:0]
mem2, output bit [1:0] array [1:0] mem1);

Here the function named memory_rewriter has two arguments,
one declared as an input, the other as an output. Both arguments are
bit memories. The header of the C/C++ function is as follows:

void memory_rewriter(UB *out[2],*in[2]);

Memories are always passed by reference to a C/C++ function so
the parameter named in is a pointer of type UB with the size that
matched the memory range. The parameter named out is also a
pointer because its corresponding argument is declared to be output.
Its type is also UB because it outputs to a Verilog memory.

18-25

DirectC Interface

Example 5

Consider the following C/C++ function declared in the Verilog source
code:

extern void incr (inout bit [] r7);

Here the function named incr, that does not return a value, has an
argument declared as inout. No bit-width is specified for it but the
[] entry for the argument specifies that it is not a scalar bit. The
header of the C/C++ function is as follows:

void incr (U *p);

Open bit-width parameters are always passed to by reference. A
parameter whose corresponding argument is declared to be inout
is passed to and from by reference. So there are two reasons for
parameter p to be a pointer. It is a pointer to type U because its
corresponding argument is a vector bit.

Example 6

Consider the following C/C++ function declared in the Verilog source
code:

extern void passbig1 (input bit [63:0] r8,
output bit [63:0] r9);

Here the function named passbig1, that does not return a value,
has input and output arguments declared as bit and larger than 32
bits. The header of the C/C++ function is as follows:

void passbig (U *in, U *out)

18-26

DirectC Interface

Here the parameters in and out are pointers to type U. Pointers
because their corresponding arguments are larger than 32 bits and
type U because the corresponding arguments are type bit.

Example 7

Consider the following C/C++ function declared in the Verilog source
code:

extern void passbig2 (input reg [63:0] r10,
output reg [63:0] r11);

Here the function named passbig2, that does not return a value,
has input and output arguments declared as non-scalar reg. The
header of the C/C++ function is as follows:

void passbig2(vec32 *in, vec32 *out)

Here the parameters in and out are pointers to type vec32. They
are pointers because their corresponding arguments are non-scalar
type reg.

Example 8

Consider the following C/C++ function declared in the Verilog source
code:

extern void reality (input real real1, output real real2);

Here the function named reality, that does not return a value, has
input and output arguments of declared type real. The header of
the C/C++ function is as follows:

void reality (double *in, double *out)

18-27

DirectC Interface

Here the parameters in and out are pointers to type double because
their corresponding arguments are type real.

Using the vc_hdrs.h File

When you compile your design for DirectC (by including the +vc
compile-time option), VCS writes a file in the current directory named
vc_hdrs.h. In this file are extern declarations for all the C/C++
functions that you declared in your Verilog code. For example, if you
compile the Verilog code that contains all the C/C++ declarations in
the examples in this section, the vc_hdrs.h file contains the following
extern declarations:

extern void memory_rewriter(UB* mem2, /*OUT*/UB* mem1);
extern U return_vector_bit(U r3);
extern void receive_pointer(void* r6);
extern void incr(/*INOUT*/U* r7);
extern void* return_pointer();
extern scalar return_reg(scalar r1);
extern void reality(double* real1, /*OUT*/double* real2);
extern void receive_string(char* r5);
extern void passbig2(vec32* r8, /*OUT*/vec32* r9);
extern char* return_string();
extern void passbig1(U* r8, /*OUT*/U* r9);

These declarations contain the /*OUT*/ comment in the parameter
specification if its corresponding argument in your Verilog code is of
type output in the declaration of the function.

These declarations contain the /*INOUT*/ comment in the
parameter specification if its corresponding argument in your Verilog
code is of type inout in the declaration of the function.

18-28

DirectC Interface

You can copy from these extern declarations to the function headers
in your C code. If you do you will always use the right type of parameter
in your function header and you don’t have to learn the rules for direct
access. Let VCS do this for you.

Access Routines for Multi-Dimensional Arrays

DirectC requires that Verilog multi-dimensional arrays be linearized
(turned into arrays of the same size but with only one dimension).
VCS provides routines for obtaining information about Verilog
multi-dimensional arrays when using direct access. This section
describes these routines.

UB *vc_arrayElemRef(UB*, U, ...)

The UB* parameter points to an array, either a single dimensional
array or a multi-dimensional array, and the U parameters specify
indices in the multi-dimensional array. This routine returns a pointer
to an element of the array or NULL if the indices are outside the range
of the array or there is a null pointer.

U dgetelem(UB *mem_ptr, int i, int j) {
 int indx;
 U k;
 /* remaining indices are constant */
 UB *p = vc_arrayElemRef(mem_ptr,i,j,0,1);
 k = *p;
 return(k);
}

There are specialized versions of this routine for one, two, and three
dimensional arrays:

UB *vc_array1ElemRef(UB*, U)

18-29

DirectC Interface

UB *vc_array2ElemRef(UB*, U, U)
UB *vc_array3ElemRef(UB*, U, U, U)

U vc_getSize(UB*,U)

This routine is similar to the vc_mdaSize() routine used in abstract
access. It returns the following:

• If the U type parameter has a value of 0, it returns the number of
indices in an array.

• If the U type parameter has a value greater than 0, it returns the
number of values in the index specified by the parameter. There
is an error condition if this parameter is out of the range of indices.

If the UB pointer is null, this routine returns 0.

Using Abstract Access

In abstract access VCS creates a descriptor for each argument in a
function call. The corresponding formal parameters in the function
uses a specially defined pointer to these descriptors called
vc_handle. In abstract access you use these “handles” to pass data
and values by reference to and from these descriptors.

The idea behind abstract access is that you don’t have to worry about
the type you use for parameters, because you always use a special
pointer type called vc_handle.

In abstract access VCS creates a descriptor for every argument that
you enter in the function call in your Verilog code. The vc_handle is
a pointer to the descriptor for the argument. It is defined as follows:

typdef struct VeriC_Descriptor *vc_handle;

18-30

DirectC Interface

Using vc_handle

In the function header, the vc_handle for a Verilog reg, bit, or memory
is based on the order that you declare the vc_handle and the order
that you entered its corresponding reg, bit, or memory in the function
call in your Verilog code. For example, you could have declared the
function and called it in your Verilog code as follows:

This is using abstract access so VCS created descriptors for bit1 and
bit2. These descriptors contain information about their value, but also
other information such as whether they are scalar or vector, and
whether they are simulating in two or four-state simulation.

extern "A" void my_function(input bit [31:0] r1,
 input bit [32:0] r2);

module dev1;
reg [31:0] bit1;
reg [32:0] bit2;
initial
begin
...my_function(bit1,bit2);
...end
endmodule

Declare the function

Enter first bit1 then bit2 as arguments
in the function call

18-31

DirectC Interface

The corresponding header for the C/C++ function is as follows:

After declaring the vc_handles you can use them to pass data to and
from these descriptors.

Using Access Routines

Abstract access comes with a set of access routines that enable your
C/C++ function to pass values to and from the descriptors for the
Verilog reg, bit, and memory arguments in the function call.

These access routines use the vc_handle to pass values by reference
but the vc_handle is not the only type of parameter for many of these
routines. These routines also have the following types of parameters:

• Scalar — an unsigned char

• Integers — uninterpreted 32 bits with no implied semantics

• Other types of pointers — primitive types “string” and “pointer”

• Real numbers

...my_function(vc_handle h1, vc_handle h2)
{

...

 up1=vc_2stVectorRef(h1);
 up2=vc_2stVectorRef(h2);

...}

h1 is the vc_handle for bit1
h2 is the vc_handle for bit2

A routine that accesses the data
structures for bit1 and bit2 using
their vc_handles

18-32

DirectC Interface

The access routines were named to help you to remember their
function. Routine names beginning with vc_get are for retrieving
data from the descriptor for the Verilog parameter. Routine names
beginning with vc_put are for passing new values to these
descriptors.

These routines can convert Verilog representation of simulation
values and strings to string representation in C/C++. Strings can also
be created in a C/C++ function and passed to Verilog but you should
bear in mind that they can be overwritten in Verilog. So you should
copy them to local buffers if you want them to persist.

The following are the access routines, their parameters, and return
values, and examples of how they are used. There is a summary of
the access routines at the end of this chapter; see "Summary of
Access Routines" on page 18-77.

int vc_isScalar(vc_handle)

Returns a 1 value if the vc_handle is for a one-bit reg or bit; returns
a 0 value for a vector reg or bit or any memory including memories
with scalar elements. For example:

extern "A" void scalarfinder(input reg r1,
 input reg [1:0] r2,
 input reg [1:0] array [1:0] r3,
 input reg array [1:0] r4);
module top;
reg r1;
reg [1:0] r2;
reg [1:0] r3 [1:0];
reg r4 [1:0];
initial
scalarfinder(r1,r2,r3,r4);
endmodule

18-33

DirectC Interface

Here we declare a routine named scalarfinder and input a scalar
reg, a vector reg and two memories (one with scalar elements).

The declaration contains the "A" specification for abstract access.
You typically include it in the declaration when other functions will
use direct access, that is, you have a mix of functions with direct and
abstract access.

#include <stdio.h>
#include "DirectC.h"

scalarfinder(vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
int i1 = vc_isScalar(h1),
 i2 = vc_isScalar(h2),
 i3 = vc_isScalar(h3),
 i4 = vc_isScalar(h4);
printf("\ni1=%d i2=%d i3=%d i4=%d\n\n",i1,i2,i3,i4);
}

Parameters h1, h2, h3, and h4 are vc_handles to regs r1 and r2
and memories r3 and r4 respectively. The function prints the
following:

i1=1 i2=0 i3=0 i4=0

int vc_isVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector reg or
bit. It returns a 0 value for a vector bit or reg or any memory. For
example, using the Verilog code from the previous example, and the
following C/C++ function:

scalarfinder(vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{

18-34

DirectC Interface

int i1 = vc_isVector(h1),
 i2 = vc_isVector(h2),
 i3 = vc_isVector(h3),
 i4 = vc_isVector(h4);
printf("\ni1=%d i2=%d i3=%d i4=%d\n\n",i1,i2,i3,i4);
}

The function prints the following:

i1=0 i2=1 i3=0 i4=0

int vc_isMemory(vc_handle)

This routine returns a 1 value if the vc_handle is to a memory. It
returns a 0 value for a bit or reg that is not a memory. For example,
using the Verilog code from the previous example, and the following
C/C++ function:

#include <stdio.h>
#include "DirectC.h"

scalarfinder(vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
int i1 = vc_isMemory(h1),
 i2 = vc_isMemory(h2),
 i3 = vc_isMemory(h3),
 i4 = vc_isMemory(h4);
printf("\ni1=%d i2=%d i3=%d i4=%d\n\n",i1,i2,i3,i4);
}

The function prints the following:

i1=0 i2=0 i3=1 i4=1

18-35

DirectC Interface

int vc_is4state(vc_handle)

This routine returns a 1 value if the vc_handle is to a reg or memory
that simulates with four states. It returns a 0 value for a bit or a memory
that simulates with two states. For example, the following Verilog
code uses metacomments to specify four and two-state simulation:

extern void statefinder (input reg r1,
 input reg [1:0] r2,
 input reg [1:0] array [1:0] r3,
 input reg array [1:0] r4,
 input bit r5,
 input bit [1:0] r6,
 input bit [1:0] array [1:0] r7,
 input bit array [1:0] r8);
module top;
reg /*4value*/ r1;
reg /*4value*/ [1:0] r2;
reg /*4value*/ [1:0] r3 [1:0];
reg /*4value*/ r4 [1:0];
reg /*2value*/ r5;
reg /*2value*/ [1:0] r6;
reg /*2value*/ [1:0] r7 [1:0];
reg /*2value*/ r8 [1:0];
initial
statefinder(r1,r2,r3,r4,r5,r6,r7,r8);
endmodule

The C/C++ function that calls the vc_is4state routine is as follows:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2, vc_handle h3,
 vc_handle h4,vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handles to 4state are:");
printf("\nh1=%d h2=%d h3=%d h4=%d\n\n",
 vc_is4state(h1),vc_is4state(h2),

18-36

DirectC Interface

 vc_is4state(h3),vc_is4state(h4));
printf("\nThe vc_handles to 2state are:");
printf("\nh5=%d h6=%d h7=%d h8=%d\n\n",
 vc_is4state(h5),vc_is4state(h6),
 vc_is4state(h7),vc_is4state(h8));
}

The function prints the following:

The vc_handles to 4state are:
h1=1 h2=1 h3=1 h4=1

The vc_handles to 2state are:
h5=0 h6=0 h7=0 h8=0

int vc_is2state(vc_handle)

This routine does the opposite of the vc_is4state routine. For
example, using the Verilog code from the previous example, and the
following C/C++ function:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2, vc_handle h3,
 vc_handle h4, vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handles to 4state are:");
printf("\nh1=%d h2=%d h3=%d h4=%d\n\n",
 vc_is2state(h1),vc_is2state(h2),
 vc_is2state(h3),vc_is2state(h4));
printf("\nThe vc_handles to 2state are:");
printf("\nh5=%d h6=%d h7=%d h8=%d\n\n",
 vc_is2state(h5),vc_is2state(h6),
 vc_is2state(h7),vc_is2state(h8));
}

18-37

DirectC Interface

The function prints the following:

The vc_handles to 4state are:
h1=0 h2=0 h3=0 h4=0

The vc_handles to 2state are:
h5=1 h6=1 h7=1 h8=1

int vc_is4stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector reg. It
returns a 0 value if the vc_handle is to a scalar reg, scalar or vector
bit, or memory. For example, using the Verilog code from the previous
example, and the following C/C++ function:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2,
 vc_handle h3, vc_handle h4,
 vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handle to a 4state Vector is:");
printf("\nh2=%d \n\n",vc_is4stVector(h2));
printf("\nThe vc_handles to 4state scalars or
 memories and 2state are:");
printf("\nh1=%d h3=%d h4=%d h5=%d h6=%d h7=%d h8=%d\n\n",
 vc_is4stVector(h1), vc_is4stVector(h3),
 vc_is4stVector(h4),vc_is4stVector(h5),
 vc_is4stVector(h6), vc_is4stVector(h7),
 vc_is4stVector(h8));
}

18-38

DirectC Interface

The function prints the following:

The vc_handle to a 4state Vector is:
h2=1

The vc_handles to 4state scalars or
 memories and 2state are:
h1=0 h3=0 h4=0 h5=0 h6=0 h7=0 h8=0

int vc_is2stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector bit. It
returns a 0 value if the vc_handle is to a scalar bit, scalar or vector
reg, or to a memory. For example, using the Verilog code from the
previous example, and the following C/C++ function:

#include <stdio.h>
#include "DirectC.h"

statefinder(vc_handle h1, vc_handle h2,
 vc_handle h3, vc_handle h4,
 vc_handle h5, vc_handle h6,
 vc_handle h7, vc_handle h8)
{
printf("\nThe vc_handle to a 2state Vector is:");
printf("\nh6=%d \n\n",vc_is2stVector(h6));
printf("\nThe vc_handles to 2state scalars or
 memories and 4state are:");
printf("\nh1=%d h2=%d h3=%d h4=%d h5=%d h7=%d h8=%d\n\n",
 vc_is2stVector(h1), vc_is2stVector(h2),
 vc_is2stVector(h3), vc_is2stVector(h4),
 vc_is2stVector(h5), vc_is2stVector(h7),
 vc_is2stVector(h8));
}

18-39

DirectC Interface

The function prints the following:

The vc_handle to a 2state Vector is:
h6=1

The vc_handles to 2state scalars or
 memories and 4state are:
h1=0 h2=0 h3=0 h4=0 h5=0 h7=0 h8=0

int vc_width(vc_handle)

Returns the width of a vc_handle. For example:

void memcheck_int(vc_handle h)
{
 int i;

int mem_size = vc_arraySize(h);

 /* determine minimal needed width, assuming signed int */
 for (i=0; (1 << i) < (mem_size-1); i++) ;

 if (vc_width(h) < (i+1)) {
 printf("Register too narrow to be assigned %d\n",
(mem_size-1));
 return;
 }

 for(i=0;i<8;i++) {
 vc_putMemoryInteger(h,i,i*4);
 printf("memput : %d\n",i*4);
 }
 for(i=0;i<8;i++) {
 printf("memget:: %d \n",vc_getMemoryInteger(h,i));
 }

}

18-40

DirectC Interface

int vc_arraySize(vc_handle)

Returns the number of elements in a memory or multi-dimensional
array. The previous example also shows a use of vc_arraySize().

scalar vc_getScalar(vc_handle)

Returns the value of a scalar reg or bit. For example:

void rotate_scalars(vc_handle h1, vc_handle h2, vc_handle
h3)
{

scalar a;

a = vc_getScalar(h1);
vc_putScalar(h1, vc_getScalar(h2));
vc_putScalar(h2, vc_getScalar(h3));
vc_putScalar(h3, a);
return;

}

void vc_putScalar(vc_handle, scalar)

Passes the value of a scalar reg or bit to a vc_handle by reference.
The previous example also shows a use of vc_putScalar().

char vc_toChar(vc_handle)

Returns the 0, 1, x, or z character. For example:

void print_scalar(vc_handle h) {
 printf("%c", vc_toChar(h));
 return;
}

18-41

DirectC Interface

int vc_toInteger(vc_handle)

Returns an int value for a vc_handle to a scalar bit or a vector bit of
32 bits or less. For a vector reg or a vector bit with more than 32 bits
this routine returns a 0 value and displays the following warning
message:

DirectC interface warning: 0 returned for 4-state value
(vc_toInteger)

The following is an example of Verilog code that calls a C/C++ function
that uses this routine:

extern void rout1 (input bit onebit, input bit [7:0] mobits);

module top;
reg /*2value*/ onebit;
reg /*2value*/ [7:0] mobits;
initial
begin
rout1(onebit,mobits);
onebit=1;
mobits=128;
rout1(onebit,mobits);
end
endmodule

Notice that the function declaration specifies that the parameters are
of type bit. It includes metacomments for two-state simulation in the
declaration of reg onebit and mobits. There are two calls to the
function rout1, before and after values are assigned in this Verilog
code.

18-42

DirectC Interface

The following C/C++ function uses this routine:

#include <stdio.h>
#include "DirectC.h"

void rout1 (vc_handle onebit, vc_handle mobits)
{
printf("\n\nonebit is %d mobits is %d\n\n",
 vc_toInteger(onebit), vc_toInteger(mobits));
}

This function prints the following:

onebit is 0 mobits is 0

onebit is 1 mobits is 128

char *vc_toString(vc_handle)

Returns a string that contains the 1, 0, x, and z characters. For
example:

extern void vector_printer (input reg [7:0] r1);

module test;
reg [7:0] r1,r2;

initial
begin
#5 r1 = 8’bzx01zx01;
#5 vector_printer(r1);
#5 $finish;
end
endmodule

void vector_printer (vc_handle h)

18-43

DirectC Interface

{
vec32 b,*c;
c=vc_4stVectorRef(h);
b=*c;
printf("\n b is %x[control] %x[data]\n\n",b.c,b.d);
printf("\n b is %s \n\n",vc_toString(h));
}

In this example a vector reg is assigned a value that contains x and
z values as well as 1 and 0 values. In the abstract access C/C++
function there are two ways of displaying the value of the reg:

• Recognize that type vec32 is defined as follows in the DirectC.h
file:

typdef struct {U c; U d;} vec32;

In machine memory there are control as well as data bits for
Verilog data to differentiate X from 1 and Z from 0 data, so there
are c (control) and d (data) data variables in the structure and you
must specify which variable when you access the vec32 type.

• Use the vc_toString routine to display the value of the reg that
contains X and Z values.

This example displays:

 b is cc[control 55[data]

 b is zx01zx01

char *vc_toStringF(vc_handle, char)

Returns a string that contains the 1, 0, x, and z characters and allows
you to specify the format or radix for the display. The char parameter
can be ’b’, ’o’, ’d’, or ’x’.

18-44

DirectC Interface

So if we modify the C/C++ function in the previous example, it is as
follows:

void vector_printer (vc_handle h)
{
vec32 b,*c;
c=vc_4stVectorRef(h);
b=*c;
printf("\n b is %s \n\n",vc_toStringF(h,’b’));
printf("\n b is %s \n\n",vc_toStringF(h,’o’));
printf("\n b is %s \n\n",vc_toStringF(h,’d’));
printf("\n b is %s \n\n",vc_toStringF(h,’x’));
}

This example now displays:

 b is zx01zx01

 b is XZX

 b is X

 b is XX

void vc_putReal(vc_handle, double)

Passes by reference a real (double) value to a vc_handle. For
example:

void get_PI(vc_handle h)
{
 vc_putReal(h, 3.14159265);
}

18-45

DirectC Interface

double vc_getReal(vc_handle)

Returns a real (double) value from a vc_handle. For example:

void print_real(vc_handle h)
{
 printf("[print_real] %f\n", vc_getReal(h));
}

void vc_putValue(vc_handle, char *)

This function passes, by reference through the vc_handle, a value
represented as a string containing the 0, 1, x, and z characters. For
example:

extern void check_vc_putvalue(output reg [] r1);

module tester;
reg [31:0] r1;

initial
begin
check_vc_putvalue(r1);
$display("r1=%0b",r1);
$finish;
end
endmodule

Here the C/C++ function is declared in the Verilog code specifying
that the function passes a value to a four-state reg (and therefore can
hold X and Z values).

#include <stdio.h>
#include "DirectC.h"

void check_vc_putvalue(vc_handle h)
{
 vc_putValue(h,"10xz");

18-46

DirectC Interface

}

The vc_putValue routine passes the string "10xz" to the reg r1 through
the vc_handle. The Verilog code displays:

r1=10xz

void vc_putValueF(vc_handle, char *, char)

This function passes by reference, through the vc_handle, a value
for which you specify a radix with the third parameter. The valid
radixes are ’b’, ’o’, ’d’, and ’x’. For example the following
Verilog code declares a function named assigner that uses this
routine:

extern void assigner (output reg [31:0] r1,
 output reg [31:0] r2,
 output reg [31:0] r3,
 output reg [31:0] r4);

module test;
reg [31:0] r1,r2,r3,r4;
initial
begin
assigner(r1,r2,r3,r4);
$display("r1=%0b in binary r1=%0d in decimal\n",r1,r1);
$display("r2=%0o in octal r2 =%0d in decimal\n",r2,r2);
$display("r3=%0d in decimal r3=%0b in binary\n",r3,r3);
$display("r4=%0h in hex r4= %0d in decimal\n\n",r4,r4);
$finish;
end
endmodule

The following is the C/C++ function:

#include <stdio.h>
#include "DirectC.h"

void assigner (vc_handle h1, vc_handle h2, vc_handle h3,

18-47

DirectC Interface

vc_handle h4)
{
vc_putValueF(h1,"10",’b’);
vc_putValueF(h2,"11",’o’);
vc_putValueF(h3,"10",’d’);
vc_putValueF(h4,"aff",’x’);
}

The Verilog code displays the following:

r1=10 in binary r1=2 in decimal

r2=11 in octal r2 =9 in decimal

r3=10 in decimal r3=1010 in binary

r4=aff in hex r4= 2815 in decimal

void vc_putPointer(vc_handle, void*)
void *vc_getPointer(vc_handle)

These functions pass a generic type of pointer or string to a vc_handle
by reference. Do not use these functions for passing Verilog data (the
values of Verilog signals). Use them for passing C/C++ data instead.
vc_putPointer passes this data by reference to Verilog and
vc_getPointer receives this data in a pass by reference from
Verilog. You can also use these functions for passing Verilog strings.
For example:

extern void passback(output string, input string);
extern void printer(input pointer);

module top;
reg [31:0] r2;
initial
begin
passback(r2,"abc");
printer(r2);

18-48

DirectC Interface

end
endmodule

This Verilog code passes the string "abc" to the C/C++ function
passback by reference, and that function passes it by reference to
reg r2. The Verilog code then passes it by reference to the C/C++
function printer from reg r2.

passback(vc_handle h1, vc_handle h2)
{
vc_putPointer(h1, vc_getPointer(h2));
}

printer(vc_handle h)
{
printf("Procedure printer prints the string value %s\n\n",
 vc_getPointer (h));
}

The function named printer prints the following:

Procedure printer prints the string value abc

void vc_StringToVector(char *, vc_handle)

Converts a C string (a pointer to a sequence of ASCII characters
terminated with a null character) into a Verilog string (a vector with
8-bit groups representing characters). For example:

extern "C" string FullPath(string filename);
// find full path to the file
// C string obtained from C domain

extern "A" void s2v(string, output reg[]);
// string-to-vector
// wrapper for vc_StringToVector().

`define FILE_NAME_SIZE 512

18-49

DirectC Interface

module Test;
 reg [`FILE_NAME_SIZE*8:1] file_name;
// this file_name will be passed to the Verilog code that
expects
// a Verilog-like string
...
 initial begin
s2v(FullPath("myStimulusFile"), file_name); // C-string to
Verilog-string
// bits of 'file_name' represent now 'Verilog string'
end
...
endmodule

The C code is as follows:

void s2v(vc_handle hs, vc_handle hv) {
 vc_StringToVector((char *)vc_getPointer(hs), hv);

 }

void vc_VectorToString(vc_handle, char *)

Converts a vector value to a string value.

int vc_getInteger(vc_handle)

Same as vc_toInteger.

void vc_putInteger(vc_handle, int)

Passes an int value by reference through a vc_handle to a scalar reg
or bit or a vector bit that is 32 bits or less. For example:

void putter (vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)

18-50

DirectC Interface

{
int a,b,c,d;
a=1;
b=2;
c=3;
d=9999999;

vc_putInteger(h1,a);
vc_putInteger(h2,b);
vc_putInteger(h3,c);
vc_putInteger(h4,d);
}

vec32 *vc_4stVectorRef(vc_handle)

Returns a vec32 pointer to a four state vector. Returns NULL if the
specified vc_handle is not to a four state vector reg. For example:

typedef struct vector_descriptor {
 int width; /* number ofbits */
 int is4stte; /* TRUE/FALSE */
} VD;

void WriteVector(vc_handle file_handle, vc_handle a_vector)
{
 FILE *fp;
 int n, size;
 vec32 *v;
 VD vd;

 fp = vc_getPointer(file_handle);

 /* write vector’s size and type */
 vd.is4state = vc_is4stVector(a_vector);
 vd.width = vc_width(a_vector);
 size = (vd.width + 31) >> 5; /* number of 32-bit chunks */
 /* printf("writing: %d bits, is 4 state: %d, #chunks:
 %d\n", vd.width, vd.is4state, size); */
 n = fwrite(&vd, sizeof(vd), 1, fp);

18-51

DirectC Interface

 if (n != 1) {
 printf("Error: write failed.\n");
 }

 /* write the vector into a file; vc_*stVectorRef
 is a pointer to the actual Verilog vector */
 if (vc_is4stVector(a_vector)) {
 n = fwrite(vc_4stVectorRef(a_vector), sizeof(vec32),
 size, fp);
 } else {
 n = fwrite(vc_2stVectorRef(a_vector), sizeof(U),
 size, fp);
 }
 if (n != size) {
 printf("Error: write failed for vector.\n");
 }
}

U *vc_2stVectorRef(vc_handle)

Returns a U pointer to a bit vector that is larger than 32 bits. If you
specify a short bit vector (32 bits or fewer) this routine returns a NULL
value. For example:

extern void big_2state(input bit [31:0] r1,
 input bit [32:0] r2);

module test;
reg [31:0] r1;
reg [32:0] r2;
initial
begin
r1=4294967295;
r2=33’b100000000000000000000000000000010;
big_2state(r1,r2);
end
endmodule

18-52

DirectC Interface

Here the Verilog code declares a 32-bit bit vector, r1, and a 33-bit
bit vector, r2. The values of both are passed to the C/C++ function
big_2state.

When we pass the short bit vector r1 to vc_2stVectorRef it returns
a null value because it has fewer than 33 bits. This is not the case
when we pass bit vector r2 because it has more than 32 bits. Notice
that from right to left, the first 32 bits of r2 have a value of 2 and the
MSB 33rd bit has a value of 1. This is significant in how the C/C++
stores this data.

#include <stdio.h>
#include "DirectC.h"

big_2state(vc_handle h1, vc_handle h2)
{
 U u1,*up1,u2,*up2;
 int i;
 int size;

 up1=vc_2stVectorRef(h1);
 up2=vc_2stVectorRef(h2);
 if (up1){ /* chech for the null value returned to up1 */
 u1=*up1;} else{
 u1=0;
 printf("\nShort 2 state vector passed to up1\n");
 }
 if (up2){ /* check for the null value returned to up2 */
 size = vc_width (h2); /* to find out the number of bits */
 /* in h2 */
 printf("\n width of h2 is %d\n",size);
 size = (size + 31) >> 5; /* to get number of 32-bit chunks */
 printf("\n the number of chunks needed for h2 is %d\n\n",
 size);
 printf("loading into u2");
 for(i = size - 1; i >= 0; i--){
 u2=up2[i]; /* load a chunk of the vector */
 printf(" %x",up2[i]);}
 printf("\n");}

18-53

DirectC Interface

 else{
 u2=0;
 printf("\nShort 2 state vector passed to up2\n");}
}

In this example the short bit vector is passed to the
vc_2stVectorRef routine, so it returns a null value to pointer up1.
Then the long bit vector is passed to the vc_2stVectorRef routine,
so it returns a pointer to the Verilog data for vector bit r2 to pointer
up2.

It checks for the null value in up1. If it doesn’t have null value,
whatever it points to is passed to u1. If it does have a null value, the
function prints a message about the short bit vector. In this example,
you can expect it to print the message.

Still later in the function, it checks for the null value in up2 and the
size of the long bit vector that is passed to the second parameter.
Then, because Verilog values are stored in 32-bit chucks in C/C++,
the function finds out how many chunks are needed to store the long
bit vector. It then loads one chunk at a time into u2 and prints the
chunk starting with the most significant bits. This function displays
the following:

Short 2 state vector passed to up1

 width of h2 is 33

 the number of chunks needed for h2 is 2

loading into u2 1 2

18-54

DirectC Interface

void vc_get4stVector(vc_handle, vec32 *)
void vc_put4stVector(vc_handle, vec32 *)

Passes a four state vector by reference to a vc_handle to and from
an array in C/C++ function. vc_get4stVector receives the vector
from Verilog and passes it to the array and vc_put4stVector
passes the array to Verilog.

These routines work only if there are enough elements in the array
for all the bits in the vector. The array must have an element for every
32 bit in the vector plus an additional element for any remaining bits.
For example:

extern void copier (input reg [67:0] r1,
 output reg [67:0] r2);
module top;
reg [67:0] r1,r2;

initial
begin
r1 [67:65] = 3’b111;
r1 [64:33] = 32’bzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz;
r1 [32:0] = 32’b00000000000000000000000000000000;
copier(r1,r2);
$display("r1=%0b\n",r1);
$display("r2=%0b\n",r2);
end
endmodule

Here there are two 68-bit regs. Values are assigned to all the bits of
one reg and both of these regs are parameters to the C/C++ function
named copier.

copier(vc_handle h1, vc_handle h2)
{
vec32 holder[3];
vc_get4stVector(h1,holder);
vc_put4stVector(h2,holder);

18-55

DirectC Interface

}

This function declares a vec32 array of three elements named
holder. It uses three elements because its parameters are 68-bit
regs so we need an element for every 32 bits and one more for the
remaining four bits.

The Verilog code displays the following:

r1=111zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz000000000000000000000000000000000

r2=111zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz000000000000000000000000000000000

void vc_get2stVector(vc_handle, U *)
void vc_put2stVector(vc_handle, U *)

Passes a two state vector by reference to a vc_handle to and from
an array in C/C++ function. vc_get2stVector receives the vector
from Verilog and passes it to the array and vc_put4stVector
passes the array to Verilog.

There routines, just like the vc_get4stVector and
vc_put4stVector routines, work only if there are enough elements
in the array for all the bits in the vector. The array must have an
element for every 32 bit in the vector plus an additional element for
any remaining bits.

The only differences between these routines and the
vc_get4stVector and vc_put4stVector routines are the type
of data they pass, two or four state simulation values, and the type
you declare for the array in the C/C++ function.

18-56

DirectC Interface

UB *vc_MemoryRef(vc_handle)

Returns a pointer of type UB that points to a memory in Verilog. For
example:

extern void mem_doer (input reg [1:0] array [3:0]
 memory1, output reg [1:0] array
 [31:0] memory2);

module top;
reg [1:0] memory1 [3:0];
reg [1:0] memory2 [31:0];
initial
begin
memory1 [3] = 2’b11;
memory1 [2] = 2’b10;
memory1 [1] = 2’b01;
memory1 [0] = 2’b00;
mem_doer(memory1,memory2);
$display("memory2[31]=%0d",memory2[31]);
end
endmodule

Here we declare two memories, one with 4 addresses, memory1, the
other with 32 addresses, memory2. We assign values to the
addresses of memory1, and then pass both memories to the C/C++
function mem_doer.

#include <stdio.h>
#include "DirectC.h"

void mem_doer(vc_handle h1, vc_handle h2)
{
 UB *p1, *p2;
 int i;

 p1 = vc_MemoryRef(h1);
 p2 = vc_MemoryRef(h2);

18-57

DirectC Interface

 for (i = 0; i < 8; i++){
 memcpy(p2,p1,8);
 p2 += 8;
 }
}

The purpose of the C/C++ function mem_doer is to copy the four
elements in Verilog memory memory1 into the 32 elements of
memory2.

The vc_MemoryRef routines return pointers to the Verilog memories
and the machine memory locations they point to are also pointed to
by pointers p1 and p2. Pointer p1 points to the location of Verilog
memory memory1, and p2 points to the location of Verilog memory
memory2.

The function uses a for loop to copy the data from Verilog memory
memory1 to Verilog memory memory2. It uses the standard memcpy
function to copy a total of 64 bytes by copying eight bytes eight times.

Why copy a total of 64 bytes? Each element of memory2 is only two
bits wide, but for every eight bits in an element in machine memory
there are two bytes, one for data and another for control. The bits in
the control byte specify whether the data bit with a value of 0 is actually
0 or Z, or whether the data bit with a value of 1 is actually 1 or X.

Figure18-9 Storing Verilog Memory Elements in Machine Memory

0 1 2 3 4 5

data data data data control control control control

6 7

18-58

DirectC Interface

In an element in a Verilog memory, for each eight bits in the element
there is a data byte and a control byte with an additional set of bytes
for remainder bit, so if a memory had 9 bits it would need two data
bytes and two control bytes. If it had 17 bits it would need three data
bytes and three control bytes. All the data bytes precede the control
bytes.

Therefore memory1 needs 8 bytes of machine memory (four for data
and four for control) and memory2 needs 64 bytes of machine
memory (32 for data and 32 for control). Therefore the C/C++ function
needs to copy 64 bytes.

The Verilog code displays the following:

memory2[31]=3

UB *vc_MemoryElemRef(vc_handle, U indx)

Returns a pointer to an element (word, address or index) of a Verilog
memory. You specify the vc_handle of the memory and the element.
For example:

extern void mem_elem_doer(inout reg [25:1] array [3:0]
memory1);

module top;
reg [25:1] memory1 [3:0];
initial
begin
memory1 [0] = 25’bz00000000xxxxxxxx11111111;
$display("memory1 [0] = %0b\n", memory1[0]);
mem_add_doer(memory1);
$display("\nmemory1 [3] = %0b", memory1[3]);
end
endmodule

18-59

DirectC Interface

Here there is a Verilog memory with four addresses, each element
has 25 bits. This means that the Verilog memory needs eight bytes
of machine memory because there is a data byte and a control byte
for every eight bits in an element, with an additional data and control
byte for any remainder bits.

Here in element 0 the 25 bits are assigned, from right to left, eight 1
bits, eight unknown x bits, eight 0 bits, and one high impedance z bit.

#include <stdio.h>
#include "DirectC.h"

void mem_elem_doer(vc_handle h)
{

 U indx;
 UB *p1, *p2, t [8];

 indx = 0;
 p1 = vc_MemoryElemRef(h, indx);
 indx = 3;
 p2 = vc_MemoryElemRef(h, indx);
 memcpy(p2,p1,8);

 memcpy(t,p2,8);
 printf(" %d from t[0], %d from t[1]\n",
 (int)t[0], (int) t[1]);
 printf(" %d from t[2], %d from t[3]\n",
 (int)t[2], (int) t[3]);
 printf(" %d from t[4], %d from t[5]\n",
 (int)t[4], (int)t[5]);
 printf(" %d from t[6], %d from t[7]\n",
 (int)t[6], (int)t[7]);

}

18-60

DirectC Interface

C/C++ function mem_elem_doer uses the vc_MemoryElemRef
routine to return pointers to addresses 0 and 3 in Verilog memory1
and pass them to UB pointers p1 and p2. The standard memcpy
routine then copies the eight bytes for address 0 to address 3.

The remainder of the function is additional code to show you data
and control bytes. The eight bytes pointed to by p2 are copied to array
t and then the elements of the array are printed.

The combined Verilog and C/C++ code displays the following:

memory1 [0] = z00000000xxxxxxxx11111111

 255 from t[0], 255 from t[1]
 0 from t[2], 0 from t[3]
 0 from t[4], 255 from t[5]
 0 from t[6], 1 from t[7]

memory1 [3] = z00000000xxxxxxxx11111111

As you can see function mem_elem_doer passes the contents of the
Verilog memory memory1 element 0 to element 3.

In array t the elements contain the following:

[0] The data bits for the eight 1 values assigned to the element.
[1] The data bits for the eight X values assigned to the element
[2] The data bits for the eight 0 values assigned to the element
[3] The data bit for the Z value assigned to the element
[4] The control bits for the eight 1 values assigned to the element
[5] The control bits for the eight X values assigned to the element
[6] The control bits for the eight 0 values assigned to the element
[7] The control bit for the Z value assigned to the element

18-61

DirectC Interface

scalar vc_getMemoryScalar(vc_handle, U indx)

Returns the value of a one-bit memory element. For example:

extern void bitflipper (inout reg array [127:0] mem1);

module test;
reg mem1 [127:0];
initial
begin
mem1 [0] = 1;
$display("mem1[0]=%0d",mem1[0]);
bitflipper(mem1);
$display("mem1[0]=%0d",mem1[0]);
$finish;
end
endmodule

Here in this Verilog code we declare a memory with 128 one-bit
elements, assign a value to element 0, and display its value before
and after we call a C/C++ function named bitflipper.

#include <stdio.h>
#include "DirectC.h"

void bitflipper(vc_handle h)
{
scalar holder=vc_getMemoryScalar(h, 0);
holder = ! holder;
vc_putMemoryScalar(h, 0, holder);
}

Here we declare a variable of type scalar, named holder, to hold
the value of the one-bit Verilog memory element. The routine
vc_getMemoryScalar returns the value of the element to the
variable. The value of holder is inverted and then the variable is
included as a parameter in the vc_putMemoryScalar routine to
pass the value to that element in the Verilog memory.

18-62

DirectC Interface

The Verilog code displays the following:

mem[0]=1
mem[0]=0

void vc_putMemoryScalar(vc_handle, U indx, scalar)

Passes a value of type scalar to a Verilog memory element. You
specify the memory by vc_handle and the element by the indx
parameter. This routine is used in the previous example.

int vc_getMemoryInteger(vc_handle, U indx)

Returns the integer equivalent of the data bits in a memory element
whose bit-width is 32 bits or less. For example:

extern void mem_elem_halver (inout reg [] array [] memX);

module test;
reg [31:0] mem1 [127:0];
reg [7:0] mem2 [1:0];
initial
begin
mem1 [0] = 999;
mem2 [0] = 8’b1111xxxx;
$display("mem1[0]=%0d",mem1[0]);
$display("mem2[0]=%0d",mem2[0]);
mem_elem_halver(mem1);
mem_elem_halver(mem2);
$display("mem1[0]=%0d",mem1[0]);
$display("mem2[0]=%0d",mem2[0]);
$finish;
end
endmodule

18-63

DirectC Interface

Here when the C/C++ function is declared on our Verilog code it does
not specify a bit-width or element range for the inout argument to the
mem_elem_halver C/C++ function because in the Verilog code we
call the C/C++ function twice, with a different memory each time and
these memories have different bit widths and different element
ranges.

Notice that we assign a value that included X values to the 0 element
in memory mem2.

#include <stdio.h>
#include "DirectC.h"

void mem_elem_halver(vc_handle h)
{
int i =vc_getMemoryInteger(h, 0);
i = i/2;
vc_putMemoryInteger(h, 0, i);
}

This C/C++ function inputs the value of an element and then outputs
half that value. The vc_getMemoryInteger routine returns the
integer equivalent of the element you specify by vc_handle and index
number, to an int variable i. The function halves the value in i. Then
the vc_putMemoryInteger routine passes the new value by value
to the specified memory element.

The Verilog code displays the following before the C/C++ function is
called twice with the different memories as the arguments:

mem1[0]=999
mem2[0]=X

18-64

DirectC Interface

Element mem2[0] has an X value because half of its binary value is
x and the value is displayed with the %d format specification and here
a partially unknown value is just an unknown value. After the second
call of the function, the Verilog code displays:

mem1[1]=499
mem2[0]=127

This is because before calling the function, mem1[0] had a value of
999, and after the call it has a value of 499 which is as close as it can
get to half the value with integer values.

Before calling the function, mem2[0] had a value of 8’b1111xxxx, but
the data bits for the element would all be 1s (11111111). It’s the
control bits that specify 1 from x and this routine only deals with the
data bits. So the vc_getMemoryInteger routine returned an
integer value of 255 (the integer equivalent of the binary 11111111)
to the C/C++ function, which is why the function output the integer
value 127 to mem2[0].

void vc_putMemoryInteger(vc_handle, U indx, int)

Passes an integer value to a memory element that is 32 bits or fewer.
You specify the memory by vc_handle and the element by the indx
argument. This routine is used in the previous example.

void vc_get4stMemoryVector(vc_handle, U indx,
vec32 *)

Copies the value in an Verilog memory element to an element in an
array. This routine copies both the data and control bytes. It copies
them into and array of type vec32 which is defined as follows:

typedef struct { U c; U d;} vec32;

18-65

DirectC Interface

So type vec32 has two members, c and d, for control and data
information. This routine always copies to the 0 element of the array.
For example:

extern void mem_elem_copier (inout reg [] array [] memX);

module test;
reg [127:0] mem1 [127:0];
reg [7:0] mem2 [64:0];
initial
begin
mem1 [0] = 999;
mem2 [0] = 8’b0000000z;
$display("mem1[0]=%0d",mem1[0]);
$display("mem2[0]=%0d",mem2[0]);
mem_elem_copier(mem1);
mem_elem_copier(mem2);
$display("mem1[32]=%0d",mem1[32]);
$display("mem2[32]=%0d",mem2[32]);
$finish;
end
endmodule

In the Verilog code a C/C++ function is declared that is called twice.
Notice the value assigned to mem2 [0]. The C/C++ function copies
the values to another element in the memory.

#include <stdio.h>
#include "DirectC.h"

void mem_elem_copier(vc_handle h)
{
vec32 holder[1];
vc_get4stMemoryVector(h,0,holder);
vc_put4stMemoryVector(h,32,holder);
printf(" holder[0].d is %d holder[0].c is %d\n\n",
 holder[0].d,holder[0].c);
}

18-66

DirectC Interface

This C/C++ function declares an array of type vec32. We must declare
an array for this type but we, as shown here, specify that it have only
one element. The vc_get4stMemoryVector routine copies the
data from the Verilog memory element (here specified as the 0
element) to the 0 element of the vec32 array. It always copies to the
0 element. The vc_put4stMemoryVector routine copies the data
from the vec32 array to the Verilog memory element (in this case
element 32).

The call to printf is to show you how the Verilog data is stored in
element 0 of the vec32 array.

The Verilog and C/C++ code display the following:

mem1[0]=999
mem2[0]=Z
 holder[0].d is 999 holder[0].c is 0

 holder[0].d is 768 holder[0].c is 1

mem1[32]=999
mem2[32]=Z

As you can see the function does copy the Verilog data from one
element to another in both memories. When the function is copying
the 999 value, the c (control) member has a value of 0; when it is
copying the 8’b0000000z value, the c (control) member has a value
of 1 because one of the control bits is 1, the rest are 0.

void vc_put4stMemoryVector(vc_handle, U indx,
vec32 *)

Copies Verilog data from a vec32 array to a Verilog memory element.
This routine is used in the previous example.

18-67

DirectC Interface

void vc_get2stMemoryVector(vc_handle, U indx, U *)

Copies the data bytes, but not the control bytes, from a Verilog
memory element to an array in your C/C++ function. For example, if
you use the Verilog code from the previous example but simulate in
two state and use the following C/C++ code:

#include <stdio.h>
#include "DirectC.h"

void mem_elem_copier(vc_handle h)
{
U holder[1];
vc_get2stMemoryVector(h,0,holder);
vc_put2stMemoryVector(h,32,holder);

}

The only difference here is that we declare the array to be of type U
instead and we don’t copy the control bytes, because there are none
in two-state simulation.

void vc_put2stMemoryVector(vc_handle, U indx, U *)

Copies Verilog data from a U array to a Verilog memory element. This
routine is used in the previous example.

18-68

DirectC Interface

void vc_putMemoryValue(vc_handle, U indx, char *)

This routine works like the vc_putValue routine except that is for
passing values to a memory element instead of to a reg or bit. You
enter an argument to specify the element (index) to which you want
the routine to pass the value. For example:

#include <stdio.h>
#include "DirectC.h"

void check_vc_putvalue(vc_handle h)
{
 vc_putMemoryValue(h,0,"10xz");
}

void vc_putMemoryValueF(vc_handle, U indx, char,
char *)

This routine works like the vc_putValueF routine except that it is
for passing values to a memory element instead of to a reg or bit. You
enter an argument to specify the element (index) to which you want
the routine to pass the value. For example:

#include <stdio.h>
#include "DirectC.h"

void assigner (vc_handle h1, vc_handle h2, vc_handle h3,
vc_handle h4)
{
vc_putMemoryValueF(h1, 0, "10", ’b’);
vc_putMemoryValueF(h2, 0, "11", ’o’);
vc_putMemoryValueF(h3, 0, "10", ’d’);
vc_putMemoryValueF(h4, 0, "aff", ’x’);
}

18-69

DirectC Interface

char *vc_MemoryString(vc_handle, U indx)

This routine works like the vc_toString routine except that it is for
passing values to from memory element instead of to a reg or bit. You
enter an argument to specify the element (index) whose value you
want the routine to pass. For example:

extern void memcheck_vec(inout reg[] array[]);

module top;
reg [0:7] mem[0:7];
integer i;

initial
begin
 for(i=0;i<8;i=i+1) begin

 mem[i] = 8’b00000111;
 $display("Verilog code says \"mem [%0d] = %0b\"",

 i,mem[i]);
 end

 memcheck_vec(mem);
end

endmodule

The C/C++ function that calls vc_MemoryString is as follows:

#include <stdio.h>
#include "DirectC.h"

void memcheck_vec(vc_handle h)
{

 int i;

 for(i= 0; i<8;i++) {
 printf("C/C++ code says \"mem [%d] is %s
\"\n",i,vc_MemoryString(h,i));

18-70

DirectC Interface

 }
}

The Verilog and C/C++ code display the following:

Verilog code says "mem [0] = 111"
Verilog code says "mem [1] = 111"
Verilog code says "mem [2] = 111"
Verilog code says "mem [3] = 111"
Verilog code says "mem [4] = 111"
Verilog code says "mem [5] = 111"
Verilog code says "mem [6] = 111"
Verilog code says "mem [7] = 111"
C/C++ code says "mem [0] is 00000111 "
C/C++ code says "mem [1] is 00000111 "
C/C++ code says "mem [2] is 00000111 "
C/C++ code says "mem [3] is 00000111 "
C/C++ code says "mem [4] is 00000111 "
C/C++ code says "mem [5] is 00000111 "
C/C++ code says "mem [6] is 00000111 "
C/C++ code says "mem [7] is 00000111 "

char *vc_MemoryStringF(vc_handle, U indx, char)

This routine works like the vc_MemoryString function except that
you specify a radix with the third parameter. The valid radixes are
’b’, ’o’, ’d’, and ’x’. For example:

extern void memcheck_vec(inout reg[] array[]);

module top;
reg [0:7] mem[0:7];

initial begin
mem[0] = 8’b00000111;
$display("Verilog code says \"mem[0]=%0b radix b\"",mem[0]);
$display("Verilog code says \"mem[0]=%0o radix o\"",mem[0]);
$display("Verilog code says \"mem[0]=%0d radix d\"",mem[0]);
$display("Verilog code says \"mem[0]=%0h radix h\"",mem[0]);

18-71

DirectC Interface

memcheck_vec(mem);
end

endmodule

The C/C++ function that calls vc_MemoryStringF is as follows:

#include <stdio.h>
#include "DirectC.h"

void memcheck_vec(vc_handle h)
{

printf("C/C++ code says \"mem [0] is %s radix b\"\n",
 vc_MemoryStringF(h,0,’b’));
printf("C/C++ code says \"mem [0] is %s radix o\"\n",
 vc_MemoryStringF(h,0,’o’));
printf("C/C++ code says \"mem [0] is %s radix d\"\n",
 vc_MemoryStringF(h,0,’d’));
printf("C/C++ code says \"mem [0] is %s radix x\"\n",
 vc_MemoryStringF(h,0,’x’));
}

The Verilog and C/C++ code display the following:

Verilog code says "mem [0]=111 radix b"
Verilog code says "mem [0]=7 radix o"
Verilog code says "mem [0]=7 radix d"
Verilog code says "mem [0]=7 radix h"
C/C++ code says "mem [0] is 00000111 radix b"
C/C++ code says "mem [0] is 007 radix o"
C/C++ code says "mem [0] is 7 radix d"
C/C++ code says "mem [0] is 07 radix x"

18-72

DirectC Interface

void vc_FillWithScalar(vc_handle, scalar)

This routine fills all the bits or a reg, bit, or memory with all 1, 0, x, or
z values (you can choose only one of these four values).

You specify the value with the scalar argument, which can be a
variable of the scalar type. The scalar type is defined in the DirectC.h
file as:

typedef unsigned char scalar;

You can also specify the value with integer arguments as follows:

If you declare a scalar type variable, enter it as the argument, and
assign only the 0, 1, 2, or 3 integer values to it, they specify filling the
Verilog reg, bit, or memory with the 0, 1, z, or x values

You can use the following definitions from the DirectC.h file to specify
these values:

#define scalar_0 0
#define scalar_1 1
#define scalar_z 2
#define scalar_x 3

0 Specifies 0 values
1 Specifies 1 values
2 Specifies z values
3 Specifies x values

18-73

DirectC Interface

The following Verilog and C/C++ code shows how to use this routine
to fill a reg and a memory these values:

extern void filler (inout reg [7:0] r1,
 inout reg [7:0] array [1:0] r2,
 inout reg [7:0] array [1:0] r3);
module top;
reg [7:0] r1;
reg [7:0] r2 [1:0];
reg [7:0] r3 [1:0];
initial
begin
$display("r1 is %0b",r1);
$display("r2[0] is %0b",r2[0]);
$display("r2[1] is %0b",r2[1]);
$display("r3[0] is %0b",r3[0]);
$display("r3[1] is %0b",r3[1]);
filler(r1,r2,r3);
$display("r1 is %0b",r1);
$display("r2[0] is %0b",r2[0]);
$display("r2[1] is %0b",r2[1]);
$display("r3[0] is %0b",r3[0]);
$display("r3[1] is %0b",r3[1]);
end
endmodule

The C/C++ code for the function is as follows:

#include <stdio.h>
#include "DirectC.h"

filler(vc_handle h1, vc_handle h2, vc_handle h3)
{
scalar s = 1;
vc_FillWithScalar(h1,s);
vc_FillWithScalar(h2,0);
vc_FillWithScalar(h3,scalar_z);
}

18-74

DirectC Interface

The Verilog code displays the following:

r1 is xxxxxxxx
r2[0] is xxxxxxxx
r2[1] is xxxxxxxx
r3[0] is xxxxxxxx
r3[1] is xxxxxxxx
r1 is 11111111
r2[0] is 0
r2[1] is 0
r3[0] is zzzzzzzz
r3[1] is zzzzzzzz

char *vc_argInfo(vc_handle)

Returns a string containing the information about the argument in the
function call in your Verilog source code. For example if you have the
following Verilog source code:

extern void show(reg [] array []);
module tester;
reg [31:0] mem [7:0];
reg [31:0] mem2 [16:1];
reg [64:1] mem3 [32:1];
initial begin
 show(mem);
 show(mem2);
 show(mem3);
end
endmodule

18-75

DirectC Interface

Verilog memories mem, mem2, and mem3 are all arguments to the
function named show. If that function is defined as follows:

#include <stdio.h>
#include "DirectC.h"

void show(vc_handle h)
{
 printf("%s\n", vc_argInfo(h)); /* notice \n after the
string */
}

This routine prints the following:

input reg[0:31] array[0:7]
input reg[0:31] array[0:15]
input reg[0:63] array[0:31]

int vc_Index(vc_handle, U, ...)

Internally a multi-dimensional array is always stored as a one
dimensional array and this makes a difference in how it can be
accessed. In order to avoid duplicating many of the previous access
routines for multi-dimensional arrays, the access process is split into
two steps. The first step is to translate the multiple indices into a single
index of a linearized array, This routine does this. The second step
is for another access routine to perform an access operation on the
linearized array.

This routine returns the index of a linearized array or returns -1 if the
U type parameter is not an index of a multi-dimensional array or the
vc_handle parameter is not a handle to a multi-dimensional array of
the reg data type.

/* get the suum of all elements from a 2-dimensional slice
 of a 4-dimensional array */
int getSlice(vc_handle vh_array, vc_handle vh_indx1,
vc_handle vh_indx2) {

18-76

DirectC Interface

 int sum = 0;
 int i1, i2, i3, i4, indx;

 i1 = vc_getInteger(vh_indx1);
 i2 = vc_getInteger(vh_indx2);
 /* loop over all possible indices for that slice */
 for (i3 = 0; i3 < vc_mdaSize(vh_array, 3); i3++) {

 for (i4 = 0; i4 < vc_mdaSize(vh_array, 4); i4++) {

 indx = vc_Index(vh_array, i1, i2, i3, i4);
 sum += vc_getMemoryInteger(vh_array, indx);
 }
 }
 return sum;
}

There are specialized, more efficient versions for two and three
dimensional arrays. They are as follows.

int vc_Index2(vc_handle, U, U)

Specialized version of vc_Index() where the two U parameters are
the indices in a two dimensional array.

int vc_Index3(vc_handle, U, U, U)

Specialized version of vc_Index() where the two U parameters are
the indices in a three dimensional array.

U vc_mdaSize(vc_handle, U)

Returns the following:

• If the U type parameter has a value of 0, it returns the number of
indices in the multi-dimensional array.

18-77

DirectC Interface

• If the U type parameter has a value greater than 0, it returns the
number of values in the index specified by the parameter. There
is an error condition if this parameter is out of the range of indices.

• If the vc_handle parameter is not an array, it returns 0.

Summary of Access Routines

Table 18-1 summarizes all the access routines described in the
previous section

Table 18-1 Summary of Access Routines

 Access Routine Description

int
vc_isScalar(vc_handle)

Returns a 1 value if the vc_handle is for a one-bit reg or
bit. It returns a 0 value for a vector reg or bit or any memory
including memories with scalar elements.

int
vc_isVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector
reg or bit. It returns a 0 value for a vector bit or reg or any
memory.

int
vc_isMemory(vc_handle)

This routine returns a 1 value if the vc_handle is to a
memory. It returns a 0 value for a bit or reg that is not a
memory.

int
vc_is4state(vc_handle)

This routine returns a 1 value if the vc_handle is to a reg
or memory that simulates with four states. It returns a 0
value for a bit or a memory that simulates with two states.

int
vc_is2state(vc_handle)

This routine does the opposite of the vc_is4state routine.

int
vc_is4stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector
reg. It returns a 0 value if the vc_handle is to a scalar reg,
scalar or vector bit, or to a memory.

int
vc_is2stVector(vc_handle)

This routine returns a 1 value if the vc_handle is to a vector
bit. It returns a 0 value if the vc_handle is to a scalar bit,
scalar or vector reg, or to a memory.

int vc_width(vc_handle) Returns the width of a vc_handle.

18-78

DirectC Interface

int
vc_arraySize(vc_handle)

Returns the number of elements in a memory.

scalar
vc_getScalar(vc_handle)

Returns the value of a scalar reg or bit.

void
vc_putScalar(vc_handle,
scalar)

Passes the value of a scalar reg or bit to a vc_handle by
reference.

char
vc_toChar(vc_handle)

Returns the 0, 1, x, or z character.

int
vc_toInteger(vc_handle)

Returns an int value for a vc_handle to a scalar bit or a
vector bit of 32 bits or less.

char
*vc_toString(vc_handle)

Returns a string that contains the 1, 0, x, and z characters.

char
*vc_toStringF(vc_handle,
char)

Returns a string that contains the 1, 0, x, and z characters
and allows you to specify the format or radix for the display.
The char parameter can be ’b’, ’o’, ’d’, or ’x’.

void
vc_putReal(vc_handle,
double)

Passes by reference a real (double) value to a vc_handle.

double
vc_getReal(vc_handle)

Returns a real (double) value from a vc_handle.

void
vc_putValue(vc_handle,
char *)

This function passes, by reference through the vc_handle,
a value represented as a string containing the 0, 1, x, and
z characters.

void
vc_putValueF(vc_handle,
char, char *)

This function passes by reference through the vc_handle
a value for which you specify a radix with the third
parameter. The valid radixes are ’b’, ’o’, ’d’, and ’x’.

void
vc_putPointer(vc_handle,
void*)
void
*vc_getPointer(vc_handle)

These functions pass, by reference to a vc_handle, a
generic type of pointer or string. Do not use these functions
for passing Verilog data (the values of Verilog signals).
Use it for passing C/C++ data. vc_putPointer passes this
data by reference to Verilog and vc_getPointer receives
this data in a pass by reference from Verilog. You can also
use these functions for passing Verilog strings.

 Access Routine Description

18-79

DirectC Interface

void
vc_StringToVector(char *,
vc_handle)

Converts a C string (a pointer to a sequence of ASCII
characters terminated with a null character) into a Verilog
string (a vector with 8-bit groups representing characters).

void
vc_VectorToString(vc_hand
le, char *)

Converts a vector value to a string value.

int
vc_getInteger(vc_handle)

Same as vc_toInteger.

void
vc_putInteger(vc_handle,
int)

Passes an int value by reference through a vc_handle to
a scalar reg or bit or a vector bit that is 32 bits or less.

vec32
*vc_4stVectorRef(vc_handl
e)

Returns a vec32 pointer to a four state vector. Returns
NULL if the specified vc_handle is not to a four-state vector
reg.

U
*vc_2stVectorRef(vc_handl
e)

This routine returns a U pointer to a bit vector that is larger
than 32 bits. If you specify a short bit vector (32 bits or
fewer) this routine returns a NULL value.

void
vc_get4stVector(vc_handle
, vec32 *)
void
vc_put4stVector(vc_handle
, vec32 *)

Passes a four state vector by reference to a vc_handle to
and from an array in C/C++ function. vc_get4stVector
receives the vector from Verilog and passes it to the array.
vc_put4stVector passes the array to Verilog.

void
vc_get2stVector(vc_handle
, U *)
void
vc_put2stVector(vc_handle
, U *)

Passes a two state vector by reference to a vc_handle to
and from an array in C/C++ function. vc_get2stVector
receives the vector from Verilog and passes it to the array.
vc_put4stVector passes the array to Verilog.

UB
*vc_MemoryRef(vc_handle)

Returns a pointer of type UB that points to a memory in
Verilog.

UB
*vc_MemoryElemRef(vc_hand
le, U indx)

Returns a pointer to an element (word, address or index)
of a Verilog memory. You specify the vc_handle of the
memory and the element.

 Access Routine Description

18-80

DirectC Interface

scalar
vc_getMemoryScalar(vc_han
dle, U indx)

Returns the value of a one bit memory element.

void
vc_putMemoryScalar(vc_han
dle, U indx, scalar)

Passes a value, of type scalar, to a Verilog memory
element. You specify the memory by vc_handle and the
element by the indx parameter.

int
vc_getMemoryInteger(vc_ha
ndle, U indx)

Returns the integer equivalent of the data bits in a memory
element whose bit-width is 32 bits or less.

void
vc_putMemoryInteger(vc_ha
ndle, U indx, int)

Passes an integer value to a memory element that is 32
bits or fewer. You specify the memory by vc_handle and
the element by the indx parameter.

void
vc_get4stMemoryVector(vc_
handle, U indx, vec32 *)

Copies the value in an Verilog memory element to an
element in an array. This routine copies both the data and
control bytes. It copies them into an array of type vec32.

void
vc_put4stMemoryVector(vc_
handle, U indx,
vec32 *)

Copies Verilog data from a vec32 array to a Verilog
memory element.

void
vc_get2stMemoryVector(vc_
handle, U indx, U *)

Copies the data bytes, but not the control bytes, from a
Verilog memory element to an array in your C/C++
function.

void
vc_put2stMemoryVector(vc_
handle, U indx, U *)

Copies Verilog data from a U array to a Verilog memory
element. This routine is used in the previous example.

void
vc_putMemoryValue(vc_hand
le, U indx, char *)

This routine works like the vc_putValue routine except that
it is for passing values to a memory element instead of to
a reg or bit. You enter an parameter to specify the element
(index) you want the routine to pass the value to.

void
vc_putMemoryValueF(vc_han
dle, U indx, char, char *)

This routine works like the vc_putValueF routine except
that it is for passing values to a memory element instead
of to a reg or bit. You enter an parameter to specify the
element (index) you want the routine to pass the value to.

char
*vc_MemoryString(vc_handl
e, U indx)

This routine works like the vc_toString routine except that
it is for passing values to from memory element instead of
to a reg or bit. You enter an parameter to specify the
element (index) you want the routine to pass the value of.

 Access Routine Description

18-81

DirectC Interface

Enabling C/C++ Functions

The +vc compile-time option is required for enabling the direct call
of C/C++ functions in your Verilog code. When you use this option
you can enter the C/C++ source files on the vcs command line. These
source files must have a .c extension.

char
*vc_MemoryStringF(vc_hand
le, U indx, char)

This routine works like the vc_MemoryString function
except that you specify a radix with the third parameter.
The valid radixes are ’b’, ’o’, ’d’, and ’x’.

void
vc_FillWithScalar(vc_hand
le, scalar)

This routine fills all the bits or a reg, bit, or memory with all
1, 0, x, or z values (you can choose only one of these four
values).

char
*vc_argInfo(vc_handle)

Returns a string containing the information about the
parameter in the function call in your Verilog source code.

int vc_Index(vc_handle, U,
...)

Returns the index of a linearized array, or returns -1 if the
U type parameter is not an index of a multi-dimensional
array, or the vc_handle parameter is not a handle to a
multi-dimensional array of the reg data type.

int vc_Index2(vc_handle,
U, U)

Specialized version of vc_Index() where the two U
parameters are the indices in a two-dimensional array.

int vc_Index3(vc_handle,
U, U, U)

Specialized version of vc_Index() where the two U
parameters are the indexes in a three-dimensional array.

U vc_mdaSize(vc_handle, U) If the U type parameter has a value of 0, it returns the
number of indices in multi-dimensional array. If the U type
parameter has a value greater than 0, it returns the number
of values in the index specified by the parameter. There
is an error condition if this parameter is out of the range of
indices. If the vc_handle parameter is not a
multi-dimensional array, it returns 0.

 Access Routine Description

18-82

DirectC Interface

There are suffixes that you can append to the +vc option to enable
additional features. You can append all of them to the +vc option in
any order. For example:

+vc+abstract+allhdrs+list

These suffixes specify the following:

+abstract
Specifies that you are using abstract access through vc_handles
to the data structures for the Verilog arguments.
When you include this suffix all functions use abstract access
except those with "C" in their declaration; these exceptions use
direct access.
If you omit this suffix all functions use direct access except those
wit the "A" in their declaration; these exceptions use abstract
access.

+allhdrs
Writes the vc_hdrs.h file that contains external function
declarations that you can use in your Verilog code.

+list
Displays on the screen all the functions that you called in your
Verilog source code. In this display void functions are called
procedures. The following is an example of this display:

The following external functions have been actually
called:
 procedure receive_string
 procedure passbig2
 function return_string
 procedure passbig1
 procedure memory_rewriter
 function return_vector_bit
 procedure receive_pointer
 procedure incr

18-83

DirectC Interface

 function return_pointer
 function return_reg
_____________________ [DirectC interface] _________

Mixing Direct And Abstract Access

If you want some C/C++ functions to use direct access and others to
use abstract access you can do so by using a combination of "A" or
"C" entries for abstract or direct access in the declaration of the
function and the use of the +abstract suffix. The following table
shows the result of these combinations:

Specifying the DirectC.h File

The C/C++ functions need the DirectC.h file in order to use abstract
access. This file is located in $VCS_HOME/include (and there is a
symbolic link to it at $VCS_HOME/’vcs -platform’/lib/DirectC.h). You
need to tell VCS where to look for it. You can accomplish this in the
following three ways:

• Copy the $VCS_HOME/include/DirectC.h file to you current
directory. VCS will always look there for it.

• Establish a link in the current directory to the $VCS_HOME/
include/DirectC.h file.

no +abstract suffix include the +abstract suffix
extern
(no mode specified)

direct access abstract access

extern "A" abstract access abstract access
extern "C" direct access direct access

18-84

DirectC Interface

• Include the -CC option as follows:

-CC "-I$VCS_HOME/include"

Useful Compile-Time Options

VCS has other compile-time options that are not specially for DirectC
but you might find them useful when enabling and calling C/C++
functions in your Verilog source code.

-cc
Specifies the C compiler (default is cc in your search path)

-cpp
Specifies the C++ compiler (default is CC in your search path)

-ld
Specifies the linker for final linking to build simv (default is the
same as the C++ compiler)

Note:
Don't specify incompatible C++ compiler and linker (by specifying
-cpp and -ld simultaneously. That may result in compile failure
with unrecognized symbols.

These options may be necessary on the vcs command line. If you
include object files on the command line, you must include the options
to specify which compiler and linker generated these object files.

18-85

DirectC Interface

Environment Variables

The following environment variables can be useful with DirectC. Bear
in mind that command line options override environment variables.

VCS_CC
Specifies the C compiler for VCS, same as the -cc compile-time
option.

VCS_CPP
Specifies the C++ compiler for the PLI and cmodule code
compilation, same as the -cpp compile-time option.

VCS_LD
Specifies the linker.

Extended BNF for External Function Declarations

A partial EBNF specification for external function declaration is as
follows:

source_text ::= description +

description ::= module | user_defined_primitive |
extern_function_declaration

extern_function_declaration ::= extern access_mode
extern_func_type extern_function_name (
list_of_extern_func_args ?) ;

access_mode ::= ("A" | "C") ?

Note:
If access mode is not specified then command line options
+abstract rules; default mode is "C".]

18-86

DirectC Interface

extern_func_type ::= void | reg | bit |
DirectC_primitive_type | bit_vector_type

bit_vector_type ::= bit [constant_expression :
constant_expression]

list_of_extern_func_args ::= extern_func_arg
(, extern_func_arg) *

extern_func_arg ::= arg_direction ? arg_type
optional_arg_name ?

Note:
Argument direction, i.e. input, output, inout applies to all
arguments that follow it until the next direction occurs; default
direction is input.

arg_direction ::= input | output | inout

arg_type ::= bit_or_reg_type | array_type |
DirectC_primitive_type

bit_or_reg_type ::= (bit | reg) optional_vector_range ?

optional_vector_range ::= [(constant_expression :
constant_expression) ?]

array_type ::= bit_or_reg_type array [(constant_expression
: constant_expression) ?]

DirectC_primitive_type ::= int | real | pointer | string

In this specification extern_function_name and
optional_arg_name are user defined identifiers.

18-87

DirectC Interface

18-88

DirectC Interface

19-1

Using the VCS / SystemC Cosimulation Interface

19
Using the VCS / SystemC Cosimulation
Interface 1

The VCS / SystemC Cosimulation Interface enables VCS and the
SystemC modeling environment to work together when simulating a
system described in the Verilog and SystemC languages.

VCS contains a built-in SystemC simulator that is compatible with
OSCI SystemC 2.0.1 . By default, when you use the interface, VCS
runs its own SystemC simulator. No setup is necessary.

.You also have the option of installing the OSCI SystemC simulator
and having VCS run it to cosimulate using the interface. See “Using
a Customized SystemC Installation” on page 19-43.

19-2

Using the VCS / SystemC Cosimulation Interface

With the interface you can use the most appropriate modeling
language for each part of the system, and verify the correctness of
the design. For example, the VCS / SystemC Cosimulation Interface
allows you to:

• Use a SystemC module as a reference model for the Verilog RTL
design under test in your testbench.

• Verify a Verilog netlist after synthesis with the original SystemC
testbench

• Write testbenches in SystemC to check the correctness of Verilog
designs

• Import legacy Verilog IP into a SystemC description

• Import third-party Verilog IP into a SystemC description

• Export SystemC IP into a Verilog environment when only a few
of the design blocks are implemented in SystemC

• Use SystemC to provide stimulus to your design.

The VCS / SystemC Cosimulation Interface creates the necessary
infrastructure to cosimulate SystemC models with Verilog models.
The infrastructure consists of the required build files and any
generated wrapper or stimulus code. VCS writes these files in
subdirectories in the ./csrc directory. To use the interface, you don’t
need to do anything to these files.

During cosimulation, the VCS / SystemC Cosimulation Interface is
responsible for:

• Synchronizing the SystemC kernel and VCS

• Exchanging data between the two environments

19-3

Using the VCS / SystemC Cosimulation Interface

Notes:

• There are examples of Verilog instantiated in SystemC and
SystemC instantiated in Verilog in the
$VCS_HOME/doc/ examples/osci_dki directory.

• The interface supports the following compilers:

- Linux: gnu 3.3.6 compiler

- Solaris: SC 8.0, and gcc 3.3.6 (default) and 3.4.6

• The VCS / SystemC Cosimulation Interface supports 32-bit
simulation 32-bit as well as 64-bit (VCs flag -full64)
simulation. Do not use the -comp64 compile-time options with
the interface.

• The gcc compilers, along with a matching set of GNU tools, are
available on the Synopsys FTP server for download. For more
information e-mail vcs_support@synopsys.com.

The usage models for the VCS / SystemC Cosimulation Interface,
depending on the type of cosimulation you want to perform. This
chapter describes these models in the following sections:

• Usage Scenario Overview

• Verilog Design Containing SystemC Leaf Modules

• SystemC Designs Containing Verilog Modules

• Using a Port Mapping File

• Using a Data Type Mapping File

• Debugging the SystemC Portion of a Design

• Transaction Level Interface

19-4

Using the VCS / SystemC Cosimulation Interface

• Using a Customized SystemC Installation

Usage Scenario Overview

The usage models for the VCS /SystemC Cosimulation Interface are:

• Verilog designs containing SystemC modules

• SystemC designs containing Verilog modules

The major steps involved to create a simulation for each of these
design scenarios are:

1. Analyze the SystemC and Verilog modules from the bottom of the
design to the top.

2. For Verilog designs containing SystemC modules:

- Use the syscan file.cpp:model command to analyze
SystemC modules used in the Verilog domain.

- Use the syscan f.cpp... command to compile other
SystemC modules in the design.

- Use the vlogan command to analyze Verilog files.

- Use the vcs -sysc command to build the simulation.

3. For SystemC designs containing Verilog modules:

- Use the vlogan -sc_model command to analyze Verilog files
containing modules used in the SystemC domain.

- Use the syscan f.cpp... command to compile SystemC
files.

- Use the syscsim command to build the simulation.

19-5

Using the VCS / SystemC Cosimulation Interface

Note:
There are examples of Verilog instantiated in SystemC, and
SystemC instantiated in Verilog, in the $VCS_HOME/doc/
examples/osci_dki directory.

Supported Port Data Types

SystemC types are restricted to the sc_clock, sc_bit, sc_bv, sc_logic,
sc_lv, sc_int, sc_uint, sc_bigint, and sc_biguint data types. Native C/
C++ types are restricted to the uint, uchar, ushort, int, bool, short,
char, long and ulong types.

Verilog ports are restricted to bit, bit vector and signed bit vector types.

Inout ports that cross the cosimulation boundary between SystemC
and Verilog must observe the following restrictions:

• SystemC port types must be sc_inout_rv<> or sc_inout_resolved
and must be connected to signals of type sc_signal_rv<> or
sc_signal_resolved.

• Verilog port types must be bit_vector or bit.

• You need to create a port mapping file, as described in “Using a
Port Mapping File” on page 19-26, to specify the SystemC port
data types as sc_lv (for a vector port) or sc_logic (for a scalar port).

19-6

Using the VCS / SystemC Cosimulation Interface

Verilog Design Containing SystemC Leaf Modules

To cosimulate a Verilog design that contains SystemC and Verilog
modules, you need to import one or more SystemC instances into
the Verilog design. Using the VCS / SystemC Cosimulation Interface,
you generate a wrapper and include it in the Verilog design for each
SystemC instance. The ports of the created Verilog wrapper are
connected to signals that are attached to the ports of the
corresponding SystemC modules.

Figure 19-1 illustrates VCS DKI communication.

Figure 19-1 VCS DKI Communication of an Verilog Design Containing
SystemC Modules

DKI

clk

reset
in

out

rdy_read

SystemC simulatorHDL environment

clk
reset
in

out
rdy_read

H
D

L
in

te
rfa

ce
 to

 th
e

S
ys

te
m

C
 s

im
ul

at
or

S
ys

te
m

C
 in

te
rfa

ce
 to

 th
e

H
D

L
en

vi
ro

nm
en

t

Automatically generated by the tool

Managed by the tool

Block 2

Block 1 Block 2

Block 3

Block 1

SystemC source code
entity-under-test

HDL source code

19-7

Using the VCS / SystemC Cosimulation Interface

Input Files Required

To run a cosimulation with a Verilog design containing SystemC
instances, you need to provide the following files:

• SystemC source code

- You can directly write the entity-under-test source code or
generate it with other tools.

- Any other C or C++ code for the design

• Verilog source code (.v extensions) including:

- A Verilog top-level simulation that instantiates the interface
wrapper and other Verilog modules. These wrapper files are
generated by a utility and you don’t need to do anything to these
files (see “Generating the Wrapper for SystemC Modules” on
page 19-8 and “Instantiating the Wrapper and Coding Style” on
page 19-11).

- Any other Verilog source files for the design

• An optional port mapping file. If you do not provide this file, the
interface uses the default port mapping definition. For details of
the port mapping file, see “Using a Port Mapping File” on page
19-26.

• An optional data type mapping file. If you don’t write a data type
mapping file, the interface uses the default one in the VCS
installation. For details of the data type mapping files, see “Using
a Data Type Mapping File” on page 19-27.

19-8

Using the VCS / SystemC Cosimulation Interface

Generating the Wrapper for SystemC Modules

You use the syscan utility to generate the wrapper and interface files
for cosimulation. This utility creates the csrc directory in the current
directory, just like VCS does when you include compile-time options
for incremental compilation. The syscan utility writes the wrapper
and interface files in subdirectories in the ./csrc directory.

There is nothing you need to do to the files that syscan writes. VCS
knows to look for them when you include the compile-time option for
using the interface. See “Compiling a Verilog Design Containing
SystemC Modules” on page 19-14.

The syntax for the syscan command line is as follows:

syscan [options] filename[:modulename]
[filename[:modulename]]*

Here:

filename[:modulename] [filename[:modulename]]*
This is how you specify all the SystemC files in the design. There
is no limit to the number of of files. The entries for the SystemC
files that contain modules, which you want to instantiate, also
include a colon : followed by the name of the module. If
:modulename is omitted, the .cpp files are compiled and added
to the design's database so the final vcs command is able to bring
together all the modules in the design. You do not need to add
-I$VCS_HOME/include or -I$SYSTEMC/include

[options]
These can be any of the following:

-cflags "flags"
Passes flags to the C++ compiler.

19-9

Using the VCS / SystemC Cosimulation Interface

-cpp path_to_the_compiler
Specifies the location of the C compiler. If you omit -cpp
path_to_the_compiler, the environment finds the
following compilers as defaults:

-Linux : g++

-SunOS : CC (native Sun compiler)

Note:

-See the VCS Release Notes for more details on supported
compiler versions.

-You can override the default compilers in your environment
by supplying a path to the g++ compiler. For example:

-cpp /usr/bin/g++

-port port_mapping_file
Specifies a port mapping file. See “Using a Port Mapping File”
on page 19-26.

-Mdir=directory_path
Works the same way that the -Mdir VCS compile-time option.
If you are using the -Mdir option with VCS, you should use
the -Mdir option with syscan to redirect the syscan output
to the same location that VCS uses.

-help|-h
Displays the command line syntax, options, and example
command lines.

-v
Displays the version number.

19-10

Using the VCS / SystemC Cosimulation Interface

-o name
The syscan utility uses the specified name instead of the
module name as the name of the model. Do not enter this option
when you have multiple modules on the command line. Doing
so results in an error condition.

-V
Displays code generation and build details. Use this option if
you are encountering errors or are interested in the flow that
builds the design.

-vcsi
Prepares all SystemC interface models for simulation with
VCSi.

-f filename
Specifies a file containing one or more
filename[:modulename] entries, as if these entries were on
the command line.

-verilog | -vhdl
Indicates which domain the interface models should be
prepared for. -verilog is the default.

Note:
You don’t specify the data type mapping file on the command line,
See “Using a Data Type Mapping File” on page 19-27.

The following example generates a Verilog wrapper:

syscan -cflags "-g" sc_add.cpp:sc_add

19-11

Using the VCS / SystemC Cosimulation Interface

Instantiating the Wrapper and Coding Style

You instantiate the SystemC wrapper just like a Verilog module. For
example, consider the following SystemC module in a file named
stimulus.h:

SC_MODULE(stimulus) {
 sc_out<sc_logic> reset;
 sc_out<sc_logic> input_valid;
 sc_out<sc_lv<32> > sample;
 sc_in_clk clk;

 sc_int<8> send_value1;
 unsigned cycle;

 SC_CTOR(stimulus)
 : reset("reset")
 , input_valid("input_valid")
 , sample("sample")
 , clk("clk")

 {
 SC_METHOD(entry);
 sensitive_pos(clk);
 send_value1 = 0;
 cycle = 0;
 }
 void entry();
};

The Verilog model is display:

File: display.v
module display (output_data_ready, result);
 input output_data_ready;
 input [31:0] result;

 integer counter;

19-12

Using the VCS / SystemC Cosimulation Interface

 initial
 begin
 counter = 0;
 end

 always @(output_data_ready)
 begin
 counter = counter + 1;
 $display("Display : %d", result);
 if (counter >= 24)
 begin
 $finish;
 end
 end
endmodule

You instantiate the SystemC model as follows in the Verilog part of
the design:

File: tb.v

module testbench ();

 reg clock;
 wire reset;
 wire input_valid;
 wire [31:0] sample;
 wire output_data_ready;
 wire [31:0] result;

 // Stimulus is the SystemC model.
 stimulus stimulus1(.sample(sample),
 .input_valid(input_valid),
 .reset(reset),
 .clk(clock));

 // Display is the Verilog model.
 display display1(.output_data_ready(output_data_ready),
 .result(result));

19-13

Using the VCS / SystemC Cosimulation Interface

 ...
end module

Controlling Time Scale and Resolution in a SystemC
Module Contained in a Verilog Design

To control the time resolution of your SystemC module, create a static
global object that initializes the timing requirements for the module.
This can be a separate file that is included as one of the .cpp files for
the design.

Sample contents for this file are:

include <systemc.h>
class set_time_resolution {
public:
 set_time_resolution()
 {
 try {
 sc_set_time_resolution(10, SC_PS);
 sc_set_default_time_unit(100, SC_PS);
 }
 catch(const sc_exception& x) {
 cerr << "setting time resolution/default time unit
failed: " <<
x.what() << endl;
 }
 }
};
static int SetTimeResolution()
{
 new set_time_resolution();
 return 42;
}
static int time_resolution_is_set = SetTimeResolution();

19-14

Using the VCS / SystemC Cosimulation Interface

Compiling a Verilog Design Containing SystemC
Modules

To compile your Verilog design, include the -sysc compile-time
option. For example:

vcs -sysc tb.v display.v

When you compile with this option, VCS looks in the csrc directory
for the subdirectories containing the interface and wrapper files
needed to instantiate the SystemC design in the Verilog design.

Using GNU Compilers on Sun Solaris

On Solaris the default compiler is Sun Forte CC. You can specify a
different compiler with -cpp and -cc compile-time options. The
interface supports the gcc 3.3.6 (default) and 3.4.6 compilers.

If you use the -cpp g++ option on the syscan command line, you
must also use it on every command line that compiles C++ source.
For example:

syscan -cpp g++ sc_add.cpp:sc_add

syscan -cpp g++ sc_sub.cpp multiply.cpp display.cpp

vcs -cpp g++ -sysc top.v dev.v

If you use a full path to a C++ compiler, you have to supply the path
to the cc compiler on the VCS command line as well:

syscan -cpp /usr/bin/g++ sc_add.cpp:sc_add

syscan -cpp /usr/bin/g++ sc_sub.cpp multiply.cpp display.cpp

19-15

Using the VCS / SystemC Cosimulation Interface

vcs -cc /usr/bin/gcc -cpp /usr/bin/g++ -sysc top.v dev.v

Using GNU Compilers on Linux

On Linux the default compiler is gcc. You can specify a different
compiler with the -cpp and -cc compile-time options. The interface
supports the gcc 3.3.6 compiler.

SystemC Designs Containing Verilog Modules

To cosimulate a SystemC design that contains Verilog modules, you
import one or more Verilog instances into the SystemC design. Using
the VCS / SystemC Cosimulation Interface, you generate a wrapper
and include it in the SystemC design for each Verilog instance. The
ports of the created SystemC wrapper are connected to signals that
are attached to the ports of the corresponding Verilog modules.

Figure 19-2 illustrates the VCS direct kernel interface (DKI)
communication.

19-16

Using the VCS / SystemC Cosimulation Interface

Figure 19-2 VCS DKI Communication of SystemC Design Containing
Verilog Modules

Input Files Required

To run cosimulation with a SystemC design containing Verilog
modules, you need to provide the following files:

• Verilog source code (.v extensions)

- You can directly write the entity-under-test Verilog code or
generate it with other tools. The Verilog description represented
by the entity-under-test can be Verilog code of any complexity
(including hierarchy) and can use any language feature VCS
supports.

- Any other Verilog source files necessary for the design.

DKI

clk

reset
in

out

rdy_read

HDL simulatorSystemC environment

clk
reset
in

out
rdy_read

S
ys

te
m

C
 in

te
rfa

ce
 to

 th
e

H
D

L
si

m
ul

at
or

H
D

L
in

te
rfa

ce
 to

 th
e

S
ys

te
m

C
 e

nv
iro

nm
en

t

Automatically generated by the tool

Managed by the tool

Block 2

Block 1 Block 2

Block 3

Block 1

HDL source code
entity-under-test

SystemC source code

19-17

Using the VCS / SystemC Cosimulation Interface

• SystemC source code including:

- A SystemC top-level simulation (sc_main) that instantiates the
interface wrappers and other SystemC modules.

- Any other SystemC source files for the design.

• An optional port mapping file. If you do not provide this file, the
interface uses the default port mapping definition. For details of
the port mapping file, see “Using a Port Mapping File” on page
19-26.

• An optional data type mapping file. If you don’t write a data type
mapping file, the interface uses the default file in the VCS
installation. For details of the data type mapping files, see “Using
a Data Type Mapping File” on page 19-27.

Generating the Wrapper

You use the vlogan utility with the -sc_model option to generate
and build the wrapper and interface files for Verilog modules for
cosimulation. This utility creates the ./csrc directory in the current
directory, just like VCS does when you include compile-time options
for incremental compilation. The vlogan utility writes the wrapper
and interface files in subdirectories in the ./csrc directory.

There is nothing you need to do to the files that vlogan writes. VCS
knows to look for them when you include the compile-time option for
using the interface. See “Compiling a Verilog Design Containing
SystemC Modules” on page 19-14.

19-18

Using the VCS / SystemC Cosimulation Interface

The syntax for the vlogan command line is as follows:

vlogan -sc_model modulename file.v
[-cpp path_to_the_compiler]
[-sc_portmap port_mapping_file]
[-Mdir=directory_path] [-V]

Here:

-sc_model modulename file.v
Specifies the module name and its Verilog source file.

-cpp path_to_the_compiler
Specifies the location of the C compiler. If you omit -cpp path,
your environment will find the following compilers as defaults:

- Linux : g++

- SunOS : CC (native Sun compiler)

Note:

-See the VCS Release Notes for more details on supported
compiler versions.

-You can override the default compilers in your environment
by supplying a path to the g++ compiler. For example:

-cpp /usr/bin/g++

-sc_portmap port_mapping_file
Specifies a port mapping file. See “Using a Port Mapping File” on
page 19-26.

19-19

Using the VCS / SystemC Cosimulation Interface

-Mdir=directory_path
Works the same way that the -Mdir VCS compile-time option
works. If you are using the -Mdir option with VCS, you should
use the -Mdir option with vlogan to redirect the vlogan output
to the same location that VCS uses.

-V
Displays code generation and build details. Use this option if you
are encountering errors or are interested in the flow that builds
the design.

To generate the wrapper and interface files for a Verilog module
named adder, in a Verilog source file named adder.v, instantiated
in SystemC code in top.cpp, you would enter the following:

vlogan -sc_model adder -sc_portmap the.map adder.v

Instantiating the Wrapper

You instantiate a Verilog module in your SystemC code like a
SystemC module. For example, consider the following Verilog
module in a file called adder.v:

module adder (value1, value2, result);
 input [31:0] value1;
 input [31:0] value2;
 output [31:0] result;
 reg [31:0] result_reg;

 always @(value1 or value2)
 begin
 result_reg <= value1 + value2;
 end

 assign result = result_reg;

endmodule

19-20

Using the VCS / SystemC Cosimulation Interface

The module name is adder. You instantiate it in your SystemC code
in main.cpp as follows:

#include <systemc.h>
#include "adder.h"
int sc_main(int argc, char *argv[]){
 sc_clock clock ("CLK", 20, .5, 0.0);
 sc_signal<sc_lv<32> > value1;
 sc_signal<sc_lv<32> > value2;
 sc_signal<sc_lv<32> > result;

 // Verilog adder module
 adder adder1("adder1");
 adder1.value1(value1);
 adder1.value2(value2);
 adder1.result(result);

 sc_start(clock, -1);
 }

One of the generated files is modulename.h, which you should
include in your top.cpp file.

Compiling a SystemC Design Containing Verilog
Modules

When you compile your design, you must include the hierarchy path
to the SystemC wrapper instances on your design compilation
command line. For example:

syscsim dev.v other_C++_source_files compile-time_options
adder=adder1

19-21

Using the VCS / SystemC Cosimulation Interface

In this example, dev.v might contain Verilog code utilized by the
adder.v module above.

When you compile with this option, VCS looks in the ./csrc directory
for the subdirectories containing the interface and wrapper files
needed to connect the Verilog and SystemC parts of the design.

Elaborating the Design

When SystemC is at the top of the design hierarchy and you
instantiate Verilog code in the SystemC code, the elaboration of the
simulation is done in the following two steps:

1. The first step is to create a temporary simulation executable that
contains all SystemC parts but does not yet contain any Verilog
parts. VCS then starts this temporary executable to find out which
Verilog instances are really needed. All SystemC constructors
and end_of_elaboration() methods are executed; however,
simulation does not start.

2. VCS creates the final version of the simv file containing SystemC
as well as all HDL parts. The design is now fully elaborated and
ready to simulate.

As a side effect of executing the temporary executable during step
1, you will see that the following message is printed:

INFO: Exiting prematurely since $SYSTEMC_ELAB_ONLY is set

In case your simulation contains statements that should NOT be
executed during step 1, guard these statements with a check for
environment variable SYSTEMC_ELAB_ONLY or the following
function:

19-22

Using the VCS / SystemC Cosimulation Interface

extern "C" bool hdl_elaboration_only()

Both will be set/yield true only during this extra execution of simv
during step 1.

For example, guard statements like this:

module constructor:
 if (! hdl_elaboration_only()) {
 ... open log file for coverage data ...
 } module destructor:
 if (! hdl_elaboration_only()) {
 ... close log file for covergae data ...
 }

Considerations for Export DPI Tasks

When you want to call export "DPI" tasks from the SystemC side of
the design you need todo either one of the following two steps.

Use syscan -export_DPI <function-name>

Register the name of all export DPI functions and tasks prior to the
final syscsim call. You need to call syscan in the following way:

syscan -export_DPI <function-name1> [<function-name2> ...]

This is necessary for each export DPI task or function that is used by
SystemC or C code. Only the name of function must be specified,
formal arguments are neither needed nor allowed. Multiple space-
separated function names can be specified in one call of syscan -
export_DPI. It is allowed to call syscan -export_DPI any
number of times. A function name can be specified multiple times.

19-23

Using the VCS / SystemC Cosimulation Interface

Example

Aassume that you want to instatiate the following SystemVerilog
module inside a SystemC module:

 module vlog_top;
 export "DPI" task task1;
 import "DPI" context task task2(input int A);
 export "DPI" function function3;

 task task1(int n);
 ...
 endtask
 function int function3(int m);
 ...
 endfunction // int
 endmodule

You must do the folloing steps before you can elaborate the simulation

 syscan -export_DPI task1
 syscan -export_DPI function3
 ...
 syscsim ...

Note that task2 is not specified because it is an import "DPI" task.

Use a Stubs File

An alternative approach is to use stubs located in a library. For each
export DPI function like my_export_DPI, create a C stub with no
arguments and store it in an archive which is linked by VCS:

 file my_DPI_stubs.c :
 #include <stdio.h>
 #include <stdlib.h>

 void my_export_DPI() {

19-24

Using the VCS / SystemC Cosimulation Interface

 fprintf(stderr,"Error: stub for my_export_DPI is
used\n");

exit(1);
 }

 ... more stubs for other export DPI function ...

 gcc -c my_DPI_stubs.c
 ar r my_DPI_stubs.a my_DPI_stubs.o
 ...
 syscsim ... my_DPI_stubs.a ...

It is important to use an archive (file extension .a) and not an object
file (file extension .o).

Specifying Runtime Options to the SystemC Simulation

You start a simulation with the simv command line. Command line
arguments can passed to just the VCS simulator kernel, or just the
sc_main() function or both.

By default, all command line arguments are given to sc_main() as
well as the simulator kernel. All arguments following
-systemcrun go only to sc_main(). All arguments following
-verilogrun or -vhdlrun go only to the VCS simulator kernel.
Argument -ucli is always recognized and goes only to the VCS
simulator kernel.

For example:

simv a b -ucli g -verilogrun c d -systemcrun e f

Function sc_main() receives arguments "a b e f g". The VCS simulator
kernel receives arguments "c d -ucli."

19-25

Using the VCS / SystemC Cosimulation Interface

Using GNU Compilers on SUN Solaris

On Solaris the default compiler is Sun Forte CC. You can specify a
different compiler with -cpp and -cc compile-time options. The
interface supports the gcc 3.3.6 compiler.

If you use the -cpp g++ option on the interface analysis command
line, you must also use it on every command line that compiles C++
source:

vlogan -cpp g++ display.v -sc_model display

syscsim -cpp g++ -sysc main.cpp a.cpp display=display1

If you use a full path to a C++ compiler, you have to supply the path
to the cc compiler on the command line that builds the simulation as
well:

vlogan -cpp /usr/bin/g++ display.v -sc_model display

syscsim -cc /usr/bin/gcc -cpp /usr/bin/g++ -sysc main.cpp
a.cpp

Using GNU Compilers on Linux

On Linux the default compiler is gcc. You can specify a different
compiler with the -cpp and -cc compile-time options. The interface
supports the gcc 3.3.6 compiler.

19-26

Using the VCS / SystemC Cosimulation Interface

Using a Port Mapping File

You can provide an optional port mapping file for the syscan
command with the -port option, and for vlogan by using
-sc_portmap. If you specify a port mapping file, any module port
that is not listed in the port mapping file is assigned the default type
mapping.

A SystemC port has a corresponding Verilog port in the wrapper for
instantiation. The syscan utility uses the entry for the port in the port
mapping file.

A port mapping file is an ASCII text file. Each line defines a port in
the SystemC module, using the format in Example x and y. A line
beginning with a pound sign (#) is a comment.

A port definition line begins with a port name, which must be the same
name as that of a port in the HDL module or entity. Specify the number
of bits, the HDL port type, and the SystemC port type on the same
line, separated by white space. You can specify the port definition
lines in any order. You must, however, provide the port definition
parameters in this order: port name, bits, HDL type, and SystemC
type.

The valid Verilog port types, which are case-insensitive, are as
follows:

• bit — specifies a scalar (single bit) Verilog port.

• bit_vector — specifies a vector (multi-bit) unsigned Verilog
port (bitvector is a valid alternative).

• signed — specifies a Verilog port that is also a reg or a net
declared with the signed keyword and propagates a signed value.

19-27

Using the VCS / SystemC Cosimulation Interface

The following example shows a port mapping file.

Example 19-1 Port Mapping File
Port name Bits Verilog type SystemC type

in1 8 signed sc_int
in2 8 bit_vector sc_lv
clock 1 bit sc_clock
out1 8 bit_vector sc_uint
out2 8 bit_vector sc_uint

SystemC types are restricted to the sc_clock, sc_bit, sc_bv, sc_logic,
sc_lv, sc_int, sc_uint, sc_bigint, and sc_biguint data types.

Native C/C++ types are restricted to the bool, char, uchar, short,
ushort, int, uint, long, and ulong data types.

Using a Data Type Mapping File

When running a VCS / SystemC simulation, the interface propagates
data through the module ports from one language domain to another.
This can require the interface to translate data from one data type
representation to another. This translation is called mapping and is
controlled by data type mapping files.

The data type mapping mechanism is similar to that used for port
mapping, but is more economical and requires less effort to create
and maintain. Because the data type mapping is independent of the
ports, you can create one or more default mappings for a particular
type that will be used for all ports, rather than having to create a port
map for every port of each new HDL wrapper model.

Data type mapping files map types, so that ALL ports of that type on
ALL instances will now be assigned the specified mapping.

19-28

Using the VCS / SystemC Cosimulation Interface

The data type mapping file is named cosim_defaults.map. The
interface looks for and reads the data mapping file in the following
places and in the following order:

1. In $VCS_HOME/include/cosim

2. In your $HOME/.synopsys_ccss directory

3. In the current directory.

An entry in a later file overrules an entry in an earlier file.

Each entry for a SystemC type has the following:

1. It begins with the keyword Verilog.

2. It is followed by the bit width. For vectors, an asterisk (*) is a
wildcard to designate vectors of any bit width not specified
elsewhere in the file.

3. The corresponding Verilog “type” using keywords that specify if it
is scalar, unsigned vector, or signed port, the same keywords
used in the port mapping file.

4. The SystemC or Native C++ type

Example 19-2 shows an example of a data type mapping file.

Example 19-2 Data Type Mapping File
##
Mappings between SystemC and Verilog datatypes
##
Verilog * bit_vector sc_bv
Verilog 1 bit bool
Verilog * bit_vector int
Verilog * signed int
Verilog 1 bit sc_logic
Verilog 1 bit sc_bit
Verilog * bit_vector char

19-29

Using the VCS / SystemC Cosimulation Interface

Verilog * bit_vector uchar
Verilog * bit_vector short
Verilog * bit_vector ushort
Verilog * bit_vector uint
Verilog * bit_vector long
Verilog * bit_vector ulong

Debugging the SystemC Portion of a Design

To debug just the SystemC code in the mixed simulation, do the
following:

1. Run syscan with the -cflags "-g" option to build the SystemC
source code for debugging.

2. Start the C++ debugger on the simv executable file as follows:

- If you are using the Sun Forte compiler:

dbx ./simv

- If you are using the Gnu compiler on Solaris or Linux:

 Run both syscan and VCS with the -cpp path option.

gdb ./simv
You can now set and stop at breakpoints in your SystemC code.

Debugging the Verilog Code

To debug the Verilog code, create the simv executable with the -RI
option to start VirSim for interactive debugging, for example if you
instantiate SystemC code in Verilog code:

19-30

Using the VCS / SystemC Cosimulation Interface

vcs -sysc -R -o simv top.v

If you instantiate Verilog code in SystemC:

syscsim -R -o simv dev.v

Debugging Both the Verilog and SystemC Portions of a
Design

To debug both the SystemC and Verilog portions of your design:

1. Run syscan with the -cflags "-g" option to build the SystemC
source code for debugging.

2. Include the -debug_all compile-time options on the vcs or
syscsim command line to compile the Verilog part of the design
for post-processing debug tools and for Verilog source code
debugging.

To compile and interactively debug a Verilog design containing
SystemC modules, enter command lines like the following:

vcs -sysc -debug_all top.v

To compile and interactively debug a SystemC design containing
Verilog modules, enter command lines like the following:

syscsim -I -line

3. Start the C++ debugger on the simv executable file. As DVE is
already running the simv executable, you must attach your
debugger to the simv process.

4. To find the simv executable process ID, execute the following
command:

19-31

Using the VCS / SystemC Cosimulation Interface

% ps -e | grep simv
12216 pts/1 0:00 simv

5. You then can launch your debugger as outlined above, but provide
the process ID from the ps command as the third argument to the
debugger:

% gdb ./simv 12216

Transaction Level Interface

The transaction level interface (TLI) between SystemVerilog and
SystemC supports communication between these languages at the
transaction level. At RTL, all communication goes through signals. At
transaction level, communication goes through function or task calls.

It is an easy-to-use feature that enables integrating Transaction Level
SystemC models into a SystemVerilog environment seamlessly and
efficiently. The automated generation of the communication code
alleviates the difficulties in implementing a synchronized
communication mechanism to fully integrate cycle accurate SystemC
models into a SystemVerilog environment.

TLI exploits using the powerful Verification Methodology Manual
(VMM methodology) to verify functional or highly accurate SystemC
TLMs. TLI improves mixed language simulation performance and
speeds-up the development of the verification scenarios.
Furthermore, TLI adds the necessary logic to enable the user to
debug the transaction traffic using the waveform viewer in DVE.

TLI augments the pin-level interface (DKI) to enable both languages
to communicate at different levels of abstraction. Using this interface,
you can simulate some part of the design at the transaction-level and

19-32

Using the VCS / SystemC Cosimulation Interface

the other part at the hardware level and have full control over the level
of detail required for your simulation runs. This integration also helps
you to leverage the powerful features of SystemVerilog for
transaction-level verification and you can use the same testbenches
for hardware verification. TLI enables you to do the following:

• Call interface methods of SystemC interfaces from SystemVerilog

• Call tasks or functions of SystemVerilog interfaces from SystemC.

Methods and tasks can be blocking as well as non-blocking. Blocking
in the context of this document means the call may not return
immediately, but consumes simulation time before it returns.
However, non-blocking calls always return immediately in the same
simulation time.

The caller's execution is resumed exactly at the simulation time when
the callee returns, so a blocking call consumes the same amount of
time in both the language domains – SystemC and SystemVerilog.
Non-blocking calls always return immediately.

The tasks or functions must be reachable through an interface of the
specific language domain. This means that for SystemVerilog calling
SystemC, the TLI can connect to functions that are members of a
SystemC interface class. For SystemC calling SystemVerilog, the TLI
can call functions or tasks that are part of a SystemVerilog interface.

The use model of the transaction level interface consists of defining
the interface by means of an interface definition file, calling a code
generator to create the TLI adapters for each domain, and finally
instantiation and binding of the adapters.

19-33

Using the VCS / SystemC Cosimulation Interface

Interface Definition File

The interface definition file contains all the necessary information to
generate the TLI adapters. It consists of a general section and a
section specific to task/function. The order of lines within the general
section is arbitrary, and the first occurrence of a task or function
keyword marks the end of this section. The format of the file is
illustrated as follows:

interface if_name
direction sv_calls_sc
[verilog_adapter name]
[systemc_adapter name]
[hdl_path XMR-path]

[#include "file1.h"]
[`include "file2.v"]
...

task <method1>
input|output|inout|return vlog_type argument_name_1 return
input|output|inout|vlog_type argument_name_2
...
function [return type] method2
input|output|inout vlog_type argument_name_1
...

The interface entry defines the name of the interface. For the
direction SystemVerilog calling SystemC, the if_name argument
must match the name of the SystemC interface class. Specialized
template arguments are allowed in this case, for example
my_interface int or my_interface 32. For SystemC calling
SystemVerilog, if_name must match the SystemVerilog interface
name.

19-34

Using the VCS / SystemC Cosimulation Interface

The direction field specifies the caller and callee language
domains, and defaults to sv_calls_sc. The SystemC calling
SystemVerilog direction is indicated by sc_calls_sv.

The verilog_adapter and systemc_adapter fields are optional
and define the names of the generated TLI adapters and the
corresponding file names. File extension .sv is used for the
verilog_adapter and file extensions .h and .cpp for the
systemc_adapter.

The optional #include lines are inserted literally into the generated
SystemC header file, and the optional `include lines into the
generated SystemVerilog file.

The hdl_path field is optional and binds the generated Verilog
adapter through an XMR to a fixed Verilog module, Verilog interface
or class instance. Using hdl_path makes it easier to connect to a
specific entity, however, the adapter can be instantiated only once,
not multiple times. If you want to have multiple connections, then
create multiple adapters which differ only by their name.

A SystemC method may or may not be blocking, meaning it may
consume simulation time before it returns or return right away. This
distinction is important for the generation of the adapter. Use task
for SystemC methods that are blocking or even potentially blocking.
Use function for SystemC methods that will not block for sure. Note
that functions enable faster simulation than tasks.

The lines after task or function define the formal arguments of
the interface method. This is done in SystemVerilog syntax. This
means that types of the arguments must be valid SystemVerilog
types. See “Supported Data Types of Formal Arguments” on page
19-40 for more details.

19-35

Using the VCS / SystemC Cosimulation Interface

The return keyword is only allowed once for each task. It becomes
an output argument on the Verilog side to a return value on the
SystemC side. This feature is required because blocking functions in
SystemC may return values, while Verilog tasks do not have a return
value.

There is one special case here. If the methods of the SystemC
interface class use reference parameters, for example
my_method(int& par), then you need to mark this parameter as
inout& parameter in the interface definition file. Note that the &
appendix is only allowed for inout parameters. For input
parameters this special marker is not needed and not supported. Pure
output parameters that should be passed as reference must be
defined as inout in the interface definition file.

Example interface definition file for the simple_bus blocking
interface:
interface simple_bus_blocking_if
direction sv_calls_sc
verilog_adapter simple_bus_blocking_if_adapter
systemc_adapter simple_bus_blocking_if_adapter
#include "simple_bus_blocking_if.h"

task burst_read
input int unsigned priority_
inout int data[32]
input int unsigned start_address
input int unsigned length
input int unsigned lock
return int unsigned status

task burst_write
input int unsigned priority_
inout int data[32]
input int unsigned start_address
input int unsigned length
input int unsigned lock
return int unsigned status

19-36

Using the VCS / SystemC Cosimulation Interface

Generation of the TLI Adapters

The following command generates SystemVerilog and SystemC
source code for the TLI adapters from the specified interface definition
file:

syscan -tli_gen interface_definition_file

or

syscan -tli_gen_class interface_definition_file

The command generates SystemC and SystemVerilog files that
define the TLI adapters for each language domain. All generated files
can be compiled just like any other source file for the corresponding
domain. The files have to be generated again only when the content
of the interface definition file changes.

TLI adapters for the sv_calls_sc direction can be generated in two
different styles. The SystemC part of the generate adapter is the same
for both styles, however the SystemVerilog part is different. Option
-tli_gen creates a SystemVerilog "interface". Option
-tli_gen_class creates a SystemVerilog "class". Both styles have
benefits and penalties.

A class is generally easier to connect into the SystemVerilog source
code and there are situations where a SystemVerilog testbench
allows to instantiate a class but not an interface. However, if a class
is generated, then the TLI adapter can create only one connection of
this type between the SystemVerilog and SystemC side. If, on the
other hand, an interface is generated, then multiple connections can
be created (which are distinguished by the integer parameter of the
interface).

19-37

Using the VCS / SystemC Cosimulation Interface

Transaction Debug Output

Since the transaction information traveling back and forth between
SystemVerilog and SystemC along with the transaction timing is often
crucial information (for example, comparison of ref-model and design
for debugging and so on), the SystemC part of the TLI adapters are
generated with additional debugging output that can be enabled or
disabled, See “Instantiation and Binding” on page 19-38.

The transaction debug output can either be used as a terminal I/O
(stdout) or as a transaction tracing in DVE. In DVE, each TLI adapter
has an sc_signal string member with name
m_task_or_function_name_transactions that you can
display in the waveform viewer of DVE.

Sometimes, the next transaction begins at the same point in time
when the previous transaction ends. Prefixes "->" and "<-" are used
such that both transactions could be distinguished. The return values,
if any, for the previous transaction are displayed with a leading "<-".
The input arguments for the new argument are prefixed with "->".

If the default scheme how the debug output is formatted does not
match the debugging requirements, then do not change the
generated code in the TLI adapter. Instead, override the debug
methods m_task_or_function_name_transactions using a
derived class that defines only these virtual methods. You can copy
these methods from the generated adapter code as a starting point
and then modify the code according to the debugging requirements.

If the adapter is generated again, then the existing code is overwritten
and all manual edits are lost.

19-38

Using the VCS / SystemC Cosimulation Interface

Note:
Do not manually modify the code generated by the TLI adapter.
Instead, override the debug functions in a derived class.

Instantiation and Binding

TLI adapters must always be instantiated in pairs, where each pair
forms a point-to-point connection from one language domain to the
other.

If multiple pairs of the same TLI adapter type are needed in the design,
you must instantiate the adapter multiple times in each domain. The
point-to-point connection must be set up by assigning a matching ID
value to the SystemVerilog interface or class, and the SystemC
module. The ID value is set for SystemC module and the
SystemVerilog class, if generated, as a constructor argument. In case
the SystemVerilog Adapter is generated as an interface, the ID is set
through a parameter.

The SystemVerilog TLI adapter (either as an interface or a class) can
be instantiated and used like any other SystemVerilog interface or
class. If you want to call an IMC of a SystemC interface you need to
call the corresponding member function/task of the TLI adapter.

The SystemC part of the TLI adapter is a plain SystemC module that
has a port p over the specified interface name
(sc_port if_name p). This module can be instantiated in the
systemC design hierarchy, where you can bind the port to the design
interface just like any other SystemC module.

As mentioned above, there is an optional constructor argument for
the point-to-point ID of type int that defaults to zero. There is a
second optional constructor argument of type int that specifies the

19-39

Using the VCS / SystemC Cosimulation Interface

format of debug information that the adapter prints when an interface
method is called. If the LSB of this argument is set, the TLI adapter
prints messages to stdout. If the next bit (LSB+1) is set, this
information is written to an sc_signal string that you can display
in DVE.

For SystemC calling SystemVerilog, the SystemC part of the TLI
adapter is an sc_module that you can instantiate within the module
where you want to call the Verilog tasks or functions. You can execute
the cross-boundary task or function calls by calling the corresponding
member function of the SystemC TLI adapter instance.

The SystemVerilog portion of the TLI adapter depends on whether
the hdl_path field is used and options -tli_gen or
-tli_gen_class is used:

• combination -tli_gen, no hdl_path:

The Verilog adapter has a port over the interface type, as defined
in the interface description file. You can instantiate the adapter
module in the Verilog design like any other Verilog module, and
the port should be bound to the SystemVerilog interface that
implements the tasks or functions to be called.

• combination -tli_gen, with hdl_path path:

The Verilog adapter is a Verilog module with no ports. All calls
initiated by SystemC are routed through the XMR path to some
other Verilog module or interface.

• combination -tli_gen_class, with hdl_path path:

19-40

Using the VCS / SystemC Cosimulation Interface

The Verilog adapter is a group of task definitions and other
statements that must be included in a program with an
`include "if_name_sc_calls_sv.sv" statement. Calls
initiated by the SystemC side are routed through the XMR path
to some class object of the SV testbench.

• combination -tli_gen_class, no hdl-path:

This combination is not supported and displays an error message.

It is important to note that Verilog tasks, in contrast to Verilog
functions, must always be called from within a SystemC thread
context. This is because tasks can consume time, and in order to
synchronize the simulator kernels, wait() is used in the SystemC
adapter module. The SystemC kernel throws an error when wait()
is called from a non-thread context.

Supported Data Types of Formal Arguments

The TLI infrastructure uses the SystemVerilog DPI mechanism to call
the functions and transport data, so the basic type mapping rules are
inherited from this interface. Refer to the SystemVerilog standard for
a detailed description on DPI. In summary, the following mapping
rules apply for simple data types:

SystemVerilog SystemC
input byte char

inout | output byte char*

input shortint short int

inout | output shortint short int*

input int int

inout | output int int*

input longint long long

19-41

Using the VCS / SystemC Cosimulation Interface

For the integral data types in the above table, the signed and unsigned
qualifiers are allowed and map to the equivalent C unsigned data type.

All array types listed in the above table are passed as pointers to the
specific data types. There are two exceptions to this rule:

• Open arrays, which are only allowed for the SystemVerilog calling
SystemC direction, are passed using handles (void *). The
SystemVerilog standard defines the rules for accessing the data
within these open arrays.

• Packed bit arrays with sizes <= 32 in input direction (for example,
input bit [31:0] myarg) are passed by value of type
svBitVec32. Basically, this type is an unsigned int, and the
individual bits can be accessed by proper masking.

inout | output longint long long*

input real double

inout | output real double*

input shortreal float

inout | output shortreal float*

input chandle void*

inout | output chandle void**

input string char*

inout | output string char**

input bit unsigned char

inout | output bit unsigned char*

input logic unsigned char

inout | output logic unsigned char*

SystemVerilog SystemC

19-42

Using the VCS / SystemC Cosimulation Interface

Miscellaneous

The TLI generator uses Perl5 which needs to be installed on the local
host machine. Perl5 is picked up in the following order from your
installation paths (1=highest priority):

1. use ${SYSCAN_PERL}, if (defined)

2. /usr/local/bin/perl5

3. perl5 from local path and print warning

Using the Built-in SystemC Simulator

VCS contains a built-in SystemC 2.0.1 which it uses by default. No
setup is necessary to use this simulator (in earlier releases, the
interface required the SYSTEMC environment variable).

Supported Compilers

The following compilers are supported:

• Linux: gcc 3.3.4 (default) and 3.4.6

• Solaris: SC 6.2, gcc 3.3.4 (default) and 3.4.6

Compiling Source Files

If you need to compile source files, which include systemc.h, in your
own environment and not with the syscan script, then add
compiler flag -I$VCS_HOME/include/systemc.

19-43

Using the VCS / SystemC Cosimulation Interface

Using a Customized SystemC Installation

You can install the OSCI SystemC simulator and instruct VCS to use
it for Verilog/SystemC cosimulation. To do so you need to:

• Obtain OSCI SystemC version from www.systemc.org

• Set the SYSTEMC environment variable to the OSCI SystemC
installation path, as shown below:

% setenv SYSTEMC /net/user/download/systemc-2.0.1

• Replace following SystemC files

$SYSTEMC/src/systemc/kernel/sc_simcontext.cpp
$SYSTEMC/src/systemc/kernel/sc_simcontext.h

with following VCS files:

$VCS_HOME/etc/systemc-2.0.1/sc_simcontext.cpp and
$VCS_HOME/etc/systemc-2.0.1/sc_simcontext.h

• Follow the installation instructions provided by OSCI (see
$SYSTEMC/INSTALL file) and build a SystemC library. Use
../configure i686-pc-linux-gnu call for 32-bit linux
installation, and ../configure call for 32-bit solaris installation.

19-44

Using the VCS / SystemC Cosimulation Interface

• Set the SYSTEMC_OVERRIDE environment variable to the user
defined OSCI SystemC library installation path, as shown below:

 % setenv SYSTEMC_OVERRIDE /net/user/systemc-2.0.1

• Header files must exist in the $SYSTEMC_OVERRIDE/include
directory and the library file libsystemc.a in
$SYSTEMC_OVERRIDE/lib-linux/, and the
$SYSTEMC_OVERRIDE/lib-gccsparcos5/ directories.

Note:

- VcsSystemC 2.0.1 is binary compatible with OSCI SystemC
2.0.1.

- VcsSystemC 2.1 is binary compatible with OSCI SystemC
2.1 Beta as of October 2004, but not compatible with OSCI
SystemC 2.1.v1.

- VcsSystemC 2.2 is binary compatible with OSCI SystemC
2.2 Beta as of 5th June 2006.

Compatibility with OSCI SystemC 2.0.1 and SystemC 2.1

The built-in SystemC simulator is binary compatible with the OSCI
SystemC 2.0.1 simulator. That means that you can link the object files
(*.{o,a,so}) compiled with the OSCI SystemC 2.0.1 simulator to a
simv executable.

The -sysc=<version> option accepts 2.0.1 as its valid argument.
Any value other than this is considered invalid and in that case, VCS
displays the following error message:

syscan timer.cpp:timer -sysc=2.2
Error: SystemC version 2.2 is not supported.

19-45

Using the VCS / SystemC Cosimulation Interface

If you use the option -sysc=<version>, you must use it consistently
during both analysis and compilation. Any mismatch in the version
displays the error message:

Error: Mixing different SystemC versions is not allowed.
Either add or omit argument -sysc=<version> to all

calls of vlogan, vhdlan, syscan, and vcs
where you use SystemC.

Please note, this option is not a replacement for -sc_model.

Compiling Source Files

If you need to compile the source files, which include systemc.h, in
your own environment and not with the syscan script, then add
compiler flag -I$VCS_HOME/include/systemc201 or
-I$VCS_HOME/include/systemc21 for SystemC2.0.1 and for
SystemC2.1 respectively.

19-46

Using the VCS / SystemC Cosimulation Interface

20-1

Using OpenVera Assertions

20
Using OpenVera Assertions 1

This chapter introduces the OpenVera Assertions (OVA) language
and explains how to compile and run OVA within VCS. It covers the
following topics:

• Introducing OVA

• OVA Flow

• Checking OVA Code With the Linter Option

• Compiling Temporal Assertions Files

• OVA Runtime Options

• OpenVera Assertions Post-Processing

• Viewing Output Results

• Using OVA with Third Party Simulators

• Inlining OVA in Verilog

20-2

Using OpenVera Assertions

• Using Verilog Parameters in OVA Bind Statements

• OVA System Tasks and Functions

For a detailed decsription of OpenVera Assertions, see the OpenVera
Assertions Language Reference Manual.

Introducing OVA

OVA is a clear, easy way to describe sequences of events and
facilities to test for their occurrence. With clear definitions and less
code, testbench design is faster and easier, and you can be confident
that you are testing the right sequences in the right way.

As a declarative method, OVA is much more concise and easier to
read than the procedural descriptions provided by hardware
description languages such as Verilog. With OVA:

• Descriptions can range from the most simple to the most complex
logical and conditional combinations.

• Sequences can specify precise timing or a range of times.

• Descriptions can be associated with specified modules and
module instances.

• Descriptions can be grouped as a library for repeated use. OVA
includes a Checker Library of commonly used descriptions.

Built-in Test Facilities and Functions

OVA has built-in test facilities to minimize the amount of code that
you need to write. In addition, OVA works seamlessly with other
Synopsys tools to form a complete verification environment.

20-3

Using OpenVera Assertions

OVA performs the following tasks:

• Tests Verilog, VHDL, and mixed-HDL designs using VCS and
VCS MX.

• Automatically tests and reports results on all defined sequences.
You just write the definitions.

• Produces results that can be viewed with DVE.

• Can be monitored and controlled as part of a Vera testbench.

VCS also has functional coverage that provides you with code
coverage information about your OVA code.

Using OVA Directives

OVA uses two directives:

• The assert directive, consists of mostly temporal expressions
and is used to define a property of a system that is monitored to
provide the user with a functional validation capability. Properties
are specified as temporal expressions, where complex timing and
functional relationships between values and events of the system
are expressed.

• The cover directive consists of event coverage expressions used
to record all successful matches of the coverage expression.
When the event expression results in a match, the cover always
increments a counter. Multiple matches per attempt may be
generated and reported. With compile-time option
-ova_enable_diag, if the match is the first success of the
attempt, then the cover directive also increments a second
counter first_matches.

20-4

Using OpenVera Assertions

How Sequences Are Tested Using the assert Directive

Testing starts with a temporal assertion file, which contains the
descriptions of the sequences and instructions for how they should
be tested. OVA is designed to resemble Verilog with similar data
types, operators, and lexical conventions.

A typical temporal assertion file consists mostly of temporal
expressions in OVA units. These temporal expressions are the
descriptions of the event sequences. Events are values or changes
in value of any OVA signal. Temporal expressions can be combined
to form longer or more complex expressions. The language supports
not only linear sequences but logical and conditional combinations.

When you instantiate the OVA unit, you connect the OVA signals to
Verilog variables and nets. You cannot connect OVA signals to Verilog
named events.The basic instruction for testing is a temporal
assertion. Assertions specify an expression or combination of
expressions to be tested. Assertions come in two forms: check, which
succeeds when the simulation matches the expression, and forbid,
which succeeds when the simulation does not match.

The temporal expressions and assertions must also be associated
with a clock that specifies when the assertions are to be tested.
Different assertions can be associated with different clocks. A clock
can be defined as posedge, negedge, or any edge of a signal; or
based on a temporal expression. Also, asynchronous events can use
the simulation time as a clock.

An assertion can be associated with all instances of a specified
module or limited to a specific instance.

Example 20-1 shows an example temporal assertion file. It tests for
a simple sequence of values (4, 6, 9, 3) on the device’s output bus.

20-5

Using OpenVera Assertions

Example 20-1 Temporal Assertion File, cnt.ova
/* Define a unit with expressions and assertions (or select
one from the Checker Library).
*/
unit step4

#(parameter integer s0 = 0) // Define parameters
(logic clk, logic [7:0] result); // Define ports

 // Define a clock to synchronize attempts:
 clock posedge (clk)

{
 // Define expressions:
 event t_0 : (result == s0);
 event t_1 : (result == 6);
 event t_2 : (result == 9);
 event t_3 : (result == 3);
 event t_normal_s: t_0 #1 t_1 #1 t_2 #1 t_3;
 }

 // Define an assertion:
 assert c_normal_s : check(t_normal_s, "Missed a step.");

endunit

/* Bind the unit to one or more instances in the design.
*/
// bind module cnt : // All instances of cnt or
bind instances cnt_top.dut : // one instance.

step4 start_4 // Name the unit instance.
#(4) // Specify parameters.
(m_clk, outp); // Specify ports.

When the temporal assertion file is compiled and run, the assertions
are continuously tested for the duration of the simulation. New
attempts to match each assertion to the simulation’s values are
started with every cycle of the assertion’s associated clock. Each
attempt continues until it either fails to match or succeeds in matching
the complete expression (see Figure 20-1). The up arrow at clock tick
7 indicates a match that started at tick 4. The down arrows are failures.
The failure or success of each attempt is logged to a file that you can
review later.

20-6

Using OpenVera Assertions

Figure 20-1 Assertion Attempts for cnt.ova

Important:
Synopsys recommends always specifying a clock signal for an
assertion. An assertion without a clock is called a simtime assertion.
VCS checks simtime assertions with a default clock that is the
equivalent to the smallest time precision in the design and this
significantly impedes simulation performance. When VCS compiles
a simtime assertion, it displays a warning message.

A OpenVera testbench can monitor and control the testing. Using
built-in object classes, you can stop and start attempts to match the
selected assertion; monitor attempts, failures, and successes; and
synchronize the testbench with the testing process.

How Event Coverage Is Tested Using the cover Directive

The cover directive records only successful matches. You can
specify the cover directive specific to your design or use it with
assertions statements.

With the default compile-time options, only one counter is generated
for each cover directive. This counter is incremented each time the
event expression matches. At the end of a default simulation, the
number of total matches is reported in the example:

unit_instance_name cover_name, int_val total match

1 2 3 4 5 6 7 8 9 10 11 12 13 14posedge m_clk

outp

c_normal_s

06 04 0408 06 09 03 0d 0e 04 06 09 06

20-7

Using OpenVera Assertions

You can also increment a second counter using the compile-time
option ova_enable_dialog. In this case, the first counter is the
same as the default counter, and the second counter reports the
number of total matches of the event expression.

OVA Flow

OVA uses the following flow:

1. Create a temporal assertion or cover file. See the OpenVera
Assertions Language Reference Manual ($VCS_HOME/doc/
UserGuide/ova_lrm.pdf).

Start with simple temporal expressions and then combine them
to form complex sequences. Simple expressions compile and run
faster, and might use less memory.

Files named with an .ova extension (filename.ova) are recognized
as assertion and cover files.

2. Compile and simulate the design, including Temporal Assertions
files and options, on the vcs and simv command lines.

3. After running the simulation, verify the results:

- See “Viewing Results in a Report File” on page 20-41.

- See “Viewing Results with Functional Coverage” on page
20-42.

- Results can also be monitored through a Vera testbench.

20-8

Using OpenVera Assertions

Checking OVA Code With the Linter Option

The linter option adds predefined rules. Rule violations other than
syntax / semantic errors are not errors in the strict sense of the word,
but are warnings of potential performance issues or differences in
intended and real semantics of the OVA expressions.

The linter option has two sets of rules:

• General Rules (GR) that are applicable to both simulation and
formal verification tools, synthesis tools such as VCS and
verification tools

• Magellan Rules (MR) that are specific to Magellan (or other similar
formal verification tools).

Upon detecting a violation of any one of the rules and normal parsing
errors, the linter will output a message in the same format as the OVA
parser does now. It will prefix the message by ERROR, WARNING
or RECOMMENDATION, depending on the type of message.

The rules as listed next are classified as "e" for ERROR, "w" for
WARNING, and "r" for RECOMMENDATION.

Each rule contains two information blocks. The first one is the error
message text output by the linter. The second provides further
information on the kind of problem identified.

Applying General Rules with VCS

The linter option in VCS is -ova_lint.

20-9

Using OpenVera Assertions

If used without any Verilog design file, only the OVA files are analyzed
(including bind statements), and potential problems are reported. The
command is:

vcs ova_files_list -ova_lint

If used with Verilog and OVA files (or inlined OVA), the compilation
proceeds normally while detailed linting analysis is also done. If no
fatal error is found, the simulation can go ahead and any
recommendations from the linter can be incorporated for later runs.

Linter General Rule Messages
This section lists the messages generated by the general rules and
describes the condition that caused the message along with a
suggested remedy.

GR1: WARNING "assert forbid" used on an event that
contains an "if" without an "else".

Example:

event e: if a then #1 b;
assert c: forbid(e);

Whenever "a" is false, the assertion will fail because the "if - then"
implication is satisfied. This may not be, however, what is intended.
A modification to consider is to change the event definition as follows:

event e: a #1 b;

GR2: WARNING "ended" or "matched" is used on an
event that contains an "if" without an "else"

Example:

event e1: if a then #1 b;
event e2: if ended e1 then #1 c;

20-10

Using OpenVera Assertions

Whenever "a" is false, event "e1" will match because the "if - then"
implication is satisfied. This means that "e2" will also trigger and try
to match on "c" at the next clock tick. This may not be, however, what
is intended. A modification to consider is to change event "e1" as
follows:

event e1: a #1 b;
GR3: WARNING "if" appears in the middle of a longer
sequence, or a composition of sequences where both
contain an "if" without an "else"

Example:

event ev: if a then #1 (if b then #1 c);

If "a" is true, then in the next cycle event e will match even if "b" is
false. This may not be the intended behavior.

Consider changing the event as follows:

event ev: if a then (#1 b #1 c);

Note 1: The portion of the original event "ev" in parentheses could
have been an event declared separately and instantiated in
"e", thus possibly hiding the fact that it contains an "if".

Note 2: The following use of if-then-else can be useful, however:

event ev: if a then #1 if b then d else e;

Here a, b, c, d and e are some boolean expressions.

GR6: WARNING OVA * repetition factor contains a 0.

Example:

a*[m..n] #k b;

Here m is a 0 or a parameter with default value of 0

20-11

Using OpenVera Assertions

Consider rephrasing the expression using for instance a disjunction,
e.g., if m is 0 then (a*[1..n] #k b) || (#(k-1) b);

GR8: WARNING "matched" used in the same clock domain
(one clock tick delay)

Example:

clock posedge clk {
 event e1: ... ;
 event e2: if matched e1 then ... ;
}

The successful match on "e1" would only be detected in "e2" at the
subsequent posedge of "clk". Consider changing "e2" as follows:

event e2: if ended e1 then ... ;

The "ended" operator transfers the match of "e2" to "e2" at the same
"posedge clk".

GR11: RECOMMENDATION event contains a large delay
or repetition interval.

Example:

event e1: if posedge a then a*[1..1000] #1 b;

or

event e2: a #[1..10000] b;

or

event e3: a #10000 b;

Consider using a variable to count clock ticks if there are no
overlapped transactions. For example, the first case:

logic [9:0] cnt = 11'b0;
clock ... {
 cnt <= reset ? 10'd0 :

20-12

Using OpenVera Assertions

 posedge a ? 10'd1 :
 cnt > 10'd1000 ? cnt :
 cnt = cnt + 10'd1;
event e1: if posedge a then ((cnt <= 11'd1000) && a) * [1..] #1 b;
}

Alternately, if overlaps are possible consider using time stamps
stored in a queue (see for instance the OVA standard checker unit
"ova_req_ack_unique").

GR14: RECOMMENDATION top-level conjunctions over
events in "check" assertions.

Example:

clock posedge clk {
 event e1: ...;
 ...
 event eN: ...;
 event e: if a then e1 && e2 && e3 && ... ;
}
assert c: check(e);

Consider placing an assertion on each individual event as follows:

assert c1: check (if a then e1);
assert c2: check (if a then e2);
assert c3: check (if a then e3);
...

This creates more assertions but they may execute faster because
they can be considerably simpler than event "e".

GR15: RECOMMENDATION Simulation time is used as the
sampling clock

The event used in an assertion does not have a sampling clock. The
simulation time will be used in that case which may lead to inefficient
simulation. Consider whether such fine sampling is required in your
application.

20-13

Using OpenVera Assertions

GR17: RECOMMENDATION for loop over events /
assertions with large (>20) ranges with loop index
appearing in delay or repetition operators.

Consider using variables and / or compacting into a single event. For
an example see the OVA standard checker "ova_req_ack_unique".
It contains two versions of a checker, version 0 that is suitable for
small ranges of parameters, and version 1 that uses a time stamp
and a queue when the loop ranges become large (thus creating too
many events / assertions).

GR19: WARNING the "past" operator is over a long
time interval (> 1000).

Consider if the same property can be expressed differently without
the use of a deep look into the past (or in the future using # delay,
which would have a similar problem.)

GR25: WARNING a conditional check assertion that
involves open-ended delay interval in the consequent
(unbounded eventuality).

Example:

event e: if c then some_sequence1 #[1..] some_sequence2;

This assertion cannot fail in a simulation because of the failure of
"some_sequence2" because "some_sequence2" could occur after
the simulation ends.

Consider placing an upper bound on the delay interval as follows:

event e: if c then some_sequence1 #[1..20] some_sequence2;

GR26: WARNING OVA variable not initialized to a
known value.

Consider initializing the variable to 0. For example:

logic v = 1'b0;

This may be needed if the OVA checker is to be used with formal tools.

20-14

Using OpenVera Assertions

GR27: WARNING assert check over a non-bool sequence
that does not start with an "if".

Example:

event e: a #1 b;
assert c: check(e);

The assertion will fail any time "a" is false. Unless used as a coverage
assertion that is supposed to track the occurrences of the sequence
"a" followed by "b" in the simulation trace, or when the sampling clock
is some irregular event from the design, the usefulness of the
assertion as a checker should be reconsidered, as it would require
"a" to hold at every clock tick in order to have even a chance to
succeed.

GR31: RECOMMENDATION multiple attempts may be
triggered for the same check.

Example:

Suppose that "req" must return to 0 between activations, and if
asserted it must remain so until "ack" is received, then the following
sequence and an assertion on it would create unnecessary additional
attempts to be triggered for the same req-ack transaction:

event e: if req then req*[1..] #0 ack;

Consider replacing it with:

event e: if posedge req then req*[1..] #0 ack;

The modified event will generate only one non-vacuous attempt for
each assertion of "req".

20-15

Using OpenVera Assertions

GR32: WARNING the unit instance name in a bind
statement is missing.

The problem is that an automatically generated name is inserted by
the compiler which makes it more difficult for the user to locate the
checker instance.

GR34: WARNING multiplication *N (by a constant) is
the last operator on an expression - consider
changing to repetition *[N].

Example:

event e: a #[1..] b*3;

Often [] is omitted by accident from the repetition operation. Consider
changing the expression to event e:

a #[1..] b*[3];

GR35: WARNING a bitwise operator (&, |, ~, etc.) is
used on a boolean expression.

Example:

logic a; logic b;
event e: (a & b) == 0 #1 (~b == 0);

The problem is that with bitwise operations the word extension to 32
bits as implied by the "0" operand and the bitwise operations may
produce unwanted results. Consider rewriting as follows:

event e: (a && b) == 0 #1 (!b == 0);

GR36: RECOMMENDATION open-ended interval delay used
in an event to which ended or matched is applied.

Example:

event e1: a #[1..] b;
event e2: ended e1 #1 ... ;

20-16

Using OpenVera Assertions

The problem is that any evaluation attempt that matches on "a" will
remain active till the end of simulation, waiting for (yet another)
occurrence of "b". Most likely this is not intended. Consider rewriting
"e1" to terminate on the first match of "b" as follows:

event e1: a #1 (!b)*[0..] #1 b;

Applying Magellan Rules for Formal Verification

This section describes use of Magellan Rules (MR) for checking OVA
code to be used with formal verification tools such as Magellan.

The compile-time option for enabling MR rules is
-ova_lint_magellan.

Linter General Rule Messages:

This section lists the messages generated by the general rules and
describes the condition that caused the message along with a
recommended alternate model.

MR1: ERROR the unit instance name in a bind statement
is missing. The instance name must be provided.

MR2: WARNING an assertion is stated solely over an
OVA variable value.

Example:

logic [bw-1:0] tmp = 1'b0;
clock posedge clk {
 tmp <= c1 ? reg_A :
 c2 ? reg_B;
 event e: |tmp == 1'b1;
}
 assert c: check(tmp);

20-17

Using OpenVera Assertions

This type of an assertion cannot be used effectively as an assumption
in Magellan because it requires constraining the signals driving the
OVA variable "tmp" in the past clock tick. This is not possible when
doing random simulation constrained by OVA assertions. The result
is that no constraint is imposed. Consider correcting the assertion as
follows:

logic [bw-1:0] tmp;
assign tmp = c1 ? reg_A :
 c2 ? reg_B;
 clock posedge clk {
 event e: |tmp == 1'b1;
 }
 assert c: check(tmp);

The constraint is now applied in the current clock cycle rather than in
the past one.

MR3: WARNING the "matched" or "ended" operator
appears in the consequent sequence of a "check"
assertion or as part of the sequence in a "forbid"
assertion.

The problem is that this form of an assertion cannot be used
effectively in random simulation under OVA constraints / assumption
because it requires constraining inputs in past clock cycles.

Example:

clock posedge clk {
 event e1: c #1 d;
 event e2: if a then matched e1;
}
assert c: check(e2);

20-18

Using OpenVera Assertions

Try to rewrite event "e2" without the use of "matched". In the case of
our simple example, the solution is simple due to the one cycle delay
introduced by "matched":

clock posedge clk {
// event e1: c #1 d; -- do not use
 event e2: if a then c #1 d;
}
assert c: check(e2);

In general the transformation may not be as simple as in the above
example. It may be preferable to approach the problem differently
right from the start rather than trying to rewrite the case later.

MR5: ERROR simulation time is used as the OVA clock.

The notion of simulation time is not available in Magellan. However,
you can create an explicit periodic clock that provides some notion
of time advancement.

MR6: ERROR case equality is used in expressions.
This is non-synthesizable.

MR7: ERROR comparisons with 'z' and 'x' values is
used. This is non-synthesizable.

MR8: WARNING an uninitialized OVA variable is used.

An uninitialized variable may cause a simulation - formal mismatch
due to differences in interpreting the initial unknown value "x".

20-19

Using OpenVera Assertions

Compiling Temporal Assertions Files

Temporal assertions files are compiled concurrently with Verilog
source files. You can use a set of OVA-specific compile-time options
to control how VCS compiles the temporal assertions files.

Note:
When you use the OVA compile-time options, VCS creates a
Verification Database directory in your current directory (by
default named simv.vdb). VCS writes intermediate files and
reports about OpenVera Assertions in subdirectories in this
directory.

The following compile-time options are for OVA:

-ovac
Starts the OVA compiler for checking the syntax of OVA files that
you specify on the vcs command line. This option is for when you
first start writing OVA files and need to make sure that they can
compile correctly.

-ova_cov
Enables viewing results with functional coverage.

-ova_cov_events
Enables coverage reporting of expressions.

-ova_cov_hier filename
Limits functional coverage to the module instances specified in
filename. Specify the instances using the same format as VCS
coverage metrics. If this option is not used, coverage is
implemented on the whole design.

-ova_debug
Required to view results with DVE.

20-20

Using OpenVera Assertions

-ova_dir pathname
Specifies an alternative name and location for the Verification
Database directory. There is no need to specify the name and
location of the new Verification Database directory at runtime. The
simv executable contains this information.

If you move or rename this directory after you create the simv
executable, you include this option at runtime to tell VCS its new
name or location.

-ova_file filename
Identifies filename as an assertion file. Not required if the file name
ends with .ova. For multiple assertion files, repeat this option with
each file.

-ova_filter_past
For assertions that are defined with the past operator, ignore
these assertions where the past history buffer is empty. For
instance, at the very beginning of the simulation the past history
buffer is empty. So, a check/forbid at the first sampling point and
subsequent sampling points should be ignored until the past
buffer has been filled with respect to the sampling point.

-ova_enable_diag
Enables further control of result reporting with runtime options.

Used with the cover directive, ova_enable_diag generates a
second counter to report the number of times an attempt to match
the event expression succeeds for the first time.

The counters are reported in the form

unit_instance_name cover_name, int_val total match,
int_val first match

20-21

Using OpenVera Assertions

For example it can be:

top.\gen_2.aova2 .cover_temp_no_vacuous_f_eq_t, 4 total
match, 4 first match

-ova_inline
Enables compiling of OVA code that is written inline with a Verilog
design.

Note:
You can also use the VCS -f option to specify a file containing a
list of all absolute pathnames for Verilog source files and
compile-time option. You can pass all OVA compile-time options
through this file, except -ova_debug.

The -assert compile-time option and keyword arguments, that were
implemented for SystemVerilog assertions, also work on OpenVera
assertions. The filter_past keyword argument, for the $past
system function, also works for the past operator. See "Options for
Compiling OpenVera Assertions (OVA)" in Appendix B and "Options
for Simulating OpenVera Assertions" in Appendix C.

OVA Runtime Options

The following runtime options are available for use with OVA:

-ova_quiet [1]
Disables printing results on screen. The report file is not affected.
With the 1 argument, only a summary is printed on screen.

20-22

Using OpenVera Assertions

-ova_report [filename]
Generates a report file in addition to printing results on your
screen. Specifying the full path name of the report file overrides
the default report name and location, which is ./simv.vdb/report/
ova.report.

-ova_verbose
Adds more information to the end of the report including assertions
that never triggered and attempts that did not finish, and a
summary with the number of assertions present, attempted, and
failed.

A set of runtime options are also available for controlling how VCS
writes its report on OpenVera Assertions. You can use these options
only if you compiled with the -ova_enable_diag compile-time
option.

-ova_filter
Blocks reporting of trivial if-then successes. These happen when
an if-then construct registers a success only because the if portion
is false (and so the then portion is not checked). With this option,
reporting only shows successes in which the whole expression
matched.

-ova_max_fail N
Limits the number of failures for each assertion to N. When the
limit is reached, the assertion is disabled. N must be supplied,
otherwise no limit is set.

-ova_max_success N
Limits the total number of reported successes to N. N must be
supplied, otherwise no limit is set. The monitoring of assertions
continues, even after the limit is reached.

20-23

Using OpenVera Assertions

-ova_simend_max_fail N
Terminates the simulation if the number of failures for any
assertion reaches N. N must be supplied, otherwise no limit is set.

-ova_success
Enables reporting of successful assertion matches in addition to
failures. The default is to report only failures.

For a cover statement, triggers the match (success) message in
the following format:

Ova [i][j]: ".fileName", <line>: <hierCoverName> started
at 900s covered at 900s [optional custom msg]

Here i and j are the severity and category values associated with
the cover statement, respectively. ova_success is under the
control of -ova_quiet.

The -assert runtime option and keyword arguments, that were
implemented for SystemVerilog assertions, also work on OpenVera
assertions. For example, the -assert nocovdb runtime option and
keyword argument tells VCS not to write the OpenVera assertions
database file as well as not to write the SystemVerilog assertions
database file. See "Options for Compiling OpenVera Assertions
(OVA)" in Appendix B and "Options for Simulating OpenVera
Assertions" in Appendix C.

20-24

Using OpenVera Assertions

Functional Code Coverage Options

Functional coverage is code coverage for your OVA code. With
functional coverage enabled, the cover statement is treated in the
same manner as an assert statement. The runtime options are
enabled by the -ova_cov compile-time option. These runtime
options are as follows:

-ova_cov
Enables functional coverage reporting.

-ova_cov_name filename
Specifies the file name or the full path name of the functional
coverage report file. This option overrides the default report name
and location. If only a file name is given, the default location is
used resulting in: ./simv.vdb/fcov/filename.db.

-ova_cov_db path/filename
Specifies the path and filename of an initial coverage file. An initial
coverage file is needed to set up the database. By default, an
empty coverage file is loaded from the following directory:
simv.vdb/fcov.

OpenVera Assertions Post-Processing

You can use VCS to build a post processor from a compiled design
and temporal assertion files. You then run the post-processor, using
either DVE or the post-processor CLI supplied with OVAPP, as you
would a simulation compiled with the design and OVA files together.
This approach allows you to:

20-25

Using OpenVera Assertions

• Post-process a compiled design several times with different
temporal assertions files each time. You can observe the effects
of different assertion scenarios and collect several distinct sets of
functional coverage data.

• Develop assertions incrementally over a series of post-processing
runs, improving and augmenting the assertions in the process.

OVAPP Flow

The following steps show a typical flow for post-processing a compiled
VCS design with temporal assertions.

1. To use the post-processor CLI as the debugging tool, include the
$vcdpluson or the $dumpvars system task in your Verilog
code.

2. Compile your design in VCS with the -ova_PP compile-time
option.

Note:
Use the $vcdpluson or the $dumpvars system task in your
Verilog code to create dump files and enable CLI functionality.
Do not use the -ova_debug compile-time option.

3. Simulate the design to create a VPD or VCD file.

4. Build the post-processor.

5. Run the post-processor using DVE or the post-processor CLI.

20-26

Using OpenVera Assertions

Building and Running a Post-Processor

The procedure to build and run a post-processor is as follows:

1. Include either of the following in your Verilog code:

- The $vcdpluson system task to tell VCS to write a VPD file
during simulation.

Note: Use the -PP compile-time option to write the VPD files
as described in the following step.

- The $dumpvars system task to tell VCS to write a VCD file
during simulation.

If VCS writes a VCD file, the post-processor will call the vcd2vpd
utility to translate it into a VPD file.

Note:
Do not use the -ova_PP compile-time option to generate design
dumps for OVAPP. Such dumps will not contain all the correct
hierarchies needed.

2. Compile your design with the -ova_PP compile-time option, for
example:

vcs -f filename -ova_PP [-PP] [-o simv_name]
[-ova_dir directory_path]

In this example compilation command line:

-f filename
Specifies a file containing the source files, and perhaps
compile-time options. This compile-time option is not
specifically related to OVA post-processing.

20-27

Using OpenVera Assertions

-ova_PP
Tells VCS to record in the verification database directory design
information that is used by the post-processor.

By default VCS also creates the simv.vdb directory in the current
directory when you include this option. We call this directory the
verification database directory. VCS writes post-processing
data in a subdirectory in the verification database directory

-PP
Optional compile-time option that enables VCS to write a VPD
file. This option also enables VCS to recognize the
$vcdpluson system task. This compile-time option is not
specifically related to OVA post-processing.

-o simv_name
This compile-time option is not specifically related to OVA
post-processing. It specifies an alternative name, and possibly
a different location, for the simv executable. Because the
executable and this directory have the same name (but not the
same extension), you will alter the name and location of the
verification database directory.

-ova_dir directory_path
Specifies an alternative name and location for the verification
database directory. This option supersedes the -o option in
naming and locating the verification database directory.

During compilation VCS displays the following message:

Generating OVA post-processing data ...

3. Simulate the design. There are no runtime options needed for the
post-processor. As usual, if you used the -o compile-time option
to specify the name of the simv executable, you enter this name,
instead of simv, to start the command line.

20-28

Using OpenVera Assertions

During simulation VCS writes the VPD file.

4. The next step is to build the post-processor from the
post-processing data and one or more temporal assertions files.
You specify building the post-processor and the temporal
assertions file with the -ova_RPP compile-time option. For
example:

vcs -ova_RPP filename.ova...[-o simv_name] [-ova_dir
directory_path] [-ova_cov]

In this example compilation command line:

-ova_RPP
Tells VCS to compile the post-processing engine. VCS writes
it in a subdirectory in the verification database directory (VDB).

filename.ova
Temporal assertions file whose assertions you want compiled
into the post-processing engine. You can specify more than one
temporal assertions file.

-o simv_name
If you included the -o option when you compiled your design,
also include it on this command line to tell VCS where to look
for the VDB in which the new data generated by the current
command/step will be written.

Note:
Including this option also creates the simv_name.daidir
direct access interface directory. This directory enables you
to use CLI commands during post-processing.

-ova_dir directory_path
Specifies the verification database directory that VCS searches
for the information about your design that is used by the
post-processor.

20-29

Using OpenVera Assertions

-vdb_lib directory_path
Specifies an alternative location for the VDB that VCS searches
for data generated during a prior step. VCS first searches the
directory specified by the -ova_dir option, then the directory
specified by this option. If it does not find this information in
either directory, the compilation fails. If you include this option
without the -ova_dir option, VCS searches the directory
specified by this option, then the simv.vdb directory in the
current directory.

-ova_cov
Enables the post-processor to gather OVA functional coverage
information.

5. The last step is to start the post-processor. You do this with an
ovapp command line. Its syntax is as follows:

ovapp [-vdb_lib directory_path][-vpd filename.vpd]
[-vcd filename.vcd] [-cli [-daidir=pathname.daidir] |
-ova_report [filename] -ova_cov]
[-ova_name session_name] [-o simv_name]
[other_OVA_options]

In this example:

-vdb_lib directory_path
Specifies the verification database directory that contains the
dynamic library, the post-processing engine.

-vpd filename.vpd
Specifies the VPD file. If the filename is vcdplus.vpd and it is in
the current directory, you can omit this option.

20-30

Using OpenVera Assertions

-vcd filename.vcd
Specifies the VCD file. The post-processor will call the vcd2vpd
utility to translate it to a VPD file name vcdplus.vpd. If the VCD
file is named verilog.dump and it is in the current directory (if
the current directory doesn’t contain a file named vcdplus.vpd).
You can omit this option and the post-processor will use the
verilog.dump file.

-cli
Specifies that post-processing starts with a command line
prompt for entering CLI commands. These CLI commands are
the same as the VCS CLI commands plus additional ones for
OVA post-processing. See “OVA Post-Processing CLI
Commands” on page -20-31.

-daidir=pathname.daidir
Specifies the direct access interface directory used by the
post-processor for CLI commands.

-ova_report [filename]
Generates a report file in addition to printing results on screen.
Specifying the full path name of the report file overrides the
default report name and location, which is simv.vdb/report/
ova.report-ova_cov. Tells the post-processor to also gather
functional OVA coverage data.

-ova_name session_name
Changes the name, but not the extension, of the generated files
in the verification database directory. Generated files are those
specified by other options such as -ova_report. See “Using
Multiple Post-Processing Sessions” on page -20-32.

20-31

Using OpenVera Assertions

-o simv_name
Specifies the executable name so the post-processor knows
the name and location of the post-processing engine and the
verification database directory. If you used the -o compile-time
option when you built the post-processor, you need to enter it
again on this command line so that the post-processor will know
the name and location of the dynamic library.

OVA Post-Processing CLI Commands

When you include the -cli option, the post-processor displays a CLI
command prompt just like the VCS CLI command prompt:

cli_0>

You can enter any VCS CLI command at this prompt, such as those
for moving up and down the hierarchy and displaying values. There
are also special CLI commands for OVA post-processing. The special
CLI commands are as follows:

pp_fastforward time
Advances post-processing to the specified simulation time.

pp_rewind time
Returns post-processing to the specified previous simulation time.

Disables the tracing of the specified assertion in the specified
instance, at the specified simulation time.

ova_trace_off assertion_hierarchical_name
Disables tracing of the specified assertion the next time.

ova_trace_off instance_hierarchical_name assertion_name time

ova_trace_on instance_hierarchical_name assertion_name time

20-32

Using OpenVera Assertions

Enables the tracing of the specified assertion in the specified
instance, at the specified simulation time.

ova_trace_on assertion_hierarchical_name
Enables tracing of the specified assertion name the next time.

Using Multiple Post-Processing Sessions

You can repeatedly run the post-processor using different input
(either different temporal assertion files or different waveforms). This
section describes how to use the -ova_name option to generate a
unique report for each session. For example:

vcs -ova_RPP first.ova

ovapp -ova_name first -ova_report

vcs -ova_RPP second.ova

ovapp -ova_name second -ova_report

After these two post-processing sessions, the simv.vdb/report
directory contains:

first.report second.report

Multiple OVA Post-Processing Sessions in One
Directory

You can run multiple OVA post-process sessions in the same
directory. While only one design should be simulated in any one
directory, any number of OVA assertion sets and any number of
stimulus waveform patterns can be executed against that one design
from within the same working directory.

20-33

Using OpenVera Assertions

In this section, reference will be made to the following four-step
post-process flow:

1. Capture waveforms from a simulation of the base design.

2. Compile the base design for post-processing (vcs -ova_PP).

3. Compile the OVA checkers against the base design
(vcs -ova_RPP).

4. Replay the captured waveforms against the compiled checkers
(ovapp).

Note that step 1 could also be run after step 2 using the executable
generated as part of the compilation of the base design. Note also
that step 3 could be run more than once with different OVA checkers
and that step 4 could be run more than once with different captured
waveform files as input.

In each of these steps, information generated by one step is read and
used by the immediately succeeding step. In step 3, the skeleton
design data generated in step 2 is used to compile the OVA checkers
into an engine that will be used during the post-processing replay. In
step 4, the compiled OVA runtime engine and checker database are
used during the replay. All this intermediate data is stored in
predetermined locations in the vdb directory.

You can select two separate vdb directories via the command line at
each step in the flow. One of these directories takes the same
basename as the simulation executable (derived from the -o option).
This is the vdb directory into which the results of the current step are
written.

20-34

Using OpenVera Assertions

Note:
In this discussion, the vdb directory derived from the basename
given with the -o option will be referred to as simv.vdb for
simplicity.

The other directory is a read-only directory that you can specify with
the -vdb_lib option. This directory is used as the source for files
generated by the previous step, but the files are not located in the
simv.vdb directory (as specified by the -o option). If no -vdb_lib
option is given, all intermediate files are expected to be found in the
simv.vdb directory (the simple/default case).

To run multiple independent versions of either step 3 or step 4, each
command must specify a directory into which it will write its results.
Specify the directories with the -o basename option and argument
(the OVA intermediate files, for example, will be written to a directory
with the given basename plus the .vdb extension). The basename
given for each unique run of each step must be unique.

Each command will also include a pointer to the vdb directory of the
previous step against which this step is being performed. This path
is specified with the -vdb_lib option. The arguments for both -o
and -vdb_lib can include full path names if desired.

Here is an example of the overall flow:

1. vcs -ova_PP -o simv1 verilog_files

2. vcs -ova_RPP -vdb_lib simv1.vdb -o simv2
ova_files

3. ovapp -vdb_lib simv2.vdb -o simv3 -vcd dumpfile

20-35

Using OpenVera Assertions

As you can see, in step1, we pass simv1 as the basename for the
intermediate output files. In step 2, we pass the vdb directory created
as a result of step1 as the argument of the -vdb_lib option and give
VCS a second basename, simv2, for the new intermediate file
directory. When VCS tries to locate a file in the simv2.vdb directory
(during step 2) and cannot find the file, it next checks the directory
specified by the -vdb_lib option. This way, you can run many
unique step 2 OVAPP compilations using the same base design
without running the risk of overwriting necessary files generated by
the base design compilation.

In addition to the -o and -vdb_lib options, other compile-time
options must be taken into consideration when running multiple
compilations, simulations, or post-process runs in the same directory.
The following sections describe in detail some of the issues to
consider.

Interactive Simulation

The initial compile can be used as an interactive/batch simulation,
with or without OVA checking. Simply add -PP or -I to the step 1
compile command line.

Waveform Dump Files

The post-processing run requires a waveform dump file. This file can
be either a VCD file or a VPD file. The file can be generated by any
simulation which is based on the same design as was compiled in
step1 (the -ova_PP step). The dump file can be generated by the
executable resulting from the Step1 compile, an earlier interactive
simulation of the same design, or some other simulation.

20-36

Using OpenVera Assertions

This dump file must contain, as a minimum, any signal referenced by
the OVA checkers to be post-processed. The signals used by the
OVA checkers must be included in a $dumpvars or $vcdpluson
dumped scope (an instance specified in one of these system tasks)
in order to be visible by the post-process checkers. Automated
dumping of OVA signals is not supported.

The runtime option -vcd filename can be used to name the VCD
file if there is a $dumpvars system task in the design. The +vpdfile
filename option and argument can be used to name the VPD file
if there is a $vcdpluson system task in the design.

If you include the signals referenced by the checkers in $vcdpluson
and -PP or $dumpvars, the referenced signals will be dumped at
compile time.

Note:
Do not use -ova_debug to generate dump files, since the
generated files will not contain all the right hierachies.

It is recommended that the dump files be explicitly named in all cases.
Both the simv executable and the ovapp executable use the same
default name for the dumpfile output. If you dump a VPD file by it's
default name in step 1 and use this file as the input to ovapp, it is
possible that the input dumpfile can be overwritten.

Note that the step 3 (ovapp) waveform input file is specified with the
-vcd or -vpd options. The -vcd vcdfile option tells ovapp to read
a VCD file, while -vpd vpdfile tells ovapp to read a VPD file. This
-vcd option is NOT the same option used by VCS to name the output
waveform file. Caution in using this option is recommended.

20-37

Using OpenVera Assertions

Note that OVAPP internally requires a VPD file. Therefore, if you pass
a VCD file to OVAPP, it calls the vcd2vpd converter prior to the
post-processing run. This means that using VPD files to capture the
waveforms to be replayed will result in better overall performance.

Dumping Signals Automatically

If you include the OVA checkers to the compilation step before the
waveform replay dump is generated, these signals will be included
in the dump automatically.

Debugging

When the OVA files are compiled in step 2 (-ova_RPP), debugging
is enabled by default, and the -ova_enable_diag and +cli
compile-time options are entered automatically. This is to support the
OVAPP debugger.

PLI or Other 3rd Party Tools

If the initial compilation includes PLI or other 3rd party interfaces that
use PLI/DKI to interface to VCS, a daidir directory will be generated
during the step1 compile. To keep from corrupting this directory, the
-o option for the step 2 compile must name a different basename
from that used for the step1 compile. For safety, it's best to always
include the -o option and use a unique basename for each
compilation.

20-38

Using OpenVera Assertions

Incremental Compile

The step 2 OVA engine compile (-ova_RPP) uses incremental
compile in order to speed up the compilation process for multiple runs.
Incremental compile generates intermediate files in a directory
named csrc by default. If you enable the incremental compile feature
in the step1 compile, it is possible for the csrc intermediate files to be
corrupted. If you use incremental compile, you should also add the
-Mdir=dirname option to the command line to direct the
VCScompiler to store it's intermediate files in a unique directory.

Inlined OVA

The step1 compile command can include the -ova_inline option
to enable the capture and processing of OVA statements inlined as
pragmas in the Verilog source. These pragmas are not copied to the
skeleton design and thus will not be processed during the
post-processing playback. This is in keeping with the strategy of
post-processing, which allows playback of one or more sets of signal
waveforms against one or more sets of OVA checkers.
Post-processing was designed to playback against checkers defined
in independent standalone OVA files (those given on the step 2
(-ova_RPP) command line).

Inlined OVA statements will not, however, interfere with the
post-processing execution of the OVA statements compiled in step
2. Inlined OVA may be freely included in the design for interactive/
debugging purposes, and inlined statements will simply be excluded
from the post-processing runs.

20-39

Using OpenVera Assertions

Reporting

By default, the assertion report generated by the OVA engine is
written into ./simv.vdb/report/ova.report. In the case of multiple
post-processing runs, there is a chance the file will be overwritten.
For each run, it is suggested that the -ova_report name.report
and -ova_name name options be used to ensure that any report
files generated will be stored under unique names.

Coverage

To enable functional coverage, use the -ova_cov option during the
Step 2 (-ova_RPP) compile (also enter -ova_cov_events to see
coverage of events). During the post-processing run, the -ova_cov
option must again be given (as a runtime option) to actually turn on
coverage capture.

By default, the coverage from all post-processing runs with a given
compiled OVA image is captured in a single database. If you need to
generate reports for each post-process run separately, use the
-ova_cov_name name option to assign a unique name to each
post-processing run. The various databases are stored under the
simv.vdb directory in either case. Coverage reporting can include a
single post-processing run or a merged set of runs, as described in
the OVA chapter of the VCS/VCSi User Guide.

Coverage reports are generated with the fcovReport utility. The
fcovReport command line should include the -ova_cov_db vdbdir
option to point to the directory where the global coverage database
resides, and the -ova_cov_report name to point to the path and
name of the report file.

20-40

Using OpenVera Assertions

Things to watch out for
• If you pass path/name (a full path) to -ova_cov_report,

fcovReport does not automatically create the directories in path.
If the path does not exist, the report is not created and no error
message is generated.

• The -ova_inline compile-time option should not be included
with the -ova_PP compile-time option. If both options are present
on the same command line, and inlined OVA references to
checker library elements are included in the design, an error
message will result. This error can be ignored and both the
interactive simulation and the post-process compile should run
fine.

Note:
Inlined OVA is not recognized for post-processing.

• If you use the +vpdfile+filename option to name the debug
VPD file in the ovapp step, an informational message referring
to a dummy file will be emitted. This message can be safely
ignored.

• If the design from step 1 (-ova_PP) is recompiled, the step 2 OVA
compilations might have to be rerun. If there are no structural
changes to the design (no hierarchy changes and no added/
deleted signals), it may not be necessary to recompile the OVA
files. However, the step 1 design recompile should not be done
while step 2 OVA compilations are running, because the design
compile deletes and regenerates the skeleton design file, even if
there are no changes to the actual design.

20-41

Using OpenVera Assertions

Viewing Output Results

The two main ways of viewing the results of a simulation involving
OVA are:

• Viewing Results in a Report File

• Viewing Results with Functional Coverage

Viewing Results in a Report File

A report file is created when the -ova_report runtime option is
used. The report file name is ova.report unless you specified a
different name in the run command. This default ova.report file is
stored in directory simv.vdb/report, where the .vdb directory is the
root directory at the same level where the design is compiled and
simv is stored.

To override this default name and location for the report file, use the
-ova_report runtime option and provide the full path name of the
report file.

The report file is replaced with each simulation run. If you want to
save the results, be sure to rename the file before running the
simulation again.

20-42

Using OpenVera Assertions

Assertion attempts generate messages with the following format:

Viewing Results with Functional Coverage

After running a series of simulations, you can generate a report
summarizing the coverage of the assertions and expressions in the
following two ways:

• With the default report, you can quickly see if all assertions were
attempted, how often they were successful, and how often they
failed. Potential problem areas can be easily identified. The report
can cover one test or merge the results of a test suite. The report
is presented in HTML and you can customize it with a Tcl script.

• An assertion and event summary report describes the total
number of assertions and events details of their performance. This
list can be filtered by category and severity to report matching
assertions.

Using the Default Report

The default report shows the number of assertions and expressions
that:

• Were attempted

Ova [0]: "cnt.ova", 10: cnt.dut.c_normal_s: started at 5ns failed at 9ns,

File and line with
the assertion

Full hierarchical name
of the assertion

Status (succeeded at ...,
failed at ...,
not finished)

Optional user-defined
failure message

Expression that failed (only with failure of check assertions)

"Wrong result sequence.",
Offending 'outp == 4 #1 outp == 6 #1 outp == 9 #1 outp == 3'

Start timeSeverity

20-43

Using OpenVera Assertions

• Had successes

• Had failures

Coverage is broken down by module and instance, showing the
number of attempts, failures, and successes for each assertion and
expression. Because if-then constructs register a success anytime
the if portion is false (and so the then portion is not checked), the
report also shows the number of real successes in which the whole
expression matched. This works with nested if statements too.

Functional coverage can also grade the effectiveness of tests,
producing a list of the minimum set of tests that meet the coverage
target. Tests can be graded on any of these metrics:

• Number of successful assertion attempts versus number of
assertions (metric = SN)

• Number of failed assertion attempts versus number of assertions
(metric = FN)

• Number of assertion attempts versus number of assertions
(metric = AN)

• Number of successful assertion attempts versus number of
assertion attempts (metric = SA)

• Number of failed assertion attempts versus number of assertion
attempts (metric = FA)

To generate a report, run the following command:

fcovReport [options]

20-44

Using OpenVera Assertions

Assertion and Event Summary Report

Since no changes are introduced to the data collection process when
generating functional coverage reports, you can produce different
reports from a simulation. One report could show all assertions and
events; another report could show assertions filtered by category and
severity.

The assertion and event summary report generates four html files:

• The report.index.html file displays total assertions and events and
details including:

- Assertions with at least 1 real success

- Assertions with at least 1 failure

- Assertions with at least 1 incomplete

- Assertions without attempts

- Events with at least 1 attempt

- Events with at least 1 real match

- Events without any match or with only vacuous matches

- Events without any attempts

The report.index.html file also contains links to the other three
files.

• The tests.html file describes the tests merged to generate the
report.

• The hier.html file displays a hierarchical report table showing a
list of instances, the number of assertions in each instance, and
the number of events in each instance.

20-45

Using OpenVera Assertions

• The category.html file is generated when -ova_cov_category
and/or -ova_cov_severity are used to filter results. Tables
display functional coverage results for assertions showing the
assertions having the category and severity specified along with
number of attempts, successes, failures and incompletes.

To generate the assertion and event summary report, run the
fcovReport command after compilation and simulation:

fcovReport [-ova_cov_severity value,...]
[-ova_cov_category value,...]

Command Line Options

The command line options are as follows:

-e TCL_script | -
Use this option to produce a custom report using Tcl scripts or
entering Tcl commands at standard input (keyboard). Most of the
other fcovReport options are processed before the Tcl scripts or
keyboard entries. The exception is -ova_cov_report, which is
ignored. Its function should be in the Tcl.

-e TCL_script
Specifies the path name of a Tcl script to execute. To use
multiple scripts, repeat this option with each script’s path name.
They are processed in the order listed.

-e -
Specifies your intent to enter Tcl commands at the keyword.

You can input the Tcl commands provided by VCS to fcovReport
for OVA coverage reports (see “Tcl Commands For SVA And OVA
Functional Coverage Reports” on page 23-49), and to
assertCovReport for SystemVerilog assertion (SVA) coverage.

20-46

Using OpenVera Assertions

-ova_cov_cover
Specifies reporting of cover directive information only.

-ova_cov_db path
Specifies the path of the template database. If this option is not
included, fcovReport uses simv.vdb.

-ova_cov_events
Specifies reporting only about OVA events.

-ova_cov_grade_instances target,metric
[, time_limit]
Generates an additional report, grade.html, that lists the minimum
set of tests that add up to the target value for the metric (see
previous page for metric codes). The grading is by instance.

-ova_cov_grade_modules target, metric
[, time_limit]
Generates an additional report, grade.html, that lists the minimum
set of tests that add up to the target value for the metric (see
previous page for metric codes). The grading is by module.

-ova_cov_map filename
Maps the module instances of one design onto another while
merging the results. For example, use this to merge the functional
coverage results of unit tests with the results of system tests. Give
the path name of a file that lists the hierarchical names of from/to
pairs of instances with one pair per line:

from_name to_name

The results from the first instance are merged with the results of
the second instance in the report.

20-47

Using OpenVera Assertions

-ova_cov_merge filename
Specifies the path name of a functional coverage result file or
directory to be included in the report. If filename is a directory, all
coverage result files under that directory are merged. Repeat this
option for any result file or directory to be merged into this report.
If this option is not used, fcovReport merges all the result files in
the directory of the template database (specified with
-ova_cov_db or simv.vdb/fcov by default).

-ova_cov_report name | path/name
Specifies the base name for the report. The fcovReport command
creates an HTML index file at simv.vdb/reports/
name.fcov-index.html and stores the other report files under
simv.vdb/reports/name.fcov.

If you give a path name, the last component of the path is used
as the base name. So the report files are stored under path/name
and the index file is at path/name.fcov-index.html.
If this option is not included, the report files are stored under
simv.vdb/reports/report.fcov and the index file is named
report.fcov-index.html.

Customizing the Report with Tcl Commands

After you enter fcovReport, you can enter Tcl commands to modify
the report. These commands also work in assertCovReport that you
use for SystemVerilog assertions coverage reports. See “Tcl
Commands For SVA And OVA Functional Coverage Reports” on
page 23-49.

20-48

Using OpenVera Assertions

Using OVA with Third Party Simulators

Synopsys has developed OVAsim, a PLI application that enables you
to run non-Synopsys simulators using OVA (OVA). With OVAsim, you
can create a powerful system of assertion-based checkers. Because
the checkers are compiled independently of a specific simulator, they
can be used with any major simulator, packaged with IP designs, and
shipped to any customer.

OVAsim works by compiling the OVA code into a shared object and
creating a wrapper file that forms the link between the checkers and
the design. This wrapper file provides ports to the signals of interest
in the design and contains all necessary PLI calls. Also, because the
OVA code specifically refers to the ports of the wrapper file, it is largely
insulated from design changes. The wrapper file and shared object
generated by OVAsim are compiled and run as a part of the design
by the simulator.

For more information on OVAsim, contact
vcs_support@synopsys.com.

Inlining OVA in Verilog

Inlined OVA enables you to write any valid OVA code within a Verilog
file using pragmas. In most usage cases, the context is inferred
automatically and the OVA code will be bound to the current module.

You can use this process with or without regular OVA files. The results
for both inlined and regular (OVA) assertions are reported together.

20-49

Using OpenVera Assertions

Inlined OVA is enabled in VCS by the -ova_inline command line
switch.

Specifying Pragmas in Verilog
Inlined OVA is specified in Verilog code using pragmas. Several
different forms are accepted, including C and C++ style comments,
and modified C++ multi-line comments.

The general C++ style form is as follows:

/* ova first_part_of_pragma
...
last_part_of_pragma
*/

You can also use the following modified C++ approach:

//ova_begin
// pragma_statement
//...
//ova_end

For a single-line pragma, you can use the following C form:

// ova pragma_statement;

Assertions can be placed anywhere in a Verilog module and they use
predefined units, including those in the Checker Library.

20-50

Using OpenVera Assertions

Methods for Inlining OVA

There are four basic methods you can use to inline OVA within
Verilog:

• Unit Instantiation Using the Unit-based Checker Library
(recommended for using Synopsys-developed OVA checkers)

• Context-Independent Full Custom OVA (uses custom-developed
OVA code that resides in a Verilog file)

• Template Instantiation Using the Template-Based Checker
Library

• Context-Dependent Full Custom OVA

These methods are described in detail throughout this section. Figure
20-2 provides an overview of these methods.

20-51

Using OpenVera Assertions

Figure 20-2 Methods for Inlining OVA within Verilog

OVA Checker Library

Method #1 — Unit-based Instantiation

Method #2 — Context Independent
Full Custom OVA

Method #3 — Template Instantiation

Method #4 — Context Dependent
Full Custom OVA

Unit-based
Checkers

Template-based
CheckersOVA code calls unit-based

Bind statement instantiates
custom OVA code

checkers from Checker Library

OVA code calls template-based
checkers from Checker Library

OVA code (minus the unit def.) is directly embedded in Verilog module.

Verilog File (.v)

Verilog File (.v)

Verilog File (.v)

Verilog File (.v)

module

endmodule

module

endmodule

module

endmodule

module

endmodule

20-52

Using OpenVera Assertions

Unit Instantiation Using the Unit-Based Checker Library

The easiest and most efficient method to inline OVA is to instantiate
a unit-based checker from the OVA Checker Library (For more
information on the Checker Library, see the OpenVera Assertions
Checker Library Reference Manual). The context of the checker is
automatically inferred based upon the location of the OVA pragma
statement within a module of Verilog code. To use this method, you
must include the bind keyword within a valid OVA pragma statement.

The syntax options for specifying unit-based assertions are as
follows:

C++ Style:

/* ova
bind unit_name [inst_name] [#(param1, ..., paramN)] [(port1, ..., portN)];
*/

Modified C++ Style:

//ova_begin
//bind unit_name [inst_name] [#(param1, ..., paramN)] [(port1, ..., portN)];
//OVA_END

*/

C Style:

// ova bind unit_name [inst_name] [#(param1, ..., paramN)] [(port1, ..., portN)];

20-53

Using OpenVera Assertions

Note:
In all syntax styles, you can also split a pragma statement into
separate lines as follows:

//ova bind
//ova unit_name [instance_name]
//ova [#(parameter1, ..., parameterN)]
//ova [(port1, ..., portN)];

The following example shows how to instantiate a checker, called
ova_one_hot, from the OVA Checker Library:

module test();
reg [3:0] x;
wire clk;
wire a,b;
wire error;
// other verilog code
// ova bind ova_mutex (1'b1,clk,a,b);
/* ova bind
 ova_forbid_bool (error,clk);
*/
// ova_begin bind
// ova_one_hot
// #(0, // strict
// 4) // bit width
// (1'b1, // enable
// clk, // clock
// x); // data
// ova_end
// other verilog code
endmodule // module test

Uses a single-line, C style pragma to instantiate the
ova_mutex checker from the Checker Library, and
checks for mutual exclusive of a and b.

Uses a multi-line C++ style
pragma to instantiate
ova_forbid_bool, and check that
an error is never asserted.

Uses a multi-line modified C++
style pragma to instantiate
ova_one_hot and checks that
signal x has only 1 bit.

20-54

Using OpenVera Assertions

Instantiating Context-Independent Full Custom OVA

You can inline OVA within Verilog by instantiating independent
custom OVA code located in the Verilog file but outside a Verilog
module definition. The unit definition associated with the code must
be specified outside a Verilog module.

The following example demonstrates this method:

20-55

Using OpenVera Assertions

In the previous example, the bind statement (// ova bind
my_mutex(clk,{a,b});) calls independent OVA code located
outside Verilog module. You can instantiate the independent OVA
code as many times as needed anywhere in the Verilog code. The
context of the OVA code within the Verilog code is automatically
inferred based upon the location of the bind statement.

module test();
reg [3:0] x;
wire clk;
wire a,b;
// ova bind my_mutex(clk,{a,b});
wire error;
// verilog code
endmodule // module test

/* ova
 unit error_check (logic clk, logic error);
 clock posedge clk {
 event e1 : error == 1;
 }
 assert a1 : forbid(e1);
 endunit
 bind module test : error_check(clk,error) ;

 unit my_mutex (logic clk, logic [1:0] x);
 clock posedge clk {
 event e1 : x != 2'b11;
 }
 assert a1 : check(e1);
 endunit
*/

Two units are defined:
error_check and my_mutext

Binding from outside a module

Binding from inside a module

20-56

Using OpenVera Assertions

Template Instantiation Using the Template-Based
Checker Library

You can instantiate any template-based checker from the Checker
Library in your Verilog code. The context of the checker is
automatically inferred based on the location of the call from within
Verilog.

Note the following construct usages and limitations in template
Instantiation:

• Clocks must use edge expressions (unit-based checkers use
Verilog style ports)

• You can specify the default clock in conjunction with the
check_bool and forbid_bool checkers, however, it does not
work with other templates or units. The following example shows
a supported default clock:

//ova clock posedge clk;

Note that each sequence or boolean expression is associated
with a clock. The clock determines the sampling times for variable
values.

• Both for loops and nested for loops are supported, as shown
below:

for (name=expr;name op1 expr;
name=name op2 expr)

{
for loop body
}

20-57

Using OpenVera Assertions

• You cannot mix a template instantiation and unit instantiation
within the same OVA pragma using the multi-line C++ and
modified C++ pragma specification formats. You can, however,
specify a template instantiation and a unit instantiation using
separate single-line C pragmas.

The following example demonstrates how to implement template
instantiation using the template-based checker library:

The example calls the check_bool template from the OVA checker
library. Note that the default clock, (// ova clock posedge clk;),
must be a local signal, and can be boolean expression. It works only
for the "check_bool" and "forbid_bool" templates, and does not
work with other templates.

module test();
reg [3:0] x;
reg [3:0] y;
reg clk;
wire a,b;
wire error;
wire req,ack;
// some verilog code
// ova clock posedge clk;
// ova check_bool(!req || ack,,negedge clk);
/* ova for (i=0;i<4;i=i+1) {
 check_bool(x[i]==past(y[3-i]));
 }
*/
// ova_begin
// clock negedge clk;
// forbid_bool u1 // instance name
// (error, // signal to check
// "ERROR_ASSERTED"); // message to display upon failure
// ova_end
// more verilog code
endmodule // module test

Default clock specification Uses implicit clock
expression picked up from
default clock space

Default clock specification

Uses default clock
(negedge clock)

20-58

Using OpenVera Assertions

Inlining Context-Dependent Full Custom OVA

You can directly inline any custom OVA code, except for the unit
definition, within a Verilog module. In this case, the unit and binding
definitions are implicit.

The following example demonstrates this method:

module test();
reg clk;
wire a,b;
// other verilog code
// ova_begin
// clock posedge clk {
// event e1 : a #1 b;
// }
// assert a1 : forbid(e1);
// ova_end
/* ova
 clock posedge clk {
 event e2 : ended(e1) #2 b;
 }
 assert a2 : forbid(e2);
*/
// more verilog code
endmodule // module test

Uses modified C++ style pragma to
specify custom OVA code that defines
event e1 and assertion a1.

Uses C++ style pragma to
specify custom OVA code
that defines event e2 and
assertion a2.

20-59

Using OpenVera Assertions

Case Checking
You can perform two types of case checking when using inlined OVA:

• Parallel — The actual case selection value must select exactly
one of the specified cases in the statement.

• Full — The actual case selection value must fall into the range
specified by the case items. A case containing the default item is
by definition full.

To control parallel case checking, use the parallel_case
statement:

//ova parallel_case on | off ;

When on is specified, all case statements until the end of the module
and the entire hierarchy underneath will be checked to ensure the
rules of “parallel case” execution, unless overridden by another
command or a local override pragma.

If the off argument is specified, parallel case checking is disabled
unless overridden by another command or a pragma associated with
a case statement.

When the pragma is not specified the default is off.

To control full case checking:

//ova full_case on | off ;

When on is specified, all case statements until the end of the module
and the entire hierarchy underneath will be checked to ensure the
rules of “full case” execution, unless overridden by another command
or a local override pragma.

20-60

Using OpenVera Assertions

If the off argument is specified, full case checking is disabled unless
overridden by another command or a pragma associated with a case
statement.

When the pragma is not specified, the default is off.

The following rules govern parallel and full case commands:

• The commands must precede any module instance and any case
statement in the module.

• If such a command is not provided, the default from the parent
module is taken. (It can be by default off.) Also, you must make
sure that every instance of the child module receives the same
specifications. To avoid this limitation, widely used modules
should include case-checking specifications.

• If a case statement appears in a function or a task, the module
that contains the function or task declaration determines the
default case checks (unless overridden by a local case pragma
on the case statement).

Context-Dependent Assertion Pragmas

OVA includes three local assertions that depend on the context in
which they are placed in the Verilog code:

// ova parallel_case;

// ova full_case;

// ova no_case;

The pragma must be placed immediately following a case
(expression) statement. If placed anywhere else, an error will be
reported. They apply only to the associated case statement. The
defaults continue to apply elsewhere.

20-61

Using OpenVera Assertions

The parallel_case and full_case statements enable their own
type of case check on the associated case statement and disable the
other type unless both are present.

The no_case statement disables any case checking on that case
statement.

The following rules govern assertion pragmas:

• These assertions verify the correct operation of case statements.
They are triggered any time the case statement is executed. That
is, no sampling of signals by a clock takes effect.

• The same pragma may be applied multiple times within a module.
Each appearance will be considered an invocation of the assertion
for its associated statement.

• If no such pragma assertion is associated with a case statement
then the default setting established by an // ova command takes
effect.

• Each // ova pragma may contain only one assertion terminated
by “;”.

• Multiple case pragmas can be associated with a case statement,
each on a separate line.

• The no_case pragma takes precedence over any other
specification.

20-62

Using OpenVera Assertions

General Inlined OVA Coding Guidelines
Note the following guidelines when coding inlined OVA:

• Since OVA pragmas are declarative in nature, they do not need
to placed within procedural code, for example, within tasks,
functions, and always/initial/forever blocks.

• Cross-module References (XMRs) are not allowed to
concurrently reside within a custom OVA description.

• Template instantiation will be treated as an OVA description (the
XMR restriction also applies).

• Unit binding is allowed inside ‘module endmodule’, but the
keyword ‘bind’ needs to be specifed in order to distinguish it from
template instantiation. Unit binding (with the keyword ‘bind’) can
have XMRs in its connections; however, using XMRs in
connections without the bind keyword will cause a warning
statement. Inlined bindings have the same requirements and
limits as bindings created in an OVA source file.

• Inlined OVA cannot be read directly by third-party simulators.
You can, however, use VCS to produce output files that can be
read by third-party simulators.

• Each instance must be terminated by a “;” (semi-colon).

• Both positional and named (explicit) association of actual
arguments are supported. However, the two styles cannot be
used simultaneously in an instance.

20-63

Using OpenVera Assertions

Using Verilog Parameters in OVA Bind Statements

This section describes the enhancement to VCS that allows Verilog
parameters to be used in temporal context in OVA bind statements.
This enhancement is under an optional switch. At this time, use of
Verilog parameters is limited to inline bind statements, but simple
workarounds exist to allow binding of non-inline OVA while still
allowing full use of Verilog parameters.

For purposes of this document, a value is used in temporal context
if it is used as a delay (or delay range), a sequence length (or length
range), or as a repeat count in an OVA event or assert statement. A
value is used in static context if it is used to compute the bit width or
bounds of a vector in an OVA unit statement.

Use Model

The current OVA use model allows the use of Verilog parameters
only in static context. That is, the vector widths of an OVA unit may
be defined using Verilog parameters. This continues to be the case
even after this enhancement.

However, the OVA compiler does not have access to the Verilog
parameters at the time the OVA state machine is compiled. The
values of the parameters must be extracted and passed to the OVA
compiler in order to use these values in temporal context.

20-64

Using OpenVera Assertions

The enhancement described in this document will cause the Verilog
parameters to be expanded at the time the inlined OVA is processed
by the OVA extractor, since the OVA binds and the design hierarchy
are both available at that time. This implies that Verilog parameters
can only be used in temporal context if the parameter was first
expanded during the inlining phase. For that reason, only inline OVA
binds will be able to pass Verilog parameter values to a unit if the
parameter is to be used in a temporal context.

Enabling Verilog Parameter Expansion

To enable the substitution of Verilog parameters during inlining, the
-ova_exp_param option must be used on the command line at
compile time. In addition, the -ova_inline option must be enabled
in order to enable the OVA inline processing.

Limitations on the Input

Only those binds found in single-line pragmas will be scanned for
Verilog parameters (this is an internal limitation of the OVA inline
parser). In order to use a Verilog parameter in temporal context via
an OVA bind statement, the bind statements must be of the form:

// ova bind module foo : unitA u1 #(count) (...);
// ova bind module bar : unitB u2 #(delay) (...);
// ova bind ...etc...

Multiple-line inline pragmas (mostly used for full-language inlining)
follow a different flow when they are processed and will not work if
Verilog parameters are used in temporal constructs (but they will
continue to work correctly for binds containing constants or Verilog
parameters used only in static context).

20-65

Using OpenVera Assertions

For example, the following binds would not be legal if count and delay
were used by the bound unit in temporal context:

/*
ova bind module foo : unitA u1 #(count) (...);
ova bind module bar : unitB u2 #(delay) (...);
*/
// ova_begin
ova bind module foo : unitA u1 #(count) (...);
ova bind module bar : unitB u2 #(delay) (...);
// ova_end

The parameter names are resolved in the context of the module to
which the unit is bound. If the unit parameter is used in temporal
context, the Verilog parameter bound to that unit must not use a
cross-module reference (cross-module references are allowable if
the parameter is only used in static context). Both module and
instance binding is supported by this enhancement. But only binds
directly found in pragmas in the Verilog file will be recognized. Bind
statements inside files which are included in one or more Verilog files
via ‘include will not be processed.

Table 20-3 Verilog Parameter Use Model Summary

Parameter context: Static (bus width) Temporal (delay, repeat, ...)
Type of bind Module or instance Module or instance
Location of bind Inline or separate file Inline flow only
XMR parameters
allowed

Yes No

Pragma format Single or multiple line Single line only (// ova bind)
Can put bind in
include file

Yes No

20-66

Using OpenVera Assertions

Recommended Methodology

To make use of Verilog parameters in temporal context, the binds
that use such parameters must follow the inlined OVA flow. For OVA
binds which are already inlined into the RTL, no additional work is
required. It is not necessary, however, that the bind statements be
inserted directly into the RTL source. Rather, a separate file (such as
dummy.v) could be created to hold all the binds in the design that
come from separate (non-inlined) OVA files. Giving this file a ".v"
extension and passing it to the compiler with -ova_inline and
-ova_exp_param enabled is enough to get the inline preprocessor
to substitute the parameter value for the parameter name before
passing the converted OVA code to the OVA compiler.

To avoid future problems, we also recommend moving the binds that
are not already inlined into one or more of these dummy Verilog files.
That way, if the contents of the OVA unit change at some point in the
future (for example, a new parameter used in temporal context is
added when there was previously no such parameter), the bind will
continue to work as expected. Also, while other OVA code (such as
units or templates) can be added to these dummy Verilog files, we
do not recommend this, as there is some chance of confusing the
inline processor (which, at this point, does not use a very
sophisticated parser).

Caveats

The inline pre-processor writes the extracted inlined OVA into a file
called generated.ova under the ova.vdb directory hierarchy. In the
past, this file could be copied into a user-level file and used in
subsequent simulation runs as a block of extracted OVA. This can
still be done, to a certain extent. However, one of the following must
be true:

20-67

Using OpenVera Assertions

• The -ova_exp_param option is not enabled.

• Any modules to which units using Verilog parameters are bound
occur only once in the design

• Multiple instances of any modules to which units using Verilog
parameters are bound use the same value for each parameter
across all instances.

In other words, if any one module is instanced multiple times with
different parameter values for two or more of the instances, then the
parameter expansion that occurs at the time the inlined OVA is
extracted will render the generated.ova file unusable for other
purposes.

Post-processing Flow

A small change to the post-processing flow is necessary in order for
this enhancement to have an effect on the OVA code compiled for
post-processing. Recall that, normally, inlined OVA is not supported
in the post-processing flow. However, it is still possible to invoke the
inline pre-processing step as part of this flow.

Use Model

The existing post-processing flow consists of three basic steps:

1. Compilation of the design (Verilog) files using -ova_PP,

2. Compilation of the OVA source files using -ova_RPP

3. Replay of the saved simulation vectors with OVAPP

20-68

Using OpenVera Assertions

The first step generates a skeleton Verilog file containing the
hierarchy of the design and the nets converted to registers (for
playback). It also preserves the Verilog parameters. This skeleton
Verilog file must be compiled in the second step before the playback
can occur. It is this compilation step that we will exploit to allow Verilog
parameters to be used in the post-processing flow.

The change to the flow involves the same dummy Verilog file that
was discussed in the sections above. This file, which is disguised as
a Verilog file but, in reality, contains nothing but inlined bind
statements, is passed to the compiler during the -ova_RPP (second)
step. In addition, the -ova_inline and -ova_exp_param options
are added to the -ova_RPP compile step. This will cause the inline
pre-processor to pick up the binds along with the remainder of the
OVA code (which should still be in separate ".ova" files) and expand
the parameters according to the values found in the skeleton design
file.

OVA System Tasks and Functions

OVA system tasks and functions enable you to set conditions and
control the monitoring of assertions, and specify the response to failed
assertions.

20-69

Using OpenVera Assertions

Setting and Retrieving Category and Severity Attributes

You can use the following system tasks to set the category and
severity attributes of assertions:

$ova_set_severity("assertion_full_hier_name",
severity)
Sets the severity level attributes of an assertion. The severity level
is an unsigned integer from 0 to 255.

$ova_set_category("assertion_full_hier_name",
category)
Sets the category level attributes of an assertion. The category
level is an unsigned integer from 0 to 224 - 1.

You can use the following system functions to retrieve the category
and severity attributes of assertions:

$ova_get_severity("assertion_full_hier_name")
Returns unsigned integer.

$ova_get_category("assertion_full_hier_name")
Returns unsigned integer.

After specifying these system tasks and functions, you can start or
stop the monitoring of assertions based upon their specified category
or severity. For details on starting and stopping assertions based on
their category specification, see Category and Severity-Based
Monitoring on page 15-40. For details on starting and stopping
assertions based on their severity specification, see “Starting and
Stopping the Monitoring of Assertions” on page 20-70.

20-70

Using OpenVera Assertions

Starting and Stopping the Monitoring of Assertions

There are several methods you can use to start and stop the
monitoring of assertions:

• Global Monitoring — Starts or stops assertions based upon their
hierarchical location level at or below specified modules, entities,
or scopes (note that these tasks overwrite any other tasks that
control monitoring).

• Category-Based Monitoring — Starts or stops assertions based
upon their category specifications.

• Severity-Based Monitoring — Starts or stops assertions based
upon their severity specifications.

• Name-Based Monitoring — Starts or stops assertions based on
the specified name of the assertion.

Global Monitoring

The $ova_start and $ova_stop system tasks enable you to
control the monitoring of assertions based on the specified
hierarchical location of the module, scope, or entity. Note that these
tasks are specified on a global level, and overwrite any other tasks
that start or stop assertion monitoring.

To start level-based monitoring, use the $ova_start system task:

$ova_start[(levels [, module_or_scope_arguments])];

The integer argument levels indicates how many levels in the
hierarchy at and below the specified modules, entities, and scopes
the OVA monitoring is to start. Zero indicates all levels below the
specified ones. Negative values are not allowed.

20-71

Using OpenVera Assertions

Within OVA and Verilog code, arguments can be specified for one or
more module names as quoted text strings (e.g.,"module_name")
and/or instance scopes as Verilog scope names (unquoted),
separated by commas.

Scope resolution follows the Verilog Standard (IEEE Std 1364-2001)
Section 12.5. That is, if a scope argument is specified, then the path
name is first considered as relative to the module where the task was
called. If it does not match any valid relative path, it is matched against
paths one level up. If there is no match then it is matched against
paths one more level up, etc. For example, if scope a.b.c is an
argument of a task called from module m, the scope name is first
interpreted as a path starting at an instance a in m. If such a path
does not exist, it is applied to a parent module of a. If the path does
not exist in the root module of m, the path is an error.

If there are no arguments, i.e., $ova_start, the task applies to the
entire design. It is equivalent to $ova_start(0).

Note that the system task is ignored if monitoring was already started
in the specified scope, module, or entity.

To stop monitoring, use the $ova_stop system task:

$ova_stop[(levels [, module_or_scope_arguments])];

Similar to the $ova_start system task, the integer argument levels
indicates how many levels in the hierarchy at and below the specified
modules, entities, and scopes the OVA monitoring is to stop. Zero
indicates all levels below the specified ones.

20-72

Using OpenVera Assertions

Arguments can be specified for one or more modules, entities, and
instance scopes as in the case of $ova_start. The effect of a
module or entity argument is to stop monitoring assertions for all
instances of the module and their respective hierarchies under each
instance as indicated by levels. The effect of a scope argument is to
stop monitoring assertions for that instance scope and the hierarchy
under it as indicated by levels. If module, entity and scope arguments
are omitted then levels applies to all the root modules of the design.

If there are no arguments, i.e., $ova_stop, the task applies to the
entire design. It is equivalent to $ova_stop(0).

The system task is ignored if the monitoring has already been stopped
in the specified scope or module.

OVA monitoring is started automatically at the beginning of
simulation. This is for compatibility with the non-inlined version where
monitoring starts immediately at time 0. To control monitoring with
the $ova_start and $ova_stop tasks, $ova_stop must be
issued at time 0 — e.g., in an initial block.

This is similar to the use of $dumpvars where dumping starts
immediately after calling this task and can be inhibited by calling
$dumpoff right after. Here, the equivalent of calling $dumpvars is
implicit in the start of simulation.

Examples:

$ova_start; // Start assertions in the whole design.

$ova_start(0) // Start assertions in the whole design.

$ova_stop(3) // Stop assertions in all top modules
 // to three levels below.

20-73

Using OpenVera Assertions

$ova_start(1, "mod1") // Start assertions in all
 // instances of module mod1 at that level only.

$ova_stop(0, i1.mod1) // Stop assertions in all of
 // the hierarchy at and below scope i1.mod1.

$ova_stop(3, i1.mod1) // Stop assertions in the hierarchy
 // started at scope i1.mod1 to a depth

Category and Severity-Based Monitoring

To control category and severity-based assertion monitoring, you can
use the following system tasks:

$ova_category_start(category)
Starts all assertions associated with the specified category. The
category level is an unsigned integer from 0 to 224 - 1

$ova_category_stop(category)
Stops all assertions associated with the specified category.

$ova_severity_start(severity)
Starts all assertions associated with the specified severity level.
The severity level is an unsigned integer from 0 to 255.

$ova_severity_stop(severity)
Stops all assertions associated with the specified severity level.

Name-Based Monitoring

To control monitoring of assertions based upon the specified names
of assertions, use the following system tasks:

$ova_assertion_stop("fullHierName")
Stops the monitoring of the specified assertion (string).

20-74

Using OpenVera Assertions

$ova_assertion_start("fullHierName")
Starts the monitoring of the specified assetion (string).

Controlling the Response To an Assertion Failure

You can specify a response to an assertion failure, based upon its
severity or category, using the $ova_severity_action or
$ova_category_action system tasks. The syntax for these two tasks
is as follows:

$ova_severity_action(severity, action);

or

$ova_category_action(category, action);

Note the following syntax elements:

severity
Severity to be associated with the action.

category
Category associated with the action.

action
Can be specified as "continue", "stop" or "finish". The
action, which must be quoted as shown, is associated globally
with the specified severity level, for all modules and instances.
The default is "continue". The actions are specified as follows:

- "stop" — Stops the simulation with $stop semantics. All OVA
attempts are also suspended and can be resumed.

- "finish" — Terminates the simulation with $finish semantics.

20-75

Using OpenVera Assertions

- "continue" — Outputs the message associated with the
assertion failure but otherwise has no effect on the simulation.

Display Custom Message For an Assertion Failure

You can display a custom message upon failure of an assert
statement check or forbid. The assert statement accepts an
action block as follows:

assert [name] [[index]] : check | forbid
 (sequence_expr | event_name [, message[, severity [,
 category]]]) [action_block];

Where:

action_block ::= [else display_statement]

display_statement is similar to the standard $display system task:

$display(formatting_string, list_of args);

If both message and a $display are specified, then both are output
upon assertion failure.

The following expression and system function calls are allowed in the
list_of args.

expression

Output the value of the (bitvector) expression at the time of
assertion failure (or success). It can be any expression over formal
port/parameter names and OVA variables. It CANNOT contain
any OVA - specific operators such as the temporal operators
past, all edge operators, and count.

20-76

Using OpenVera Assertions

The evaluation of the uses the sampled values of the variables
as in the assertion.

$ova_current_time

Returns current simulation time as a 64-bit entity. (Same as type
"time" in Verilog.)

$ova_start_time

Returns assertion start time as a 64-bit entity. (Same as type
"time" in Verilog.)

 $ova_global_time_unit

Returns global time unit as a string. (The definition of a string is
the same as in Verilog.)

Task Invocation From the CLI

Any CLI mode (command option +cli+n where n = 1-4 or +cli with
no numerical value):

$ova_stop levels
Applied down to depth levels with respect to the present scope.

$ova_start levels modname
Applied to all instances of module "modname" down to a depth
of levels. Note that no XMR is allowed. However module names
are allowed without a quoted string.

$ova_severity_action level "action"
Sets the action for severity level where action is continue, stop,
or finish.

The commands can also be issued using the format used in task calls
that is, arguments in parentheses separated by commas. Module
names must be quoted as in the task calls.

20-77

Using OpenVera Assertions

Note that you can specify all OVA system tasks and functions
described in this chapter ($ova_set_severity,
$ova_set_category, etc.) at the CLI using the documented
syntax.

Debug Control Tasks

When dumping of OVA assertion results for viewing using DVE is
enabled using the -ova_debug or -ova_debug_vpd options, the
debug information is dumped for all enabled OVA assertions (enabled
using $ova_start or by default from time 0 if not stopped by
$ova_stop).

Dumping can be turned off by calling the following task in the Verilog
code:

$ovadumpoff;

It can be turned on again by calling the following system task:

$ovadumpon;

If dumping of Verilog signals is not enabled by calling the system task
$dumpvars, OVA dumping will also include all signals that are referred
to by the assertions. This information is placed in a VPD file,
vcdplus.vpd, in the simulation run directory.

20-78

Using OpenVera Assertions

Calls From Within Code

The $ova_start, $ova_stop, and $ova_severity_action
system tasks are provided to control the monitoring of assertions,
such as delaying the start of assertion monitoring and terminating the
monitoring based on some conditions. For example, you can start
monitoring after some initial condition, such as reset, has been
satisfied.

To start monitoring, use the $ova_start system task:

$ova_start[(levels [, module, entity, or scope arguments])];

Whenever this statement is executed, assertion monitoring starts.
The command is ignored if monitoring was already started in the
specified scope, module, or entity.

The integer argument levels indicates how many levels in the
hierarchy at and below the specified modules, entities, and scopes
the OVA monitoring is to start. Zero indicates all levels below the
specified ones. Negative values are not allowed.

Within OVA and Verilog code, arguments can be specified for one or
more module names as quoted text strings (e.g.,“module_name”)
and/or instance scopes as Verilog scope names (unquoted),
separated by commas.

20-79

Using OpenVera Assertions

Scope resolution follows the Verilog Standard (IEEE Std 1364-2001)
Section 12.5. That is, if a scope argument is specified, then the path
name is first considered as relative to the module where the task was
called. If it does not match any valid relative path, it is matched against
paths one level up. If no match then one more level up, etc. For
example, if scope a.b.c is an argument of a task called from module
m, the scope name is first interpreted as a path starting at an instance
a in m. If such a path does not exist, it is applied to a parent module
of a. If the path does not exist in the root module of m, the path is an
error.

If there are no arguments, that is, $ova_start, the task applies to
the entire design. It is equivalent to $ova_start(0).

To stop monitoring, use the $ova_stop system task:

$ova_stop[(levels [, module, entity, or scope arguments])];

Whenever this statement is executed, the assertion monitoring stops.
All attempts that are in progress are reset. The command is ignored
if the monitoring has already been stopped in the specified scope or
module.

The integer argument levels indicates how many levels in the
hierarchy at and below the specified modules, entities, and scopes
the OVA monitoring is to stop. Zero indicates all levels below the
specified ones.

20-80

Using OpenVera Assertions

Arguments can be specified for one or more modules, entities, and
instance scopes as in the case of $ova_start. The effect of a
module or entity argument is to stop monitoring assertions for all
instances of the module and their respective hierarchies under each
instance as indicated by levels. The effect of a scope argument is to
stop monitoring assertions for that instance scope and the hierarchy
under it as indicated by levels. If module, entity and scope arguments
are omitted then levels applies to all the root modules of the design.

If there are no arguments, that is, $ova_stop, the task applies to
the entire design. It is equivalent to $ova_stop(0).

OVA monitoring is started automatically at the beginning of
simulation. This is for compatibility with the non-inlined version where
monitoring starts immediately at time 0. To control monitoring with
the $ova_start and $ova_stop tasks, $ova_stop must be
issued at time 0, e.g., in an initial block.

This is similar to the use of $dumpvars where dumping starts
immediately after calling this task and can be inhibited by calling
$dumpoff right after. Here, the equivalent of calling $dumpvars is
implicit in the start of simulation.

Examples:

$ova_start; // Start assertions in the whole design.

$ova_start(0) // Start assertions in the whole design.

$ova_stop(3) // Stop assertions in all top modules
// to three levels below.

$ova_start(1, "mod1") // Start assertions in all
// instances of module mod1 at that level only.

$ova_stop(0, i1.mod1) // Stop assertions in all of
// the hierarchy at and below scope i1.mod1.

20-81

Using OpenVera Assertions

$ova_stop(3, i1.mod1) // Stop assertions in the hierarchy
// started at scope i1.mod1 to a depth 3.

To specify the response to an assertion failure, use the
$ova_severity_action system task:

$ova_severity_action(level, action);

Note the following syntax elements for $ova_severity_action:

level
Severity level to be associated with the action.

action
Can be specified as "continue", "stop" or "finish". The
action, which must be quoted as shown, is associated globally
with the specified severity level, for all modules and instances.
The default is "continue". The actions are specified as follows:

- "stop" — Stops the simulation with $stop semantics. All OVA
attempts are also suspended and can be resumed.

- "finish" — Terminates the simulation with $finish
semantics.

- "continue" — Outputs the message associated with the
assertion failure but otherwise has no effect on the simulation.

20-82

Using OpenVera Assertions

Developing a User Action Function

Instead of specifying "continue", "stop" or "finish" as the
action argument to the $ova_severity_action system task, you
can specify a function that you develop to perform the action. To
enable this feature the new struct types:

Ova_AssertionSourceInfo
This struct has the following fields:

lineNo
Represents the line number in the file where the assertion was
written.

fileName
Represents the filename where the assertion was written in HDL
or OVA source code.

OvaAssertionData;
This struct has the following fields:

Ova_AssertName
This represents the full hierarchical name of the assertion.

Ova_ExprType exprType
This represents the type of assertion(event/check/forbid).

Ova_AssertionSourceInfo srcBlock
This represents the source file information for the assertion.

unsigned int severity:8
This represents the severity assigned to the assertion. It is an
eight bit integer constant.

20-83

Using OpenVera Assertions

category:24
This represents the category assigned to the assertion. It is a
24-bit integer constant.

Ova_String userMessage
This represents the custom user message assigned to the
assertion.

Ova_TimeL startTime
This represents the start time for the assertion as an unsigned
long long.

Ova_TimeL endTime
This represents the end time for the assertion as an unsigned long
long.

For non-temporal assertions, startTime and endTime will always be
the same.

The following is the prototype of the user action functions:

typedef void (*OvaAssertionFailCB)(OvaAssertionData
asData);

For example, a sample callback function would look like:

void my_user_action(OvaAssertionData assertionData)
{
. . .
}

20-84

Using OpenVera Assertions

21-1

OpenVera Native Testbench

21
OpenVera Native Testbench 1

OpenVera Native Testbench is a high-performance, single-kernel
technology in VCS that enables:

• Native compilation of testbenches written in OpenVera and in
SystemVerilog.

• Simulation of these testbenches along with the designs.

This technology provides a unified design and verification
environment in VCS for significantly improving overall design and
verification productivity. Native Testbench is uniquely geared
towards efficiently catching hard-to-find bugs early in the design
cycle, enabling not only completing functional validation of designs
with the desired degree of confidence, but also achieving this goal in
the shortest time possible.

21-2

OpenVera Native Testbench

Native Testbench is built around the preferred methodology of
keeping the testbench and its development separate from the
design. This approach facilitates development, debug, maintenance
and reusability of the testbench, as well as ensuring a smooth
synthesis flow for your design by keeping it clean of all testbench
code. Further, you have the choice of either compiling your
testbench along with your design or separate from it. The latter
choice not only saves you from unnecessary recompilations of your
design, it also enables you to develop and maintain multiple
testbenches for your design.

This chapter describes the high-level, object-oriented verification
language of OpenVera, which enables you to write your testbench in
a straightforward, elegant and clear manner and at a high level
essential for a better understanding of and control over the design
validation process. Further, OpenVera assimilates and extends the
best features found in C++ and Java along with syntax that is a
natural extension of the hardware description languages. Adopting
and using OpenVera, therefore, means a disciplined and systematic
testbench structure that is easy to develop, debug, understand,
maintain and reuse.

Thus, the high-performance of Native Testbench technology
together with the unique combination of the features and strengths
of OpenVera, can bring about a dramatic improvement in your
productivity, especially when your designs become very large and
complex.

This chapter covers the following topics:

• Major Features Supported in Native Testbench OpenVera

• Getting Started With Native Testbench OpenVera

• Compiling and Running the OpenVera Testbench

21-3

OpenVera Native Testbench

• Testbench Functional Coverage

• Temporal Assertions

• Using Reference Verification Methodology with OpenVera

• Testbench Optimization

Major Features Supported in Native Testbench
OpenVera

The features supported in Native Testbench have mainly two origins:
those that are related to the OpenVera language and others that are
related to the technology itself. These features are listed in the
following sections.

High-level Data Types

• Classes, with inheritance and polymorphism

• Fixed-size, dynamic (variable-size), and associative
(flexible-size) arrays

• Strings with predefined string-manipulation methods

• Enumerated type, reg, integer, event

• Lists with predefined methods

Flow Control

• All sequential control constructs

21-4

OpenVera Native Testbench

• Concurrency, or spawning off of concurrent child threads from a
parent thread, using fork-join with the return to the parent
conditional on the completion of any, all, or none of the
concurrent threads

• Concurrency control constructs:

- wait_child to wait on the completion of all child threads

- wait_var to block the execution of a thread until the specified
variable changes value

- suspend_thread to suspend a thread until other threads
complete or block

- Mailboxes to pass data between concurrent threads

- Semaphores to prevent multiple threads from accessing any
resource at the same time

- Triggers to enable threads to trigger events on which other
concurrent threads are waiting

- Syncs to enable waiting threads to synchronize on triggers
from triggering threads

Other Features

• Re-entrant tasks and functions with arguments passed by
reference or by value; can also have arguments with default
values

• Calls to HDL (design) tasks in OpenVera (testbench) code and to
OpenVera (testbench) tasks in HDL (design) code

• Randomization with stability for generating random stimulus

21-5

OpenVera Native Testbench

• Constraint solver for use in generating constrained random
stimulus

• Sequence generator for generating random stimulus streams

• Dynamic checks with clear, concise constructs called expects
that have automatic error-message generation capability for
writing self-checking testbenches

• Interfaces, containing interface signals, for providing the
connectivity between signals in a testbench and ports or internal
nodes of a design

• Virtual ports and binds for sharing of interface signals between
functionally similar testbench signals, or grouping of interface
signals into functionally similar bundles. Results in neat, efficient
and easily reusable interfaces with substantially fewer interface
signals.

• Separate compilation of testbench (LCA feature)

• Command-line interface (CLI) debugger (beta feature)

•

Getting Started With Native Testbench OpenVera

This chapter outlines the fundamental program structure used in all
OpenVera programs as well as describes the details of a typical flow
for Native Testbench. It also includes the compile and runtime
options needed when you choose to compile the example testbench
together with the design.

21-6

OpenVera Native Testbench

Basics of an OpenVera Testbench

This section outlines the fundamental program structure used in all
OpenVera programs.

As Figure 21-1 illustrates, the constituents of an OpenVera program
are:

• A required program block

• List of any preprocessor directives

• Top-level constructs

Figure 21-1 Constituents of OpenVera Program

Preprocessor Directives

An OpenVera source file can include another OpenVera source file
by reference using the include construct. This construct can occur
anywhere in the OpenVera program.

Program Block

preprocessor_directives
top_level_constructs

program program_name
{

}

The OpenVera Program

21-7

OpenVera Native Testbench

You must include the vera_defines.vrh file if you use predefined
macros such as ON, OFF, HIGH, LOW.

#include <vera_defines.vrh>

Top Level Constructs

There can be any number of the following top level constructs:

• Enumerated type definitions

• Class definitions

• Out of block class method definitions

• Global task and function definitions

• Verilog task and function prototypes

• Interface declarations

• Virtual port and bind declarations

Program Block

The program keyword indicates the program block. This block
contains:

program program_name
{

variable declarations
variable initializations
program block code

}

The program block is where:

• Global variables are declared

21-8

OpenVera Native Testbench

• Testbench starts execution

Any variable defined in a task or function has local scope.

"Hello World!"

The following simple program prints “Hello World!” to standard
output.

//hello.vr file

program hello_world
{

string str;
str = "Hello World!";

printf("%s \n", str); // printf() sends information
 // to stdout
}

//hello.vr file, is a comment line. A single-line comment starts
with the two slashes, //. This comment provides the name of the
testbench file containing the program.

program is a keyword and indicates that this is where execution of
the testbench begins.

hello_world is an identifier. Here, "hello_world" is the name of
the program.

The left curly brace, { , must follow the program name. The right
curly brace, } , indicates the end of the program.

string str; is the first statement in the program. string
indicates the data type of the variable.

The variable, str, is a global string variable.

21-9

OpenVera Native Testbench

Statements are indicated with a semi-colon, ; .

The str variable is initialized on the next line (str = "Hello
World!";).

A variable can be declared and initialized on the same line, that is,
you can modify the example as follows:

string str = "Hello World!";

The printf() system task sends information to standard output during
the simulation.

printf("%s \n", str);

%s is a string format specifier. \n indicates a line break. The str
variable is passed to the task. The value of the str variable is
printed out.

To see the output of this program, compile and run the hello.vr file as
follows:

% vcs -ntb hello.vr

% simv

The output is, as expected:

Hello World!

The Template Generator

The typical flow for developing a testbench using the NTB template
generator to start the process is as follows:

21-10

OpenVera Native Testbench

% ntb_template -t design_module_name [-c clock] filename.v \
[-vcs vcs_compile-time_options]

Here:

design_module_name

The name of the module of your design.

The following template-generator command line illustrates all
possible options:

% ntb_template -t arb -c clk arb.v -vcs vcs_option \
[-vcs vcs_compile-time_options]

-t
Specifies the top-level design module name.

arb
Name of the top-level design module.

arb.v
Name of the design file.

-c
Specifies the clock input of the design.

-vcs
Specifies any VCS command that needs to be used in template
generation. For example, if the top-level design module has ports
listed in the Verilog-2001 format (v2k), then you need to specify
the following: -vcs +v2k.

21-11

OpenVera Native Testbench

Multiple Program Support

Multiple program support enables multiple testbenches to run in
parallel. This is useful when testbenches model standalone
components (for example, Verification IP (VIP) or work from a
previous project). Because components are independent, direct
communication between them except through signals is undesirable.
For example, UART and CPU models would communicate only
through their respective interfaces, and not via the testbench. Thus,
multiple program support allows the use of standalone components
without requiring knowledge of the code for each component, or
requiring modifications to your own testbench.

Configuration File Model

The configuration file that you create, specifies file dependencies for
OpenVera programs.

Specify the configuration file at the VCS command line as a
command line argument to -ntb_opts. For example:

vcs -ntb -ntb_opts config=configfile top.v

Configuration File
The configuration file contains the program construct.

The program keyword is followed by the OpenVera program file (.vr
file) containing the testbench program and all the OpenVera program
files needed for this program. For example:

//configuration file
program

21-12

OpenVera Native Testbench

 main1.vr
 main1_dep1.vr
 main1_dep2.vr
 ...
 main1_depN.vr
 [NTB_options]

program
 main2.vr
 main2_dep1.vr
 main2_dep2.vr
 ...
 main2_depN.vr
 [NTB_options]

program
 mainN.vr
 mainN_dep1.vr
 mainN_dep2.vr
 ...
 mainN_depN.vr
 [NTB_options]

In this example, main1.vr, main2.vr and mainN files each contain a
program. The other files contain items such as definitions of
functions, classes, tasks and so on needed by the program files. For
example, the main1_dep1.vr, main1_dep2.vr main1_depN.vr
files contain definitions relevant to main1.vr. Files main2_dep1.v,
main2_dep2.vr ... main2_depN.vr contain definitions relevant to
main2.vr, and so forth.

Use Model for Multiple Programs
You can specify programs and related support files with multiple
programs in two different ways:

1. Specifying all OpenVera programs in the configuration file

2. Specifying one OpenVera program on the command line, and the
rest in the configuration file

21-13

OpenVera Native Testbench

Specifying All OpenVera Programs in Configuration File

You can specify all the OpenVera program files along with
dependent OpenVera files in the configuration file using the
configuration file syntax. The VCS command line for this method:

$vcs -ntb_opts config=configuration_filename

Specifying One OpenVera Program on Command Line

Specify one OpenVera program file with its dependent files on the
command line. Place all other OpenVera program files, and their
dependent files in the configuration file. The VCS command for this
methods:

$vcs -ntb_opts \
 config=configuration_filename \
 testN.vr testN_dep1.vr testN_dep2.vr.

Note:
Specifying multiple OpenVera files containing the program
construct at the VCS command prompt is an error.

Note:
If you specify one program at the VCS command line and if any
support files are missing from the command line, VCS issues an
error.

Compiling Multiple Programs
There are numerous scenarios for compiling multiple programs.

Program Files are Listed in the Configuration File

The VCS command line, for when there are two or more program
files listed in the configuration file, is:

$vcs -ntb -ntb_opts config=configuration_filename

21-14

OpenVera Native Testbench

The configuration file, could be:

program main1.vr -ntb_define ONE
program main2.vr -ntb_incdir /usr/vera/include

One Program File is on the Command Line

You can specify one program in the configuration file and the other
program file at the command prompt.

 $vcs -ntb -ntb_opts config=configfile main2.vr -ntb_incdir \
/usr/vera/include

The configuration file, in this example, is:

program main1.vr

In the above example, main1.vr is specified in the configuration
file and main2.vr is specified on the command line along with the
files need by main2.vr.

Compiling when there is a top-level module. If there is a top-
level module having an instance of an OpenVera program, then you
can compile in either of the following ways:

% vcs -ntb -ntb_opts config=configfile top.v

Note that all the program files are in the configuration file:

program test1.vr
program test2.vr
program test3.vr

or:

% vcs -ntb -ntb_opts config=configfile top.v test3.vr

The configuration file, in this example, is:

21-15

OpenVera Native Testbench

program test1.vr
program test2.vr

You can specify, at most, one OpenVera program file, along with its
dependent OpenVera files, at the command prompt. Specifying
more than one OpenVera file that contains a program construct at
the command prompt is an error.

NTB Options and the Configuration File
The configuration file supports different OpenVera programs with
different NTB options such as include, define, or timescale. For
example, if there are three OpenVera programs p1.vr, p2.vr and
p3.vr, and p1.vr requires the -ntb_define VERA1 runtime option, and
p2.vr should run with -ntb_incdir /usr/vera/include option, specify
these options in the configuration file:

program p1.vr -ntb_define VERA1
program p2.vr -ntb_incdir /usr/vera/include

and specify the command line as follows.

$vcs -ntb -ntb_opts config=configfile p3.vr

Any NTB options mentioned at the command prompt in addition to
the configuration file are applicable to all OpenVera programs.

In the configuration file, you may specify the NTB options in one line
separated by spaces, or on multiple lines.

program file1.vr -ntb_opts no_file_by_file_pp

Some NTB options specific for OpenVera code compilation, such as
-ntb_cmp and -ntb_vl, affect the VCS flow after the options are
applied. If these options are specified in the configuration file, they
are ignored.

The following options are allowed for multiple program use.

21-16

OpenVera Native Testbench

• -ntb_define macro

• -ntb_incdir directory

• -ntb_opts no_file_by_file_pp

• -ntb_opts tb_timescale=value

• -ntb_opts dep_check

• -ntb_opts print_deps

• -ntb_opts use_sigprop

• -ntb_opts vera_portname

-ntb_define macro

To run different OpenVera programs with different macro definitions,
specify the macros name using the "-ntb_define" option. Multiple
macro names are specified using the delimiter the "+".

ntb_options -ntb_define macro1

or

ntb_options -ntb_define macro1+macro2

-ntb_incdir directory

Specifies the path to the directory where *.vrh files to be included
reside. Multiple include directories can be specified using the
delimiter +.

Example:

ntb_options -ntb_incdir /usr/muddappa/include

or

21-17

OpenVera Native Testbench

ntb_options -ntb_incdir /usr/muddappa/include+/usr/vera/include

-ntb_opts no_file_by_file_pp

File by file preprocessing is done on each input file, feeding the
concatenated results to the parser. To disable this behavior, use
no_file_by_file_pp.

-ntb_opts tb_timescale=value

Specifies an overriding timescale for an OpenVera program. This
option allows you to generate different timescale values for each
OpenVera program.

Example:

-ntb_opts tb_timescale=1ns/10ps

-ntb_opts dep_check

Enables dependency analysis. Files with circular dependencies are
detected. VCS issues an error message when it cannot determine
which file to compile first.

-ntb_opts print_deps

Supplied with dep_check. Tells the compiler to output the
dependencies for the source files to standard output or to a user
specified file.

-ntb_opts use_sigprop

Compiling the OpenVera program with this option enables the signal
property access functions.

The functions supported are:

• function integer vera_is_bound()

21-18

OpenVera Native Testbench

• function string vera_get_name()

• function string vera_get_ifc_name()

• function string vera_get_clk_name()

• function integer vera_get_dir()

• function integer vera_get_width()

• function integer vera_get_in_type()

• function integer vera_get_in_skew()

• function integer vera_get_in_depth()

• function integer vera_get_out_type()

• function integer vera_get_out_skew()

These functions are documented in the “Retrieving Signal
Properties” section of the OpenVera LRM: Native Testbench
manual.

-ntb_opts vera_portname

When specifying the vera_portname option to -ntb_opts, the naming
convention is as follows:

1. The Vera shell module name is named vera_shell,

2. The interface ports are named ifc_signal,

3. The signals are named, for example, as: \ifc.signal[3:0]

The default behavior is:

The Vera shell module name is based on the name of the OpenVera
program. Bind signals are named, for example, as: \ifc.signal[3:0]
The interface ports are named \ifc.signal

21-19

OpenVera Native Testbench

Summary
There are three major error scenarios, when specifying OpenVera
files on the command line in addition to the configuration file:

1. An error is issued when the VCS command specifies multiple
OpenVera files containing the program construct in addition to a
configuration file.

2. An error is issued if the file on the command line which contains
program, does not also have all of the files it is dependent on
specified in the command line. If one file contains program
whereas the other files contain tasks and functions required by
the file containing program, the program is treated as part of
multiple programs in the configuration file. That is, it is like an
addition of one more programs in the configuration file.

3. An error is issued if none of the files specified on the command
line contains the program construct.

Example Configuration File
program

prog1.vr
task11.vr
task12.vr
-ntb_opts tb_timescale=1ns/10ps
-ntb_define NTB1
-ntb_incdir /usr/muddappa/include

program
prog2.vr
task21.vr
task22.vr
-ntb_define NTB2+NTB3 -ntb_opts dep_check

program
prog3.vr
-ntb_incdir /usr/muddapa/include+/usr/vera/include

21-20

OpenVera Native Testbench

In this example configuration file, the prog1.vr, prog2.vr and prog3.vr
files contain the OpenVera program construct. The OpenVera files
task11.vr and task12.vr are two files needed by the program in the
prog1.vr file. task21.vr and taks22.vr are OpenVera files needed by
program in prog2.vr

Multiple program example:

top.v file
module duv_test_top;
 parameter simulation_cycle = 100;

 reg SystemClock;

 wire [7:0] d1;
 wire [7:0] d2;
 wire rst_;
 wire clk;
 wire [7:0] q1;
 wire [7:0] q2;
 assign clk = SystemClock;

 duv_test1 u1(
 .SystemClock (SystemClock),
 .\duv1.d (d1),
 .\duv1.q (q1),
 .\duv1.rst_ (rst_),
 .\duv1.clk (clk)
);

 duv_test2 u2(
 .SystemClock (SystemClock),
 .\duv2.d (d2),
 .\duv2.q (q2),
 .\duv2.rst_ (rst_),
 .\duv2.clk (clk)
);

 duv dut(
 .d1 (d1),

21-21

OpenVera Native Testbench

 .d2 (d2),
 .rst_ (rst_),
 .clk (clk),
 .q1 (q1),
 .q2 (q2)
);

 initial begin
 SystemClock = 0;
 forever begin
 #(simulation_cycle/2)
 SystemClock = ~SystemClock;
 end
 end

endmodule
// duv.if1.vri
#ifndef INC_DUV1_IF_VRH
#define INC_DUV1_IF_VRH

 interface duv1 {
 input [7:0] q NSAMPLE ;
 inout [7:0] d PDRIVE #1 PSAMPLE #-1 ;
 output rst_ PDRIVE ;
 input clk CLOCK ;
 } // end of interface duv

 // hdl_node CLOCK "duv_test_top.clk";

#endif

// test1.vr
#include <vera_defines.vrh>
#include "duv.if1.vri"

program duv_test1 {
 printf("start of sim duv_test1\n") ;
 @1 duv1.rst_ = 0 ;
 @1 duv1.rst_ = 1 ;
 @1 duv1.rst_ = void ;

 @1 duv1.d = 1 ;

21-22

OpenVera Native Testbench

 @1 duv1.d = 2 ;

 @1 duv1.d = 3 ;
 @20 duv1.q == 8'h3 ;

 printf("end of sim duv_test1\n") ;
}

// duv.if2.vri
#ifndef INC_DUV2_IF_VRH
#define INC_DUV2_IF_VRH
 interface duv2 {
 input [7:0] q PSAMPLE #-1;
 inout [7:0] d PDRIVE #1 PSAMPLE #-1 ;
 output rst_ PDRIVE #1 ;
 input clk CLOCK ;
 } // end of interface duv
#endif

// test2.vr
#include <vera_defines.vrh>
#include "duv.if2.vri"
program duv_test2 {
 printf("start of sim duv_test2\n") ;
 @1 duv2.rst_ = 0 ;
 @1 duv2.rst_ = 1 ;
 @1 duv2.rst_ = void ;
 @1 duv2.d = 1 ;
 @1 duv2.d = 2 ;
 @1 duv2.d = 3 ;
 @2 duv2.q == 8'h3 ;
 @1 duv2.d = 3 ;
 printf("end of sim duv_test2\n") ;
}

// dut.v
module duv (q1, d1, q2, d2, rst_, clk) ;
 input [7:0] d1 ;
 output [7:0] q1 ;
 input [7:0] d2 ;

21-23

OpenVera Native Testbench

 output [7:0] q2 ;
 input rst_ ;
 input clk ;

 dff u1 (.q(q1), .d(d1), .rst_(rst_), .clk(clk)) ;
 dff u2 (.q(q2), .d(d2), .rst_(rst_), .clk(clk)) ;
endmodule
module dff (q, d, rst_, clk) ;
 input [7:0] d ;
 output [7:0] q ;
 input rst_ ;
 input clk ;
 reg [7:0] q ;
 always @(posedge clk)
 q <= (!rst_)? 8'h00 : d ;

endmodule

// vlog.f
duv.v
top.v

// config.vrl
program
 ./test1.vr
program
 ./test2.vr

// 1_comp_run_ntb
#!/bin/csh -fx
vcs -ntb -f vlog.f -ntb_opts config=config.vrl
simv

21-24

OpenVera Native Testbench

Compiling and Running the OpenVera Testbench

This section describes how to compile your testbench with the
design and how to compile the testbench independently from the
design. It also describes compile-time and runtime options.

In order to ease transitioning of legacy code from Vera’s
make-based single-file compilation scheme to VCS, where all source
files have to be specified on the command line, VCS provides a way
of instructing the compiler to reorder Vera files in such a way that
class declarations are in topological order. The following sections
describe how to do this.

Compiling the Testbench with the OpenVera Design

The VCS command line for compiling both your testbench and
design is the following:

% vcs -ntb design_module_name.v module_name.test_top.v
testbench_file.vr [vcs_compile-time_options]
[ntb_compile-time_options]

The compilation results in a single executable simv that contains
both testbench and design information.

For a list of NTB compile-time options, see Options for OpenVera
Native TestBench in Appendix B.

The command line for running the simulation is as follows:

% simv +vcs_runtime_options

21-25

OpenVera Native Testbench

Compiling the Testbench Separate From the OpenVera
Design

This section describes how to compile your testbench separately
from your design and then load it on simv (compiled design
executable) at runtime. Separate compilation of testbench files
allows you to:

• Keep one or many testbenches compiled and ready and then
choose which testbench to load when running a simulation.

• Save time by recompiling only the testbench after making
changes to it and then running simv with the recompiled
testbench.

• Save time in cases where changes to the design do not require
changes to the testbench by recompiling only the design after
making changes to it and then running simv with the previously
compiled testbench.

Separate compilation of the testbench generates two files:

• The compiled testbench in a shared object file, libtb.so. This
shared object file is the one to be loaded on simv at runtime.

• A Verilog shell file (.vshell) that contains the testbench shell
module. Since the testbench instance in the top-level Verilog
module now refers to this shell module, the shell file has to be
compiled along with the design and the top-level Verilog module.
The loaded shared object testbench file is automatically invoked
by the shell module during simulation.

21-26

OpenVera Native Testbench

The following steps demonstrate a typical flow involving separate
compilation of the testbench:

1. Compile the testbench in VCS to generate the shared object
(libtb.so) file containing the compiled testbench and the Verilog
testbench shell file.

2. Compile the Verilog design along with the top-level Verilog
module and the testbench shell (.vshell) file to generate the
executable simv.

3. Load the testbench on simv at runtime.

Separate Compilation of Testbench Files for VCS

To compile the testbench file (tb.vr) and create the testbench shell
(.vshell) and shared object (libtb.so) files, use the following syntax:

vcs -ntb_cmp [-ntb_options] [-ntb_noshell | \
 -ntb_shell_only] tb.vr

Here:

-ntb_cmp

Compiles and generates the testbench shell (file.vshell) and
shared object files

Compile-time Options
-ntb_sfname filename

Specifies the file name of the testbench shell.

-ntb_sname module_name

Specifies the name of the testbench shell module.

21-27

OpenVera Native Testbench

-ntb_spath

Specifies the directory where the testbench shell and shared
object files will be generated. The default is the compilation
directory.

-ntb_noshell

Specifies not generating the shell file. Use this only when you are
recompiling a testbench.

-ntb_shell_only

Generates only the .vshell file. Use this only when you are
compiling a testbench separately from the design file.

Note:
When compiling the testbench files separately from the design,
the following rules apply:

- Specify the ntb options should be specified only during
testbench compilation. The exception is the -ntb_vl option that
specifies that the DUT is compiled separately and which you
should therefore specify while compiling the DUT.

- Specify ‘C’ files or other library files should be specified only
while compiling the DUT. These options are ignored for
testbench compilation.

- Specify all other tool options for both testbench and DUT
compilation. For example, -debug_all, -debug, etc.

Compiling the Design, the Testbench Shell And the
Top-level Verilog Module

Next you generate a simv for your design. The syntax for compiling
the Verilog design file, dut.v, with the testbench shell (tb.vshell) and
the top-level Verilog module (test_top.v) is the following:

21-28

OpenVera Native Testbench

vcs -ntb_vl dut.v name.test_top.v tb.vshell

Here:

-ntb_vl

Specifies the compilation of all Verilog files, including the design,
the testbench shell file and the top-level Verilog module.

Example

% vcs -ntb_vl sram.v sram.test_top.v sram.vshell

Note:
Remember, if, for example, you used -debug_all when
compiling the .vr file, you must include -debug_all on the vcs
command line as well. For example:

% vcs -debug_all -ntb_vl dut.v name.test_top.v tb.vshell

Loading the Compiled Testbench On simv

Finally, load the compiled testbench shared object file, libtb.so, on
simv using the following syntax:

% simv +ntb_load=path_name_to_libtb.so

Or

% simv +ntb_load=./libtb.so

Here:

+ntb_load

Specifies the testbench shared object file libtb.so to be loaded.

21-29

OpenVera Native Testbench

Example

% simv +ntb_load=test1/libtb.so

Limitations

• The hdl_task inst_path specification should begin with a top-level
module (that is, not the DUT module name).

• When the hdl_task declaration has a var parameter, the
corresponding task port in the DUT side must be “inout” (that is,
it cannot be “output”).

• The port direction and size in the hdl_task specification must
match the corresponding task in the DUT.

• You cannot rely on port-coercion to happen for hdl_tasks to
correct the direction based on usage. For example, if one of the
hdl_tasks port directions is specified as an input but is actually
used as output, then it may not be able to be coerced into
behaving as an output in the separate compile mode.

•

Compile-time Options

The following options can be used on the VCS command line for
Native Testbench, whether compiling the testbench with the design,
or separately from the design:

-ntb

Invokes Native Testbench.

21-30

OpenVera Native Testbench

-ntb_cmp

Compiles and generates the testbench shell (file.vshell) and
shared object files. Use this when compiling the .vr file separately
from the design file.

+error+n

Sets the maximum number (n) of errors before compilation
failure.

-f filename

Specifies the file containing a list of all the source files to be
compiled. Synopsys recommends that you append the .list
extension to the filename to indicate that it is an NTB source list
file. The -f option works equally well with both relative and
absolute path names.

For example:

#file.list

topTest.vr
packet.vr
checker.vr

% vcs -ntb design_module_name.v module_name.test_top.v \
testbench_file.vr -f file.list

-ntb_define macro

Specifies any OpenVera macro name on the command line. You
can specify multiple macro names using the + delimiter.

Examples:

-ntb_define macro1
-ntb_define macro1+macro2

21-31

OpenVera Native Testbench

-ntb_filext extensions

Specifies an OpenVera file extension. You can pass multiple file
extensions at the same time using the + delimiter.

Examples:

-ntb_filext .vr
-ntb_filext .vr+.vri+.vrl

-ntb_incdir directory

Specifies the include directory path for OpenVera files. You can
specify multiple include directories using the + delimiter.

Examples:

-ntb_incdir ../src1
-ntb_incdir ../src1+../../src2

-ntb_noshell

Specifies not generating the shell file. Use this only when
recompiling a testbench.

-ntb_spath

Specifies the directory where the shared object files will be
generated. The default is the compilation directory.

-ntb_vipext .extensions

Specifies an OpenVera encrypted-mode file extension to mark
files for processing in OpenVera encrypted IP mode. Unlike the
-ntb_filext option, the default encrypted-mode extensions
.vrp, .vrhp are not overridden, and are always in effect. You can
pass multiple file extensions at the same time using the +
delimiter. See “Dependency-based Ordering in the Presence of
Encryption” on page 21-43.

21-32

OpenVera Native Testbench

-ntb_vl

Specifies the compilation of all Verilog files, including the design,
the testbench shell file and the top-level Verilog module.

-ntb_opts

Invokes a set of keyword arguments

Syntax:

-ntb_opts keyword_argument[+keyword_argument(s)]

Examples:

-ntb_opts check
-ntb_opts no_file_by_file_pp+check

A list of keyword arguments is as follows:

check

Reports error, at compile time or runtime, for out-of-bound or
illegal array access. For example:

// mda.vr
program p
{

bit ia[4][5];
integer i, j;

 i = 4;
 j = 5;
 j = ia[i][j];
}

This yields the following runtime error:

Error: Out of bound multi-dimensional array access
(index number: 0, index value: 4) at time 0 in file
mda.vr line 8

21-33

OpenVera Native Testbench

In cases where the out-of-bound index is directly specified as
a constant expression as in the following example there is an
error at compile time itself.

program p
{

bit ia[4];
 integer i;
 i = ia[4]; // Or i = ia[1'bx];
}

The error message in this case is:

Error-[IRIMW] Illegal range in memory word
Illegal range in memory word shown below
"mda_2.vr", 7: ia[4]

Enables the built-in checker to identify any null-pointer access.
For example, a list or class object being used without
initialization.

Enables printing a thread stack trace upon a verification or null
check error. This is very useful debug feature that helps to
identify the caller of the thread in which the error occurs.

Prints the time and expected outputs of an expect statement
upon a verification error.

dep_check

Enables dependency analysis. Detects files with circular
dependencies and issues an error message when VCS cannot
determine which file to compile first.

no_file_by_file_pp

By default, file by file preprocessing is done on each input file,
and the concatenated result is fed to the parser. To disable this
behavior, use no_file_by_file_pp.

21-34

OpenVera Native Testbench

print_deps

The -print_deps option is supplied with dep_check telling
the VCS compiler to output the dependencies for the source
files to standard output or to a user specified file.

-rvm

Use -rvm when RVM is used in the testbench.

tb_timescale

Specifies an overriding timescale for the testbench. For
example:

vcs -ntb_opts tb_timescale=1ns/1ps file.vr

This allows independent control of the testbench timescale as
opposed to picking up the `timescale of the last .v file
compiled.

Consider a case where you pass a timescale, T1, to VCS
during the testbench compilation phase with the -ntb_opts
tb_timescale option. If this timescale is different from the
elaborated timescale, T2, used for the design, then in addition
to T1 you also have to pass T2 during testbench compilation.
You pass T2 using the -timescale option. That is, the
timescale passed to VCS during the testbench compilation
phase should match the final elaborated timescale of the
design.

use_sigprop

Compiling the testbench with the +ntb_opts keyword option,
use_sigprop, enables the signal property access functions.
For example, vera_get_ifc_name().

21-35

OpenVera Native Testbench

Example:

vcs -ntb -ntb_opts use_sigprop test_io.v \
test_io.test_top.v test_io.vr

The functions supported are:

function integer vera_is_bound(signal)

function string vera_get_name(signal)

function string vera_get_ifc_name(signal)

function string vera_get_clk_name(signal);

function integer vera_get_dir(signal);

function integer vera_get_width();

function integer vera_get_in_type();

function integer vera_get_in_skew();

function integer vera_get_in_depth();

function integer vera_get_out_type();

function integer vera_get_out_skew();

See Chapter 6 in the OpenVera LRM: Native Testbench for a
full description of these functions.

vera_portname

When you pass the vera_portname option to -ntb_opts
(that is, -ntb_opts vera_portname):

1. The Vera shell module name is named vera_shell.

2. The interface ports are named ifc_signal

3. Bind signals are named, for example, as: \ifc_signal[3:0]

21-36

OpenVera Native Testbench

Without this option, the default behavior is:

1. The Vera shell module name is based on the name of the
OpenVera program.

2. Bind signals are named, for example, as: \ifc.signal[3:0]

3. The interface ports are named \ifc.signal

covg_compat

The covg_compat argument enables VCS to compile the
source file in the old (pre-VCS 2006.06) semantics for
coverage and disables all the new VCS 2006.06 coverage
features such as:

- SV style auto binning

- New semantics for cross bins

- Accurate cross coverage computation

- Accurate hole analysis for cover points and crosses

- Default coverage goal changed to 100 percent

Example:

vcs –ntb_opts covg_compat [-other_compile_options]
file.vr

The database generated using the covg_compat argument
cannot be merged with a database generated without using it
and vice versa.

21-37

OpenVera Native Testbench

Runtime Options

-cg_coverage_control

The coverage_control() system task (see the OpenVera LRM:
Native Testbench for description of this task), coupled with the
-cg_coverage_control runtime argument, provides a
single-point mechanism for enabling/disabling the coverage
collection for all coverage groups or a particular coverage group.

Syntax:

-cg_coverage_control=value

The values for -cg_coverage_control are 0 and 1. A value
of “0” disables coverage collection, and a value of “1” enables
coverage collection.

For an example, see “Controlling Coverage Collection Globally”
on page 21-51.

+ntb_cache_dir

Specifies the directory location of the cache that VCS-NTB
maintains as an internal disk cache for randomization:

% simv +ntb_cache_dir=/u/myself/tmp_cache...

This cache improves performance and reduces memory use by
reusing randomization problem data from previous runs. The
default cache is called “.__solver_cache__” in the current
working directory.

You can remove the contents of the cache at any time, except
when VCS is running.

21-38

OpenVera Native Testbench

+ntb_debug_on_error

Stops the simulation when it encounters a simulation error.
Simulation errors involve either an expect error or VCS calling
the error() system task.

+ntb_enable_solver_trace=value

Enables a debug mode that displays diagnostics when VCS
executes a randomize() method call. Allowed values are:

If +ntb_enable_solver_trace is specified without an
argument, the default value is 1. If it is not specified, the default
is 2.

+ntb_enable_solver_trace_on_failure[=value]

Enables a mode that “displays” trace information only when the
VCS constraint solver fails to compute a solution, usually due to
inconsistent constraints. When the value of the option is 2, the
analysis narrows down to the smallest set of inconsistent
constraints, thus aiding the debugging process.

For example, if the constraints are:

x == 0;
x > y;
y < z+w;
x == 5;
y != 6;

If you specify +ntb_enable_solver_trace_on_failure=2
(that is with value “2”), then you will get a report of just the
inconsistent constraints.

Value Description
0 Disables tracing

1 Enables tracing

2 Enables more verbose message in trace

21-39

OpenVera Native Testbench

For example:

x == 0;
x == 5;

Allowed values are 0, 1, and 2. The default value is 2.

If +ntb_enable_solver_trace_on_failure is specified
without an argument, the default value is 1. The default is 2, if the
option is not specified.

+ntb_exit_on_error[=value]

Causes VCS to exit when value is >0. The value can be:

- 0: continue

- 1: exit on first error (default value)

- N: exit on nth error.

When value = 0, the simulation runs to completion regardless of
the number of errors.

+ntb_load=path_name_to_libtb.so

Tells VCS which testbench shared object file libtb.so to load.

+ntb_random_seed=value

Sets the seed value used by the top level random number
generator at the start of simulation. The random(seed) system
function call overrides this setting.
Value can be any integer number.

Value Description
0 Disables tracing

1 Enables tracing

2 Enables more verbose message in trace

21-40

OpenVera Native Testbench

+ntb_solver_mode=value

Allows you to choose between one of two constraint solver
modes. When set to 1, the solver spends more pre-processing
time in analyzing the constraints, during the first call to
randomize() on each class. Subsequent calls to randomize() on
that class are very fast. When set to 2, the solver does minimal
pre-processing, and analyzes the constraint in each call to
randomize(). Default is 2.

+ntb_stop_on_error

When the simulation encounters a simulation error, this option
causes the simulation to stop immediately, and turns it into a CLI
debugging environment. In addition to normal verification errors,
+ntb_stop_on_error halts the simulation in case of runtime
errors.

The default setting is to execute the remaining code within the
present simulation time.

+vera_enable_checker_trace

Enables a debug mode that displays diagnostics when the
randomize(VERA_CHECK_MODE) method is called.

+vera_enable_checker_trace_on_failure

Enables a mode that prints trace information only when the
randomize(VERA_CHECK_MODE) returns 0.

+vera_enable_solver_trace

Enables a debug mode that displays diagnostics when the
randomize() method is called.

21-41

OpenVera Native Testbench

+vera_enable_solver_trace_on_failure

Enables a mode that prints trace information only when the
solver fails to compute a solution, usually due to inconsistent
constraints. Legal values are 0, 1 and 2. When the value of the
option is 2, the analysis narrows down to the smallest set of
inconsistent constraints, thus aiding the debugging process.

+vera_solver_mode

Selects the Vera constraint solver to use. When set to 1, the
solver spends more pre-processing time in analyzing the
constraints, during the first call to randomize() on each class.
Subsequent calls to randomize() on that class are very fast.
When set to 2, the solver does minimal pre-processing, and
analyzes the constraint in each call to randomize().

Class Dependency Based OpenVera Source File
Reordering

In order to ease transitioning of legacy code from Vera’s
make-based single-file compilation scheme to VCS-NTB, where all
source files have to be specified on the command line, VCS provides
a way of instructing the compiler to reorder Vera files in such a way
that class declarations are in topological order (that is, base classes
precede derived classes).

In Vera, where files are compiled one-by-one, and extensive use of
header files is a must, the structure of file inclusions makes it very
likely that the combined source text has class declarations in
topological order.

21-42

OpenVera Native Testbench

If specifying a command line like the following leads to problems
(error messages related to classes), adding -ntb_opts
dep_check to the command line directs the compiler to activate
analysis of Vera files and process them in topological order with
regard to class derivation relationships.

% vcs -ntb *.vr

By default, files are processed in the order specified (or
wildcard-expanded by the shell). This is a global option, and affects
all Vera input files, including those preceding it, and those named in
-f file.list.

When using the option –ntb_opts print_deps in addition to
–ntb_opts dep_check, the reordered list of source files is printed
on standard output. This could be used, for example, to establish a
baseline for further testbench development.

For example, assume the following files and declarations:

b.vr: class Base {integer i;}
d.vr: class Derived extends Base {integer j;}
p.vr: program test {Derived d = new;}

File d.vr depends on file b.vr, since it contains a class derived from
a class in b.vr, whereas p.vr depends on neither, despite containing
a reference to a class declared in the former. The p.vr file does not
participate in inheritance relationships. The effect of dependency
ordering is to properly order the files b.vr and d.vr, while leaving files
without class inheritance relationships alone.

The following command lines result in reordered sequences.

vcs –ntb –ntb_opts dep_check d.vr b.vr p.vr
vcs –ntb –ntb_opts dep_check p.vr d.vr b.vr

21-43

OpenVera Native Testbench

The first command line yields the order b.vr d.vr p.vr, while the
second line yields, p.vr b.vr d.vr.

Circular Dependencies

With some programming styles, source files can appear to have
circular inheritance dependencies in spite of correct inheritance
trees being cycle-free. This can happen, for example, in the following
scenario:

a.vr: class Base_A {...}
 class Derived_B extends Base_B {...}
b.vr: class Base_B {...}
 class Derived_A extends Base_A {...}

Here classes are derived from base classes that are in the other file,
respectively, or more generally, when the inheritance relationships
project on to a loop among the files. This is however an abnormality
that should not occur in good programming styles. VCS will detect
and report the loop, and will use a heuristic to break it. This may not
lead to successful compilation, in which case you can use the
-ntb_opts print_deps option to generate a starting point for
manual resolution; however if possible the code should be rewritten.

Dependency-based Ordering in the Presence of
Encryption

As encrypted files are intended to be mostly self-contained library
modules that the testbench builds upon, they are excluded from
reordering regardless of dependencies (that shouldn’t exist in
unencrypted code to begin with). VCS splits Vera input files into
those that are encrypted or declared as such by having extensions

21-44

OpenVera Native Testbench

.vrp, .vrhp, or as specified using option –ntb_vipext, and others.
Only the latter unencrypted files are subject to dependency-based
reordering, and encrypted files are prefixed to them.

Note:
The -ntb_opts dep_check compile-time option specifically
resolves dependencies involving classes and enums. That is, we
only consider definitions and declarations of classes and enums.
Other constructs such as ports, interfaces, tasks and functions
are not currently supported for dependency check.

Using Encrypted Files

VCS-NTB allows distributors of Verification IP (Intellectual Property)
to make testbench modules available in encrypted form. This
enables the IP vendors to protect their source code from
reverse-engineering. Encrypted testbench IP is regular OpenVera
code, and is not subject to special processing other than to protect
the source code from inspection in the debugger, through the PLI, or
otherwise.

Encrypted code files provided on the command line are detected by
VCS, and are combined into one preprocessing unit that is
preprocessed separately from unencrypted files, and is for itself
always preprocessed in –ntb_opts no_file_by_file_pp
mode. The preprocessed result of encrypted code is prefixed to
preprocessed unencrypted code.

VCS only detects encrypted files on the command line (including -f
option files), and does not descend into include hierarchies. While
the generally recommended usage methodology is to separate
encrypted from unencrypted code, and not include encrypted files in
unencrypted files, encrypted files can be included in unencrypted

21-45

OpenVera Native Testbench

files if the latter are marked as encrypted-mode by naming them with
extensions .vrp, .vrhp, or additional extensions specified using
option –ntb_vipext. This implies that the extensions are
considered OpenVera extensions similar to using -ntb_filext for
unencrypted files. This causes those files and everything they
include to be preprocessed in encrypted mode.

Testbench Functional Coverage

As chip designs grow more complex and testing environments
become increasingly sophisticated, the emphasis is on testing the
chip completely. With hundreds of possible states in a system and
thousands of possible transitions, the completeness of tests must be
a primary focus of any verification tool.

Traditional coverage models use a code coverage methodology.
They check that specific lines of code are executed at some point in
the simulation. However, this method has inherent flaws. For
instance, you can be certain that a device entered states 1, 2 and 3,
but you cannot be certain that the device transitioned from state 1 to
2 to 3 in sequence. Even such a simple example displays the
limitations of code coverage methodology. With a sophisticated chip,
such an approach is not adequate to ensure the integrity of the
design.

VCS supports a functional coverage system. This system is able to
monitor all states and state transitions, as well as changes to
variables and expressions. By setting up a number of monitor bins
that correspond to states, transitions, and expression changes, VCS
is able to track activity in the simulation.

21-46

OpenVera Native Testbench

Each time a user-specified activity occurs, a counter associated with
the bin is incremented. By establishing a bin for each state, state
transition, and variable change that you want to monitor, you can
check the bin counter after the simulation to see how many activities
occurred. It is, therefore, simple to check the degree of
completeness of the testbench and simulation.

VCS further expands this basic functionality to include two analysis
mechanisms: open-loop analysis and closed-loop analysis.

• Open-loop analysis monitors the bins during the simulation and
writes a report at the end summarizing the results.

• Closed-loop analysis monitors the bins during the simulation and
checks for areas of sparse coverage. This information is then
used to drive subsequent test generation to ensure satisfactory
coverage levels.

Coverage Models Using Coverage Groups

The coverage_group construct encapsulates the specification of a
coverage model or monitor. Each coverage_group specification has
the following components:

• A set of coverage points. Each coverage point is a variable or a
DUT signal to be sampled. A coverage point can also be an
expression composed of variables and signals. The variables may
be global, class members, or arguments passed to an instance
of the coverage_group.

• A sampling event (a general event not just an OpenVera sync
event) that is used for synchronizing the sampling of all coverage
points.

21-47

OpenVera Native Testbench

• Optionally, a set of state and/or transition bins that define a named
equivalence class for a set of values or transitions associated with
each coverage point.

• Optionally, cross products of subsets of the sampled coverage
points (cross coverage).

The coverage_group construct is similar to an OpenVera class in that
the definition is written once and is instantiated one or more times.The
construct can be defined as a top-level (file scope) construct (referred
to as standalone), or may be contained inside a class. Once defined,
standalone coverage is instantiated with the new() system call while
embedded (contained) coverage groups are automatically
instantiated with the containing object.

The basic syntax for defining a coverage_group is:

coverage_group definition_name [(argument_list)]
{

sample_event_definition;
[sample_definitions;]
[cross_definitions;]
[attribute_definitions;]

}

The syntax for defining an embedded coverage_group is:

class class_name
{

// class properties
// coverage
coverage_group definition_name (same as external).
// constraints
// methods

}

For definitions, see the Coverage Group section in the OpenVera
LRM: Native Testbench book.

21-48

OpenVera Native Testbench

Example 21-1 shows a standalone coverage_group definition and its
instantiation.

Example 21-1 Defining and Instantiating a Standalone Coverage Group
interface ifc
{

input clk CLOCK;
input sig1 PSAMPLE #-1;

}

coverage_group CovGroup
{

sample_event = @ (posedge CLOCK);
sample var1, ifc.sig1;
sample s_exp(var1 + var2);

}

program covTest
{

integer var1, var2;
CovGroup cg = new();

}

In this example, coverage_group CovGroup defines the coverage
model for global variable var1, the signal ifc.sig1, and the
expression composed of global variables var1 and var2. The name
of the sampled expression is s_exp. The two variables and the
expression are sampled upon every positive edge of the system
clock. The coverage_group is instantiated using the new() system
call.

For details on the syntax of both standalone and embedded
coverage_groups and how to instantiate them, see the OpenVera
LRM: Native Testbench book.

21-49

OpenVera Native Testbench

Measuring Coverage

VCS computes a coverage number (or percentage) for the testbench
run as a whole. Here, the coverage number is referred to as
“coverage”. The coverage for the testbench is the weighted average
of the coverages of every coverage_group in the testbench. When
per-instance data is available, VCS also computes an instance
coverage for the testbench. That number is the weighted average of
the coverages of every coverage_group instance.

The cov_weight attribute of a coverage_group determines the
contribution of that group to the testbench coverage. The Coverage
Attributes section in the OpenVera LRM: Native Testbench book
describes coverage_group attributes and mechanisms for setting
them.

The coverage for each coverage_group is the weighted sum of that
group’s sample and cross coverage numbers. The cov_weight
attribute of a sample determines the contribution of that sample to
the coverage of the enclosing coverage group. Similarly, the
cov_weight attribute of a cross determines the contribution of that
cross to the coverage of the enclosing coverage group. Both
attributes have a default value of 1. The Coverage Attributes section
in the OpenVera LRM: Native Testbench book describes sample and
cross attributes and mechanisms for setting them.

VCS computes the coverage number for a sample as the number of
bins with the at_least number of hits divided by the total number of
possible bins for the sample (multiplied by 100). When the sample is
auto-binned (that is, there are no user-defined state or transition
bins), the total number of possible bins for the sample is the
minimum of the auto_bin_max attribute for that sample and the
number of possible values for the coverage point.

21-50

OpenVera Native Testbench

By default, VCS does not create automatic bins for ’X’ or ’Z’ values
of a coverage point. For example, if a coverage point is a 4 bit
bit-vector and the auto_bin_max attribute is set to 64 (default), then
by default the total number of possible bins for the coverage point is
16 (24). On the other hand, if VCS coverage is sampling the
coverage point when it has ’X’ or ’Z’ values (auto_bin_include_xz
attribute of the sample is set to ON or 1), then the total number of
possible bins for the 4 bit bit-vector is 64 (MIN(auto_bin_max
attribute, 44)). Finally, if the auto_bin_max attribute is set to 5, then
the total number of possible bins for the 4 bit bit-vector is 5.

VCS computes the coverage number of a cross as the number of
bins (of that cross) with the at_least number of hits divided by the
total number of bins for that cross (multiplied by 100). By default, the
number of possible bins for a cross is the sum of the user-defined
bins and the number of possible automatically generated bins for
that cross. The number of possible automatically generated bins is
the product of the number of possible bins for each of the samples
being crossed.

Reporting and Querying Coverage Numbers

Testbench coverage is reported in the coverage HTML and text
reports (see “Unified Coverage Reporting” on page 21-53 for
details). The reports also include detailed information for each
coverage group as well as the samples and crosses of each group.

You can also query for the testbench coverage during the VCS run.
This allows you to react to the coverage statistics dynamically (for
example, stop the VCS run when the testbench achieves a particular
coverage).

21-51

OpenVera Native Testbench

The following system function returns the cumulative coverage (an
integer between 0 and 100) for the testbench:

function integer get_coverage();

The following system function returns the instance-based coverage
(an integer between -1 and 100) for the testbench:

function integer get_inst_coverage();

Note:
The get_inst_coverage() system function returns -1 when there
is no instance-based coverage information (that is, the
cumulative attribute of the coverage_group has not been set to
0).

See the OpenVera LRM: Native Testbench book for details on how
to query for the coverage of individual sample and crosses of each
coverage_group using the query() function.

Controlling Coverage Collection Globally

The coverage_control() system task (see the OpenVera LRM: Native
Testbench for description of this task), coupled with the
-cg_coverage_control runtime argument, provides a
single-point mechanism for enabling/disabling of the coverage
collection for all coverage groups or a particular coverage group.

Syntax

-cg_coverage_control=value

21-52

OpenVera Native Testbench

The values for -cg_coverage_control are 0 or 1. A value of 0
disables coverage collection, and a value of 1 enables coverage
collection.

Example 21-2
#include <vera_defines.vrh>

coverage_group Cov{
sample_event = @(posedge CLOCK);
sample x {

state x1(10);
state x2(20);
state x3(30);
state x4(40);
state x5(50);
state x6(60);
state x7(70);

}
}

coverage_group Another{
sample_event = @(posedge CLOCK);
sample x{

state x1(10);
state x2(20);
state x3(30);
state x4(40);
state x5(50);
state x6(60);
state x7(70);

}
}

task query_and_print(string str){
printf("Coverage is %d:%s\n",c.query(COVERAGE), str);

}

program test{
integer x = 0;
Cov c = new;

21-53

OpenVera Native Testbench

Another c1 = new;
@(posedge CLOCK);

coverage_control(0);

x = 10;
@(posedge CLOCK);

x = 30;
@(posedge CLOCK);

coverage_control(1);

x = 40;
@(posedge CLOCK);

x = 50;
@(posedge CLOCK);

coverage_control(0, "Cov");

x = 60;
@(posedge CLOCK);

coverage_control(1, "Cov");
coverage_control(0, "Another");

x = 70;
@(posedge CLOCK);

}

Unified Coverage Reporting

In VCS 2006.06, the db based coverage reporting has been replaced
by the Unified Report Generator (URG) which can generate either
HTML or text reports. The URG generates combined reports for all
types of coverage information.

21-54

OpenVera Native Testbench

The format of the text report that the URG generates is different and
better than the text report that used to be generated by the ntb
-cov_report command line option. Any scripts that use these old
command line options now need to be modified to use the URG
options.

The functional coverage database files and their location have been
changed. The coverage database is written to a top-level coverage
directory. By default this directory name is simv.vdb. In general its
name comes from the name of the executable file, with the .vdb
extension. The reporting tool shipped with VCS version 2006.06
cannot read coverage databases generated using previous versions
of VCS. Similarly, the reporting tool shipped with pre-VCS 2006.06
versions cannot read coverage databases generated using VCS
2006.06. The reports may be viewed through an overall summary
"dashboard" for the entire design/testbench.

Coverage Reporting Flow

To generate coverage reports using URG, do the following:

1. Create the coverage database (for example, using VCS
standalone):

% vcs -ntb test.vr
% simv

This runs a simulation and creates the directory simv.vdb

2. Create the coverage report from the database:

% urg -dir simv.vdb //html
% urg -dir simv.vdb -format text //text

This creates the urgReport directory.

21-55

OpenVera Native Testbench

3. In order to view the results, invoke a browser (for example, invoke
Mozilla):

% mozilla urgReport/dashboard.html
% more urgReport/dashboard.txt

Please refer to the Unified Report Generator User Guide for details

21-56

OpenVera Native Testbench

Persistent Storage of Coverage Data and
Post-Processing Tools

Unified Coverage Directory and Database Control

A coverage directory named simv.vdb contains all the testbench
functional coverage data. This is different from previous versions of
VCS, where the coverage database files were stored by default in the
current working directory or the path specified by
coverage_database_filename. For your reference,
VCSassociates a logical test name with the coverage data that is
generated by a simulation. VCS assigns a default test name; you can
override this name by using the
coverage_set_test_database_name task.

task coverage_set_test_database_name
 ("test_name"[,"dir_name"]);

VCS avoids overwriting existing database file names by generating
unique non-clashing test names for consecutive tests.

For example, if the coverage data is to be saved to a test name called
pci_test, and a database with that test name already exists in the
coverage directory simv.vdb, then VCS automatically generates the
new name pci_test_gen1 for the next simulation run. The following
table explains the unique name generation scheme details.

21-57

OpenVera Native Testbench

Table 21-1 Unique Name Generation Scheme

You can disable this method of ensuring database backup and force
VCS to always overwrite an existing coverage database. To do this,
use the following system task::

task coverage_backup_database_file (flag);

The value of flag can be:

• OFF for disabling database backup.

• ON for enabling database backup.

In order to not save the coverage data to a database file (for example,
if there is a verification error), use the following system task:

task coverage_save_database (flag);

The value of flag can be:

• OFF for disabling database backup.

• ON for enabling database backup.

 Test Name Database

pci_test Database for the first testbench run.

pci_test_gen_1 Database for the second testbench run

pci_test_gen_2 Database for the 3rd testbench run

pci_test_gen_n Database for the nth testbench run

21-58

OpenVera Native Testbench

Loading Coverage Data
Both cumulative coverage data and instance-specific coverage data
can be loaded. The loading of coverage data from a previous VCS
run implies that the bin hits from the previous VCS run to this run are
to be added.

Loading Cumulative Coverage Data

The cumulative coverage data can be loaded either for all coverage
groups, or for a specific coverage group. To load the cumulative
coverage data for all coverage groups, use the following syntax:

coverage_load_cumulative_data("test_name"[, "dir_name"]);

In this task, "dir_name" is optional. If you do not specify a "dir_name",
by default, simv.vdb is taken as the directory containing the database.

The above task directs VCS to find the cumulative coverage data for
all coverage groups found in the specified database file and to load
this data if a coverage group with the appropriate name and definition
exists in this VCS run.

To load the cumulative coverage data for just a single coverage
group, use the following syntax:

coverage_load_cumulative_cg_data("test_name",
 "covergroup_name"[, "dir_name"]);

In this task, "dir_name" is optional. If you do not specify a "dir_name",
by default, simv.vdb is taken as the directory containing the database.

21-59

OpenVera Native Testbench

In the Example 20-4 below, there is a Vera class MyClass with an
embedded coverage object covType. VCS finds the cumulative
coverage data for the coverage group MyClass:covType in the
database file Run1 and loads it into the covType embedded
coverage group in MyClass.

Example 21-1
MyClass{

integer m_e;
coverage_group covType{

sample_event = wait_var(m_e);
sample m_e;

}
}
...
...
coverage_load_cumulative_cg_data("Run1", "MyClass::covType");

Loading Instance Coverage Data

The coverage data can be loaded for a specific coverage instance.
To load the coverage data for a standalone coverage instance, use
the following syntax:

coverage_instance.load("test_name"[, "dir_name"]);

In this task, "dir_name" is optional. If you do not specify a "dir_name",
by default, simv.vdb is taken as the directory containing the database.

To load the coverage data for an embedded coverage instance, use
the following syntax:

class_object.cov_group_name.load("test_name"[, "dir_name"]);

In this task, "dir_name" is optional. If you do not specify a "dir_name",
by default, simv.vdb is taken as the directory containing the database.

21-60

OpenVera Native Testbench

The commands above direct VCS to find the coverage data for the
specified instance name in the database, and load it into the coverage
instance.

In Example 20-5, there is a Vera class MyClass with an embedded
coverage object covType. Two objects obj1 and obj2 are
instantiated, each with the embedded coverage group covType.
VCS will find the coverage information for the coverage instance
obj1:covType from the database file Run1, and load this coverage
data into the newly instantiated obj1 object. Note that the object
obj2 will not be affected as part of this load operation.

Example 21-2
MyClass {

integer m_e;
coverage_group covType {

sample_event = wait_var(m_e);
sample m_e;

}
}
...
...
MyClass obj1 = new;
obj1.load("Run1");
MyClass obj2 = new;

Note:

The compile time or runtime options -cm_dir and -cm_name will
over write the calls to coverage_set_test_database_name
and loading coverage data tasks.

-cm_dir directory_path_name

As a compile-time or runtime option, specifies an alternative name
and location for the default simv.vdb directory, VCS automatically
adds the extension .vdb to the directory name if not specified.

21-61

OpenVera Native Testbench

-cm_name filename

As a compile-time or runtime option, specifies an alternative test
name instead of the default name. The default test name is "test".

Solver Choice

VCS incorporates two different solvers, each of which supports the
entire OpenVera constraint language. You may select the solver you
want using the runtime option vera_solver_mode, which takes the
values 1 or 2. The default value is 2.

Example 21-3
simv +vera_solver_mode=2 ...

The two solvers have different performance characteristics. When
the solver mode is set to 1, this solver exhaustively analyzes the entire
solution space, restricted to the space allowed by the current
assignment to non-random variables. It caches this analysis, and
VCS reuses it in subsequent calls to randomize() with the same
combination of non-random variables. Since the solver has a
complete view of the solution space, it can generate a uniform
sampling of the solutions.

When the solver mode is set to 2, this solver does an analysis of the
solution space too, again restricted to the space allowed by the
current assignment to non-random variables. However, it is not
exhaustive as with solver mode 1. Consequently, the analysis is
faster when the solver mode is set to 2. This solver then follows a
heuristic search algorithm when it generates a random solution.
Since this solver does not have a complete view of the solution
space, it cannot generate a uniform sampling of the solutions.

21-62

OpenVera Native Testbench

Depending on the nature of constraints, and the number of calls to
randomize() made per class, one or the other solver might be more
suitable.

Automatic Solver Orchestration
As discussed before, VCS has two general purpose solvers. The user
can indicate a preferred solver choice by setting the
+vera_solver_mode option at runtime. In addition, there is a
specialized solver that applies to simple constraint sets.

The system is very adaptive in the selection of the solver, and use
the +vera_solver_mode setting is only interpreted as an initial
guideline.

The behavior of the system is:

1. +vera_solver_mode remains the only user control provided. This
setting will specify the preferred solver as either 1 or 2, which are
the modes for the two general-purpose solvers mentioned above.

2. If an analysis of the constraints reveals that the specified
constraints are better solved by the non-preferred solver, or by
the specialized solver for simple constraints mentioned above,
then the preferred solver setting is overridden. Thus, the initial
solver choice is determined.

3. If the current solver choice results in a timeout while solving the
constraints (timeout limits cannot be controlled by the user), then
the solver mode is switched. A timeout cannot occur with the
specialized solver, so the switched solver mode is either 1 or 2.

4. If the switched solver choice results in a timeout as well, then a
timeout is reported to the user.

21-63

OpenVera Native Testbench

5. If the switched solver succeeds, then it remains the current solver
choice.

6. Steps 3, 4, 5 are repeated for each call to randomize.

Temporal Assertions

OpenVera provides three pre-defined classes that enable the
interaction of testbenches with OpenVera or SystemVerilog
assertions. Instances of these classes (that is, the objects) are used
to:

• Synchronize OpenVera threads with assertion engine events

• Synchronize OpenVera threads with individual assertion events

• Provide access to assertion properties

Figure 21-2 shows a typical verification runtime environment with the
assertions.

Table 21-2 OpenVera Assertion Classes

Object Description
AssertEngine Monitors and controls assertion as a whole:

- Affects all assertions
- Resets and disables all assertion attempts
- Controls information displayed at runtime and in the report

file
Assertion Monitors and controls individual assertions:

- Affects only a specific assertion
- Resets and disables assertion attempts

AssertEvent Synchronizes the testbench with events
- Suspends a thread of the testbench

21-64

OpenVera Native Testbench

Note:
In this chapter the term “assertion” refers to an OVA (OpenVera
Assertion) or SVA (SystemVerilog Assertion) in the DUT or
testbench. The class, “Assertion,” is the corresponding assertion
object in the OpenVera program.

Figure 21-2 Interaction of Assertion Objects

Typically, you will have the following:

• Only one AssertEngine object

• An Assertion class object for every assertion used in the
testbench or DUT

• An AssertEvent object for every event being monitored

AssertEngine

AssertEvent

AssertEvent

Native Testbench testbench (*.vr)

Assertion assert_obj
Event

Assertions

assertion

Actions

Actions

Triggers

Triggers

AssertEngine

AssertEvent
Event

21-65

OpenVera Native Testbench

Note:
This is not the event as defined in Assertions but rather as used
in OpenVera. Here, an event is some occurrence that OpenVera
can trigger on, such as a Failure or SUCCESS event.

For more information about Assertion class, see the section titled
“OpenVera Temporal Assertion Classes” in Chapter 7 (“Predefined
Methods and Procedures”) of the OpenVera Language Reference
Manual: Native Testbench.

Temporal Assertion Flow

Once you have Assertions in the DUT or testbench, you may add
Assertion classes to your OpenVera testbench in order to access or
monitor the assertions. The following section explains how to do this,
using an example testbench.

Note:
You may have OVA (OpenVera Assertion) or SVA (SystemVerilog
Assertion) or SVA and OVA together, with Assertion classes in
OpenVera.

Adding Assertion Objects to a Testbench

There are four major steps in adding assertion objects to a
testbench:

1. Include the assertion.vrh file in the OpenVera code.

2. Create an AssertEngine object.

3. Create an Assertion object for assertion of interest in the DUT or
testbench.

21-66

OpenVera Native Testbench

4. Create an AssertEvent object for each event to be monitored.

Including the Header Files

To start, every file that instantiates an Assertion object must include
the header file:

#include <assertion.vrh>

Setting Up the AssertEngine Object

The program block must instantiate one, and only one, AssertEngine
object. For a summary of the class and its methods, see the
description of AssertEngine Class in the OpenVera Language
Reference Manual: Native Testbench book.

program test {
...
AssertEngine assert_engine = new();
...

}

Controlling Assertion Reporting

Once the engine is running, use its Configure() task to specify how
the assertion reports results. The testbench settings take priority
over compiler and runtime options.

Example 21-4 instantiates the AssertEngine, turns off the
ASSERT_QUIET option, thus turning on runtime messages, and
turns on line information in the messages with the ASSERT_INFO
option. The ASSERT_REPORT option, which generates the
ova.report file, is on by default.

21-67

OpenVera Native Testbench

Example 21-4
program {

...
AssertEngine assert_engine = new();
assert_engine.Configure(ASSERT_QUIET, ASSERT_FALSE);
assert_engine.Configure(ASSERT_INFO, ASSERT_TRUE);

}

Resetting Assertion

At any time during the simulation, you can reset all attempts at
matching assertions. You might want to reset when you switch to a
new test and do not want to be confused by attempts started in the
previous test. For example:

assert_engine.DoAction(ASSERT_RESET);

Instantiating Assertion Objects

Use AssertEngine functions to obtain handles to Assertion objects.
You can specify the assertion or expression by the full hierarchical
name. For example, for an assertion named check1 in a unit named
test:

Assertion assert_check1;
assert_check1 = assert_engine.GetAssert("test.check1");

Note:
When the assertion name is invalid, the value returned is “null.”

Another way is to create a loop and collect handles to all of the
assertions. This way the number of assertions and their names can
vary without changing the testbench. The GetFirstAssert() function
can be used anytime to obtain the first assertion or expression in the
compiled list. This is not necessarily the first in the Assertion source

21-68

OpenVera Native Testbench

file: the order might change while compiling. The GetNextAssert()
function fetches more Assertion handles until it delivers a null,
indicating the end of the list. You can identify the handles with the
Assertion object’s GetName() function.

In Example 21-5, the testbench sets up Assertion objects for all
assertions and expressions, however many there might be:

Example 21-5
Assertion assert_check[];
string assert_name[];
int i = 0;
assert_check[0] = assert_engine.GetFirstAssert()
while (assert_check[i] != null)
{

assert_name[i] = assert_check[i].GetName();
...
assert_check[++i] = assert_engine.GetNextAssert();

}

This testbench also creates arrays of handles and names.

Controlling Evaluation Attempts

You can control attempts on individual assertions at any time during
the simulation with the DoAction() task. For example, to reset
attempts on the test.check1 assertion shown in the example in the
previous section, you could use the following:

assert_check1.DoAction(ASSERT_RESET);

Counting Successes and Failures

You can set up a running count of evaluation successes or failures.
This does not need an AssertEvent object. To start the counting, just
call the Assertion object’s EnableCount() task. To see the current

21-69

OpenVera Native Testbench

value, call the object’s GetCount() function. In Example 21-6, the
code keeps track of how many times the assertion check1 fails and
generates an error, and ends the simulation, if there are too many
failures.

Example 21-6
assert_check1.EnableCount(ASSERT_FAILURE);
...
if (assert_check1.GetCount(ASSERT_FAILURE) > max_fail)

error("Check1 exceeded failure limit.");

EnableCount() starts a running count that cannot be disabled or
reset. To create a count that can be disabled or reset, set up an
AssertEvent object (as explained in the following section) and create
your own code to count the event triggers.

Setting Up the AssertEvent Objects

For every event being monitored, the testbench needs an
AssertEvent object. For a summary of the class and its methods, see
the description of the Assertion class in the OpenVera LRM: Native
Testbench book.

Instantiating AssertEvent Objects

Instantiate an AssertEvent object with its new() task, including an
event type. Then attach the object to an AssertEngine or Assertion
object with that object’s EnableTrigger() task. The event is not
monitored until the EnableTrigger() task. For example, to monitor
successful attempts on the check1 assertion, use the following:

AssertEvent check1_success = new(ASSERT_SUCCESS);
assert_check1.EnableTrigger(check1_success);

21-70

OpenVera Native Testbench

Or, to watch for a global reset by the AssertEngine, use the following:

AssertEvent assert_engine_reset = new(ASSERT_RESET);
assert_engine.EnableTrigger(assert_engine_reset);

Each AssertEvent object can be used with only one AssertEngine or
Assertion object. For example, to watch for ASSERT_SUCCESS on
three assertions, you must create three AssertEvent objects and
attach each one to a different assertion object.

Suspending Threads

AssertEvent objects are normally used to suspend a thread until the
event happens. There are two ways to do this: the object’s Wait()
task or with Vera’s sync() task and the object’s Event variable. For
example, using the Wait() task to wait for a global reset action:

assert_engine_reset.Wait();

After a thread resumes, you can see which events happened with
the AssertEvent object’s GetNextEvent() function. If called
repeatedly, the function returns a list of events starting with the most
recent and ending with ASSERT_NULL. For example:

reason = assert_engine_reset.GetNextEvent();

Eliminating AssertEvent Objects

When finished with an event, disable the trigger and recover the
AssertEvent object’s memory space with the associated
AssertEngine or Assertion object’s DisableTrigger() task.

Example 21-7
assert_engine.DisableTrigger(assert_engine_reset);

21-71

OpenVera Native Testbench

Terminating the AssertEngine

When the testbench is completely finished with assertions, it should
terminate all assertion activity with the AssertEngine’s DoAction()
task. This task also recovers the memory space of all the assertion
objects.

Example 21-8
assert_engine.DoAction(ASSERT_TERMINATE);

Example Testbench

The following complete testbench is provided as an example:

//Design under test
`timescale 1ns/100ps
module test;

reg clk;
reg dat;
reg syn;

test_ntb vsh(
.SystemClock (clk)

);

initial begin
clk = 0;
#10 clk = 1;
forever #5 clk = ~clk;

end

initial begin
#2 dat = 0;
#10 dat = 0;
#10 dat = 0;
#10 dat = 1;
#10 dat = 0;
#10 dat = 0;
#10 dat = 1;

21-72

OpenVera Native Testbench

#10 dat = 0;
#10 dat = 1;
#10 dat = 1;
#10 dat = 0;
#10 dat = 0;
#10 dat = 0;
$finish;

end

initial begin
#2 syn = 0;
#10 syn = 1;
#10 syn = 0;

end
initial $monitor("vcs: clk=%b dat=%b syn=%b time=%0d", clk,

dat, syn, $time);
endmodule

//OpenVera
#include <assertion.vrh>
program test_ntb
{

AssertEngine Eng = new();
integer nCycGbl = 0;

fork
AssertListener("test.t1.ck1");
AssertListener("test.t1.ck2");
AssertListener("test.t1.ck3");

join none

DoCycles();
}

task
AssertListener(string tAsrt)
{

Assertion Ast = Eng.GetAssert(tAsrt);
AssertEvent Event = new(ASSERT_ALL);
integer EventType;

21-73

OpenVera Native Testbench

printf("\npgm: %s Assert.GetName() = %s " , tAsrt ,
Ast.GetName());

Ast.EnableTrigger(Event);
printf("\npgm:Attached ASSERT_ALL event to %s " ,

tAsrt);

while(1)
{

Event.Wait();

EventType = Event.GetNextEvent();
while(EventType != ASSERT_NULL)
{

printf("pgm: Event.GetNextEvent():
asrt=%s ev=%s\n",tAsrt,

AssertGetType(EventType));
EventType = Event.GetNextEvent();

}
}

}
task
DoCycles()
{

while(1)
{

@(posedge CLOCK);
nCycGbl++;
printf("pgm: time=%0d cyc=%0d \n", get_time(

LO), nCycGbl);
}

}
unit test_u (logic clk, logic dat, logic syn); //scope

test {

clock posedge clk {
event d0: dat == 0 ;
event d1: dat == 1 ;
event dsyn: d1 ->> d0 ->> d0 ->> d1 ->> d0 -

>> d1 ->>
d1 ->> d0 ;

event dk1 : if (syn == 1) then #1 dsyn ;

21-74

OpenVera Native Testbench

event dk2 : if (syn == 1) then #2 dsyn ;
event dk3 : if (syn == 1) then #3 dsyn ;
}
assert ck1: check(dk1);
assert ck2: check(dk2);
assert ck3: check(dk3);

endunit //}
bind instances test : test_u t1(clk,dat,syn);

Running OpenVera Testbench with OVA

Compilation:

vcs ov_options_&_ov_files design_files_&_vcs_options
ova_files_ova_options

Assume that “design.v” is the DUT, “test.vr” is the OpenVera code
containing assertion class, and the ova file is “checker.ova.”

Example 21-9

% vcs -ntb test.vr design.v checker.ova

Simulation:

% simv runtime_ova_options runtime_NTB_ option
% simv

Running OpenVera Testbench with SVA

Compilation:

% vcs ov_options_&_ov_files sva_files_sva_options +sysvcs

21-75

OpenVera Native Testbench

Simulation:

% simv runtime_sva_options

Running OpenVera Testbench with SVA and OVA
Together

Compilation:

vcs ov_options_&_ov_files ova_&_ova_options \
sva_options_&_sva_files +sysvcs

Simulation:

simv simv_options

OpenVera-SystemVerilog Testbench Interoperability

The primary purpose of OpenVera-SystemVerilog interoperability in
VCS Native Testbench is to enable you to reuse OpenVera classes
in new SystemVerilog code without rewriting OpenVera code into
SystemVerilog.

This section describes:

• The Scope of Interoperability

• Using the SystemVerilog package import syntax to import
OpenVera data types and constructs into SystemVerilog.

• Calling of OpenVera tasks, functions and methods from
SystemVerilog. Tasks and functions can be imported to
SystemVerilog using the same method for importing classes.

21-76

OpenVera Native Testbench

• The automatic mapping of data types between the two languages
as well as the limitations of this mapping (some data types cannot
be directly mapped).

• Working with synchronization objects such as events, mailboxes
and semaphores across the language boundary.

• Mapping of SystemVerilog modports to OpenVera where they can
be used as OpenVera virtual ports.

• Effect of directly or indirectly calling blocking OpenVera functions
from SystemVerilog.

• Handling of differences in the semantics of sample, drive, expect,
etc. between OpenVera and SystemVerilog.

• The OpenVera-SystemVerilog interoperability use model.

Scope of Interoperability

The scope of OpenVera-SystemVerilog interoperability in VCS Native
Testbench is as follows:

• Classes defined in OpenVera, that you use directly or extend in
a SystemVerilog testbench

• A testbench in SystemVerilog. The testbench uses SystemVerilog
constructs like interfaces with modports, virtual interfaces with
modports, and clocking blocks to communicate with the design.

• OpenVera code does not contain program blocks, interfaces, bind
statements, classes, enums, ports, tasks and functions.

• Your OpenVera code uses virtual ports for sampling, driving or
waiting on design signals that are connected to the SystemVerilog
testbench.

21-77

OpenVera Native Testbench

Importing OpenVera types into SystemVerilog

OpenVera has two user defined types: enums and classes. These
types can be imported into SystemVerilog by using SystemVerilog
package import syntax:

import OpenVera::openvera_class_name;
import OpenVera::openvera_enum_name;

Allows one to use openvera_class_name in SystemVerilog code
in the same way as an SystemVerilog class. This includes the ability
to:

• Create objects of type openvera_class_name

• Access or use properties and types defined in
openvera_class_name or its base classes,

• Invoke methods (virtual and non-virtual) defined in
openvera_class_name or its base classes

• Extend openvera_class_name to SV classes

This does not however import the names of base classes of
openvera_class_name into SystemVerilog (that requires an
explicit import). For example:

// OpenVera
 class Base {
 . . .
 task foo(arguments) {
 . . .
 }
 virtual task (arguments) {
 . . .

21-78

OpenVera Native Testbench

 }
 class Derived extends Base {
 virtual task vfoo(arguments) {
 . . .
 }
 }

// SystemVerilog
 import OpenVera::Derived;
 Derived d = new; // OK
 initial begin
 d.foo(); // OK (Base::foo automatically
 // imported)
 d.vfoo(); // OK
 end
 Base b = new; // not OK (don't know that Base is a
 //class name)

The above example would be valid if we add the following line before
the first usage of the name Base.

import OpenVera::Base;

Continuing the previous example, SystemVerilog code can extend
an OpenVera class as shown below:

21-79

OpenVera Native Testbench

// SystemVerilog
 import OpenVera::Base;
 class SVDerived extends Base;
 virtual task vmt()

begin
 . . .
 end

endtask

 endclass

Note:

- If a derived class redefines a base class method, the arguments
of the derived class method must exactly match the arguments
of the base class method.

- Explicit import of each data type from OpenVera can be avoided
by a single import OpenVera::*.

// OpenVera
 class Base {

integer i;
 . . .
 }
 class wrappedBase {
 public Base myBase;
 }
// SystemVerilog
 import OpenVera::wrappedBase;
 class extendedWrappedBase extends wrappedBase;
 . . .
 endclass

In the above example, myBase.i can be used to refer to this
member of Base from the SV side. However, if SV also needs to use
objects of type Base, then you must include:

21-80

OpenVera Native Testbench

import OpenVera::Base;

Data Type Mapping

In this section, we describe how various data types in SystemVerilog
are mapped to OpenVera and vice-versa.

• Direct mapping: Many data types have a direct mapping in the
other language and no conversion of data representation is
required. In such cases, we say that the OpenVera type is
equivalent to the SystemVerilog type.

• Implicit conversion: In other cases, VCS performs implicit type
conversion. The rules of inter language implicit type conversion
follows the implicit type conversion rules specified in
SystemVerilog LRM. To apply SystemVerilog rules to OpenVera,
the OpenVera type must be first mapped to its equivalent
SystemVerilog type. For example, there is no direct mapping
between OpenVera reg and SystemVerilog bit. But reg in
OpenVera can be directly mapped to logic in SystemVerilog.
Then the same implicit conversion rules between SystemVerilog
logic and SystemVerilog bit can be applied to OpenVera reg
and SystemVerilog bit.

• Explicit translation: In the case of mailboxes and semaphores, the
translation must be explicitly performed by the user. This is
because in OpenVera, mailboxes and semaphores are
represented by integer ids and VCS cannot reliably determine
if an integer value represents a mailbox id.

21-81

OpenVera Native Testbench

Mailboxes and Semaphores

Mailboxes and semaphores are referenced using object handles in
SystemVerilog whereas in OpenVera they are referenced using
integral ids.

VCS plans to support the mapping of mailboxes between the two
languages as follows:

Consider a mailbox created in SystemVerilog. To use it in OpenVera,
we need to get the id for the mailbox somehow. The get_id() function,
available as a VCS extension to SV, returns this value:

function int mailbox::get_id();

It will be used as follows:

// SystemVerilog
 mailbox mbox = new;
 int id;
 . . .
 id = mbox.get_id();
 . . .
 foo.vera_method(id);

// OpenVera
 class Foo {
 . . .
 task vera_method(integer id) {
 . . .
 void = mailbox_put(data_type mailbox_id,
 data_type variable);
 }
 }

21-82

OpenVera Native Testbench

Once OpenVera gets an id for a mailbox/semaphore it can save it
into any integer type variable. Note that however if get_id is
invoked for a mailbox, the mailbox can no longer be garbage collected
because VCS has no way of knowing when the mailbox ceases to be
in use.

Typed mailboxes (currently not supported), when they are supported
in SystemVerilog can be passed to OpenVera code using the same
method as untyped mailboxes above. However, if the OpenVera code
attempts to put an object of incompatible type into a typed mailbox,
a simulation error will result.

Bounded mailboxes (currently not supported), when they are
supported in SystemVerilog can be passed to OpenVera code using
the same method as above. OpenVera code trying to do
mailbox_put into a full mailbox will result in a simulation error.

To use an OpenVera mailbox in SystemVerilog, we need to get a
handle to the mailbox object using a system function call. The system
function $get_mailbox returns this handle:

function mailbox $get_mailbox(int id);

It will be used as follows:

// SystemVerilog
 . . .
 mailbox mbox;
 int id = foo.vera_method(); // vera_method returns an
 // OpenVera mailbox id
 mbox = $get_mailbox(id);

Analogous extensions are available for semaphores:

function int semaphore::get_id();

21-83

OpenVera Native Testbench

function semaphore $get_semaphore(int id);

Events

The OpenVera event data type is equivalent to the SystemVerilog
event data type. Events from either language can be passed (as
method arguments or return values) to the other language without
any conversion. The operations performed on events in a given
language are determined by the language syntax:

An event variable can be used in OpenVera in sync and trigger.
An event variable event1 can be used in SystemVerilog as follows:

event1.triggered //event1 triggered state property

->event1 //trigger event1

@(event1) //wait for event1

Strings

OpenVera and SystemVerilog strings are equivalent. Strings from
either language can be passed (as method arguments or return
values) to the other language without any conversion. In OpenVera,
null is the default value for a string. In SystemVerilog, the default
value is the empty string (""). It is illegal to assign null to a string
in SystemVerilog. Currently, NTB-OV treats "" and null as distinct
constants (equality fails).

Enumerated Types

SystemVerilog enumerated types have arbitrary base types and are
not generally compatible with OpenVera enumerated types. A
SystemVerilog enumerated type will be implicitly converted to the

21-84

OpenVera Native Testbench

base type of the enum (an integral type) and then the bit-vector
conversion rules (section 2.5) are applied to convert to an OpenVera
type. This is illustrated in the following example.

// SystemVerilog
 typedef reg [7:0] formal_t; // SV type equivalent to
 // 'reg [7:0]' in OV
 typedef enum reg [7:0] { red = 8'hff, blue = 8'hfe,
 green = 8'hfd } color;
 // Note: the base type of color is 'reg [7:0]'
 typedef enum bit [1:0] { high = 2'b11, med = 2'b01,
 low = 2'b00 } level;
 color c;
 level d = high;
 Foo foo;
 ...
 foo.vera_method(c); // OK: formal_t'(c) is passed to
 // vera_method.
 foo.vera_method(d); // OK: formal_t'(d) is passed to
 // vera_method.
 // If d == high, then 8'b00000011 is
 // passed to vera_method.
// OpenVera
 class Foo {
 ...
 task vera_method(reg [7:0] r) {
 ...
 }
 }

The above data type conversion does not involve a conversion in
data representation. An enum can be passed by reference to
OpenVera code but the formal argument of the OpenVera method
must exactly match the enum base type (for example: 2-to-4 value
conversion, sign conversion, padding or truncation are not allowed
for arguments passed by reference; they are OK for arguments
passed by value).

21-85

OpenVera Native Testbench

Enumerated types with 2-value base types will be implicitly converted
to the appropriate 4-state type (of the same bit length). See the
discussion in 2.5 on the conversion of bit vector types.

OpenVera enum types can be imported to SystemVerilog using the
following syntax:

import OpenVera::openvera_enum_name;

It will be used as follows:

// OpenVera
 enum OpCode { Add, Sub, Mul };

// System Verilog
 import OpenVera::OpCode;
 OpCode x = OpenVera::Add;

// or the enum label can be imported and then used
// without OpenVera::

 import OpenVera::Add;
 OpCode y = Add;

Note:

- SystemVerilog enum methods such as next, prev and name
can be used on imported OpenVera enums.

Enums contained within OV classes are illustrated in this example:

class OVclass{
enum Opcode {Add, Sub, Mul};

}

import OpenVera::OVclass;
OVclass::Opcode SVvar;
SVvar=OVclass::Add;

21-86

OpenVera Native Testbench

Integers and Bit-Vectors

The mapping between SystemVerilog and OpenVera integral types
are shown in the table below.

Note:
If a value or sign conversion is needed between the actual and
formal arguments of a task or function, then the argument cannot
be passed by reference.

Of additional interest is the reverse map for the OV bit type:

SystemVerilog OpenVera
2/4 or 4/2 value

conversion?
Change in

signedness?

integer integer N
(equivalent types)

N (Both signed)

byte reg [7:0] Y Y
shortint reg [15:0] Y Y
int integer Y N (Both signed)
longint reg [63:0] Y Y
logic [m:n] reg [abs(m-n)+1:0] N

(equivalent types)
N (Both unsigned)

bit [m:n] reg [abs(m-n)+1:0] Y N (Both unsigned)
time reg [63:0] Y N (Both unsigned)

OV SV 2/4 or

change in
4/2 signedness?

conv?

bit[m:n] logic[m:n]N N

21-87

OpenVera Native Testbench

Arrays

Arrays can be passed as arguments to tasks and functions from
SystemVerilog to OpenVera and vice-versa. The formal and actual
array arguments must have equivalent element types, the same
number of dimensions with corresponding dimensions of the same
length. These rules follow the SystemVerilog LRM.

• A SystemVerilog fixed array dimension of the form [m:n] is
directly mapped to [abs(m-n)+1] in OpenVera.

• An OpenVera fixed array dimension of the form [m] is directly
mapped to [m] in SystemVerilog.

Rules for equivalency of other (non-fixed) types of arrays are as
follows:

• A dynamic array (or Smart queue) in OpenVera is directly mapped
to a SystemVerilog dynamic array if their element types are
equivalent (can be directly mapped).

• An OpenVera associative array with unspecified key type (for
example integer a[]) is equivalent to a SystemVerilog
associative array with key type reg [63:0] provided the element
types are equivalent.

• An OpenVera associative array with string key type is
equivalent to a SystemVerilog associative array with string key
type provided the element types are equivalent.

Other types of SystemVerilog associative arrays have no equivalent
in OpenVera and hence they cannot be passed across the language
boundary.

21-88

OpenVera Native Testbench

Some examples of compatibility:

Note:
A 2-valued array type in SystemVerilog cannot be directly mapped
to a 4-valued array in OpenVera. However, a cast may be
performed as follows:

// OpenVera
 class Foo {
 . . .
 task vera_method(integer array[5]) {
 . . . }
 . . .
 }
// SystemVerilog
 int array[5];
 typedef integer array_t[5];
 import OpenVera::Foo;
 Foo f;
 . . .
 f.vera_method(array); // Error: type mismatch
 f.vera_method(array_t'(array)); // OK
 . . .

Structs and Unions

Unpacked structs/unions can't be passed as arguments to OpenVera
methods. Packed structs/unions can be passed as arguments to

OpenVera SystemVerilog Compatible?

integer a[10] integer b[11:2] Yes

integer a[10] int b[11:2] No

reg [11:0] a[5] logic [3:0][2:0] b[5] Yes

21-89

OpenVera Native Testbench

OpenVera: they will be implicitly converted to bit vectors of the same
width.

packed struct {...} s in SystemVerilog is mapped to
reg [m:0] r in OpenVera where m == $bits(s).

Analogous mapping applies to unions.

Connecting to the Design

Mapping Modports to Virtual Ports

This section relies on the following extensions to SystemVerilog
supported in VCS.

Virtual Modports
VCS supports a reference to a modport in an interface to be declared
using the following syntax.

virtual interface_name.modport_name virtual_modport_name;

For example:

interface IFC;
 wire a, b;
 modport mp (input a, output b);
endinterface

IFC i();
virtual IFC.mp vmp;
...
 vmp = i.mp;

21-90

OpenVera Native Testbench

Importing Clocking Block Members into a Modport
VCS allows a reference to a clocking block member to be made by
omitting the clocking block name.

For example, in SystemVerilog a clocking block is used in a modport
as follows:

 interface IFC(input clk);
 wire a, b;
 clocking cb @(posedge clk);
 input a;
 input b;
 endclocking
 modport mp (clocking cb);
endinterface

bit clk;
 . . .
IFC i(clk);
 . . .
virtual IFC.mp vmp;
 . . .
 vmp = i.mp;
 @(vmp.cb.a); // here we need to specify cb explicitly

VCS supports the following extensions that allow the clocking block
name to be omitted from vmp.cb.a.

// Example-1
 interface IFC(input clk);
 wire a, b;
 clocking cb @(posedge clk);
 input a;
 input b;
 endclocking
 modport mp (import cb.a, import cb.b);
 endinterface

21-91

OpenVera Native Testbench

 bit clk;
 . . .
 IFC i(clk);
 . . .
 virtual IFC.mp vmp;
 . . .
 vmp = i.mp;
 @(vmp.a); // cb can be omitted; 'cb.a' is
 // imported into the modport

// Example-2
 interface IFC(input clk);
 wire a, b;
 bit clk;
 clocking cb @(posedge clk);
 input a;
 input b;
 endclocking
 modport mp (import cb.*); // All members of cb
 // are imported.
 // Equivalent to the
 // modport in
 // Example-1.
 endinterface
 bit clk;
 . . .
 IFC i(clk);
 . . .
 virtual IFC.mp vmp;
 . . .
 vmp = i.mp;
 @(vmp.a); // cb can be omitted;
 //'cb.a' is imported into the modport

A SystemVerilog modport can be implicitly converted to an OpenVera
virtual port provided the following conditions are satisfied:

21-92

OpenVera Native Testbench

• The modport and the virtual port have the same number of
members.

• Each member of the modport converted to a virtual port must
either be (1) a clocking block or (2) imported from a clocking block
using the import syntax above.

• For different modports to be implicitly converted to the same virtual
port, the corresponding members of the modports (in the order in
which they appear in the modport declaration) be of bit lengths.
If the members of a clocking block are imported into the modport
using the cb.* syntax where cb is a clocking block, then the order
of those members in the modport is determined by their
declaration order in cb.

Example usage:

// OpenVera
 port P {
 clk;
 a;
 b;
 }
 class Foo {
 P p;
 task new(P p_) {
 p = p_;
 }
 task foo() {
 . . .
 @(p.$clk);
 . . .
 variable = p.$b;
 p.$a = variable;
 . . .
 }
 }

21-93

OpenVera Native Testbench

// SystemVerilog
 interface IFC(input clk);
 wire a;
 wire b;

 clocking cb @(posedge clk);
 output a;
 input b;
 endclocking
 modport mp (clocking cb, import cb.*);
 endinterface: IFC

 import OpenVera::Foo;
 . . .
 IFC ifc(clk); // use this to connect to DUT and TB
 . . .
 virtual IFC.mp vmp = ifc.mp;
 Foo f = new(vmp); // clocking event of ifc.cb mapped to
 // $clk in port P
 // ifc.cb.a mapped to $a in port P
 // ifc.cb.b mapped to $b in port P
 . . .
 f.foo();
 . . .

Note:
It is not necessary to use a virtual modport above. One can directly
pass a modport from an instance of an interface as follows:

 Foo f = new(ifc.mp);

A modport can aggregate signals from multiple clocking blocks.

Semantic Issues with Samples, Drives, and Expects

When OpenVera code wants to sample a DUT signal through a virtual
port (or interface), if the current time is not at the relevant clock edge,

21-94

OpenVera Native Testbench

the current thread is suspended until that clock edge occurs and then
the value is sampled. NTB-OV implements this behavior by default.
On the other hand, in SystemVerilog, sampling never blocks and the
value that was sampled at the most recent edge of the clock is used.
Analogous differences exist for drives and expects.

Miscellaneous Issues

Blocking Functions in OpenVera

When a SystemVerilog function calls a virtual function that may
resolve to a blocking OpenVera function at run-time, the compiler
cannot determine with certainty if the SystemVerilog function will
block. VCS Issues a warning at compile time and let the
SystemVerilog function block at run-time

The terminate, wait_child, disable fork, and wait fork
Constructs

Besides killing descendant processes in the same language domain,
terminate invoked from OpenVera will also kill descendant
processes in SystemVerilog. Similarly, disable fork invoked from
SystemVerilog will also kill descendant processes in OpenVera.
wait_child will also wait for SystemVerilog descendant processes
and wait fork will also wait for OpenVera descendant processes.

Constraints and Randomization

• SystemVerilog code can call randomize() on objects of an
OpenVera class type.

21-95

OpenVera Native Testbench

• In SystemVerilog code, SystemVerilog syntax must be used to
turn off/on constraint blocks or randomization of specific rand
variables (even for OpenVera classes).

• Random stability will be maintained across the language domain.

//OV
class OVclass{

rand integer ri;
constraint cnst{...}

}

//SV
OVclass obj=new();
SVclass Svobj=new();
SVobj.randomize();
obj.randomize() with
{obj.ri==SVobj.var;};

Functional Coverage

There are some differences in functional coverage semantics
between OpenVera and SystemVerilog. These differences are
currently being eliminated by changing OpenVera semantics to
conform to SystemVerilog. In interoperability mode,
coverage_group in OpenVera and covergroup in SystemVerilog
will have the same (SystemVerilog) semantics. Non-embedded
coverage group can be imported from Vera to SystemVerilog using
the package import syntax (similar to classes).

Coverage reports will be unified and keywords such as coverpoint,
bins will be used from SystemVerilog instead of OpenVera keywords.

Here is an example of usage of coverage groups across the language
boundary:

// OpenVera

21-96

OpenVera Native Testbench

class A
{
 B b;
 coverage_group cg {
 sample x(b.c);

 sample y(b.d);
 cross cc1(x, y);

 sample_event = @(posedge CLOCK);
 }
 task new() {
 b = new;
 }
}
// SystemVerilog

import OpenVera::A;

initial begin
 A obj = new;
 obj.cg.option.at_least = 2;
 obj.cg.option.comment = "this should work”;
 @(posedge CLOCK);
 $display("coverage=%f", obj.cg.get_coverage());
end

Use Model

Any `define from the OV code will be visible in SV once they are
explicitly included.

Note:
OV #define must be rewritten as ̀ define for ease of migration
to SV.

Support for multiple program blocks in OV and SV is not present at
this time.

21-97

OpenVera Native Testbench

VCS compile:

vcs -sverilog -ntb_opts interop +Other_NTB_options
-ntb_incdir incdir1+incdir2+...
-ntb_define defines_for_OV_source_files
OpenVera_.vrp_files
OpenVera_source_files_.vr
SystemVerilog_source_files_and_libraries

A few more compile options are significant:

1. if RVM class libs are used in the OV code, this is required:

-ntb_opts rvm

2. VMM classes, vmm_ macros can be used in SV; and rvm_ macros
in OV package are automatically translated to vmm_ equivalents if
this is also added

-ntb_opts interop -ntb_opts rvm

Limitations

Classes extended/defined in SystemVerilog cannot be instantiated
by OpenVera. OpenVera verification IP will need to be compiled with
the NTB syntax and semantic restrictions. These restrictions are
detailed in the Vera to Native Testbench coding Guide, included in
the VCS release.

SystemVerilog contains several data types that are not supported in
OpenVera including real, unpacked-structures, and unpacked-
unions. OpenVera cannot access any variables or class data
members of these types. A compiler error will occur if the OpenVera
code attempts to access the undefined SystemVerilog data member.
This does not prevent SystemVerilog passing an object to OpenVera,

21-98

OpenVera Native Testbench

and then receiving it back again, with the unsupported data items
unchanged.

Using Reference Verification Methodology with
OpenVera

VCS supports the use of Reference Verification Methodology (RVM)
for implementing testbenches as part of a scalable verification
architecture.

The syntax for using RVM with VCS is:

vcs -ntb_opts rvm [vcs_options]

For details on the use of RVM, see the Reference Verification
Methodology User Guide. Though the manual descriptions refer to
Vera, NTB uses a subset of the OpenVera language and all non-tool
specific descriptions apply to NTB.

Differences between use of NTB and Vera are:

• NTB does not require header files (.vrh) as described in the
Reference Verification Methodology User Guide chapter “Coding
and Compilation.”

• NTB parses all testbench files in a single compilation

• The VCS command line switch -ntb_opts rvm must be used
with NTB.

Limitations
• The handshake configuration of notifier is not supported (since

there is no handshake for triggers/syncs in NTB).

21-99

OpenVera Native Testbench

• RVM enhancements for assertion support in Vera 6.2.10 and later
are not supported for NTB.

• If there are multiple consumers and producers, no guarantee of
fairness in reads from channels, etc.

Testbench Optimization

VCS/VCSi supports a set of features to analyze a testbench,
identifying potential areas of improvement, and to partition the
simulation run, reducing overall simulation time.

NTB Performance Profiler

The NTB Performance Profiler aids in writing more efficient
OpenVera code. When performance profiling is turned on, NTB
tracks:

• The time spent in each function, task and program

• The time spent in the HDL simulator and in testbench internal

• Predefined methods

• OpenVera fork join block

• Predefined procedures

• Testbench garbage collection

21-100

OpenVera Native Testbench

Enabling the NTB Profiler

The VCS profiler has been enhanced to support NTB. The +prof
option enables the profiling of OpenVera NTB constructs and is used
in the vcs command line in conjunction with -ntb and other NTB
options when compiling the file. For example:

% vcs -ntb +prof other_ntb_compile_time_options \
verilog_files testbench_files

The NTB profile report is dumped in the vcs.prof log file.

Performance Profiler Example

The NTB performance profiler is illustrated here by means of a
simple example. Program MyTest calls an OpenVera task MyPack,
and a DPI task DPI_call, together in a loop 20 times. The profiler
reports the relative portion of the runtime that each consumes.

Example 21-10
#include <vera_defines.vrh>

// declare DPI tasks
import "DPI" function void DPI_call(integer a, integer b);

class A {
packed rand integer i;

}

task MyPack(integer k){
bit[31:0] arr[];
integer result, index, left,right;
A a = new;
a.i = k;
index = 0;
left = 0;
right = 0;
result = 0;

21-101

OpenVera Native Testbench

result = a.pack(arr,index,left,right,0);
}

program MyTest
{

integer k = 0, j = 0;
repeat (20)
{

@(posedge CLOCK);
fork
{

for (j = 0; j < 200; j++)
{

k = k + 1;
MyPack(k);

}
}
{

for(j = 1; j < 100000; j++)
k ++;
DPI_call(1, 2);

}
join all

}
@(posedge CLOCK);

}

Example 21-11 dpi.c

#include <svdpi.h>

static int tmp;
static void do_activity(int j)
{

int i;

for(i = 0; i < 1000; i++)
{

tmp ^= j + i;
}

}

21-102

OpenVera Native Testbench

void DPI_call(int a, int b)
{

int i;

for(i = 0; i < 1000; i++)
{

i +=b;
i *=a;
do_activity(i);

}
}

Compile:

% vcs -R -ntb +prof dpi.vr dpi.c

Run:

% ./simv

Example 21-12 Log File (vcs.prof)
// Synopsys VCS X-2005.09-A[D] (ENG)
// Simulation profile: vcs.prof
// Simulation Time: 8.360 seconds

==

 TOP LEVEL VIEW

 ==
 TYPE %Totaltime

 DPI 98.60

PLI 0.00
VCD 0.00

 KERNEL 0.00
 MODULES 0.00
 PROGRAMS 1.40

 ==
 PROGRAM VIEW

 ==
Program(index) %Totaltime No of Instances Definition

21-103

OpenVera Native Testbench

MyTest (1) 1.40 1 test.vr:27.

 ==
PROGRAM TO CONSTRUCT MAPPING

 ==

1. MyTest

Construct Construct type %Totaltime %Programtime LineNo

Fork Program Thread 0.84 60.00 test.vr : 39-42.
A::pack Object Pack 0.42 30.00 test.vr : 24.
MyPack Program Task 0.14 10.00 test.vr : 12-24.

 ==
TOP-LEVEL CONSTRUCT VIEW

 ==

Construct %Totaltime

Program Thread 0.84
Object Pack 0.42
Program Task 0.14

 ==

CONSTRUCT VIEW ACROSS DESIGN
 ==

1. Program Thread

Program %Totaltime

MyTest 0.84

2. Object Pack

Program %Totaltime

MyTest 0.42

3. Program Task

21-104

OpenVera Native Testbench

Program %Totaltime

MyTest 0.14

 ==
// Simulation memory: 3561082 bytes

 ==

TOP LEVEL VIEW
 ==

Type Memory %Totalmemory

 DPI 1024 0.03
 PLI 0 0.00
 VCD 0 0.00

 KERNEL 1414243 39.71
 MODULES 0 0.00
 PROGRAMS 2145815 60.26

 ==
 ==

PROGRAM VIEW
 ==

Program(index) Memory %Totaltime No of Instances Definition

**************************End of vcs.prof****************************

The vcs.prof log file shown in Example 21-12 provides the following
information.

• The DPI function in dpi.c consumed 98.6% of the total time.

• The fork-join block defined in test.vr:39-42 consumed
0.84% of the total time.

Fork Program Thread 0.84 60.00 test.vr : 39-42.

A::pack Object Pack 0.42 30.00 test.vr : 24.

MyPack Program Task 0.14 10.00 test.vr : 12-24.

21-105

OpenVera Native Testbench

• The predefined class method, pack(), invoked at test.vr:24
consumed 0.42% of the total time.

• The task MyPack()defined at test.vr:12:24 consumed
0.14% of the total time.

The time reported for construct is the exclusive time consumed by
the construct itself. Time spent in dependants is not reported.

VCS Memory Profiler

The VCS memory profiler is an Limited Customer Availability (LCA)
feature in VCS and requires a separate license. Please contact your
Synopsys AC for a license key.

VCS has been enhanced to support profiling of memory consumed
by the following dynamic data types:

• associative Array

• dynamic Array

• smart Queue

• string

• event

• class

This tool is available to both NTB SV and OV users.

21-106

OpenVera Native Testbench

Use Model

The $vcsmemprof() task can be called from the CLI or the UCLI
interface. The syntax for $vcsmemprof() is as follows:

$vcsmemprof("filename", "w|a+");

filename

Name of the file where the memory profiler dumps the report.

w | a+

w and a+ designate the mode in which the file is opened. Specify
w for writing and a+ for appending to an existing file.

UCLI Interface

Compile-time

The dynamic memory profiler is enabled only if you specify +dmprof
on the VCS compile-time command line:

 vcs -ntb [-sverilog] +dmprof dut_filename.v
 testbench_filename.vr \[-debug | -debug_all]

Note:
Use the -sverilog compile-time option when compiling
SystemVerilog code. OpenVera code does not require this
option.

Runtime

At runtime, invoke $vcsmemprof() from the UCLI command line
prompt as follows:

simv -ucli //Invokes the ucli prompt
ucli>call {$vcsmemprof("memprof.txt", "w|a+")}

21-107

OpenVera Native Testbench

CLI Interface

Compile-time

The dynamic memory profiler is enabled only if you specify +dmprof
on the VCS compile-time command line:

vcs -ntb [-sverilog] +dmprof dut_filename.v testbench_filename.vr \
[-debug | -debug_all]

Note:
Use the -sverilog compile-time option when compiling
SystemVerilog code. OpenVera code does not require this
option.

Runtime

At runtime, invoke $vcsmemprof() from the CLI command line
prompt as follows. You can make the call to $vcsmemprof() at any
point during the simulation.

simv -s //Invokes the cli prompt
cli_0>$vcsmemprof("memprof.txt", "w|a+")

The memory profiler reports the memory consumed by all the active
instances of the different dynamic data types. As noted above, the
memory profiler report is dumped in the filename specified in the
$vcsmemprof() call.

Incremental Profiling

Each invocation of $vcsmemprof() appends the profiler data to the
user specified file. The time at which the call is made is also reported.

This enables you to narrow down the search for any memory issues.

21-108

OpenVera Native Testbench

Only Active Memory Reported

The memory profiler reports only memory actively held at the current
simulation time instant by the dynamic data types.

Consider the following OpenVera program:

 task t1() {
integer arr1[*];
arr1 = new[500];

delay(5);
}

task t2() {
integer arr2[*];
arr2 = new[500];

delay(10);
}

program main {
fork
{

t1();
}
{

t2();
}
join all

}

In this program, if $vcsmemprof() is called between 0 and 4 ns, then
both arr1 and arr2 are active. If the call is made between 5 and
10 ns, then only arr2 is active and after 10 ns, neither is active.

VCS Dynamic Memory Profile Report

 The profile report includes the following sections.

1. Top level view

21-109

OpenVera Native Testbench

Reports the total dynamic memory consumed in all the programs
(SV/OV) and that consumed in all the modules (SV) in the
system.

2. Module View

Reports the dynamic memory consumed in each SV module in
the system.

3. Program View

Reports the dynamic memory consumed in each SV/OV program
in the system.

4. Program To Construct View

a. Task-Function-Thread section
Reports the total dynamic memory in each active task, function
and thread in the module/program.

b. Class Section
Reports the total dynamic memory consumed in each class in
the module/program.

c. Dynamic data Section
Reports the total memory consumed in each of dynamic
testbench data types - associative arrays, dynamic arrays,
queues, events, strings, in the module/program.

5. Module To Construct View:

Same as "Program To Construct View".

Example 21-13
class FirstClass{

21-110

OpenVera Native Testbench

integer b;
}

class SecondClass {
integer c;
integer d[10];

}

task FirstTask() {
FirstClass a ;
a = new;
delay(100);

}

task SecondTask() {
FirstClass a ;
SecondClass b ;
a = new;
b = new;
delay(100);

}

program test {
integer i;
integer sqProgram[$];
integer sqFork[$];
nonBlockTest();

fork
{

FirstTask();
}
{

delay(10);
FirstTask();

}
{

delay(10);
SecondTask();

}
{

delay(20);
sqFork.push_front(1);
delay(120);

}
join all
sqProgram.push_front(1);

}

21-111

OpenVera Native Testbench

Compile:

vcs -ntb +dmprof test.vr -debug_all

Note:
The -sverilog compile-time option is not used, since the
program involves OpenVera code.

Run:

simv -ucli // Invokes ucli prompt
ucli> next
ucli> next
ucli>call {$vcsmemprof("memprof.txt", "w")} //"w" the mode the file is

// opened in.

21-112

OpenVera Native Testbench

VCS Memory Profiler Output
==

 $vcsmemprof called at simulation time = 20
==

==
 TOP LEVEL VIEW

==
TYPE MEMORY %TOTALMEMORY
--
MODULES 0 0.00
PROGRAMS 512 100.00
--

===
 PROGRAM VIEW
===
Program(index) Memory %TotalMemory No of Instances Definition

 test_1(1) 512 100.00 1 test.vr:30.

===
 PROGRAM TO CONSTRUCT MAPPING
===

 1. test_1

 Task-Function-Thread

Name Type Memory %Total #No Of #Active Defination
 Memory Instances Instances

FirstTask Program Task 48 9.38 1 1 test.vr:10-14
 Fork Program Thread 0 0.00 1 1 test.vr:38-39
 Fork Program Thread 0 0.00 1 1 test.vr:38-39
 test Program block 0 0.00 1 1 test.vr:30-561

__
 Class Data

 Name Memory %Total #objects #objects Allocated at
 Memory allocated active

FirstClass 48 9.38 2 31 test.vr:13
 test.vr:21

21-113

OpenVera Native Testbench

 Dynamic Data

Type Memory %TotalMemory #Alive Instances

Events 336 12.32 6
Queues 128 25.00 2

__

21-114

OpenVera Native Testbench

22-1

SystemVerilog Design Constructs

22
SystemVerilog Design Constructs 1

This chapter begins with examples of the constructs in SystemVerilog
that VCS has implemented. It then describes enabling the use of
SystemVerilog code.

This chapter covers the following topics:

• SystemVerilog Data Types

• Writing To Variables

• SystemVerilog Operators

• New Procedural Statements

• SystemVerilog Processes

• Tasks and Functions

• Hierarchy

22-2

SystemVerilog Design Constructs

• Interfaces

• Enabling SystemVerilog

• Disabling unique And priority Warning Messages

SystemVerilog Data Types

SystemVerilog has several new data types which are described in
the following sections.

Variable Data Types for Storing Integers

VCS has implemented the following SystemVerilog variable data
types for storing integers:

Notice that some of these data types default to signed values. The
Verilog-2001 standard has the unsigned reserved keyword. In
SystemVerilog you can use it in the variable declaration to change
one of these default signed data types to unsigned. For example:

longint unsigned liu;

data type States Default Description

char two state signed A C-like data type, 8-bit integer

shortint two state signed 16-bit integer

int two state signed 32-bit integer

longint two state signed 64-bit integer

byte two state signed 8-bit integer or ASCII character

bit two state unsigned User-defined vector size

logic four state unsigned User-defined vector size

22-3

SystemVerilog Design Constructs

You can also use the signed keyword to make the bit and logic
data types store signed values.

Note:
In SystemVerilog the Verilog-2001 integer data type defaults
to a signed value.

The two state data types begin simulation with the 0 value.
Assignments of the Z or X values to these data types result in an
assignment of the 0 value.

There is also the void data type that represents non-existent data.
This data type can be used to specify that a function has no return
value. For example:

function void nfunc (bit [31:0] ia);
...
endfunction

The chandle Data Type

The chandle data type is for pointers that you pass using the DPI.

The DPI and the chandle data type are LCA features requiring a
special license.

The following example shows the use of the chandle data type:

program Test(input clk);

typedef struct packed {
time t;
int packet_id;
// more stuff

} Transaction;

22-4

SystemVerilog Design Constructs

typedef chandle DataBase; // Data Base implemented in C/C++

import "DPI" function DataBase openDataBase(string name);
import "DPI" function void saveDataBase(DataBase db);
import "DPI" function void addToDataBase(DataBase db,
Transaction tr);

DataBase myDataBase;

initial begin
myDataBase = openDataBase("TestResults_1");
// ...
while (1) begin

// process transactions
Transaction tr;
// ...
// record the just processed transaction in a data

base
addToDataBase(myDataBase, tr);
// ...
end

end

// ...

final begin
saveDataBase(myDataBase);
end

endprogram

This example uses a chandle to refer transactions to a C++ database.

22-5

SystemVerilog Design Constructs

User-Defined Data Types

You can define your own data types from other data types using the
typedef construct like in C. For example:

typedef logic [63:0] mylog;
mylog m1, m2, m3, m4;

Following the typedef keyword are the SystemVerilog data type for
the user-defined type, the optional bit-width, and the name of the
user-defined type.

You can use a user-defined type, that is, declare a signal that has a
user-defined type, before the definition of the user-defined type. For
example:

typedef mine;
mine p;
...
typedef int mine;

You enable this use of a user-defined type by entering the typedef
keyword and the name of the user-defined type without the
SystemVerilog data type.

Enumerations

You can declare a set of variables that have a set of values. These
are called enumerated data types. For example:

enum shortint{green,yellow,red} northsouth,eastwest;

22-6

SystemVerilog Design Constructs

In this example we have declared shortint variables northsouth
and eastwest, that can hold a set of unassigned constants named
green, yellow, and red.

The default data type for an enumerated data type is int. If you omit
the data type in the enumeration, the variables declared have the int
data type.

You can make assignments to the constants in the enumeration.

For example:

enum{now=0,next=1,old=2}cs,ns,tmp;

You can declare a user-defined data type and then use it as the base
type for an enumeration. For example:

typedef bit [1:0] mybit;
typedef enum mybit {red=2’b00, green=2’b01, blue=2’b10,
 yellow=2’b11} colors;

You can use the following data types as the base type of an
enumeration:

reg logic int integer shortint longint byte

Unpacked dimensions are not allowed in the base type.

Methods for Enumerations

SystemVerilog contains a number of methods for enumerations.
These methods do the following:

.first
Displays the value of the first constant of the enumeration.

22-7

SystemVerilog Design Constructs

.last
Displays the value of the last constant of the enumeration.

.next
Displays the value of the next constant of the enumeration.

.prev
Displays the value of the previous constant in the enumeration.

.num
Displays the total number of constants in the enumeration.

.name
Displays the name of the constant in the enumeration.

The following is an example of the use of these methods:

module top;
typedef enum {red, green, blue, yellow} Colors;

Here is an enumeration named Colors. It has four constants named
red, green, blue and yellow and ranging in value from 0 to 3.

Colors color = color.first;

We declare a Colors variable named color and initialize it to the value
of the first constant in the enumeration.

initial
begin
$display("Type Colors:\n");
$display("name\tvalue\ttotal\tprevious\tnext\tlast\tfirst\n");
forever begin
 $display("%0s\t%0d\t%0d\t%0d\t\t%0d\t%0d\t%0d\n",
 color.name,color,color.num,color.prev,color.next,color.last,
 color.first);
 if (color == color.last) break;
 color = color.next;
 end
end

22-8

SystemVerilog Design Constructs

endmodule

Results from the VCS simulation are as follows:

Type Colors:

name value total previous next last first

red 0 4 3 1 3 0

green 1 4 0 2 3 0

blue 2 4 1 3 3 0

yellow 3 4 2 0 3 0

The $typeof System Function

The $typeof SystemVerilog system function returns the data type
of its argument, and its argument can be either of the following:

• A primary expression. In this case a primary expression is a net
or variable, bit or part select of a net or variable, or a member of
a structure or union.

• A data type

The expression cannot be a cross module reference such as a
hierarchal name of a signal outside of the module definition or an
element in a dynamic array.

The actual returned value is not accessible to you. You can’t display
the value. You use the returned value when comparing the data types
of various signals.

The following are some examples of the use of this system function:

22-9

SystemVerilog Design Constructs

module test;
logic [31:0] log1,log2;
bit [7:0] bit1;
parameter type bus_t = $typeof(log1);

In this type parameter, bus_t gets the data type of log1, which is
logic[31:0].

initial
begin
if ($typeof(log1) == $typeof(log2))
 $display("log1 same data type as log2");
if ($typeof(log1) != $typeof(bit1));
 $display("log1 not the same data type as bit1");
if ($typeof(log2) == $typeof(logic [31:0]))
 $display("log2 is logic [31:0]");

VCS executes all three of these $display system tasks. Notice that
the argument to the second $typeof system function, in the last if
statement, is not a signal name but a data type. This is the way of
determining if a signal’s data type is a specified data type.

end
endmodule

Be advised that you cannot use this system function to supply a data
type at the start of a signal declaration. The following is invalid:

$typeof(log1) log2;

Specifying the wrong kind of argument results in the following error
message:

Error-[SVFNYI] System Verilog feature not yet implemented
$typeof system function is currently supported only for

 primary expressions, selects and slices on primary
 expressions, structure member references and data types.

22-10

SystemVerilog Design Constructs

Expression: expression
"filename", line_number

Structures and Unions

You can declare C-like structures and unions. The following are some
examples of structures:

struct { logic [31:0] lg1; bit [7:0] bt1; } st1;
struct {
 bit [2:0] bt2;
 struct{
 shortint st1;
 longint lg1;
 } st2;
 } st3;

In these three structures:

• The first structure is named st1 and it contains a 32 bit logic
variable named lg1 and an 8 bit bit variable named bt1.

• The second structure named st3 contains a structure named st2.
Structure st3 also contains a bit variable named bt2.

• Structure st2 contains a shortint variable named st1 (same
name as the first structure, this is okay because structure st1 is
not in the same hierarchy as shortint st1 but it is not
recommended). Structure st2 contains a longint variable
named lg1. Notice there is also an lg1 in structure st1.

You can assign values to and from the members of these structures
using the structure names as the building blocks of hierarchical
names. For example:

initial
begin

22-11

SystemVerilog Design Constructs

logic1 = st1.lg1;
longint1 = st3.st2.lg1;
st1.bt1 = bit1;
end

You can make assignments to an entire structure if you also make
the structure a user-defined type. For example:

typedef struct { logic [7:0] lg2; bit [2:0] bit2;} st4;
st4 st4_1;

initial
st4_1={128,3};

The keyword typedef makes the structure a user-defined type. Then
we can declare a variable of that type. Then we can assign values to
the members of the structure. Here lg2 is assigned 128 and bit2 is
assigned 3.

A structure can be packed or unpacked. A packed structure is packed
in memory without gaps so that its members represent bit or part
selects of a single vector. This isn’t true with unpacked structures.
You specify a packed structure with the packed keyword. By default
structures are unpacked. The following is an example of a packed
structure:

struct packed { bit [15:0] left; bit [7:0] right;} lr;

With a packed structure you can access the values of the members
by accessing bit or part selects of the packed structure’s vector. For
example:

initial
begin
lr.left=’1;
lr.right=’0;

22-12

SystemVerilog Design Constructs

mbit1=lr[23:8];
mbit2=lr[7:0];
$display("mbit1=%0b mbit2=%0b",mbit1,mbit2);
end

In SystemVerilog you can enter an unsized literal single bit preceded
by an apostrophe ’ as shown in the assignments to members left
and right. All bits the variable are assigned the unsized literals single
bit. In this case left is filled with ones and right is filled with zeroes.

Here the $display system task displays the following:

mbit1=1111111111111111 mbit2=0

VCS has not implemented an unpacked union. In a packed union all
members must be packed structures, packed arrays (see
"SystemVerilog Arrays" on page 22-14), or integer data types, all with
the same size, for example:

typedef struct packed { bit [15:0] b1; bit [7:0] b2;} st24;
typedef union packed{
 st24 st24_1;
 reg [23:0] r1;
 reg [7:0][2:0] r2;
 } union1;

In this union all the members, structure st24, reg r1, and reg r2 have
24 bits.

You can access the members of the union as follows:

union1 u1;
bit [7:0] mybit1;
reg [7:0]myreg1;
initial
begin
mybit1=u1.st24_1.b2;

22-13

SystemVerilog Design Constructs

myreg1=u1.r2[2];
end

Structure Expressions

You can use braces and commas to specify an expression to assign
values to the members of a structure. For example:

typedef struct{
 bit bt0;
 bit bt11;
 } struct0;
struct0 s0 = {0,1};

In this example, in the declaration of struct0 structure s0, bt0 is
initialized to 0 and bt11 is initialized to 1, because they are listed that
way in the declaration of structure struct0.

You can use the names of the members in a structure expression so
that you do not have to assign values in the order of the members in
the declaration. For example:

typedef struct{
 bit bt1;
 bit bt2;
 } struct1;
struct1 s1 = {bt2:0, bt1:1};

You can use the default keyword to assign values to unspecified
members. You can also use a structure expression in a procedural
assignment statement. For example:

typedef struct{
 logic l1;
 bit bt3;
 }struct2;
struct2 s2;

22-14

SystemVerilog Design Constructs

initial
s2 = {default:0};

SystemVerilog Arrays

SystemVerilog has packed and unpacked arrays. In a packed array
all the dimensions are specified to the left of the variable name. In an
unpacked array the dimensions are to the right of the variable name.
For example:

bit [1:0] b1; // packed array
bit signed [10:0] b2; // packed array
logic l1 [31:0]; // unpacked array

Packed arrays can only have the following variable data types: bit,
logic, and reg. You can make a packed array of any net data type.

Unpacked arrays can be made of any data type.

When assigning to and from an unpacked array the following rules
must be followed:

• You cannot assign to them an integer, for example:

logic l1 [31:0]; // unpacked array
...
l1 = ’0;

• You cannot treat them as an integer in an expression, for example:

logic l1 [31:0]; // unpacked array
...
reg2 = (l1 + 2);

• You can only assign another unpacked array with the same
number of dimensions, all with the same size.

22-15

SystemVerilog Design Constructs

When assigning to a packed array you can assign any vector
expression, for example:

bit [1:0] b1; // packed array
bit signed [10:0] b2; // packed array
logic [7:0] l2; // packed array
...
b1={r1,r2};
b2=’1;
l2=b2[7:0];

Multiple Dimensions

You can have multi-dimensional arrays where all the dimensions are
packed or some dimensions are packed and others unpacked. Here
is an example of all dimensions packed:

logic [7:0][3:0][9:0] log1;

Here, is a single entry of forty bytes. All dimensions are packed, so
in an assignment to this array, you reference the dimensions from left
to right. To assign to the left-most bit in the left most dimensions, do
the following:

log1[7][3][9]=1;

 Here is an example of none of the dimensions packed:

logic log2 [15:0][1:0][4:0];

Here are ten entries of two bytes. Like when all dimensions are
packed, when all dimensions are unpacked, in an assignment to this
array, you reference the dimensions from left to right.To assign to the
left-most bit in the left most dimensions, do the following:

22-16

SystemVerilog Design Constructs

log2[15][1][4]=1;

Here is an example in which some dimensions are packed, but
another is not:

logic [11:0][1:0] log3 [6:0];

Here are seven entries of three bytes. In an assignment to this array,
you reference the unpacked dimensions, followed by the packed
ones. To assign to the left-most bit in the left most dimensions, do
the following:

log3[6][11][1]=1;

In these assignments the last packed dimension can be a part select,
or a slice. For example:

log3[6][11][1:0]=2’b11;
log3[6][11:10]=2’b00;

Indexing and Slicing Arrays

SystemVerilog has both part-selects and slices. To illustrate this
concept, consider the last example multidimensional array:

logic [11:0][1:0] log3 [6:0];

A graphic representation of the packed and unpacked dimensions of
this array is in Figure 22-1.

22-17

SystemVerilog Design Constructs

Figure 22-1 Packed and Unpacked Multi-dimensional Array

The first of the previous two assignment statements:

log3[6][11][1:0]=2’b11;

This is an assignment to a part select. It is an assignment to
contiguous bits on a single packed dimension.

11 10 9 8 7 6 5 4 3 2 1 0
1

0

11 10 9 8 7 6 5 4 3 2 1 0
1

0

11 10 9 8 7 6 5 4 3 2 1 0
1

0

11 10 9 8 7 6 5 4 3 2 1 0
1

0

11 10 9 8 7 6 5 4 3 2 1 0
1

0

11 10 9 8 7 6 5 4 3 2 1 0
1

0

11 10 9 8 7 6 5 4 3 2 1 0
1

0

6

5

4

3

2

1

0

22-18

SystemVerilog Design Constructs

Figure 22-2 A SystemVerilog Part Select

The second of the two previous assignment statements:

log3[6][11:10]=2’b00;

This is an assignment to a slice. A slice is a joint part select in
contiguous elements of a multidimensional array. This slice
assignment is shown in Figure 22-3.

Figure 22-3 A SystemVerilog Slice

SystemVerilog Testbench Constructs Outside
Programs

SystemVerilog testbench constructs outside programs, for example
in modules, packages and in $root, is an LCA feature requiring a
special license. SystemVerilog packages are described in
"SystemVerilog Packages" on page 22-46.

You enable testbench constructs outside programs with the
-ntb_opts dtm compile-time option and keyword argument. The
keyword name comes from “dynamic types in modules.”

11 10 9 8 7 6 5 4 3 2 1 0
1

0
6 1

1

11 10 9 8 7 6 5 4 3 2 1 0
1

0
6 0 0

0 0

22-19

SystemVerilog Design Constructs

The testbench constructs that you can enter outside programs with
this option are as follows:

classes associative arrays dynamic arrays
SystemVerilog named events

For descriptions and examples of these constructs see Chapter 24,
"SystemVerilog Testbench Constructs".

Writing To Variables

SystemVerilog changes one of the basic concepts of Verilog: that
variables are only written to by procedural statements. In
SystemVerilog there are several other ways to write to a variable, as
the following code example illustrates:

module dat;
logic log1,log2,log3;
longint loi1;
byte byt1;
wire w1;

assign log1=w1; //continuous assignment to logic
assign loi1=w1; //continuous assignment to longint
assign byt1=w1; //continuous assignment to byte
buf b1 (log2,w1); //connect to output terminal
dev dev1(log3,w1); //connect to output port
endmodule

module dev(output out,input in);
assign out=in;
endmodule

22-20

SystemVerilog Design Constructs

As you can see, in SystemVerilog, you can write to a variable using
a continuous assignment, connecting it to an output terminal of a
primitive, or an output port of a module instance. Doing so is called
using a structural driver.

There are some limitations on structural drivers on variables:

• A variable cannot have a behavioral driver (assigned a value by
a procedural assignment statement) and a structural driver.

• A variable, unlike a net, cannot have multiple structural drivers.

• A variable still cannot connect to an inout port of a module
definition.

Note:
You can also declare a variable to be an input port, this is also
using a structural driver, See "New Port Connection Rules for
Variables" on page 22-59.

Force and Release on SystemVerilog Variables

You can enter force and release statements for SystemVerilog
data types. The following SystemVerilog code declares such data
types and force and release statements for them:

module test;
int int1,int2;

initial
begin
 force int1=100;
 force int2=100;
 #100 release int1;
 release int2;
end

22-21

SystemVerilog Design Constructs

endmodule

Automatic Variables

You cannot force a value on to an automatic variable. For example:

task automatic my_aut_task;
...
begin
...
#1 force mat=1; // causes this warning:
...
end
endtask

Doing so makes the task static and VCS displays the following
warning message:

Warning-[MNA] Making Task or Function Non-Automatic
Disable/Force/Release/Assign/Deassign inside Automatic Task
is not supported.

"filename.v", line_number:
task automatic task_name;

Also any cross-reference to or from an automatic variable makes the
task static. This happens with a force statement, but also with any
kind of assignment statement. All of the assignment statements and
force statements in the following code result in VCS compiling the
task as a static task:

initial
begin
#5 r5=my_aut_task.mat;
#5 my_aut_task.mat =1;
#5 force my_aut_task.mat=1;
#5 force r5=my_aut_task.mat;
end

22-22

SystemVerilog Design Constructs

VCS displays the following warning message:

Warning-[MNA] Making Task or Function Non-Automatic
Making Task non-automatic due to Xmr access into it.
"filename.v", line_number:
task automatic task_name;

Multiple Drivers

If different elements of an unpacked array have structural and
procedural drivers, then you cannot enter a force statement for any
of the elements in the unpacked array.

A procedural driver is a procedural assignment statement.

A structural driver is, for example, a continuous assignment or a
connection to an output or inout port in a module instance.

module mult_driver;
int unpacked_int [3:0];
assign unpacked_int[3]=1; // structural driver
dev dev1(unpacked_int[3],1); // structural driver

initial
begin
unpacked_int[2]=1; // procedural driver
//force unpacked_int[1]=1; //force statement is not valid
end
endmodule

module dev(out,in);
output [31:0] out;
input [31:0] in;
assign out=in;
endmodule

The force statement causes the following error message:

22-23

SystemVerilog Design Constructs

Error-[IFRLHS] Illegal force/release left hand side
Force/Release of an unpacked array which is driven by

a mixture of structural and procedural assignments is not
valid

The offending expression is signal_name
"mult_driver.v", 10: force signal_name[1] = 1;

This restriction does not hold for unpacked structures, see
"Structures" on page 22-27.

Release Behavior

When VCS executes a release statement on a SystemVerilog
variable, the release behavior depends on how that variable obtained
the value it had before VCS executed the previous force statement
on it.

• If it was a structural driver, which is to say a connection to a module
or primitive instance or by a continuous assignment or a
procedural continuous assignment, the variable returns to its
previous value immediately.

• If it was a behavioral driver, otherwise known as a procedural
assignment statement, the variable returns to that previous value
when or if VCS executes the procedural assignment statement
again. Until VCS executes the assignment again, the variable
keeps its forced value.

The following SystemVerilog module illustrates this behavior:

module test;
logic l1, l2, l3;
...
assign #10 l1=1;
...
always @(posedge clk)

22-24

SystemVerilog Design Constructs

begin
assign l2=1;
l3=1;
#10 force l1=0;
 force l2=0;
 force l3=0;
#10 release l1;
 release l2;
 release l3;
end
endmodule

Signal l1 is continuously assigned a value of 1 at simulation time 10.
Assuming a rising edge on the clock signal at simulation time 100, a
procedural continuous assignment assigns the value of 1 to signal l2
and a procedural assignment assigns the value of 1 to signal l3.

At simulation time110, all three signals are forced to a 0 value.

At simulation time 120, when VCS executes all three release
statements, signals l1 and l2 return to their 1 values, but signal l3
remains at 0 until the next rising edge on the clock.

Integer Data Types

The SystemVerilog LRM lists the following data types as integer data
types:

shortint int longint byte bit logic reg integer time

All of these data types can hold an integer value. With the exception
of the time data type, you can force a value on to an entire signal
with these data types or a bit-select or part-select of these data types.

22-25

SystemVerilog Design Constructs

The following are examples of these data type declarations and valid
force statements to the most significant bits in them:

shortint si1;
int int1;
longint li1;
byte byte1;
bit [31:0] bit1;
logic [31:0] log1;
reg [31:0] reg1;
integer intg1;

initial
begin
force si1[15]=1;
force int1[31]=1;
force li1[63]=1;
force byte1[7]=1;
force bit1[31]=1;
force log1[31]=1;
force reg1[31]=1;
force intg1[31]=1;
end

Notice that a bit-width was not specified for the shortint, int,
longint, byte, or integer data types in their declarations, but
these force statements to these bit-selects are valid. This is because
these data types have a known number of bits, with little-endian
numbering.

Force statements to bit or part-selects of the real, time, or
realtime data types are not possible.

22-26

SystemVerilog Design Constructs

Unpacked Arrays

You can make force statements to an element of an unpacked array
or a slice of elements. For example:

int int1;
logic l1 [2:0];
bit bit1 [2:0];
reg reg1 [2:0];
byte byte1 [2:0];
int int2 [2:0];
shortint si1[2:0];
longint li1[2:0];
integer intg1[2:0];

initial
begin
int1=2;
force l1[int1]=3;
force bit1[int1]=3;
force reg1[int1]=3;
force byte1[int1]=3;
force int2[int1]=3;
force si1[int1]=3;
force li1[int1]=3;
force intg1[int1]=3;
end

You can force an entire unpacked array, a slice of elements, or a
single element. For example:

int int1 [2:0];
int int2 [2:0];

initial
begin
force int1={1,1,1};
force int2[2:1]=int1[2:1];
force int2[0]=0;
end

22-27

SystemVerilog Design Constructs

Like with force statements, you can enter a release statement for
an entire array, a slice of elements in the array, or a single element.

You can use a variable to specify the element of an unpacked array.
For example:

int int1;
logic l1 [2:0];

initial
begin
int1=2;
force l1[int1]=3;
end

If however, you have and unpacked array of packed bits, the packed
bits must be specified with a value or a parameter, not a variable. For
example:

int int1=1;
parameter p1=4;
logic log1 [2:0];
logic [5:3]log2[2:0];

initial
begin
force log1[int1]=1;
force log2[int1][p1]=1;
end

The const constant construct will not work for specifying packed bits.

Structures

You can force and release both entire packed and unpacked
structures, or individual members of the structure. For example:

22-28

SystemVerilog Design Constructs

typedef struct{
 int int1;
 bit [31:0] packedbit;
 integer intg1;
} unpackedstruct;

typedef struct packed{
 logic [2:0] log1;
 bit [2:0] bit1;
}packedstruct;

module test;

unpackedstruct ups1;
unpackedstruct ups2;
packedstruct ps1;
packedstruct ps2;

assign ups1.int1=30;

initial
begin
 #0 ups1.packedbit[0]=0;
 #20 force ups1.int1=1;
 #20 force ups2=ups1;
 #20 release ups2.int1;
 #20 release ups2;
 #20 force ps1.log1=1;
 #20 force ps1.bit1=0;
 #20 force ps2=ps1;
 #20 release ps1;
end
endmodule

Using the VPI

You can force and release on SystemVerilog variables using the VPI.
The following conditions apply:

22-29

SystemVerilog Design Constructs

• VPI force and release should behave exactly in the same manner
as procedural statement force and release.

• If the vpi_put_value call contains a time delay information, VCS
ignores it.

• If the vpi_put_value call contains a value with vpiReleaseFlag,
VCS ignores the value argument of vpi_put_value.

• You cannot apply vpi_put_value to an entire struct. You can only
apply it to individual members.

In the following example, SystemVerilog code makes a PLI call
$forceX. In the PLI code, the SystemVerilog variables in that module
are iterated and once the handle of the required variable is obtained,
vpi_put_value is used with vpiForceFlag to force a value on to the
variable. In the example, value 7 is forced on the variable through an
argument (value_s) of vpi_put_value function call.

module dut(input int I, output int O);
int y;

always @(I) begin
#10 y = I + 50; // 2
...
#20 $forceX(); // 3
...
#20 $releaseX(); // 4

end
endmodule

// PLI code
...

void forceX()
{
 vpiHandle var;
 int flag = vpiForceFlag;

22-30

SystemVerilog Design Constructs

 s_vpi_value value_s = {vpiIntVal};
 value_s.value.integer = 7;

...
 vpi_put_value(var, &value_s, NULL, flag);

...
}

void releaseX()
{
 vpiHandle var;
 int flag = vpiReleaseFlag;
 s_vpi_value value_s = {vpiIntVal};
 value_s.value.integer = 70;

...
 vpi_put_value(var, &value_s, NULL, flag);

...
}

At time 40 ns, another PLI call $releaseX is called, which will release
the previously forced object.

With respect to the behavior, an object can be forced from within
SystemVerilog and released from PLI or vice versa. Otherwise both
force and release can happen from PLI. In all these cases the
behavior of force and release would be the same as SystemVerilog
force and release. All the rules that govern the force and release on
various data types from within SystemVerilog code will also apply to
VPI force and release.

SystemVerilog Operators

SystemVerilog includes the other assignment operators in C:

22-31

SystemVerilog Design Constructs

=+ -= *= /= %= &= |= ^= <<= >>= <<<= >>>=

The following table shows a few uses of these assignment operators
and their equivalent in Verilog-2001.

SystemVerilog includes the ++ increment and -- decrement
operators. The following table shows how they work.

You can place the ++ and -- operators to the left or the right of the
variable operand. Doing so makes a difference when these operators
and their operand are in a larger expression, but enabling you to do
so is not yet implemented in VCS, so you can only use them as simple
assignment statements.

New Procedural Statements

In SystemVerilog if and case statements, including casex and
casez, can be qualified by the unique or priority keywords and
there is a do while statement.

The unique and priority Keywords in if and case

operator example Verilog-2001 equivalent

b += 2; b = b + 2;

b -= 2; b = b - 2;

b *= 2; b = b * 2;

operator example Verilog-2001 equivalent

++b; or b++; b = b + 1;

--b; or b--; b = b - 1;

22-32

SystemVerilog Design Constructs

Statements

The keyword unique preceding an if or nested else if statement
specifies that one, and only one, conditional expression must be true.
So in the following code:

unique if (l2!=0) $display("l2!=0");
else if (l2==3) $display("l2=3");

There are two conditional expressions: (l2!=0) and (l2==3).

VCS evaluates these conditional expressions in parallel and, if both
are true, it is a warning condition and VCS displays the following
warning message:

RT Warning: More than one conditions match in 'unique if'
statement.
 "filename.v", line line_number, at time sim_time

If neither conditional expression is true, it is also a warning condition
and VCS displays the following warning message:

RT Warning: No condition matches in 'unique if' statement.
 "filename.v", line line_number, at time sim_time

The keyword priority preceding an if or nested else if
statement specifies that one conditional expression must be true. So
in the following code:

priority if (l4!=0) $display("l4!=0");
else if (l4==3) $display("l4=3");

There are two conditional expressions: (l4!=0) and (l4==3).

22-33

SystemVerilog Design Constructs

VCS evaluates these conditional expressions in sequence to see if
they are true. VCS executes the first statement controlled by the first
conditional expression that is true. In this example, therefore, VCS
would display:

l4!=0

The priority keyword allows more than one conditional expression
to be true. In this example the conditional expression (l4==3)could
also be true but this would not be a warning condition.

If neither conditional expression were true, it would be a warning
condition and VCS displays the following warning message:

RT Warning: No condition matches in 'priority if' statement.
 "filename.v", line line_number, at time sim_time

The keyword unique preceding a case, casex, or casez statement
specifies that one, and only one, case item expression can have the
value of the case expression.

So in the following code:

unique case (l2)
 0: $display("l2=%0d",l2);
 1: $display("l2=%0d",l2);
 !0: $display("l2 also !0");
endcase

There is the case expression l2 and three case item expressions: 0,
1, and !0.

VCS evaluates these case item expressions in parallel and, if more
than one has the value of the case expression, it is a warning condition
and VCS displays the following warning message:

22-34

SystemVerilog Design Constructs

RT Warning: More than one conditions match in 'unique case'
statement.
 "filename.v", line line_number, at time sim_time

If none of the case item expressions have the value of the case
expression, it is also a warning condition and VCS displays the
following warning message:

RT Warning: No condition matches in 'unique case' statement.
 "filename.v", line line_number, at time sim_time

The keyword priority preceding a case, casex, or casez
statement specifies that one case item expression must have the
value of the case expression. So in the following code:

priority case (l4)
 0: $display("l4 !1");
 1: $display("l4=%0d",l4);
endcase

If l4’s value is neither 0 or 1, it is a warning condition and VCS
displays the following warning message:

RT Warning: No condition matches in 'priority case'
statement.
 "filename.v", line line_number, at time sim_time

The do while Statement

SystemVerilog has the do while statement. It’s an alternative to the
Verilog while statement, where an action is performed and then a
condition is evaluated. Here is an example:

do #1 i1++; while (r1 == 0);

22-35

SystemVerilog Design Constructs

Here VCS repeatedly does these two things: increments signal i1 and
then check to see if signal r1 is at 0. If when it checks r1 is no longer
at 0, it stops incrementing i1. With a while statement, VCS would
check on r1 before incrementing i1.

SystemVerilog Processes

SystemVerilog identifies the Verilog always block and its three
variations, as static processes (There are dynamic processes that
are not yet implemented). These three variations are as follows:

• always_comb

• always_latch

• always_ff

SystemVerilog also sees continuous assignment statements as static
processes and you can use them to continuously assign to not just
nets but also variables.

SystemVerilog also has a final block that executes during the last
simulation time step.

The always_comb Block

An alway_comb block models combinational logic. This block is to
circumvent the problem of an always block with a missing else
statement resulting in an unintended latch. The following is an
example of an always_comb block:

always_comb
begin

22-36

SystemVerilog Design Constructs

 if (!mode)
 var1 = sig1 + sig2;
 else
 var1 = sig1 - sig2;
 var2 = sig1 + sig2;
end

SystemVerilog uses the term sensitivity list and in an always_comb
block, the signals in the right-hand side of the assignment statements
are inferred to be in the sensitivity list, meaning that any transition in
these signals causes the execution of the always_comb block. In
this example any transition in signals sig1 and sig2 cause the always
block to execute.

To make sure that there is consistency between the expressions on
the right-hand side of the assignments and the variables on the
left-hand side, an always_comb block also executes at time zero,
after the initial and always blocks that start at time zero begin
executing.

There is a rule that there cannot be any other procedural assignment
statements in the rest of the design that assign values to variables
on the left-hand side of the assignment statements in an
always_comb block. In this example there can be no other
assignment statements in the design assigning values to var1 and
var2.

An alway_comb block is similar to the always block with and implicit
event control expression list. For example:

bit sig1 = 1;
bit sig2 = 1;

always @*
begin
 if (!mode)

22-37

SystemVerilog Design Constructs

 var1 = sig1 + sig2;
 else
 var1 = sig1 - sig2;
 var2 = sig1 + sig2;
end

This always block executes at time zero only because there were
transitions on the signals in its implicit sensitivity list at time zero, in
this example on signals sig1 and sig2. If there were to such time zero
transitions, this always block would not execute at time zero. The
always_comb block always executes at time zero so the
always_comb block more accurately models proper wired logic
behavior.

Another difference between such an always block and a similar
always_comb block is that an always_comb block executes after
all the always and initial blocks execute at time zero. The
always block with and implicit event control expression list, if it
executes at time zero, executes in no predictable order with the other
always or initial blocks that execute at time zero.

If you have more than one always_comb block, there is no way to
predict the order in which they execute at time zero other than that
they execute after the always and initial blocks that execute at
time zero.

You can consider an always_comb block. For example:

always_comb
bit1 = bit2 || bit3;

assign wire1 = bit1;

To be analogous to a continuous assignment statement:

assign wire1 = bit2 || bit3;

22-38

SystemVerilog Design Constructs

The always_latch Block

The always_latch block models latched behavior, combinational
logic with storage. The following is an example of an always_latch
block:

always_latch
if (clk) sigq <= sigd;

The always_latch block is similar to the always_comb block in
the following ways:

• It has an inferred sensitivity list. It executes when there is a
transition in the signals in the right-hand side of assignment
statements.

• There can be no other assignment statements in the design that
assign values to the variables in the left-hand side of its
assignment statements.

• It always executes at time zero.

The difference between the always_latch and always_comb
block is for synthesis. It’s a way to make clear that you intend a latch
for the code in the always_latch block.

The always_ff Block

The always_ff block models synthesizable sequential behavior.
The following is an example of an always_ff block:

always_ff @(posedge clk or negedge reset)
 if (!reset)
 q <= 0;
 else

22-39

SystemVerilog Design Constructs

 q <= d;

An always_ff block can only have one event control.

The final Block

The final block is a counterpart to the initial block. The final block
executes during the last simulation time step in the simulation. A final
block cannot contain delay specifications, non-blocking assignments,
event controls, wait statements or contain user-defined task enabling
statements for tasks that contain these constructs. The following is
an example of a final block:

final
begin
mytask (l1,l2);
$display(" simulation ends at %0t",$time);
end

Final blocks are an LCA feature requiring a special license.

Tasks and Functions

SystemVerilog changes tasks and functions in the following ways:

• Easier ways to declare task and function ports

• Function inout and output ports

• Void functions

• Tasks no longer requiring begin end or fork join blocks

22-40

SystemVerilog Design Constructs

• Returning values from a task or function before executing all the
statements in a task or function

Tasks

The following is an example of a valid SystemVerilog task. Note the
differences from what would be a Verilog-2001 task.

task task1 (input [3:2][1:0]in1, in2, output bit
[3:2][1:0]out);
logic tlog1,tlog2;
tlog1=in1[3][1];
...
#10 out[3][1]=tlog1;
...
tlog2=in2;
endtask

Lets take a look at a number of lines in the task:

task task1 (input [3:2][1:0]in1, in2, output bit
[3:2][1:0]out);

The task header declares three ports:

• in1 is declared as an input port. The keyword input is
necessary only because it is a multi-dimensional packed array. In
SystemVerilog a port can be a multi-dimensional array, packed
or unpacked. In SystemVerilog task ports also have data types.
The default data type is logic, so in1 has the logic data type.

If in1 were an unpacked multi-dimensional array, you would not
need the keyword input to make it an input port:

in1 [3:2][1:0]

22-41

SystemVerilog Design Constructs

instead of

input [3:2][1:0] in1

• in2 takes both defaults. The default direction is an input port and
the default data type is logic.

• out deviates from both defaults and so it must be specified as an
output port with the bit data type. It is also a multi-dimensional
packed array.

logic tlog1,tlog2;

Local scalar variables tlog1 and tlog2 are declared, with the logic
data type. Ports have a default data type, local variables do not.

tlog1=in1[3][1];
...
#10 out[3][1]=tlog1;
...
tlog2=in2;

Notice that these assignment statements are not inside a begin end
or fork join block. By default statements in a task are executed
sequentially, just like they were in a begin end block. If you want,
you can enclose these statements in a begin end or fork join
block.

Functions

The following is an example of a valid SystemVerilog function and
the code that calls the function. Note the differences from what would
be a Verilog-2001 function.

22-42

SystemVerilog Design Constructs

function reg [1:0] outgo(reg [3:2][1:0] in1,in2, output int
out);
int funcint;
funcint = in1[3] >> 1;
...
if (in2==0)
 return 0;
out = funcint;
...
outgo = funcint;
endfunction

initial
begin
...
#1 reg2=outgo(reg1,log1,int2);
...
end

Lets take a look at a number of lines in the function:

function reg [1:0] outgo(reg [3:2][1:0] in1,in2, output int
out);

The function header specifies that the function name is outgo. It
declares that it returns a two-bit value of the reg data type (a
SystemVerilog function can also return a multi-dimensional array, or
a structure or union). The default data type of the return value is
logic. The header declares three ports:

• in1 is an input port of the reg data type. It is a multi-dimensional
packed array. In SystemVerilog, function ports, like task ports,
can be a multi-dimensional array. Also, like task ports, function
ports default to the input direction, so port in1 is an input port.

22-43

SystemVerilog Design Constructs

• in2 is a scalar port that takes both defaults, input direction and
the logic data type.

• out is an output port so the direction must be specified. It is of
the int data type so that too is specified. In SystemVerilog a
function can have an output or an inout port.

int funcint;

Local scalar variable funcint is declared, with the int data type. Ports
have a default data type, local variables do not.

funcint = in1[3] >> 1;
...
out = funcint;
...
if (in2==0)
 return 0;
outgo = funcint;

Notice that, just like SystemVerilog tasks, these assignment
statements are not inside a begin end or fork join block. By
default, statements in a function are executed sequentially, just like
they were in a begin end block. If you want, you can enclose these
statements in a begin end or fork join block.

In these procedural statements:

1. The local variable funcint is assigned a shifted value of an element
in the multi-dimensional array of input port in1.

2. The new value of funcint is assigned to the output port named out.

3. SystemVerilog functions can have a return statement that
overrides an assignment to the function name. Here if input port
in2 equals zero, the function returns zero.

22-44

SystemVerilog Design Constructs

4. If the value of in2 is not zero, the value of the local variable funcint
is returned by the function.

#1 reg2=outgo(reg1,log1,int2);

In this statement that calls the function (SystemVerilog function calls
are expressions unless they are void functions), signal reg2 is
assigned the return value of the function. Signals reg1 and log1 input
values to the function and the value of the output port is a structural
driver of signal int2.

SystemVerilog also allows void functions that do not have a return
value. A void function is called as a statement not as an expression,
as it is in non-void functions. The following is an example of a void
function and the code that calls it:

function void display(bit in1);
bit funcbit;
funcbit=in1;
$display("bit1=%0b",funcbit);
//return 1’bz;
endfunction

initial
begin
bit1=1;
display(bit1);
end

A void function cannot contain a return statement.

Passing Arguments by Setting Defaults

You can specify default initial values for function and task ports.
Default values can be constants or expressions, cross-module
references, or class-references.

22-45

SystemVerilog Design Constructs

You can specify default values for:

• Input ports

• Inout and ref ports (one-value arguments only; constant
arguments not supported)

• Automatic tasks/functions

• Task/functions contained in classes or methods of classes

• Dynamic/Associative arrays (available with +svtb switch only)

• export and import tasks and functions in interfaces

In the following example the function func1 has two integer
parameters whose default values are 100 and 300 respectively. This
function returns an integer value. This function is defined in module
m and is called in an initial block of module “m”;

module m;
function int func1(int x = 100, int y = 300);

return (x + y);
endfunction

initial
func1 ();

endmodule

The function func1 receives the default value of the arguments as if
the function call were written:

func1(100, 300);

The same function func1 can be called with a single argument:

initial
 func1(2);

22-46

SystemVerilog Design Constructs

In the first location, the argument overrides the default and the second
default value is applied as if the function call were written as:

 func1(2, 300);

SystemVerilog Packages

A package is a scope that contains declarations of things that you
want to share with more than one module, macromodule, interface
or program.

Note:

- A SystemVerilog package is a concept borrowed from VHDL.

- Classes in packages are an LCA feature requiring a special
license.

- SystemVerilog assertion sequence and property declaration in
packages, and referencing them in a module or program
definition, is not supported yet.

The things that you can declare in a package are data types, including
complex data types like structures, and user-defined tasks and
functions.

The following are examples of a package definitions and how to
reference things declared in a package:

package pack1;
int int1;
endpackage

22-47

SystemVerilog Design Constructs

You define a SystemVerilog package between the package and
endpackage keywords. You must specify an identifier for the
package. This package declares int variable int1.

A module, macromodule, interface, or program references something
declared in a package with an import statement with the :: scope
resolution operator.

You can also use an import statement, with the :: scope resolution
operator, in a package, to reference the contents of another package,
but you can’t use it to reference something in a module, macromodule,
interface, or program. The following is an example of a package
referencing something in another package:

package pack2;
import pack1::int1;
endpackage

What follows are two module definitions that share what is declared
in package pack1:

module top1;
import pack1::int1;

initial
begin
$monitor ("int1=%0d at %0t", int1, $time);
#10 int1=11;
#10 $finish;
end

endmodule

module top2;
import pack1::int1;

initial

22-48

SystemVerilog Design Constructs

#6 int1=7;

endmodule

Modules top1 and top2 share int1 in package pack1. They both
declare the use of the variable with import statements that reference
both the package and the variable. The $monitor system task
displays the following:

int1=0 at 0
int1=7 at 6
int1=11 at 10

Both modules top1 and top2 assign values to int1.

Note:
A data type declaration in a package is different from a data type
declaration in $root. you must reference a data type in a package
with an import statement before you can assign values to it.

The following package declares a user-defined data type.

package pack1;
typedef enum { FALSE, TRUE } bool_values;
endpackage

The following module definition references the user-defined data type
and the values of the user defined data type using import
statements:

module top;
import pack1::bool_values;
import pack1::FALSE;
import pack1::TRUE;
bool_values top_bool_value1;
bool_values top_bool_value2 = TRUE;

22-49

SystemVerilog Design Constructs

initial begin
 #1 top_bool_value1 = top_bool_value2;
 #5 top_bool_value2 = FALSE;
end

initial
$monitor("%0t top_bool_value1=%0d top_bool_value2=%0d",
$time, top_bool_value1, top_bool_value2);

endmodule

The $monitor system task displays the following

0 top_bool_value1=0 top_bool_value2=1
1 top_bool_value1=1 top_bool_value2=1
6 top_bool_value1=1 top_bool_value2=0

The following package contains a structure and a user-defined
function:

package pack1;

typedef struct {real real1, real2;} struct1;

function struct1 halvfunc1 (struct1 in1);
 halvfunc1.real1 = in1.real1 / 2;
 halvfunc1.real2 = in1.real2 / 2;
endfunction

endpackage : pack1

The following module definition begins with the following:

1. A wildcard character in the import statement to specify
referencing both the structure and the user-defined function in the
module

2. Four declarations of instances of the structure

22-50

SystemVerilog Design Constructs

module mod1;
import pack1::*;
struct1 mod1struct1;
struct1 mod1struct2;
struct1 mod1struct3;
struct1 mod1struct4;

initial
begin
mod1struct1.real1=5;
mod1struct1.real2=11;
mod1struct2.real1=3;
mod1struct2.real2=7;
#10 mod1struct3 = halvfunc1 (mod1struct1);
#10 mod1struct4 = halvfunc1 (mod1struct2);
#10 $display("mod1struct3.real1=%0f",mod1struct3.real1);
#10 $display("mod1struct3.real2=%0f",mod1struct3.real2);
#10 $display("mod1struct4.real1=%0f",mod1struct4.real1);
#10 $display("mod1struct4.real2=%0f",mod1struct4.real2);
end

endmodule

The $display system tasks display the following:

mod1struct3.real1=2.500000
mod1struct3.real2=5.500000
mod1struct4.real1=1.500000
mod1struct4.real2=3.500000

Exporting Time Consuming User-Defined Tasks with the
SystemVerilog DPI

You can export a user-defined task that contains delays into the C or
C++ language using the DPI. Such a user-defined task consumes
simulation time and does not start and finish its execution during the
same simulation time step.

22-51

SystemVerilog Design Constructs

Exporting time-consuming user-defined tasks is an LCA feature
requiring a special license.

Time-consuming user-defined tasks are also called blocking tasks,
they suspend, for some simulation time, the C or C++ function that
calls it.

The following is an example of a module definition containing such a
user-defined task:

`timescale 1 ns/1 ns
module test;

 import "DPI" context task func_in_C(int i);

 task task_in_SV(inout int i);
 #5 i = i/2;

 endtask

 export "DPI" task task_in_SV;

initial
 func_in_C(4);

endmodule

One of the first lines in the module declares the use of a C language
function later in the code:

 import "DPI" context task func_in_C(int i);

This line says that we are importing (calling) a function in the C or
C++ language using the DPI. There is the following required
information in this declaration:

22-52

SystemVerilog Design Constructs

• The context keyword enables, in this case, the C or C++
language function to call the user-defined task in the
SystemVerilog code. (This keyword also has other uses in the
DPI.)

• The task keyword also enables the C or C++ language function
to call the user-defined task in the SystemVerilog code. We are
calling it a task even thought there are no tasks in C or C++.

You must include both keywords.

The SystemVerilog IEEE Std 1800-2005, Section 26.1.1 "Tasks and
functions", specifies the following:

“All functions used in DPI are assumed to complete their execution
instantly and consume 0 (zero) simulation time, just as normal
SystemVerilog functions.”

So imported C functions that call time-consuming user-defined tasks
must be declared to be tasks.

The SystemVerilog IEEE Std 1800-2005, Section 26.7 "Exported
tasks", specifies the following:

• “It is never legal to call an exported task from within an imported
function.”

• “It is legal for an imported task to call an exported task only if the
imported task is declared with the context property.”

Next comes the user-defined task:

 task task_in_SV(inout int i);
 #5 i = i/2;

 endtask

22-53

SystemVerilog Design Constructs

Notice that there is a delay in this user-defined task. This is a blocking
task for the C or C++ function that calls it. The argument for this
user-defined task has the inout direction.

Next comes the declaration that the user-defined task can be called
by a C or C++ function:

 export "DPI" task task_in_SV;

The module ends with procedural code that calls the C or C++
function:

initial
 func_in_C(4);

The C or C++ source code is as follows:

#include <svdpi.h>

extern int task_in_SV(int *i);

void func_in_C(int i)
{
 printf("before export, i=%d\n",i);
 task_in_SV(&i);
 printf("after export, i=%d\n",i);
}

The #include preprocessor statement:

#include <svdpi.h>

Specifies declarations and prototypes of SystemVerilog DPI library
functions and tasks. Synopsys recommends including this line before
calls to DPI functions and tasks.

22-54

SystemVerilog Design Constructs

The extern declaration declares the user-defined function.

The address of the int variable i is passed to the user-defined task
because the argument of the task has the inout direction.

The printf statements display the following:

before export, i=4
after export, i=2

Hierarchy

SystemVerilog contains enhancements for representing the design
hierarchy:

• The $root top-level global declaration space

• New data types for ports

• Instantiation using implicit .name connections

• Instantiation using implicit .* connections

• New port connection rules for variables

The $root Top-Level Global Declaration Space

In SystemVerilog there is the $root top-level declaration space
which not only contains all uninstantiated modules, but also interface
definitions (in the current implementation interface definitions cannot
be inside module definitions or other interfaces), user-defined tasks
and functions, parameter, nets and variables, and type definitions.

Some examples of $root declarations are as follows:

22-55

SystemVerilog Design Constructs

parameter msb=7;

typedef int myint;

wire w1,w2,w3,w4;

logic clk;

and and1 (w2,w3,w4);

tran tr1 (w1,w4);

primitive prim1 (out,in);
input in;
output out;
table
// in : out
 0 : x;
 1 : 0;
 x : 1;
endtable
endprimitive

event recieved_data;

task task1 (input [3:2][1:0]in1, in2, output bit
[3:2][1:0]out);
logic tlog1,tlog2;
tlog1=in1[3][1];
...
#10 out[3][1]=tlog1;
...
tlog2=in2;
endtask

function void left (output myint k);
 k = 34;
 $display ("entering left");
endfunction

interface try_i;

22-56

SystemVerilog Design Constructs

wire [7:0] send, receive;
endinterface

module top1(w1);
output w1;
endmodule

module top2(w1);
input w1;
endmodule

All constructs that are declared or defined in $root are, for the most
part, accessible to the entire design. Any module, regardless of its
place in the hierarchy, can use the parameter, use the type, read or
write to these variables, use the named event, call the task and
function, or instantiate the interface. The gate and switch primitive
cannot be instantiated in the rest of the design (they are already
instantiated in $root) but the rest of the design can write to their
inputs and read their outputs. The UDP can be instantiated in the rest
of the design. The module definitions, not instantiated elsewhere, are
top-level modules. Note that they connect to $root level wire w1.

New Data Types for Ports

In SystemVerilog a module input or output port can be any net
data type or any variable data type including an array, a structure, or
a union. For example:

typedef struct {
 bit bit1;
 union packed{
 int int1;
 logic log1;
 } myunion;
} mystruct;

22-57

SystemVerilog Design Constructs

module mod1(input int in1, byte in2, inout wire io1, io2,
 output mystruct out);
...
endmodule

In the module header for module mod1:

1. The first port is named in1. It is specified as an input port with
the int data type.

- If we omitted both the direction and data type, SystemVerilog
expects the port to be declared following the header.

- If only the direction is omitted, it defaults to inout.

- If only the data type is omitted, it defaults to the wire net data
type (which you can change with the ‘default_nettype
compiler directive to another net data type).

2. The second port is named in2. No direction is specified so it
inherits the direction from the previous port, so in2 is an input
port with the byte data type.

3. The third port is named io1. It’s specified as an inout port with
the wire data type.

4. The fourth port is named io2. Not being the first port in the list, it
inherits the direction and data type from port io1.

5. The last port is named out. It is an output port that is the structure
mystruct.

You still can only use net data types for inout ports.

The Accellera SystemVerilog 3.1a specification says that named
events can also be ports, but this is not implemented in VCS.

22-58

SystemVerilog Design Constructs

Instantiation Using Implicit .name Connections

In SystemVerilog if the name and size of a port matches the name
and size of the signal that connects to that port, you can make
connections in any order without matching the order of the ports or
using a name based connection list where you have to enter each
port and the signal that connects to it. For example:

module top;
logic [7:0] log1;
byte byt1 [1:0];

dev dev1(.log1,.byt1);
endmodule

module dev(input byte byt1 [1:0], input logic [7:0] log1);
...
endmodule

Module top instantiates module dev. In the module instantiation
statement in module top, the connection list has signal log1 first,
followed by signal byt1. In the module header for module dev, the
port connection list has port byt1 first followed by port log1.

In Verilog-2001 or Verilog-1995 you would need a name-based
connection list in the module instantiation statement:

dev dev1(.log1(log1),.byt1(byt1));

Instantiation Using Implicit .* Connections

In SystemVerilog, if the name and size of a port matches the name
and size of the signal that connects to that port, you use a period and

22-59

SystemVerilog Design Constructs

as asterisk to connect the signals to the ports, similar to an implicit
event control expression list for an always block. For example:

module top;
logic [7:0] log1;
byte byt1 [1:0];

dev dev1(.*);
endmodule

module dev(input byte byt1 [1:0], input logic [7:0] log1);
...
endmodule

New Port Connection Rules for Variables

SystemVerilog allows you to declare an input port to be a variable.
This is another way to use a structural driver, see "Writing To
Variables" on page 22-19. If you declare an input port to be a
variable, you cannot have multiple drivers, so you cannot do any of
the following:

• Assign values to the variable with a procedural assignment
statement or a user-defined task enabling statement.

• Assign values to it with a continuous assignment statement or
have values propagate to it from a module instance, gate,
switch-level primitive, or UDP.

Like Verilog-2001 and Verilog-1995, SystemVerilog allows you to
declare an output port to be a variable and prohibits the same for
inout ports.

22-60

SystemVerilog Design Constructs

Ref Ports on Modules

Like arguments to tasks that you declare with the ref keyword, you
can declare module ports with the ref keyword instead of the input,
output, or inout keywords.

A ref port is a reference to the signal that connects to it in a module
instantiation statement in a higher level module instance. This
connected higher-level signal is called a highconn signal. for a ref
port there isn’t separate simulation values for the highconn signal and
the instance’s port, with values propagating to the port from the signal
or to the signal from the port. VCS only has one copy of the simulation
data for both the highconn signal and the ref port. All operations that
the module does to its ref port it also does directly to the highconn
signal.

The following is an example of the use of a ref port:

`timescale 1 ns / 1 ns
module refportmod (ref integer refin1);
always @ refin1
#1 refin1 = refin1/2;
endmodule

module test;
integer int1;

initial
begin
$monitor("int1 = %0d at %0t",int1,$time);
#10 int1 = 100;
#10 int1 = 66;
#10 int1 = 24;
end

refportmod refportmod1 (int1);

22-61

SystemVerilog Design Constructs

endmodule

In module refportmod the port named refin1 is declared with the ref
keyword. All operations done in module refportmod to ref port refin1
also happen to the value of the highconn signal, int1, in module test.

The $monitor system task in module test displays the following:

int1 = x at 0
int1 = 100 at 10
int1 = 50 at 11
int1 = 66 at 20
int1 = 33 at 21
int1 = 24 at 30
int1 = 12 at 31

The value of integer int1 is halved because it is connected to a ref
port in a module that halves this port.

A ref port is the only way to share a variable value across the
hierarchy.

Both the ref port and the highconn signal must have the same
variable data type.

A ref port differs from an inout port in that an inout port must
have a net data type, whereas a ref port must have a variable data
type.

22-62

SystemVerilog Design Constructs

Interfaces

Interfaces were developed because most bugs occur between blocks
in a design and interfaces help eliminate these wiring errors.
Interfaces are a way of encapsulating the communication and
interconnect between these blocks, but they are more than just that.
They help you to develop a divide and conquer methodology and are
reusable in other places in a design and in other designs.

Figure 22-4 Block Diagrams

Consider the wide arrows in the block diagram on the left to be
interfaces. They are more than just wire bundles, They are an
implementation of how to communicate between blocks. As
interfaces, they help you to focus on how information is
communicated between block.

Encapsulation

vs

Encapsulation

vs

22-63

SystemVerilog Design Constructs

At its simplest level, an interface encapsulated communication like a
struct encapsulates data:

Think of a wire as a built-in interface.

An interface is like a module that straddles other modules.

Interfaces help you to maintain your code. For example, to add a
signal between blocks in your design, you only need to edit the
interface instead of editing the module headers of both modules and
the module instantiation statements for these modules.Interfaces are
not just wires. Interfaces can contain the following:

• Variables and parameters that can be declared in one location
and used in various modules.

• Tasks or functions that can be used by all instances that connect
to these interfaces.

• Procedures for checking and other verification operations.

Example 22-5 introduces a basic interface and the code that uses it.

typedef struct{
int int1;
logic [7:0] log1;
} s_type;

interface intf;
int int1;
wire [7:0] w1;
endinterface

module module

interface

22-64

SystemVerilog Design Constructs

Example 22-5 Basic Interface

As illustrated in this example:

• In the VCS implementation, interface definitions must be in the
$root declaration space, outside of any module definition. In the
Accellera SystemVerilog 3.1a specification, this is not the case,

interface intf;
wire [7:0] send,receive;
endinterface

module test;
logic [7:0] data_in1, data_in2, data_out1, data_out2;

intf intf1();

sendmod sm1 (intf1, data_in1, data_out1);
receivemod rm1 (intf1, data_in2, data_out2);

endmodule

module sendmod (intf intfa1,
 input logic [7:0] in,
 output logic [7:0] out);

assign out = intfa1.receive;
assign intfa1.send = in;
endmodule

module receivemod(intf intfb1,
 input logic [7:0] in,
 output logic [7:0] out);
assign out = intfb1.send;
assign intfb1.receive = in;
endmodule

Interface defined in $root

Interface instantiated in module definition

Connect module instance to
interface instance

Reading from a signal in
an interface

Writing to a signal in
an interface

Interface
declared in
module
header

22-65

SystemVerilog Design Constructs

and interface definitions can be in module definitions or nested in
other interface definitions.

• To use an interface to connect a module instance to another, you
must instantiate the interface in the module that instantiates the
two module instances.

• You also must declare the interface in the port connection list of
the module headers of the two modules you are connecting with
the interface. Note that the interface instance names in the port
connection lists do not have to match the interface instance name
in the module that instantiates these module, not do the instance
names have to match in the port connection lists of the modules
connected by the instance. In this example we have the following
instance names for the same interface: intf1, intfa1, and intfb1.

• To read from or write to a signal in an interface, you reference it
by interface_instance_name.signal_name.

This basic example, meant only to introduce interfaces, doesn’t do
much to show you the utility of an interface. In fact, in this example
the signals in the interface, send and receive, are functionally the
same as inout ports in the module definitions and two nets with the
wire data type connecting these inout ports.

What if your intent is for the instance of module sendmod to always
send data to module receivemod through one signal, in this case
signal send, and receive data from module receivemod from the other
signal, signal receive? This basic interface isn’t doing the job for you.
You can use an interface construct called a modport to add
directionality to signals in an interface.

22-66

SystemVerilog Design Constructs

Using Modports

A modport specifies direction for a signal from a “point of view.” With
these two signals in the interface we can specify two modports or
“points of view” and the two modules connected by the interface will
use different modports, and have different points of view.

Let’s modify the interface definition by adding two modports.

interface intf;
logic [7:0] send,receive;
modport sendmode (output send, input receive);
modport receivemode (input send, output receive);
endinterface

Modules that use modport sendmode, have an output port named
send and an input port named receive. Modules that use modport
receivemode, have an input port named send and an output port
named receive.

The data type is also changed. This isn’t done to enable the modport.
It’s to enable the modules connected by this interface, that we will
also modify, to make procedural assignments to the signals.

22-67

SystemVerilog Design Constructs

Now let’s modify the module definition for module sendmod:

In the module header, in the connection list in the header where using
the interface is declared, the modport is also declared, using the
following syntax:

interface_name.modport_name

Module receivemod is also modified:

module receivemod(intf.receivemode intfb1,
 input logic [7:0] in,
 output logic [7:0] out);
always @(intfb1.send) out = intfb1.send;
always @(intfb1.send) intfb1.receive = in;
endmodule

Modports also control the visibility of signals declared in an interface.
If a signal in an interface is not specified in a modport, then modules
that use the modport cannot access the signal.

module sendmod (intf.sendmode intfa1,
 input logic [7:0] in,
 output logic [7:0] out);
always @(intfa1.receive) out = intfa1.receive;
always @(intfa1.receive) intfa1.send = in;

endmodule

modport follows the
interface name

22-68

SystemVerilog Design Constructs

Functions In Interfaces

If we define a user-defined task or function in the interface, we can
use the import keyword in the modport to make it accessible to
the module instances connected by the interface and that use the
modport. For example:

interface intf;
logic [7:0] send,receive;

function automatic logic parity(logic [7:0] data);
return (^data);
endfunction

modport sendmode (output send, input receive,
 import function parity());
modport receivemode (input send, output receive,
 import function parity());
endinterface

Using the keyword import and specifying whether it is a task or
function in the modport, enables modules connected by the interface
to use the function named parity. Using a function in an interface is
called using a method.

module sendmod (intf.sendmode intfa1,
 input logic [7:0] in,
 output logic [7:0] out,
 output logic out_parity);

always @(intfa1.receive)
begin
out = intfa1.receive;
out_parity = intfa1.parity(intfa1.receive);
intfa1.send = in;
end

endmodule

22-69

SystemVerilog Design Constructs

This module uses the method called parity, using the syntax:

interface_instance_name.method_name

Enabling SystemVerilog

You tell VCS to compile and simulate SystemVerilog code with the
-sverilog compile-time option. No runtime option is necessary.

IMPORTANT:
Radiant Technology (+rad) does not work with
SystemVerilog design construct code, for example
structures and unions, new types of always blocks,
interfaces, or things defined in $root.
The only SystemVerilog constructs that work with Radiant
Technology are SystemVerilog assertions that refer to
signals with Verilog-2001 data types, not the new data types
in SystemVerilog.

Disabling unique And priority Warning Messages

By default VCS displays warning messages in certain situations when
you enter unique if, unique case, priority if and priority
case statements. For example:

RT Warning: More than one conditions match in 'unique if'
statement.
 "filename.v", line line_number, at time sim_time

RT Warning: No condition matches in 'unique if' statement.
 "filename.v", line line_number, at time sim_time

22-70

SystemVerilog Design Constructs

RT Warning: No condition matches in 'priority if' statement.
 "filename.v", line line_number, at time sim_time

RT Warning: More than one conditions match in 'unique case'
statement.
 "filename.v", line line_number, at time sim_time

RT Warning: No condition matches in 'unique case' statement.
 "filename.v", line line_number, at time sim_time

RT Warning: No condition matches in 'priority case'
statement.
 "filename.v", line line_number, at time sim_time

You can suppress these warning messages with the following
compile-time option and keyword argument.

-ignore keyword_argument

The keyword arguments are as follows:

unique_checks
Suppresses warning messages about unique if and unique
case statements.

priority_checks
Suppresses warning messages about priority if and
priority case statements.

all
Suppresses warning messages about unique if, unique
case, priority if and priority case statements.

23-1

SystemVerilog Assertion Constructs

23
SystemVerilog Assertion Constructs 1

SystemVerilog assertions (SVA), just like OpenVera assertions
(OVA), are a shorthand way to specify how you expect a design to
behave and have VCS display messages when the design does not
behave as specified. You can use both to accomplish the same thing.
SystemVerilog assertions are in the SystemVerilog 3.1a standard
promulgated by Accellera, the electronics industry wide organization
for the advancement of hardware description languages. OpenVera
assertions are part of the Synopsys proprietary OpenVera standard.

VCS has implemented both types of SystemVerilog assertions:

• Immediate assertions

• Concurrent assertions

Immediate assertions are a test of an expression when VCS executes
the immediate assertion. An immediate assertion is a statement in
procedural code.

23-2

SystemVerilog Assertion Constructs

Concurrent assertions specify how the design behaves during a span
of simulation time.

Immediate Assertions

An immediate assertion resembles a conditional statement in that it
has a boolean expression that is a condition. When VCS executes
the immediate assertion it tests this condition and if it is true, VCS
executes some statements in what is called a pass action block. If
the condition is not true VCS executes statements in what is called
a fail action block.

The following is an example of an immediate assertion:

module test;
...
initial
begin:named
...
a1:assert (lg1 && lg2 && lg3)
 begin: pass
 $display("%m passed");
 . . .
 end
else
 begin: fail
 $display("%m failed");
 . . .
 end
end

23-3

SystemVerilog Assertion Constructs

In this example the immediate assertion is labeled a1, and its
expression (lg1 && lg2 && lg3) is the condition. If the condition
is true, VCS executes the begin-end block labeled pass. This is the
pass action block (it is not required to name this action block). If the
condition is not true, VCS executes the begin-end block labeled fail
(it is also not required to name this action block), it follows the keyword
else.

If, for example, this immediate assertion passes, the condition is true,
and VCS displays the following:

test.named.a1 passed

Concurrent Assertions Overview

Concurrent assertions consists of one or more properties. A property
consists of a clock signal and one or more sequences. In a property
you can either specify a sequence of values on signals and the
simulation time that occurs between these values, specified as clock
ticks, or instantiate a sequence that you declare. You can declare a
sequence and then use it as a building block in a property.

Sequences

A sequence enables you to build and manipulate sequential behavior.
The following is an example of a sequence:

sequence s1;
sig1 ##1 sig2;
endsequence

23-4

SystemVerilog Assertion Constructs

Sequence s1 specifies that signal sig1 is true and then one clock tick
later signal s2 is true. In this case the clock signal and the edge that
specifies the clock tick, are in a property definition that instantiates
this sequence. The ## operator specifies a delay of a number of clock
ticks (the value you specify must be a non-negative integer).

You can specify any number of signals in the sequential expression
and the logical negation operator. For example:

sequence s2;
sig1 ##1 sig2 ##2 !sig3;
endsequence

Sequence s2 specifies that signal sig1 must be true, and one clock
tick later signal s2 must be true, and then two clock ticks after that
signal s3 must be false.

You can use a sequence in another sequence as a building block in
another sequence, for example:

sequence s1;
sig1 ##1 sig2;
endsequence

sequence s3;
s1 ##2 !sig3;
endsequence

Here sequence s1 is used in sequence s3.

You can declare a sequence in the following places in your code:

• In a module definition

• In an Interface definition

23-5

SystemVerilog Assertion Constructs

• At $root (in SystemVerilog $root means outside of any other
definition, a sequence defined in $root is globally accessible).

Note:
The SystemVerilog LRM says that you can declare a sequence
in a module definition but never in an always or initial block.

Using Formal Arguments In A Sequence

You can specify formal arguments in a sequence and then make
substitutions when you use it in another sequence. For example:

sequence s1(sig3,sig4);
sig3 ##1 sig4;
endsequence

sequence s2;
s1(sig1,sig2) ##1 sig5;
endsequence

Specifying a Range of Clock Ticks

You can specify a range of clock ticks in the delay. For example:

sequence s1;
sig1 ##[1:3] sig2;
endsequence

This sequence specifies that sig1 must be true and then sig2 must
be true at either the first, second, or third subsequent clock tick.

You can specify that the range end at the end of the simulation with
the $ token, for example:

sequence s1;
sig1 ##[1:$] sig2;
endsequence

23-6

SystemVerilog Assertion Constructs

The operands in the sequences need to be boolean expressions, they
do not have to be just signal names. For example:

sequence s1;
sig1 == 1 ##1 sig3 || sig4;
endsequence

Unconditionally Extending a Sequence

You can unconditionally extend a sequence by using the literal true
value 1 or a text macro defined as 1. For example:

sequence s2;
sig1 ##1 sig2 ##2 !sig3 ##3 1;
endsequence

Here sig1 must be true, one clock tick later sig2 must be true, then
two clock ticks later sig3 must be false, but the sequence doesn’t end
until three clock ticks later. Extending a sequence can be handy when
you are using a sequence in another sequence.

Using Repetition

There are three operators for specifying the repetition of a sequence:

• The consecutive repetition operator [*

• The goto repetition operator [->

• The non-consecutive repetition operator [=

The consecutive repetition operator [* is for specifying consecutive
repetitions of a sequence. For example, the following sequence:

sequence s1;

23-7

SystemVerilog Assertion Constructs

sig1 ##1 sig2 ##1 sig2 ##1 sig2;
endsequence

Can be shortened to the following:

sequence s1;
sig1 ##1 sig2 [*3];
endsequence

Note:
The value you specify with the [* operator must be a positive
integer.

You can use repetition in a range of clock ticks. For example:

sequence s1;
(sig1 ##2 sig2) [*1:3];
endsequence

This sequence specifies that the sequence is run at the length of itself,
or the length of itself doubled, or tripled. This sequence is the
equivalent of all of the following:

sequence s1;
(sig1 ##2 sig2);
endsequence

sequence s1;
(sig1 ##2 sig2 ##1 sig1 ##2 sig2);
endsequence

sequence s1;
(sig1 ##2 sig2 ##1 sig1 ##2 sig2 ##1 sig1 ##2 sig2);
endsequence

23-8

SystemVerilog Assertion Constructs

You can specify an infinite number of repetitions with the $ token. For
example:

sequence s1;
(sig1 ##2 sig2) [*1:$];
endsequence

Note:
##1 is automatically added between repetitions.

The goto repetition operator [-> (non-consecutive exact repetition)
specifies the repetition of a boolean expression, such as:

a ##1 b [->min:max] ##1 c

This is equivalent to:

a ##1 ((!b [*0:$] ##1 b)) [*min:max]) ##1 c

Adding the range specification to this allows the construction of useful
sequences containing a boolean expression that is true for at most
N occurrences:

a ##1 b[->1:N] ##1 c // a followed by at most N occurrences
 // of b, followed by c

The non-consecutive repetition operator [= extends the goto
repetition by extra clock ticks where the boolean expression is not
true.

a ##1 b [=min:max] ##1 c

This is equivalent to:

a ##1 ((!b [*0:$] ##1 b)) [*min:max]) ##1 !b[*0:$] ##1 c

23-9

SystemVerilog Assertion Constructs

The above expression would pass the following sequence, assuming
that 3 is within the min:max range.

a c c c c b c c b c b d d d c

Specifying a Clock

You can specify a clock in a sequence. For example:

sequence s1;
@(posedge clk) sig1 ##1 sig2;
endsequecle

This sequence specifies that the clock tick is on the rising edge of
signal clk.

Value Change Functions

You can also include the following system functions in a sequential
expression. They tell you about value changes between clock ticks:

$sampled(expression)
Returns the sampled value of the expression with respect to the
last occurrence of the clocking event.

$rose(expression)
If the expression is just a signal, this returns 1 if the least significant
bit of the signal changed to 1 between clock ticks. If the expression
is more than one signal and an operator, for example sig1 +
sig2, this returns 1 if the value of the least significant bit in the
evaluation of the expression changes from 0, X, or Z to 1.

23-10

SystemVerilog Assertion Constructs

$fell(expression)
If the expression is just a signal, this returns 1 if the least significant
bit of the signal changed to 0 between clock ticks. If the expression
is more than one signal and an operator, for example sig1 +
sig2, this returns 1 if the value of the least significant bit in the
evaluation of the expression changes from 1, X, or Z to 0.

$stable(expression)
Returns 1 if the value of the expression does not change between
clock ticks. A change in a four state signal from X to Z returns false.

The following is an example of using these system functions:

sequence s1;
$rose(sig1) ##1 $stable(sig2 && sig3);
endsequence

Anding Sequences

You can use the and operator to specify that two sequences must
occur (succeed), but not necessarily at the same time. The following
is an example:

sequence s1;
sig1 ##1 sig2;
endsequence

sequence s2;
sig3 ##2 sig4;
endsequence
sequence s3;
s1 and s2;
endsequence

Sequence s3 succeeds when both sequences s1 and s2 succeed.
The time of the success of s3 is whenever the last of s1 or s2 succeed.

23-11

SystemVerilog Assertion Constructs

Intersecting Sequences (And With Length Restriction)

You use intersect operator to specify the match of the operand
sequential expressions at the same clock tick. For example:

sequence s1;
l1 ##1 l3;
endsequence

sequence s2;
l2 ##1 l4;
endsequence

sequence s3;
s1 intersect s2;
endsequence

In this example, sequence s3 can match because sequences s1 and
s2 both have the same number of clock ticks, sequence s3 does
match when sequences s1 and s2 match.

Oring Sequences

You can use the or operator to specify that one of two sequences
must succeed. The following is an example:

sequence s1;
sig1 ##1 sig2;
endsequence

sequence s2;
sig3 ##2 sig4;
endsequence

sequence s3;
s1 or s2;
endsequence

23-12

SystemVerilog Assertion Constructs

Sequence s3 succeeds when either sequences s1 and s2 succeed
but only when sequences s1 and s2 start at the same time.

Only Looking For the First Match Of a Sequence

The first_match operator specifies that a sequential expression
matches only once. After its first success, VCS no longer looks for
subsequent matches.

sequence s1;
first_match(l1 ##[1:2] l2);
endsequence

In s1, if l1 is true at the first clock tick, the expression could match at
the next clock tick, or the one after that, but the use of the
first_match operator means that VCS does not monitor for the
second possible match if the first possible match occurs.

Conditions for Sequences

You can use the throughout operator to specify a condition that
must be met throughout the sequence in order for the sequence to
succeed. For example:

sequence s1;
(sig3 || sig4) throughout sig1 ##1 sig2;
endsequence

For this sequence to succeed, not only must sig1 be true and then in
the next clock tick, sig2 be true, but also for both clock ticks the
expression (sig3 || sig4) must evaluate to true.

23-13

SystemVerilog Assertion Constructs

Specifying That Sequence Match Within Another
Sequence

You use the within operator to require that one sequence begin
and match when or after another starts but before or when the other
one matches. For example:

sequence s1;
l1 ##3 l4;
endsequence

sequence s2;
l2 ##1 l3;
endsequence

sequence s3;
s2 within s1;
endsequence

Sequence s1 requires three clock ticks, sequence s2 only requires
one clock tick. So it is possible for s2 to begin and end during s1,
signal l2 to toggle to true after l1 does, a clock tick later, l3 toggles to
true, and l4 toggling to true a clock tick later.

Using the End Point of a Sequence

Sequences have an ended method that you can use in another
sequence to specify that the other sequence includes the end of the
first sequence. For example:

sequence s1;
@(posedge clk) sig1 ##1 sig2;
endsequence

sequence s2;
s1.ended ##1 sig3;
endsequence

23-14

SystemVerilog Assertion Constructs

Note:
If you are referencing a sequence in another sequence, and you
are using the ended method in the second sequence, the
referenced sequence must specify its clock tick. The first
sequence above does so by beginning with @(posedge clk).

You cannot use the ended method on a sequence with formal
arguments. Use (or instantiate) such a sequence in another
sequence, and then you can use the method on the other sequence.
For example:

sequence s1(sig3,sig4);
@(posedge clk) sig3 ##1 sig4;
endsequence

sequence s2;
s1(sig3,sig4);
endsequence

sequence s3;
s2.ended ##1 sig1;
endsequence

Level Sensitive Sequence Controls

You can use a SystemVerilog assertion sequence as an event control
expression. You can also use a sequence as the conditional
expression in a wait, if, case, do while, or while statements, if
you use the triggered sequence method.

The triggered sequence method evaluates to true if the sequence
successfully completes during the same time step. You use this
method in an expression that includes the sequence name,
immediately followed by a period (.) and then the keyword
triggered.

23-15

SystemVerilog Assertion Constructs

For example:

if (sequence1.triggered)

Level sensitive sequence controls are documented in section 8.11,
starting on page 93, of the SystemVerilog 3.1a Language Reference
Manual.

The following annotated code example shows using a sequence for
these purposes:

module test;
logic l1,l2,clk;

sequence s1;
@ (posedge clk) l1 ##1 l2;
endsequence

Sequence s1 specifies that when there is a rising edge on variable
clk, variable l1 is true, and with the next rising edge on clk, variable
l2 is true.

initial
begin
clk=0;
#4 l1=1;
#10 l2=1;
#3 $finish;
end

always
#5 clk=~clk;

There will be a rising edge on variable clk at time 5 and 15. Simulation
ends at time 17. At the first rising edge, l1 will be true, at the second
rising edge, l2 will be true. The sequence will occur.

23-16

SystemVerilog Assertion Constructs

always @(s1)
$display("sequence s1 event control at %0t\n",$time);

Sequence s1 is an event control expression.

initial
begin
wait (s1.triggered)
$display("wait condition s1.triggered\n");

The triggered method with sequence s1 is the conditional
expression for the wait statement.

if (s1.triggered)
$display("if condition s1.triggered\n");
case (s1.triggered)
1'b1 : $display("case condition s1.triggered happened\n");
1'b0 : $display("s1.triggered did not happen\n");
endcase
do
 begin
 $display("do while condition s1.triggered\n");
 $finish;
 end
while (s1.triggered);
end

endmodule

The triggered method with sequence s1 is also the conditional
expression for the if, case, and do while statements.

Sequence s1 does occur, so VCS displays the following:

sequence s1 event control at 15

wait condition s1.triggered

if condition s1.triggered

23-17

SystemVerilog Assertion Constructs

case condition s1.triggered happened

do while condition s1.triggered

Properties

A property says something about the design, so a property evaluates
to true or false.

Concurrent assertions use properties and properties contain
sequences, either instantiated or containing sequential expressions
like a sequence. Both of the following sequences and all but the last
of the following properties are valid:

sequence s1;
sig1 ##1 sig2;
endsequence

sequence s2;
@(posedge clk) sig3 ##1 sig4;
endsequence

property p1;
@(posedge clk) s1;
endproperty

property p2;
@(posedge clk) s2;
endproperty

property p3;
@(posedge clk2) sig1 ##1 sig2;
endproperty

property p4;
@(posedge clk2) s2; //illegal
endproperty

23-18

SystemVerilog Assertion Constructs

The last property is invalid because it instantiates a sequence with a
different clock tick than the clock tick for the property. In the valid
properties you see the following:

• How to specify the clock tick in the property for the sequence it
instantiates.

• How to specify a clock tick both in the property and in the sequence
instantiated in the property, if they specify the same clock tick.

• That instead of instantiating a sequence you can include a
sequential expression like sig1 ##1 sig2.

You can declare a property in the following places in your code:

• In a module definition

• In an interface definition

• At $root (in SystemVerilog $root means outside of any other
definition, a property defined in $root is globally accessible).

Note:
The SystemVerilog LRM says that you can declare a property in
a module definition but never in an always or initial block.

Using Formal Arguments in a Property

Like sequences, you can include formal arguments in properties.
Unlike sequences you cannot use or instantiate a property in another
property. You use or instantiate a property in a concurrent assertion.
For example:

property p3 (sig1,sig2);
@(posedge clk2) sig1 ##1 sig2;
endproperty

23-19

SystemVerilog Assertion Constructs

a1: assert property (p3(sig3,sig4));

Here the property uses signals sig1 and sig2 in its sequential
expression, but signals sig3 and sig4 replace them in the assertion
declaration.

Implications

Property implications, contain a boolean or sequential expression,
called an antecedent, which must be true or match before VCS starts
to monitor the events in another sequence or sequential expression,
called the consequent, to see if that sequence matches.

There are two types of implications:

• Overlapping implications where the antecedent and the first event
in the declared sequence or sequential expression happen during
the same clock tick. For overlapping implications you enter the
|-> operator between the antecedent and the consequent.

• Non-overlapping implications where there is a clock tick delay
between the antecedent and the consequent. For
non-overlapping implications you enter the |=> operator between
the antecedent and the consequent.

The following are examples of the VCS implemented implication
constructs:

sequence s1;
sig1 ##1 sig2;
endsequence

property p1;
@(posedge clk) (sig3 || sig4) |-> s1;
endproperty

23-20

SystemVerilog Assertion Constructs

Property p1 contains an overlapping implication. It specifies checking
that (sig3 && sig4) is true and if so, during the same clock tick,
checking to see if sig1 is true, and then, a clock tick later, checking
to see if sig2 is true.

property p2;
@(posedge clk) (sig1 ##1 sig2) |-> (sig3 ##1 sig4);
endproperty

Property p2 also contains an overlapping implication. In p2 the
antecedent is a sequential expression.

property p3;
@(posedge clk) (sig3 ##1 sig4) |=> ##1 (sig1 ##1 sig2);
endproperty

Property p3 contains a non-overlapping implication. The first event
is the sequential expression, sig1 being true, must happen one clock
tick after the antecedent expression is true.

Remember that a property is either true or false, so for a property to
be true, by default the antecedent must be true and the consequent
must succeed. If you include the keyword not between the
implication operator and the consequent, the property is true if the
consequent does not succeed, for example:

property p4;
@(posedge clk) (sig3 && sig4) |-> not (sig1 ##1 sig2);
endproperty

Property p4 is true if, when (sig3 && sig4) is true, sig1 is not true,
or if it is, one clock tick later, sig2 is not true.

23-21

SystemVerilog Assertion Constructs

Inverting a Property

The keyword not can also be used before the declared sequence or
sequential expression, or if it contains an implication, before the
antecedent, to make the property true, if it otherwise would be false,
or make the property false if it otherwise would be true. For example:

sequence s1;
sig1 ##1 sig2;
endsequence

property p1;
@(posedge clk) not s1;
endproperty

Property p1 is true if sig1 is never true, or if it is, one clock tick later
sig2 is never true.

sequence s2;
@(posedge clk2) sig4 ##1 sig5;
endsequence

property p2;
not s2;
endproperty

Property p2 is true if sig4 is never true, or if it is, one clock tick later
sig5 is never true.

property p3;
@(posedge clk) not (sig3 && sig4) |-> not sig1 ##1 sig2;
endproperty

Property p3 is true if the implication antecedent is never true, or if it
is, the consequent sequential expression succeeds. Notice here that
the keyword not occurs twice in the property.

23-22

SystemVerilog Assertion Constructs

Past Value Function

SystemVerilog has a $past system function that returns the value
of a signal from a previous clock tick. The following is an example of
its use:

property p1;
@(posedge clk) (cnt == 0) ##3 ($past(cnt,3)==0);
endproperty

This rather elementary use of the $past system function returns the
value of signal cnt from three clock ticks ago. The first argument, an
expression, is required. The second argument, a number of clock
ticks previous to the current clock tick, is optional and defaults to 1.

The disable iff Construct

The disable iff construct enables the use of asynchronous resets.
It specifies a reset condition in which all attempts that have started
for properties immediately succeed, and all subsequent attempts
succeed as soon as they start.

The following shows a use of the disable iff construct:

initial
begin
clk=0;
rst=0;
sig1=1;
#7 sig2=1;
...
end
always
#5 clk=~clk;

sequence s1;

23-23

SystemVerilog Assertion Constructs

sig1 ##1 sig2;
endsequence

property p1;
@(posedge clk) disable iff (rst) s1;
endproperty

a1: assert property (p1);

If during simulation sig2 turns false, the property no longer succeeds.
If, some time later, rst turns true, the property starts to succeed again.
If rst turns false again, the property once again no longer succeeds.

assert Statements

VCS never checks a property or a sequence unless it is instantiated
in a concurrent assertion. The concurrent assertion enforces the
property or sequence as a checker of that property or sequence.

A concurrent assertion takes the form of an assert statement. The
following is an example of an assert statement:

a1: assert property (p1);

In this assert statement:

a1:
The instance name of the concurrent assertion. Concurrent
assertions have hierarchical name beginning with the hierarchical
name of the module instance in which they are declared, and
ending with this instance name. Instance names are optional.

assert
Keyword for declaring a concurrent assertion.

23-24

SystemVerilog Assertion Constructs

property
Keyword for instantiating both a property or a sequence.

p1
Property instantiated in the concurrent assertion. You could also
have specified a sequence instead of a property.

You can declare a concurrent assertion, and enter an assert
statement, in the following places in your code:

• In a module definition

• In an Interface definition

• In $root

Note:

- In the VCS implementation, you can declare a concurrent
assertion in a module definition including inside an always
block but not in an initial block. The Accellera
SystemVerilog LRM allows concurrent assertions in initial
blocks.

If a property has formal arguments you can replace them with other
signals as shown in "Using Formal Arguments in a Property" on page
23-18.

assume Statements

The assume statement specifies a property that VCS can assume
about the simulation environment. As specified in the Accellera
language reference manual, an assume statement is a hypothesis
for proving asserted properties in assert statements.

23-25

SystemVerilog Assertion Constructs

Like an asserted property, VCS checks an assumed property and
reports if the assumed property fails to hold.

assume statements are syntactically similar to assert statements, as
stated in the Accellera document. The biasing feature is only useful
when properties are considered as assumptions to drive random
simulation. When a property with biasing is used in an assertion or
coverage, the list operator is equivalent to inside operator, and the
weight specification is ignored. Therefore the following assume
statement is functionally equivalent to the following assert
statement:

a1:assume property @(posedge clk) req dist {0:=40, 1:=60} ;

a1_assertion:assert property req inside {0, 1} ;

cover Statements

The cover statement calls for the monitoring of a property or a
sequence. VCS looks for matches, how often the property was true
or how often the sequence occurred. When simulation is over, VCS
displays the results of this monitoring.

A cover statement is syntactically similar to an assert statement.
The following is an example of a cover statement:

c1: cover property (p1);

23-26

SystemVerilog Assertion Constructs

In this cover statement:

c1:
Instance name of the cover statement. cover statements have
hierarchical name beginning with the hierarchical name of the
module instance in which they are declared, and ending with this
instance name. Instance names are optional.

cover
Keyword for declaring a cover statement.

property
Keyword for instantiating both a property or a sequence.

p1
Property instantiated in the cover statement. You could have
specified a sequence instead of a property.

The following SVA code contains two cover statements:

sequence s1;
@(posedge clk) sig1 ##[1:3] sig2;
endsequence

sequence s2;
sig3 ##[1:3] sig4;
endsequence

property p1;
@(posedge clk) sig1 && sig2 |=> s2;
endproperty

a1: assert property (p1);
a2: assert property (@(posedge clk)s1);
c1: cover property (p1);
c2: cover property (@(posedge clk)s1);
endmodule

23-27

SystemVerilog Assertion Constructs

VCS, for example, displays the following after simulation as a result
of these cover statements:

"exp3.v", 31: test.c1, 9 attempts, 16 total match, 7 first match, 1 vacuous match
"exp3.v", 32: test.c2, 9 attempts, 21 total match, 8 first match, 0 vacuous match

This display is explained as follows:

• In the first line:

- The cover statement is in source file exp3.v.

- The instance of the cover statement is test.c1. It is declared
in module test.

- There were nine attempts to cover the property p1.

- In those nine attempts there were 16 times that the properly
was true. There can be more than one match in a attempt. In
this case in property p1, in sequence s2, a match can occur
over a range of clock ticks and in this case more than once in
the range.

- There were seven first matches. The property was true seven
times at the start of the range.

- There was a vacuous match. Property p1 contains and
implication. The antecedent sig1 && sig2 was false making
the implication vacuously true because it doesn’t mean that the
consequent sequence s2 occurred.

• In the second line:

- The cover statement is in source file exp3.v.

- The instance of the cover statement is test.c2. It is declared
in module test.

- There were nine attempts to cover the sequence s1.

23-28

SystemVerilog Assertion Constructs

- In those nine attempts there were 21 times that the sequence
occurred.

- There were no vacuous matches because the cover statement
does not instantiate a property with an implication.

You can declare a cover statement, in the following places in your
code:

• In a module definition

• In an Interface definition

• In $root

Note:
In the VCS implementation, you can declare a cover statement
in a module definition including inside an always block but not
in an initial block. The Accellera SystemVerilog LRM allows
cover statements in initial blocks.

cover statements, unlike assert statements, only have a pass
action block, not a fail action block, in the VCS implementation.

Action Blocks

assert statements can have a pass and a fail action block, and
cover statements can have a pass action block. The pass block
executes when the assert or cover statement succeeds. The fail
block, that follows the keyword else, executes when the assert
statement fails. The following are examples of these blocks:

a1: assert property (p1)
begin
 $display("p1 succeeds");
 passCount ++;

23-29

SystemVerilog Assertion Constructs

end
else
begin
 $display("p1 does not succeed");
 failCount ++;
end

c1: cover property (p1)
begin
 $display("p1 covered");
 coverCount ++;
end

Binding An SVA Module To A Design Module

You can define a module that contains just SVA sequence and
property declarations, and assert and cover statements. The
module ports are signals in these declarations and statements. These
ports are also signals in a design module (a module that contains
behavioral or RTL code or other types of design constructs).

You can then bind the SVA module to the design module and it is the
same as instantiating the SVA module in the design module. The
following is an example of a design module, and SVA module and a
bind directive that binds the SVA module to the design module:

module dev;
logic clk,a,b;
...
endmodule

module dev_checker (input logic CLK, input logic A,
input logic B);
property p1;
 @(posedge CLK) A ##1 B;
endproperty

23-30

SystemVerilog Assertion Constructs

a1: assert property(p1) else $display("p1 Failed");
endmodule

bind dev dev_checker dc1 (clk,a,b);

In this bind directive:

bind
Keyword that starts the bind directive

dev
Module identifier (name) of the module to which you want to bind
the SVA module

dev_checker
Module identifier of the SVA module

dc1
Instance name of the SVA module.

(clk,a,b)
Port connection list to the SVA module

You can also bind an SVA module to a design module instances. For
example:

module top;
logic clk,a,b;
...
dev d1 (clk,a,b);

endmodule

module dev (input logic clk, input logic a, input logic b);
...
endmodule

module dev_checker (input logic clk, input logic a, input
logic b);

23-31

SystemVerilog Assertion Constructs

property p1;
 @(posedge clk) a ##1 b;
endproperty

a1: assert property(p1) else $display("p1 Failed");
endmodule

bind top.d1 dev_checker dc1 (clk,a,b);

In this bind directive top.d1 is an instance of module dev.

IMPORTANT:
Binding to an instance that is generated using a generate
statement is not supported.

Parameter Passing In A bind Directive

The module containing the SVA code that is bound to the design
module is instantiated in the bind directive and as such you can use
parameter passing in the instantiation. The following is an example:

`timescale 1ns/1ns
module dev;
logic clk,sig1,sig2;
...
endmodule

module dev_check(input logic CLOCK,input logic SIG1, input
logic SIG2);
parameter ticks =5;

property p1;
@(posedge CLOCK) SIG1 ##ticks SIG2;
endproperty

a1: assert property(p1) else $display("\n\np1 failed\n\n");
endmodule

23-32

SystemVerilog Assertion Constructs

bind dev dev_check #(10) dc1 (clk,sig1,sig2);

Notice that module dev_check, that contains the SVA code, also has
a parameter for specifying the number of clock ticks in the property.
In the parameter declaration it has a value of 5, but its value is
changed to 10 in the bind directive, like in any other module
instantiation.

The VPI For SVA

This VPI is to enable you to write applications that react to SVA events
and to enable you to write SVA waveform, coverage, and debugging
tools.

Note:
To use this API you need to include the sv_vpi_user.h file along
with the vpi_user.h file in the $VCS_HOME/include directory. See
section 28 of the SystemVerilog 3.1a LRM.

This section describes the differences between the VCS
implementation and section 28 of SystemVerilog 3.1a LRM.

• In subsection 28.3.2.2 “Extending vpi_get() and vpi_get_str,” use
vpiDefFileName instead of vpiFileName.

• In subsection 28.4.1 “Placing assertion system callbacks,”
cbAssertionSysStop is not supported.

• In subsection 28.4.2 “Placing assertion callbacks,” the failEpr
step information is not supported.

23-33

SystemVerilog Assertion Constructs

• In subsection 28.5.1 “Assertion system control,”
vpiAssertionSysStart and vpiAssertionSysStop are
not supported.

• In subsection 28.5.2 “Assertion control,”
vpiAssertionDisableStep and
vpiAssertionEnableStep are not supported.

Also the following, in the static part, are not supported:

• Assignments inside sequence expressions

• Bit-selects or part-selects of formal arguments inside a sequence
expression

SystemVerilog Assertion Local Variable Debugging

VCS includes four callback types that you can use to debug SVA local
variables. You register these callback types on a VPI assertion handle
using the vpi_register_assertion_cb method.

These callback types are as follows:

CreationcbAssertionLocalVarCreated
VCS calls this callback type when VCS creates the SVA local
variable. This happens when a new SVA attempt starts.

cbAssertionLocalVarUpdated
VCS calls this callback type when it updates an SVA local variable.
The new value might be the same as the old value.

cbAssertionLocalVarDuplicated
VCS calls this callback type when it duplicates an SVA local
variable. This happens when an attempt forks off into multiple
paths.

23-34

SystemVerilog Assertion Constructs

cbAssertionLocalVarDestroyed
VCS calls this callback type when it destroys an SVA local
variable. This happens when an assertion succeeds or fails.

All these callback types return a handle to the local variable that
caused the event. Use the handle provided in the callback to get the
name and value of the local variable. Your application is responsible
for keeping track of the destroyed local variable handles. Using a
destroyed variable handle results in unpredictable behavior.

You use the vpi_register_assertion_cb method to register a callback
on an SVA. Whenever a local variable event happens on that SVA,
VCS invokes the corresponding callback with that local variable
handle embedded in the attempt information.

Note:
You do not have the flexibility to register a callback on a single
local variable or part (bit or part select) of the variable. For
embedding the local variable handle the attempt_info structure is
extended as follows.

typedef struct t_vpi_attempt_info {
 union {
 vpiHandle failExpr;
 p_vpi_assertion_step_info step;
 p_vpi_attempt_local_var_info local_var_info;
 } detail;
 s_vpi_time attemptStartTime; /* Time attempt triggered */
} s_vpi_attempt_info, *p_vpi_attempt_info;

typedef struct t_vpi_attempt_local_var_info {
 vpiHandle localVar;
} s_vpi_attempt_local_var_info,
*p_vpi_attempt_local_var_info;

23-35

SystemVerilog Assertion Constructs

Note that if VCS duplicates the SVA local variable, the returned
vpi_attempt_info structure contains the handle to the new local
variable. Your application needs to keep track of all copies of local
variable for a particular attempt.

These callback types have the following limitations:

• The name or fullname of the SVA local variable does not contain
the name of sequence or property it is declared in.

• The local variable handle supports only vpiType, vpiName,
vpiFullName and getValue. There is no support for other
properties defined on normal VPI variables.

• VCS treats XMR (cross module reference) SVA local variables as
normal SVA local variables, so you cannot get the XMR part in
the local variable name. vpiFullName considers the sequence or
property instantiated as if it is declared in the scope containing
the assertion.

• Change in part of a variable, for example a one bit change in a
vector results in a callback of the full variable. Your application is
responsible for identifying the changed part.

• No debug support for structure/union/classes in the initial
implementation. Your application can get callbacks on other local
variables in the assertion. VCS ignores only unsupported callback
types.

Controlling How VCS Uses SystemVerilog Assertions

You use compile-time and runtime options to control SystemVerilog
in VCS. Together with system tasks, these options allow you to use
all the features described in the following sections.

23-36

SystemVerilog Assertion Constructs

Compile-Time And Runtime Options

VCS has the following compile-time option for controllong
SystemVerilog assertions:

-assert keyword_argument

The keyword arguments are as follows:

enable_diag
Enables further control of results reporting with runtime options.

filter_past
For assertions that are defined with the $past system task, ignore
these assertions when the past history buffer is empty. For
instance, at the very beginning of the simulation the past history
buffer is empty. So the first sampling point and subsequent
sampling points should be ignored until the past buffer has been
filled with respect to the sampling point. Using this keyword filters
out vacuous successes too.

disable
Disables all SystemVerilog assertions in the design.

disable_cover
When you include the -cm assert compile-time and runtime
option, VCS include information about cover statements in the
assertion coverage reports. This keyword prevents cover
statements from appearing in these reports.

disable_file=filename
Disables the SystemVerilog assertions specified in the file. See
"Disabling SystemVerilog Assertions at Compile-Time" on page
23-42.

23-37

SystemVerilog Assertion Constructs

dumpoff
Disables the dumping of SVA information in the VPD file during
simulation.

VCS has the following runtime option for controllong SystemVerilog
assertions:

-assert keyword_argument

The keyword arguments are as follows:

dumpoff
Disables the dumping of SVA information in the VPD file during
simulation.

dve
Tells VCS to record SystemVerilog assertion information in the
VPD file.

filter
Blocks reporting of trivial implication successes. These happen
when an implication construct registers a success only because
the precondition (antecedent) portion is false (and so the
consequent portion is not checked). With this option, reporting
only shows successes in which the whole expression matched.

finish_maxfail=N
Used for simulation control, terminates the simulation if the
number of failures for any assertion reaches N. N must be
supplied, otherwise no limit is set.

global_finish_maxfail=N
Used for simulation control, stops the simulation when the total
number of failures, from all SystemVerilog assertions, reaches N.

23-38

SystemVerilog Assertion Constructs

maxcover=N
When you include the -cm assert compile-time and runtime
option, VCS include information about cover statements in the
assertion coverage reports. This argument disables the collection
of coverage information for cover statements after the cover
statements are covered N number of times. N must be a positive
integer, it can’t be 0.

maxfail=N
Limits the number of failures for each assertion to N. When the
limit is reached, the assertion is disabled. N must be supplied,
otherwise no limit is set.

maxsuccess=N
Limits the total number of reported successes to N. N must be
supplied, otherwise no limit is set. The monitoring of assertions
continues, even after the limit is reached.

nocovdb
When you include the -cm assert compile-time and runtime
option, VCS records assertion coverage information in the
./simv.vdb/fcov/results.db database file.This argument tells VCS
not to write the this file.

nopostproc
Whenther or not you include the -cm assert compile-time and
runtime option, after simulation VCSdisplays the SystemVerilog
asssertion coverage summary. This argument disables the
display of this summary. This summary looks like this for each
cover statement:

"source_filename.v", line_number:
cover_statement_hierarchical_name number attempts,
number total match, number first match, number vacuous
match

23-39

SystemVerilog Assertion Constructs

quiet
Disables the display of messages when assertions fail.

quiet1
Disables the display of messages when assertions fail but enables
the display of summary information at the end of simulation. For
example:

Summary: 2 assertions, 2 with attempts, 2 with failures

report[=path/filename]
Generates a report file in addition to printing results on your
screen. By default this file’s name and location is ./assert.report,
but you can change it to where you want by entering the filename
path name argument.
The filename can start with a number or letter. The following
special characters are acceptable in the filename: %, ^, and @.
Using the following unacceptable special characters: #, &, *, [],
$, (), or ! has the following consequences:

- A filename containing # or & results in a filename truncation
to the character before the # or &.

- A filename containing * or [] results in a no match
message.

- A filename containing $ results in an undefined variable
message.

- A filename containing () results in a badly placed ()’s
message.

- A filename containing ! results in an event not found
message.

23-40

SystemVerilog Assertion Constructs

success
Enables reporting of successful matches, and successes on
cover statements, in addition to failures. The default is to report
only failures.

verbose
Adds more information to the end of the report specified by the
report keyword argument and a summary with the number of
assertions present, attempted, and failed.

You can enter more than one keyword, using the plus + separator.
For example:

-assert maxfail=10+maxsucess=20+success+filter

By default VCS collects coverage information on cover statements,
you can limit or disable collectiong this information with the maxcover
and nocovdb arguments.

VCS collects coverage information on assert statements when you
enter the -cm assert compile-time option and keyword argument.

Most of the compile-time and runtime options that were implemented
for OpenVera assertions also work on SystemVerilog assertions.
These compile-time options are as follows:

These runtime options are as follows:

-ova_cov -ova_cov_events -ova_cov_hier

-ova_debug -ova_dir -ova_file

-ova_filter_past -ova_enable_diag

-ova_quiet -ova_report -ova_verbose

-ova_filter -ova_max_fail -ova_max_success

23-41

SystemVerilog Assertion Constructs

See "Compiling Temporal Assertions Files" on page 20-19, "OVA
Runtime Options" on page 20-21, and "Functional Code Coverage
Options" on page 20-24.

Ending Simulation at a Number of Assertion Failures

There are two ways to end simulation when the total number of
failures from all assertions reaches a specified number:

• Using the -assert global_finish_maxfail=N runtime
option and argument, see "Compile-Time And Runtime
Options" on page 23-36.

• Using the $ova_set_global_finish_maxfail system task.

The $ova_set_global_finish_maxfail takes an argument
which is an expression. For example:

$ova_set_global_finish_maxfail(100);

This expression does not need to be a constant expression. For
example:

$ova_set_global_finish_maxfail(reg1 + reg2);

When VCS executes this system task, the current value of the
expression argument determines the total number of assertion
failures that ends simulation.

-ova_simend_max_fail -ova_success -ova_cov

-ova_cov_name -ova_cov_db

23-42

SystemVerilog Assertion Constructs

Disabling SystemVerilog Assertions at Compile-Time

You can specify a list of SystemVerilog assertions in your code that
you want to disable at compile-time. You do so with the -assert
compile-time option and disable_file=filename argument, for
example:

vcs -sverilog -assert disable_file=disable_assertions.txt

Enter one absolute hierarchical name of a SystemVerilog assertion
on each line, for example:

test.dev1.a1

Only one hierachical assertion name to a line.

Entering SystemVerilog Assertions as Pragmas

If your code has to be read by a tool that has not implemented
SystemVerilog Assertions, you can enter your SVA code as pragmas
(or metacomments) so that the other tool ignores the SVA code. You
can tell VCS to compile the SVA code by including the -sv_pragma
compile-time option. The following is an example of SVA code as
pragmas:

// sv_pragma sequence s1;
// sv_pragma @(posedge clk) sig1 ##[1:3] sig2;
// sv_pragma endsequence

/* sv_pragma
sequence s2;
sig3 ##[1:3] sig4;
endsequence

property p1;

23-43

SystemVerilog Assertion Constructs

@(posedge clk) sig1 && sig2 => s2;
endproperty

a1: assert property (p1);
a2: assert property (@(posedge clk)s1);
c1: cover property (p1);
c2: cover property (@(posedge clk)s1);
*/

The sv_pragma keyword must immediately follow the characters
that begin the comment: // for single line comments and /* for
multi-line comments.

Note:
This feature is intended allow SVA code as pragmas. When you
include the -sv_pragma compile-time option, VCS compiles all
the contents in the comment, not just the SVA code in the
comment. If the multi-line comment is the following:

/* sv_pragma
a1: assert property (p1);
a2: assert property (@(posedge clk)s1);
c1: cover property (p1);
c2: cover property (@(posedge clk)s1);

initial
$display("$display with SVAs");
*/

VCS displays the $display with SVAs character string at
runtime.

23-44

SystemVerilog Assertion Constructs

Options for SystemVerilog Assertion Coverage

SystemVerilog assertion coverage monitors the design for when
assertions are met and not met. Coverage results are on assertions,
not the properties or sequences that might be instantiated in these
assertions. See "Reporting On Assertions Coverage" on page 23-45

To enable and control assertion coverage, VCS has the following
compile-time options:

-cm assert
Compiles for SystemVerilog assertions coverage. -cm is not a
new compile-time option but the assert argument is new. This
option and argument must also be entered at runtime.

-cm_assert_hier filename
Limits assertion coverage to the module instances specified in
filename. Specify the instances using the same format as VCS
coverage metrics. If this option is not used, coverage is
implemented on the whole design.

There are also the following runtime options for assertion coverage:

-cm assert
Specifies monitoring for SystemVerilog assertions coverage.
Like at compile-time, -cm is not a new runtime option but the
assert argument is new.

-cm_assert_name path/filename
Specifies the path and filename of an initial coverage file. An initial
coverage file is needed to set up the database. By default, an
empty coverage file is loaded from the following directory:
simv.vdb/snps/fcov.

23-45

SystemVerilog Assertion Constructs

-cm_assert_report path/filename
Specifies the file name or the full path name of the assertion
coverage report file. This option overrides the default report name
and location, which is ./simv.vdb/fcov/results.db If only a file name
is given, the default location is used resulting in: ./simv.vdb/fcov/
filename.db.

VCS also has the following runtime option and keyword options for
assertion coverage:

-assert nocovdb
Tells VCS not to write the results.db database file for assertion
coverage. Without this file there is no coverage data.

Reporting On Assertions Coverage

After running a series of simulations, you can generate a report
summarizing the coverage of both kinds of assertions. With this
report, you can quickly see if all assertions were attempted, how often
they were successful, and how often they failed. Potential problem
areas can be easily identified. The report can cover one test or merge
the results of a test suite. The report is written in HTML and you can
customize it with a Tcl script.

The default report shows the number of assertions that:

• Were attempted

• Had successes

• Had failures

Coverage is broken down by module and instance, showing for each
assertion and expression, the number of attempts, failures, and
successes.

23-46

SystemVerilog Assertion Constructs

Assertion coverage can also grade the effectiveness of tests,
producing a list of the minimum set of tests that meet the coverage
target. Tests can be graded on any of these metrics:

• Number of successful assertion attempts versus number of
assertions (metric = SN)

• Number of failed assertion attempts versus number of assertions
(metric = FN)

• Number of assertion attempts versus number of assertions
(metric = AN)

• Number of successful assertion attempts versus number of
assertion attempts (metric = SA)

• Number of failed assertion attempts versus number of assertion
attempts (metric = FA)

To generate a report, run the following command:

assertCovReport [options]

The command line options are as follows:

-e TCL_script | -
Use this option to produce a custom report using Tcl scripts or
entering Tcl commands at standard input (keyboard). Most of the
other assertCovReport options are processed before the Tcl
scripts or keyboard entries.

-e TCL_script
Specifies the path name of a Tcl script to execute. To use
multiple scripts, repeat this option with each script’s path name.
They are processed in the order listed.

-e -
Specifies your intent to enter Tcl commands at the keyboard.

23-47

SystemVerilog Assertion Constructs

The Tcl commands provided by VCS, that you can input to
fcovReport for OVA coverage reports (see "Tcl Commands For
SVA And OVA Functional Coverage Reports" on page 23-49), you
can also input to assertCovReport for SystemVerilog assertion
(SVA) coverage.

-cm_assert_cov_cover
Specifies reporting only about cover statements.

-cm_assert_cov
Specifies reporting only about cover and assert statements
(no OVA coverage).

-cm_assert_category category_val
[,category_val...]
Reports only on assertions specified by category value. You can
specify any number of category values, separating them with
commas.

-cm_assert_cov_events
Specifies only reporting on OpenVera assertion events.

-cm_assert_name path
Specifies the path of the template database. If this option is not
included, assertCovReport uses simv.vdb.

-cm_assert_grade_instances target,metric
[, time_limit]
Generates an additional report, grade.html, that lists the minimum
set of tests that add up to the target value for the metric (see
previous page for metric codes). The grading is by instance.

-cm_assert_grade_module target, metric
[, time_limit]
Generates an additional report, grade.html, that lists the minimum
set of tests that add up to the target value for the metric (see
previous page for metric codes). The grading is by module.

23-48

SystemVerilog Assertion Constructs

-cm_assert_map filename
Maps the module instances of one design onto another while
merging the results. For example, use this to merge the assertion
coverage results of unit tests with the results of system tests. Give
the path name of a file that lists the hierarchical names of from/to
pairs of instances with one pair per line:

from_name to_name

The results from the first instance are merged with the results of
the second instance in the report.

-cm_assert_merge filename
Specifies the path name of an assertion coverage result file or
directory to be included in the report. If filename is a directory, all
coverage result files under that directory are merged. Repeat this
option for any result file or directory to be merged into this report.
If this option is not used, assertCovReport merges all the result
files in the directory of the template database (specified with
-cm_assert_dir or simv.vdb/snps/fcov by default).

-cm_assert_report name | path/name
Specifies the base name for the report. The assertCovReport
command creates an HTML index file at simv.vdb/reports/
name.fcov-index.html and stores the other report files under
simv.vdb/reports/name.fcov.

If you give a path name, the last component of the path is used
as the base name. So the report files are stored under path/name
and the index file is at path/name.fcov-index.html.
If this option is not included, the report files are stored under
simv.vdb/reports/report.fcov and the index file is named
report.fcov-index.html.

23-49

SystemVerilog Assertion Constructs

-cm_assert_severity int_val [,int_val...]
Reports only on OpenVera assertions specified by severity value.
You can specify any number of severity values, separating them
with commas. Only OpenVera assertions can have a severity,
SystemVerilog assertions cannot.

Tcl Commands For SVA And OVA Functional Coverage
Reports

You can produce a custom report with Tcl commands that you enter
in assertCovReport. These Tcl commands also work in fcovReport
when you want a custom report about OVA coverage. These
commands are in Table 23-1.

The Tcl command descriptions frequently refer to a bin. A bin is a
coverage value container in the coverage database. There are two
kinds of bins: boolean (which hold 0 or 1 values) and count. Count
bins can hold any unsigned value that can be stored in 32 bits.

Table 23-1 Tcl Commands for SVA and OVA Functional Coverage Reports
Command Return

Value
Description

fcov_get_assertions -instance handle array of
handles

Returns an array of handles to the
assertions of the instance with the
specified handle.

fcov_get_assertions -module handle array of
handles

Returns an array of handles to the
assertions of the module with the
specified handle.

fcov_get_bins -assertion handle array of
handles

Returns an array of handles to the
bins of the assertion with the
specified handle.

fcov_get_category -assertion handle int Returns the category of the assertion
with the specified handle expressed
as an integer.

23-50

SystemVerilog Assertion Constructs

fcov_get_children -instance handle array of
handles

Returns an array of handles for the
child instances that contain at least
one assertion under their hierarchy.
The parent instance is with the
specified handle.

fcov_get_coverage -bin handle int Returns the coverage count
associated with the bin with the
specified handle. It can be 0 or the
count of the times the bin was
covered.

fcov_get_flag -bin handle string Returns the flag associated with the
bin with the specified handle. It can
be: “illegal”, “ignored”, or
“impossible”.

fcov_get_handle -instance name handle Returns a handle for the instance
specified with its full hierarchical
name.

fcov_get_handle -module name handle Returns a handle for the specified
module.

fcov_get_handle -instance |
-module name1 -assertion name2

handle Returns the handle to the specified
assertion in the specified instance or
module. The assertion name must
follow the convention for the full
name of an assertion.

fcov_get_handle -instance |
-module name1 -assertion name2
-bin name3

handle Returns the handle to the specified
bin for the specified assertion in the
specified instance or module.
Current names are: “ 1attempts”,
“ 2failures”, “ 3allsuccesses”,
“ 4realsuccesses”, and “ 5events”
(note that all bin names start with a
space).

fcov_get_instances array of
handles

Returns an array of handles for the
instances that contain at least one
assertion under their hierarchy.

fcov_get_instances -module handle array of
handles

Returns an array of handles for the
instances that contain at least one
assertion under their hierarchy for
the module with the specified
handle.

Command Return
Value

Description

23-51

SystemVerilog Assertion Constructs

fcov_get_modules array of
handles

Returns an array of handles for the
modules that contain at least one
assertion.

fcov_get_name -object handle string Returns the name of the object the
specified handle.

fcov_get_no_bins -assertion handle int Returns total bins for the assertion
with the specified handle.

fcov_get_no_of_assertions int Returns total number of assertions
in the design..

fcov_get_no_of_assertions -instance
handle

int Returns total number of assertions
for the instance with the specified
handle.

fcov_get_no_of_assertions -module
handle

int Returns total number of assertions
for the module with the specified
handle.

fcov_get_no_of_assertions_attempted int Returns total number of assertions
attempted in the design.

fcov_get_no_of_assertions_attempted
-instance handle

int Returns total number of assertions
attempted for the instance with the
specified handle.

fcov_get_no_of_assertions_attempted
-module handle

int Returns total number of assertions
attempted for the module with the
specified handle.

fcov_get_no_of_assertions_failed int Returns total number of assertions
that failed in the design.

fcov_get_no_of_assertions_failed
-instance handle

int Returns total number of assertions
that failed for the instance with the
specified handle.

fcov_get_no_of_assertions_failed
-module handle

int Returns total number of assertions
that failed for the module with the
specified handle.

fcov_get_no_of_assertions_succeeded int Returns total number of assertions
that succeeded/matched in the
design.

fcov_get_no_of_assertions_succeeded
-instance handle

int Returns total number of assertions
that succeeded/matched for the
instance with the specified handle.

fcov_get_no_of_assertions_succeeded
-module handle

int Returns total number of assertions
that succeeded/matched for the
module with the specified handle.

Command Return
Value

Description

23-52

SystemVerilog Assertion Constructs

fcov_get_no_of_children -bin handle int Returns total number of child bins
whose parent is the bin handle
handle.

fcov_get_no_of_children -instance
handle

int Returns total number of child
instances containing at least one
assertion under their hierarchy. The
parent instance is with the specified
handle.

fcov_get_no_of_instances int Returns total number of instances
that contain at least one assertion
under their hierarchy.

fcov_get_no_of_instances -module
handle

int Returns total number of instances
containing at least one assertion
under their hierarchy for a module
with the specified handle.

fcov_get_no_of_modules int Returns total number of modules
that contain at least one assertion.

fcov_get_no_of_topmodules int Returns total number of top level
modules that contain at least one
assertion under their hierarchy. (Top
level modules are instances.)

fcov_get_severity -assertion handle int Returns the severity of an assertion
with the specified handle expressed
as an integer.

fcov_get_topmodules array of
handles

Returns an array of handles for the
top level modules that contain at
least one assertion under their
hierarchy. (Top level modules are
instances.)

fcov_get_type -bin handle string Returns the type of the bin with the
specified handle. It can be: “bool” or
“count”.

fcov_get_type -object handle string Returns the type of the object with
the specified handle. The type can
be “module”, “instance”, “assertion”,
or “bin”.

Command Return
Value

Description

23-53

SystemVerilog Assertion Constructs

fcov_grade_instances -target value1
-metric code [-timeLimit value2]

string Returns a list of the minimum set of
tests that add up to the target value
for the metric code. Each test is
accompanied by the accumulated
coverage value including that test.
The grading is by instance.

fcov_grade_modules -target value1
-metric code [-timeLimit value2]

string Returns a list of the minimum set of
tests that add up to the target value
for the metric code. Each test is
accompanied by the accumulated
coverage value including that test.
The grading is by module.

fcov_is_cover_prop -assertion handle int Returns 1 if the assertion is the cover
directive for the property.

fcov_is_cover_seq -assertion handle int Returns 1 if the assertion is the cover
directive for the sequence.

fcov_load_design -file name empty
string ““

Unloads any existing design and
data, including all name maps. Then
loads a design with the specified
path name. (The search rules are
described in the table for options.)

fcov_load_test -file name empty
string ““

Loads a test with the specified name.
The name can be a file name or full
path name. (The search rules are
described in the table for options.)

fcov_load_test_grade -file name empty
string ““

Loads a file with the specified name
for coverage grading. The name can
be a file name or full path name. (The
search rules are described in the
table for options.)

fcov_map_hier -from hier_name -to
hier_name

empty
string ““

Maps coverage of instance (and the
hierarchy under it) with the specified
hierarchical name hier_name to
another instance for all subsequent
merges.

fcov_set -bin handle -coverage int empty
string ““

Sets the coverage count int for the
bin with the specified handle. It can
be 0 or the count of the times the bin
was covered.

Command Return
Value

Description

23-54

SystemVerilog Assertion Constructs

The names of bins in the coverage database are as follows:

For SVA Assertions
1attempts

Holds the count of the attempts.

2failures
Holds the count of failed attempts.

3allsuccess
Holds the count of succesful attempts.

4realsuccess
Holds the count of attempts with nonvacuous success.

8incompletes
Holds the count of unterminated attempts.

For SVA Property Coverage
1attempts

Holds the count of attempts.

2failures
Holds the count of failed attempts.

3allsuccess
Holds the count of succesful attempts.

fcov_set -bin handle -flag name empty
string ““

Sets the flag with name for the bin
with the specified handle. The flag
can be: “illegal”, “ignored”, or “none”.

fcov_write_coverage -file name empty
string ““

Writes current coverage to a file with
the specified name. The name can
be a file name or full path name. (The
search rules are described in the
table for options.)

Command Return
Value

Description

23-55

SystemVerilog Assertion Constructs

6vacuoussuccess
Holds the count of vacuous successes.

8incompletes
Holds the count of unterminated attempts

For SVA sequence coverage
1attempts

Holds the count of attempts.

3allsuccess
Holds the count of succesful attempts.

7firstmatches
Holds the count of generated .matched events.

 8incompletes
Holds the count of unterminated attempts.

For OVA assertions
1attempts

Holds the count of attempts.

2failures
Holds the count of failed attempts.

3allsuccess
Holds the count of succesful attempts.

4realsuccess
Holds the count of attempts with nonvacuous success.

8incompletes
Holds the count of unterminated attempts.

For OVA events
1attempts

Holds the count of attempts.

23-56

SystemVerilog Assertion Constructs

2failures
Holds the count of failed attempts.

3allsuccess
Holds the count of succesful attempts.

4realsuccess
Holds the count of attempts with nonvacuous success.

5events
Holds the count of generated event matches.

8incompletes
Holds the count of unterminated attempts.

The assertCovReport Report Files

When you compile for SystemVerilog or OpenVera assertion
coverage, by including the -cm assert compile-time option and
keyword argument, VCS creates the simv.vdb directory in the current
directory.

When you monitor for SystemVerilog or OpenVera assertion
coverage, by including the -cm assert runtime option and keyword
argument, VCS creates the fcov directory in the simv.vdb directory.
This directory contains binary data about SystemVerilog assertions
coverage (and if also included, about OpenVera assertions
coverage).

When you run assertCovReport, this utility does the following:

1. Creates the reports directory in the simv.vdb directory and writes
the report.index.html file in the reports directory.

23-57

SystemVerilog Assertion Constructs

2. Creates the report.fcov directory in the reports directory and writes
in the report.fcov directory the following files: category.html,
hier.html, and tests.html.

Note:
If you include the -cm_assert_report name option on the
assertCovReport command line, you see the following
differences:

- The report.fcov directory is named name.fcov

- The report.index.html file is named name.index.html

The report.index.html File

This file begins with tables of numerical data about the assertions in
your design. This information has a title for a type of information about
your assertions with a total number and percentage under it. In most
cases this title is blue and is a hypertext link to a list of these assertions
further down in this file. These titles and what the values under them
mean are as follows:

Total number of Assertions
The total number of SystemVerilog assert statements and
OpenVera assert directives in your design.

Assertions not Covered
The total number and percentage of the SystemVerilog assert
statements for properties that never matched and the OpenVera
assert directives for sequential expressions that never occur
during simulation.

23-58

SystemVerilog Assertion Constructs

Assertions with at least 1 Real Success
SystemVerilog and OpenVera assertions can fail at certain times
during simulation and succeed at other times. This is the total
number and percentage of SystemVerilog and OpenVera
assertions that had at least one success during simulation.

Assertions with at least 1 Failure
The total number an percentage of SystemVerilog and OpenVera
assertions that had a least one failure during simulation.

Assertions with at least 1 Incomplete
Assertions specify a property about the design that can occur over
a span of simulation time. This is the total number and percentage
of assertions that VCS began to monitor, but simulation ended
before the design matched the behavior specified in the assertion.

Assertions without Attempts
VCS looks to see if the design matches the behavior in the
assertion when there is a transition on a clock signal for the
property (you can specify the type of transition). If none of these
clock signal transitions occur, then there is no attempt at the
assertion. This is the total number and percentage of assertions
with no attempts.

Total number of Cover Directives for Properties
The argument to a SystemVerilog assertion cover statement can
be the name of a defined and declared property (between the
property and endproperty keywords) or the argument can
be just the building blocks of a property between parentheses (a
clock signal and a sequential expression).

This value is the total number of SystemVerilog assertions cover
statements with the name of a property as their argument.

23-59

SystemVerilog Assertion Constructs

Cover Directive for Property Not Covered
The total number and percentage of SystemVerilog assertion
cover statements with the name of a property is their argument,
where the design’s behavior never matches the property specified
in the cover statement.

Cover Directive for Property with Matches
The total number and percentage of SystemVerilog assertion
cover statements with the name of a property as their argument,
where the design’s behavior, at least some of the simulation time,
matches the property specified in the cover statement.

Cover Directive for Property with Vacuous Matches
A property for a SystemVerilog cover statement automatically
matches if there is an implication for the property and the
antecedent condition is never true. For example:

sequence s5;
sig11 ##1 sig12;
endsequence

property p5;
@(posedge clk1) (sig9 ##1 sig10) |-> s5;
endproperty

c4: cover property (p5);

If the antecedent (sig9 ##1 sig10) never occurs, property p5
matches, even if the consequent sequential expression sig11 ##1
sig12 never occurs. This is why such a match is vacuous or empty.

This information is the total number and percentage of
SystemVerilog assertion cover statements with the name of a
property as their argument, and the total number of OpenVera
cover directives, where there is a vacuous match.

23-60

SystemVerilog Assertion Constructs

Total number of Cover Directives for Sequences
A SystemVerilog cover statement can have a sequence name
for an argument instead of a property. For example:

sequence s8;
@(posedge clk1) sig17 ##[1:5] sig18;
endsequence

c7: cover property (s8);

or

sequence s8;
sig17 ##[1:5] sig18;
endsequence

c7: cover property (@(posedge clk1) s8);

This information is the total number of such cover statements.

Cover Directive for Sequence not Covered
Total number and percentage of SystemVerilog cover
statements, where the argument is a sequence that did not occur
during simulation.

Cover Directive for Sequence with All Matches
If there is a cycle delay range expression in a sequence. For
example:

sequence s1;
@(posedge clk1) sig1 ##[1:5] sig2;
endsequence

After sig1 is true, there could be a match after one, two, three,
four, or five rising edges on clk1, if sig2 is also true. If all these
matches happen for all attempts, then this is a sequence of all
matches.

23-61

SystemVerilog Assertion Constructs

This information is the total number and percentage of
SystemVerilog cover statements with sequences with all
matches.

Cover Directive for Sequence with First Matches
Total number and percentage of SystemVerilog cover
statements where the argument is a sequence, and there was a
cycle delay range expression, and the first possible match for the
sequence occurred.

Total number of Events
In OpenVera assertions, you can define a sequential expression
as an event. This information is the total number of such events.

Events Not Covered
Total number and percentage of OpenVera events that did not
occur (not covered).

Events with at least 1 real Match
Total number and percentage of OpenVera events that occurred
(were covered).

Events without any match or with only vacuous match
Total number and percentage of OpenVera events for which there
was no match or only a vacuous match.

Events without any Attempts
Total number and percentage of OpenVera events for which there
were no attempts.

At the bottom of the file are hypertext links to the other files written
by assertCovReport:

• Lists of tests merged to generate this report (tests.html)

• Hierarchical coverage report (hier.html)

• Category based coverage report (category.html)

23-62

SystemVerilog Assertion Constructs

These links are followed by general information about generating this
report.

The tests.html File

You can use the -cm_assert_map and -cm_assert_merge
command line options to merge the results from one design to
another. This file indicates the path names of the results.db files from
which assertCovReport merges the results.

The category.html File

You can use the $ova_set_category and $ova_set_severity
system tasks to set the category and severity of a SystemVerilog
assertion and an OpenVera assertion.

You can also use the (* category=number *) SystemVerilog
attribute to set the category of a SystemVerilog assertion.

This file shows you the assertions in your design according to
category and severity.

The report begins with categories you used for the SystemVerilog
assert statements or OpenVera assert directives. It shows you
the total number and percentage of each category number (integer).
The word Category preceding a category number is a hypertext link
to a list of assert statements or directives with that category number,
showing you the hierarchical name, number of attempts, successes,
failures, and incompletes.

Next is the same information for the severity numbers you assigned
to your SystemVerilog assert statements or OpenVera assert
directives. The word Severity is a hypertext link to a similar list of
assert statements or directives with that severity number.

23-63

SystemVerilog Assertion Constructs

Next is the same information for the category numbers you used for
the SystemVerilog cover statements where the argument is a
property, and the OpenVera cover directives.

Next is the same information for the severity numbers you used for
the SystemVerilog cover statements where the argument is a
property, and the OpenVera cover directives.

Next is the category numbers you used for the SystemVerilog cover
statements where a sequence is the argument.

Next is the severity numbers you used for the SystemVerilog cover
statements where a sequence is the argument.

The hier.html File

The report begins with a list of the module instances in the design
and the number of the following in the instances:

• The number (integer) of SystemVerilog assert statements or
OpenVera assert directives.

• The number (integer) of SystemVerilog cover statements where
the argument is a sequence.

• The number (integer) of SystemVerilog cover statements where
the argument is a property, and OpenVera cover directives.

• The number (integer) of OpenVera events.

23-64

SystemVerilog Assertion Constructs

Each number is a hypertext link that takes you to a list of each type
of statement, directive, or event. For assert statements or
directives, the list shows you the number of attempts, successes,
failures, and incompletes. For cover statements or directives and
events, the list shows you the number of attempts, all matches, first
matches, and incompletes.

Assertion Monitoring System Tasks

For monitoring SystemVerilog assertions we have developed the
following new system tasks:

$assert_monitor
$assert_monitor_off
$assert_monitor_on

Note:
Enter these system tasks in an initial block. Do not enter these
system tasks in an always block.

The $assert_monitor system task is analogous to the standard
$monitor system task in that it continually monitors specified
assertions and displays what is happening with them (you can have
it only display on the next clock of the assertion). Its syntax is as
follows:

$assert_monitor([0|1,]assertion_identifier...);

23-65

SystemVerilog Assertion Constructs

Here:

0
Specifies reporting on the assertion if it is active (VCS is checking
for its properties) and for the rest of the simulation reporting on
the assertion or assertions, whenever they start.

1
Specifies reporting on the assertion or assertions only once, the
next time they start.

If you specify neither 0 or 1, the default is 0.

assertion_identifier...
A comma separated list of assertions. If one of these assertions
is not declared in the module definition containing this system
task, specify it by its hierarchical name.

Consider the following assertion:

property p1;
 @ (posedge clk) (req1 ##[1:5] req2);
endproperty

a1: assert property(p1);

For property p1 in assertion a1, a clock tick is a rising edge on signal
clk. When there is a clock tick VCS checks to see if signal req1 is
true, and then to see if signal req2 is true at any of the next five clock
ticks.

23-66

SystemVerilog Assertion Constructs

In this example simulation, signal clk initializes to 0 and toggles every
1 ns, so the clock ticks at 1 ns, 3 ns, 5 ns and so on.

A typical display of this system task is as follows:

Assertion test.a1 [’design.v’27]:
5ns: tracing "test.a1" started at 5ns:

attempt startingfound: req1looking for: req2 or
any

5ns: tracing "test.a1" started at 3ns:
trace: req1 ##1 anylooking for: req2 or any
failed: req1 ##1 req2

5ns: tracing "test.a1" started at 1ns:
trace: req1 ##1 any[* 2]looking for: req2 or any
failed: req1 ##1 any ##1 req2

Breaking this display into smaller chunks:

Assertion test.a1 [’design.v’27]:

The display is about the assertion with the hierarchical name test.a1.
It is in the source file named design.v and declared on line 27.

5ns: tracing "test.a1" started at 5ns:
attempt startingfound: req1looking for: req2 or

any

23-67

SystemVerilog Assertion Constructs

At simulation time 5 ns VCS is tracing test.a1. An attempt at the
assertion started at 5 ns. At this time VCS found req1 to be true and
is looking to see if req2 is true one to five clock ticks after 5 ns. Signal
req2 doesn’t have to be true on the next clock tick, so req2 not being
true is okay on the next clock tick; that’s what looking for “or any”
means, anything else than req2 being true.

5ns: tracing "test.a1" started at 3ns:
trace: req1 ##1 anylooking for: req2 or any
failed: req1 ##1 req2

The attempt at the assertion also started at 3 ns. At that time VCS
found req1 to be true at 3 ns and it is looking for req2 to be true some
time later. The assertion “failed” in that req2 was not true one clock
tick later. This is not a true failure of the assertion at 3 ns, it can still
succeed in two more clock ticks, but it didn’t succeed at 5 ns.

5ns: tracing "test.a1" started at 1ns:
trace: req1 ##1 any[* 2]looking for: req2 or any
failed: req1 ##1 any ##1 req2

The attempt at the assertion also started at 1 ns. [* is the repeat
operator. ##1 any[* 2] means that after one clock tick, anything
can happen, repeated twice. So the second line here says that req1
was true at 1 ns, anything happened after a clock tick after 1 ns (3
ns) and again after another clock tick (5 ns) and VCS is now looking
for req2 to be true or anything else could happen. The third line here
says the assertion “failed” two clock ticks (5 ns) after req1 was found
to be true at 1 ns.

The $assert_monitor_off and $assert_monitor_on system
tasks turn off and on the display from the $assert_monitor system
task, just like the $monitoroff and $monitoron system turn off
and on the display from the $monitor system task.

23-68

SystemVerilog Assertion Constructs

Assertion System Functions

The assertion system functions are $onehot, $onehot0, and
$isunknown. Their purposes are as follows:

$onehot
Returns true if only one bit in the expression is true.

$onehot0
Returns true if at the most one bit of the expression is true (also
returns true if none of the bits are true).

$isunknown
Returns true if one of the bits in the expression has an X value.
In the VCS implementation, this function also returns true if one
of the bits in the expression has a Z value.

The following is an example of their use:

a1: assert property (@ (posedge clk) $onehot({lg1,lg2}));
a2: assert property (@ (posedge clk) $onehot0({lg1,lg3}));
a3: assert property (@ (posedge clk)$isunknown({r1,r2,r3}));

Another useful function is $countones. This function returns the
number of 1s in a bit vector expression.

Using Assertion Categories

You can categorize assertions and then enable and disable them by
category. There are two ways to categorize SystemVerilog
assertions:

• Using OpenVera assertions system tasks for categorizing
assertions

23-69

SystemVerilog Assertion Constructs

• Using attributes

After you categorize assertions you can use these categories to stop
and restart assertions.

Using OpenVera Assertion System Tasks

VCS has a number of system tasks and functions for OpenVera
assertions that also work on SystemVerilog assertions. These system
tasks do the following:

• Set a category for an assertion

• Return the category of an assertion

These system tasks are as follows:

$ova_set_category("assertion_full_hier_name",
category)
or

$ova_set_category(assertion_full_hier_name,
category)
System task that sets the category level attributes of an assertion.
The category level is an unsigned integer from 0 to 224 - 1.

Note:
These string arguments, such as the full hierarchical name of an
assertion, can be enclosed in quotation marks or not. This is true
when using these system tasks with SVA. They must be in
quotation marks when using them with OVA.

23-70

SystemVerilog Assertion Constructs

$ova_get_category("assertion_full_hier_name")
or

$ova_get_category(assertion_full_hier_name)
System function that returns an unsigned integer for the category.

Using Attributes

You can prefix an attribute in front of an assert statement to specify
the category of the assertion. The attribute must begin with the
category name and specify an integer value, for example:

(* category=1 *) a1: assert property (p1);
(* category=2 *) a2: assert property (s1);

The value you specify can be an unsigned integer from 0 to 224 - 1,
or a constant expression that evaluates to 0 to 224 - 1.

You can use a parameter, localparam, or genvar in these
attributes. For example:

parameter p=1;
localparam l=2;
...
(* category=p+1 *) a1: assert property (p1);
(* category=l *) a2: assert property (s1);

genvar g;
generate
for (g=0; g<1; g=g+1)
begin:loop
(* category=g *) a3: assert property (s2);
end
endgenerate

23-71

SystemVerilog Assertion Constructs

Note:
In a generate statement the category value cannot be an
expression, the attribute in the following example is invalid:

genvar g;
generate
for (g=0; g<1; g=g+1)
begin:loop
(* category=g+1 *) a3: assert property (s2);
end
endgenerate

If you use a parameter for a category value, the parameter value
can be overwritten in a module instantiation statement.

You can use these attributes to assign categories to both named and
unnamed assertions. For example:

(* category=p+1 *) a1: assert property (p1);
(* category=l *) assert property (s1);

The attribute is retained in a tokens.v file when you use the
-Xman=0x4 compile-time option and keyword argument.

Stopping And Restarting Assertions By Category

The are also OpenVera assertions system tasks for starting and
stopping assertions that also work on SystemVerilog assertions.
These system tasks are as follows:

$ova_category_start(category)
System task that starts all assertions associated with the specified
category.

23-72

SystemVerilog Assertion Constructs

$ova_category_stop(category)
System task that stops all assertions associated with the specified
category.

Using Mask Values To Stop And Restart Assertions
There are system tasks for both OpenVera and SystemVerilog
assertions that allow you to use a mask to determine if a category of
assertions should be stopped or restarted. These system tasks are
$ova_category_stop and $ova_category_start. They have
matching syntax.

$ova_category_stop(categoryValue, maskValue[, globalDirective]);

Here:

categoryValue
Because there is a maskValue argument, this argument now is
the result of an anding operation between the assertion categories
and the maskValue argument. If the result matches this value,
these categories stop. As seen in "Stopping And Restarting
Assertions By Category" on page 23-71, without the maskValue
argument, this argument is the value you specified in
$ova_set_category system tasks or category attribute.

maskValue
A value that is logically anded with the category of the assertion.
If the result of this and operation matches the categoryValue,
VCS stops monitoring the assertion.

23-73

SystemVerilog Assertion Constructs

globalDirective
Can be either of the following values:

0
Enables an $ova_category_start system task, that does
not have a globalDirective argument, to restart the
assertions stopped with this system task.

1
Prevents an $ova_category_start system task that does
not have a globalDirective argument from restarting the
assertions stopped with this system task.

$ova_category_start(categoryValue, maskValue[, globalDirective]);

Here:

categoryValue
Because there is a maskValue argument, this argument now is
the result of an anding operation between the assertion categories
and the maskValue argument. If the result matches this value,
these categories start. As seen in "Stopping And Restarting
Assertions By Category" on page 23-71, without the maskValue
argument, this argument is the value you specified in
$ova_set_category system tasks or category attribute.

maskValue
A value that is logically anded with the category of the assertion.
If the result of this and operation matches the categoryValue,
VCS starts monitoring the assertion.

23-74

SystemVerilog Assertion Constructs

globalDirective
Can be either of the following values:

0
Enables an $ova_category_stop system task, that does not
have a globalDirective argument, to stop the assertions
started with this system task.

1
Prevents an $ova_category_stop system task that does not
have a globalDirective argument from stopping the
assertions started with this system task.

Examples

This first example stops the odd numbered categories:

$ova_set_category(top.d1.a1,1);
$ova_set_category(top.d1.a2,2);
$ova_set_category(top.d1.a3,3);
$ova_set_category(top.d1.a4,4);
...
$ova_category_stop(1,’h1);

The categories are masked with the maskValue argument and
compared with the categoryValue argument:

bits categoryValue

category 1 001
maskValue 1
result 1 1 match

category 2 010
maskValue 1
result 0 1 no match

23-75

SystemVerilog Assertion Constructs

1. VCS looks at the least significant bit of each category and logically
ands that LSB to the maskValue argument, which is 1.

2. The results of these anding operations, 1 or true for categories 1
and 3, and 0 or false for categories 2 and 4, is compared to the
categoryValue, which is 1, there is a match for categories 1
and 3.

3. VCS stops the odd numbered categories.

Here is another example. This one uses the globalDirective
argument:

$ova_set_category(top.d1.a1,1);
$ova_set_category(top.d1.a2,2);
$ova_set_category(top.d1.a3,3);
$ova_set_category(top.d1.a4,4);
...
$ova_category_stop(1,’h1,0);
$ova_category_stop(0,’h1,1);
...
$ova_category_start(1,’h1);
$ova_category_start(0,’h1);

category 3 011
maskValue 1
result 1 1 match

category 4 100
maskValue 1
result 0 1 no match

23-76

SystemVerilog Assertion Constructs

In this example:

1. The two $ova_category_stop system tasks stop first the odd
numbered assertions and then the even numbered ones. The first
$ova_category_stop system task has a globalDirective
argument that’s 0, the second has a globalDirective
argument that’s 1.

2. The first $ova_category_start system task can restart the
odd numbered assertions but the second
$ova_category_start system task can’t start the even
numbered assertions.

24-1

SystemVerilog Testbench Constructs

24
SystemVerilog Testbench Constructs 1

The new version of VCS has implemented some of the SystemVerilog
testbench constructs. As testbench constructs they must be in a
program block (see “Program Blocks” on page 24-15).

Enabling Use of SystemVerilog Testbench Constructs

You enable the use of SystemVerilog testbench constructs with the
-sverilog compile-time option.

VCS Flow for SVTB

The VCS use model now includes the use model for SystemVerilog
NTB. The most important part is analyzing the SystemVerilog source
code You can do this as follows:

24-2

SystemVerilog Testbench Constructs

vcs -sverilog -ntb_opts options <SV source code files>

As the use of vcs indicates, SystemVerilog files are treated like
Verilog files in the VCS flow. You can also specify other NTB options:

For example:

vcs -sverilog tb.sv

or

vcs -sverilog -f tb.list

Options For Compiling and Simulating SystemVerilog
Testbench Constructs

Compile-Time Options

The following compile-time options, used for both Verilog and
SystemVerilog code have been tested with SystemVerilog testbench
code:

-f filename

+define+macro_name=value

+incdir+directory_name

+libext+ext

-y directory_name

-timescale=time_unit/time_precision

24-3

SystemVerilog Testbench Constructs

Runtime Options

There are runtime options that were developed for OpenVera
testbenches that also work with SystemVerilog testbenches.

+ntb_random_seed=integer
Sets the seed value used by the top level random number
generator at the start of simulation. This option does not work for
the Verilog $random(seed) system function.

+ntb_solver_mode=1|2
Specifies the constraint solver mode for the randomize()
method:

1
The solver spends more pre-processing time in analyzing the
constraints, during the first call to randomize() on each class.
Subsequent calls to randomize() on that class are very fast.

2
The solver does minimal pre-processing, and analyzes the
constraint in each call to randomize(). Default is 2.

The randomize() method is described in “Randomize Methods”
on page 24-100.

+ntb_enable_solver_trace=0|1|2
Specifies the debugging mode when VCS executes the
randomize() method:

0
Disables tracing.

1
Enables tracing. This is the default.

24-4

SystemVerilog Testbench Constructs

2
Enables tracing with more verbose messages.

The randomize() method is described in “Randomize Methods”
on page 24-100.

+ntb_enable_solver_trace_on_failure[=0|1|2]
Enables a mode that displays trace information only when the
constraint solver fails to compute a solution, usually due to
inconsistent constraints.

0
Disables tracing.

1
Enables tracing. This is the default. This argument is the default
argument when you enter this option without an argument.

2
Enables tracing with more verbose messages and the analysis
narrows down to the smallest set of inconsistent constraints,
thus aiding the debugging process. This option with the 2
argument is the default condition when you don’t enter this
option.

Compile Time or Runtime Options

-cm_dir directory_path_name

As a compile-time or runtime option, specifies an alternative name
and location for the default simv.vdb directory, VCS automatically
adds the extension .vdb to the directory name if not specified.

-cm_name filename

As a compile-time or runtime option, specifies an alternative test
name instead of the default name. The default test name is "test".

24-5

SystemVerilog Testbench Constructs

The string Data Type

The string data type is an LCA feature.

VCS has implemented the string SystemVerilog data type. The
following is the syntax for declaring this data type:

string variable_name [=initial_value];

String Manipulation Methods

SystemVerilog has the following methods for manipulating strings:

len()

Returns the number of characters in a string.

string string_name = "xyz";
int int1 = string_name.len;

getc()

Returns the numerically specified character in the string.

bit1=string_name.getc(0);

If variable string_name has a value of “xyz”, then this method returns
the ASCII code for the number 0 character to bit1, the x character.

putc()

Replaces a specified character with another value or character. This
method takes two arguments, the first is the number of the characters
in the string, the second is a value or another string variable. If the
second argument is a string value, the specified character is replaced
with the first character of the string argument.

24-6

SystemVerilog Testbench Constructs

string string1 = "abc";
string string2 = "xyz";

initial
begin
$display ("string1 is \"%s\"",string1);
string1.putc(0,42);
$display ("string1 is \"%s\"",string1);
string1.putc(1,string2);
$display ("string1 is \"%s\"",string1);
end
endmodule

The $display system tasks display the following:

string1 is "abc"
string1 is "*bc"
string1 is "*xc"

toupper()

Returns a string with the lower case characters converted to upper
case.

string string1 = "abc";
string string2 = string1.toupper;
initial
begin
$display("string1 is \"%s\"",string1);
$display("string2 is \"%s\"",string2);
end

The $display system tasks display the following:

string1 is "abc"
string2 is "ABC"

24-7

SystemVerilog Testbench Constructs

tolower()

Similar to the toupper method, this method returns a string with the
upper case characters converted to lower case.

compare() and icompare()

Compares strings and returns 0 if they match, and a value less than
0 or more than zero, depending on the order of the strings, if they
don’t match. The icompare method doesn’t see a difference between
upper case and lower case.

string string1 = "abc";
string string2 = "abc";
string string3 = "xyz";
string string4 = "ABC";

initial
begin
if (string1.compare(string2) == 0)
 $display("string1 matches string2");
if (string1.compare(string3) != 0)
 $display("string1 does not match string3");
if (string1.compare(string4) != 0)
 if (string1.icompare(string4) == 0)
 $display("string1 matches string4 except for case");
 else
 $display("string1 does not match string4");
end

The $display system tasks display the following:

string1 matches string2
string1 does not match string3
string1 matches string4 except for case

24-8

SystemVerilog Testbench Constructs

substr()

Returns a substring of the specified string. The arguments specify
the numbers of the characters in the specified string that begin and
end the substring.

string string1 = "abcdefgh";
string string2;
initial
begin
string2 = string1.substr(1,5);
$display("string2 = %s",string2);
end

The $display system task displays the following:

string2 = bcdef

String Conversion Methods

SystemVerilog has the following methods for converting strings:

atoi() atohex() atooct() and atobin()

Returns the integer corresponding to either the ASCII decimal,
hexadecimal, octal, or binary representation of the string.

string string1 = "10";
reg [63:0] r1;

initial
begin
$monitor("r1 = %0d at %0t",r1,$time);
#10 r1 = string1.atoi;
#10 r1 = string1.atohex;
#10 r1 = string1.atooct;
#10 r1 = string1.atobin;

24-9

SystemVerilog Testbench Constructs

end

The $monitor system task display the following:

r1 = x at 0
r1 = 10 at 10
r1 = 16 at 20
r1 = 8 at 30
r1 = 2 at 40

atoreal()

Returns a real number that is the decimal value of a string.

module m;

real r1;

string string1 = "1235/x0090";

initial
begin
r1 = string1.atoreal;
$display("r1 = 0%f",r1);
end
endmodule

The $display system task displays:

r1 = 1235.000000

itoa()

Stores the ASCII decimal representation of an integer in a string.

reg [63:0] r1 = 456;
string string1;

initial
begin
string1.itoa(123);

24-10

SystemVerilog Testbench Constructs

if (string1 == "123")
 $display("string1 %s",string1);
string1.itoa(r1);
if (string1 == "456")
 $display("string1 %s",string1);
end

The $display system tasks display:

string1 123

hextoa()

hextoa(arg) returns the ASCII hexadecimal representation of the arg.

octtoa()

octtoa(arg) returns the ASCII octal representation of the arg.

bintoa()

bintoa(arg) returns the ASCII binary representation of the arg.

realtoa()

realtoa(arg) returns the ASCII real representation of the arg.

The following program explains the usage of these string methods.

program test();

string s;
real r;
logic [11:0] h = 'hfa1;
reg [11:0] o = 'o172;
bit [5:0] b = 'b101010;

task t1();

24-11

SystemVerilog Testbench Constructs

 $display("-----Start of Program ----------------");
 s.hextoa(h);
 $display("Ascii of hex value 'hfa1 is %s",s);

 s.octtoa(o);
 $display("Ascii of octal value 'o172 is %s",s);

 s.bintoa(b);
 $display("Ascii of binary value 'b101010 is %s",s);

 s = "12.3456";
 r = s.atoreal;
 $display("Real value of ascii string \"12.3456\" is

 %f", r);

 s = "";
 s.realtoa(r);
 $display("Ascii of real value 12.3456 is %s",s);
 $display("-------- End of Program ----------------");
endtask

initial
 t1();

endprogram

The output of this program is:

start of Program --------------------
Ascii of hex value 'hfa1 is fa1
Ascii of octal value 'o172 is 172
Ascii of binary value 'b101010 is 101010
Real value of ascii string "12.3456" is 12.345600
Ascii of real value 12.3456 is 12.3456
-------- End of Program ----------------------

24-12

SystemVerilog Testbench Constructs

Predefined String Methods

SystemVerilog provides several class methods to match patterns
within strings.

search()

The search() method searches for a pattern in the string and returns
the index number to the beginning of the pattern. If the pattern is not
found, then the function returns -1. The syntax is:

integer string_variable.search(string pattern);

Here, the argument must be a string.

The following example illustrates the usage of the search() class
method.

integer i;
string str = "SystemVerilog supports search() method";
i = str.search("supports");
printf("%d \n", i);

This example assigns the index 14 to integer i and prints out 14.

match()

The match() method processes a regular expression pattern match.
It returns 1 if the pattern is found else, it returns 0 if the pattern is not
found. The syntax is:

integer string_variable.match(string pattern);

Here, the pattern must be a regular Perl expression.

The following example illustrates the usage of the match() class
method.

24-13

SystemVerilog Testbench Constructs

integer i;
string str;
str = "SystemVerilog supports match() method";
i = str.match("mat");

This example assigns the value 1 to integer i because the pattern
“mat” exists within the string str.

prematch()

The prematch() method returns the string that is located just before
the string found by the last match() function call. The syntax is:

string string_variable.prematch();

The following example illustrates the usage of the prematch() class
method.

integer i;
string str, str1;
str = "SystemVerilog supports prematch() method";
i = str.match("supports");
str1 = str.prematch();

This example assigns the value “SystemVerilog” to string str1.

postmatch()

The postmatch() method returns the string that is located just after
the string found by the last match() function call. The syntax is:

string string_variable.postmatch();

The following example illustrates the usage of postmatch() class
method.

integer i;

24-14

SystemVerilog Testbench Constructs

string str, str1;
str = "SystemVerilog supports postmatch() method";
i = str.match("postmatch()");
str1 = str.postmatch();

This example assigns the value “method” to string str1.

thismatch()

The thismatch() method returns the matched string, based on the
result of the last match() function call. The syntax is:

string string_variable.thismatch();

The following example illustrates the usage of the thismatch() class
method.

integer i;
string str, str1;
str = "SystemVerilog supports thismatch() method";
i = str.match("thismatch");
str1 = str.thismatch();

This example assigns the value “thismatch” to string str1.

backref()

The backref() method returns the matched patterns, based on the
last match() function call. The syntax is:

function string string_variable.backref(integer index);

Here, index is the integer number of the Perl expression being
matched. Indexing starts at 0.

This function matches a string with Perl expressions specified in a
second string.

24-15

SystemVerilog Testbench Constructs

The following example illustrates the usage of the backref() function
call.

integer i;
string str, patt, str1, str2;
str = "1234 is a number."
patt = "([0-9]+) ([a-zA-Z .]+)";
i = str.match(patt);
str1 = str.backref(0);
str2 = str.backref(1);

This example checks the Perl expressions given by string patt with
string str. It assigns the value “1234” to string str1 because of the
match to the expression “[0-9]+”. It assigns the value “is a number.”
to string str2 because of the match to the expression “[a-zA-Z .]+”.
Any number of additional Perl expressions can be listed in the patt
definition, and then called using sequential index numbers with the
backref() function.

Program Blocks

A program block contains the testbench for a design. In the default
implementation of SystemVerilog testbench constructs, all these
constructs must be in one program block. Multiple program blocks is
an LCA feature.

Requiring these constructs in a program block help to distinguish
between the code that is the testbench and the code that is the design.

24-16

SystemVerilog Testbench Constructs

Program blocks begin with the keyword program, followed by a name
for the program, followed by an optional port connection list, followed
by a semi colon (;). Program blocks end with the keyword
endprogram, for example:

program prog (input clk,output logic [31:0] data, output
logic ctrl);

logic dynamic_array [];
logic assoc_array[*];
int intqueue [$] = {1,2,3};

class classA;
function void vfunc(input in1, output out1);
.
.
.
endfunction
.
.
.
endclass

semaphore sem1 =new (2);
mailbox mbx1 = new();

reg [7:0] reg1;
covergroup cg1 @(posedge clk);
cp1: coverpoint reg1;
...
endgroup
endprogram

bit clk = 0;
logic [31:0] data;
logic ctrl;

module clkmod;
.
.

24-17

SystemVerilog Testbench Constructs

.
prog prog1 (clk,data,ctrl); // instance of the program
.
.
.
endmodule

In many ways a program definition resembles a module definition and
a program instance is similar to a leaf module instance but with special
execution semantics.

A program block can contain the following:

• data type declarations including initial values. Dynamic arrays,
associative arrays, and queues are implemented for program
blocks.

• user-defined tasks and functions

• initial blocks for procedural code (but not always blocks)

• final block (please refer Final Blocks for more details)

• class definitions

• semaphores

• mailboxes

• concurrent assertions

• coverage groups

When VCS executes all the statements in the initial blocks in a
program, simulation comes to and end.

24-18

SystemVerilog Testbench Constructs

Final Blocks
The final block is Limited Customer availability (LCA) feature in NTB
(SV) and requires a separate license. Please contact your Synopsys
AC for a license key.

A final block executes in the last simulation time step. The following
example contains a final block:

`timescale 1ns/1ns
module test;
logic l1, l2;

initial
begin
#10 l1=0;
#10 l1=1;
#10 l1=0;
#10 l1=1;
#10 $finish;
end

always @ (posedge l1)
$display("l1 = %0b at %0t",l1,$time);

final $display(" simulation ends at %0t",$time);
endmodule

The $display system tasks display the following:

l1 = 1 at 20
l1 = 1 at 40
 simulation ends at 50

The final block executes in the last simulation time step at time 50.

A final block is the opposite of an initial block in that an initial block
begins execution in the first simulation time step and a final block
executes in the last simulation time step. Apart from the execution

24-19

SystemVerilog Testbench Constructs

time there are other important differences in a final block. A final
block is like a user-defined function call in that it executes in zero
simulation time and cannot contain the following:

• delay specifications

• event controls

• nonblocking assignment statements

• wait statements

• user-defined task enabling statements when the user-defined
task contains delay specifications, event controls, wait
statements, or nonblocking assignment statements

Multiple Program Support
The Multiple program block is Limited Customer availability (LCA)
feature in NTB (SV) and requires a separate license. Please contact
your Synopsys AC for a license key.

Multiple programs support enables multiple testbenches to run in
parallel. Use this when testbenches model standalone components
for example, Verification IP (or work from a previous project). Because
components are independent, direct communication between them
except through signals is undesirable. For example, a UART and CPU
model would communicate only through their respective interfaces,
and not through the testbench. Thus, multiple programs modeling
standalone components allows usage without having knowledge of
the code given, or requiring modifications to your own testbench

24-20

SystemVerilog Testbench Constructs

Arrays

Dynamic Arrays

Dynamic arrays are unpacked arrays with a size that can be set or
changed during simulation. The syntax for a dynamic array is as
follows:

data_type name [];

The empty brackets specify a dynamic array.

The currently supported data types for dynamic arrays are as follows:

The new[] Built-In Function

The new[] built-in function is for specifying a new size for a dynamic
array and optionally specifying another array whose values are
assigned the dynamic array. Its syntax is as follows:

array_identifier = new[size] (source_array);

bit logic reg byte

int longint shortint integer

time string class enum

events mailbox semaphore

24-21

SystemVerilog Testbench Constructs

The optional (source_array) argument specifies another array
(dynamic or fixed-size) whose values VCS assigns to the dynamic
array. If you don’t specify the (source_array) argument, VCS
initializes the elements of the newly allocated array to their default
value.
The optional (source_array) argument must have the same data
type as the array on the left-hand side, but it need not have the same
size. If the size of (source_array) is less than the size of the new
array, VCS initializes the extra elements to their default values. If the
size of (source_array) is greater than the size of the new array,
VCS ignores the additional elements.

program prog;
.
.
.
bit bitDA1 [];
bit bitDA2 [];
bit bitDA3 [];
bit bitSA1 [100];
logic logicDA [];
.
.
.
initial
begin
bitDA1 = new[100];
bitDA2 = new[100] (bitDA2);
bitDA3 = new[100] (bitSA1);
logicDA = new[100];
end
.
.
.
endprogram

24-22

SystemVerilog Testbench Constructs

The size() Method

The size method returns the current size of a dynamic array. You
can use this method with the new[] built-in function, for example:

bitDA3 = new[bitDA1.size] (bitDA1);

The delete() Method

The delete method sets a dynamic array’s size to 0 (zero). It clears
out the dynamic array.

bitDA1 = new[3];
$display("bitDA1 after sizing, now size =

%0d",bitDA1.size);
bitDA1.delete;
$display("bitDA1 after sizing, now size =

%0d",bitDA1.size);

VCS displays from this code:

bitDA1 after sizing, now size = 3
bitDA1 after sizing, now size = 0

Assignments to and from Dynamic Arrays

You can assign a dynamic array to and from a fixed-size array, queue,
or another dynamic array, provided they are of equivalent data types,
for example:

logic lFA1[2];
logic lDA1[];
initial
begin
$display("lDA1 size = %0d",lDA1.size);

24-23

SystemVerilog Testbench Constructs

lFA1[1]=1;
lFA1[0]=0;
lDA1=lFA1;
$display("lDA1[1] = %0d", lDA1[1]);
$display("lDA1[0] = %0d", lDA1[0]);
$display("lDA1 size = %0d",lDA1.size);
end
endprogram

VCS displays:

lDA1 size = 0lDA1[1] = 1
lDA1[0] = 0
lDA1 size = 2

When you assign a fixed-size array to a dynamic array, the dynamic
array’s size changes to the size of the fixed-size array. This is also
true when you assign a dynamic array with a specified size to another
dynamic array, for example:

logic lDA1[];
logic lDA2[];
initial
begin
lDA1=new[2];
$display("lDA2 size = %0d",lDA2.size);
lDA1[1]=1;
lDA1[0]=0;
lDA2=lDA1;
$display("lDA2[1] = %0d", lDA2[1]);
$display("lDA2[0] = %0d", lDA2[0]);
$display("lDA2 size = %0d",lDA2.size);
end
endprogram

This code displays the following:

lDA2 size = 0
lDA2[1] = 1

24-24

SystemVerilog Testbench Constructs

lDA2[0] = 0
lDA2 size = 2

You can assign a dynamic array to a fixed-size array, provided that
they are of equivalent data type and that the current size of the
dynamic array matches the size of the fixed-size array.

Associative Arrays

An associative array has a lookup table for the elements of its
declared data type. Its index is a data type which serves as the lookup
key for the table. This index data type also establishes an order for
the elements.

The syntax for declaring an associative array is as follows:

data_type array_id [index_type];
data_type array_id [* | string];

Where:

data_type
Is the data type of the associative array.

array_id
Is the name of the associative array.

index_type
Specifies the type of index. Only two types are currently
implemented. They are as follows:

*
Specifies a wildcard index.

string
Specifies a string index.

24-25

SystemVerilog Testbench Constructs

Wildcard Indexes

You can enter the wildcard character as the index.

data_type array_id [*];

Using the wildcard character permits entering any integral data type
as the index. Integral data types represent an integer (shortint,
int, longint, byte, bit, logic, reg, integer, and also packed
structs, packed unions, and enum.

Note:

 The wildcard index has a 64 bit limitation.

program m;
bit [2:0] AA1[*];
int int1;
logic [7:0] log1;

initial begin
 int1 = 27;
 log1 = 42;
 AA1[456] = 3'b101;
 AA1[int1] = 3'b000; // index is 27
 AA1[log1] = 3'b111; // index is 42

end
endprogram

String Indexes

A string index specifies that you can index the array with a string. You
specify a string index with the keyword string.

program p;

logic [7:0] a[string];
string string_variable;

24-26

SystemVerilog Testbench Constructs

initial begin
 a["sa"] = 8;
 a["bb"] = 15;
 a["ec"] = 29;
 a["d"] = 32;
 a["e"] = 45;
 a[string_variable] = 1;

end
endprogram

Associative Array Assignments and Arguments

You can only assign an associative array to another associative array
with a equivalent data type. Similarly, you can only pass an
associative array as an argument to another associative array with a
equivalent data type.

Associative Array Methods

There are methods for analyzing and manipulating associative
arrays.

num
Returns the number of entries in the array.

delete
Removes all entries from an array. If you specify an index, this
method removes the entry specified by the index.

exists
Returns a 1 if the specified entry exists.

24-27

SystemVerilog Testbench Constructs

first
Assigns the value of the smallest or alphabetically first entry in
the array. Returns 0 if the array is empty and returns 1 if the array
contains a value.

last
Assigns the value of the largest or alphabetically last entry in the
array. Returns 0 if the array is empty and returns 1 if the array
contains a value.

next
Finds the entry whose index is greater than the given index. If
there is a next entry, the index variable is assigned the index of
the next entry, and the function returns 1. Otherwise, variable is
unchanged, and the function returns 0

prev
Finds the entry whose index is smaller than the given index. If
there is a previous entry, the index variable is assigned the index
of the previous entry, and the function returns 1. Otherwise,
variable is unchanged, and the function returns 0.

The following example shows how to use these methods.

program p;
logic [7:0] a[string];
string s_index;
initial begin

 a["sa"] = 8;
 a["bb"] = 15;
 a["ec"] = 29;
 a["d"] = 32;
 a["e"] = 45;
 $display("number of entries = %0d",a.num);
 if(a.exists("sa"))
 $display("string \"sa\" is in a");
 if(a.first(s_index))
 begin

24-28

SystemVerilog Testbench Constructs

 $display("the first entry is
\"%s\"",s_index);

 do
 $display("%s :

%0d",s_index,a[s_index]);
 while (a.next(s_index));
 end

 if(a.last(s_index))
 begin
 $display("the last entry is

\"%s\"",s_index);
 do
 $display("%s :

%0d",s_index,a[s_index]);
 while (a.prev(s_index));
 end
 a.delete;
 $display("number of entries = %0d",a.num);
 end

endprogram

VCS displays the following:

number of entries = 5
string "sa" is in a
the first entry is "bb"
bb : 15
d : 32
e : 45
ec : 29
sa : 8
the last entry is "sa"
sa : 8
ec : 29
e : 45
d : 32
bb : 15
number of entries = 0

24-29

SystemVerilog Testbench Constructs

Queues

A queue is an ordered collection of variables with the same data type.
The length of the queue changes during simulation. You can read
any variable in the queue, and insert a value anywhere in the queue.

The variables in the queue are its elements. Each element in the
queue has a number: 0 is the number of the first, you can specify the
last element with the $ (dollar sign) symbol. The following are some
examples of queue declarations:

logic logque [$];
This is a queue of elements with the logic data type.

int intque [$] = {1,2,3};
This is a queue of elements with the int data type. These
elements are initialized 1, 2, and 3.

string strque [$] = {"first","second","third","fourth"};
This is a queue of elements with the string data type. These
elements are initialized "first", "second", "third", and
"fourth".

You assign the elements to a variable using the element number, for
example:

string s1, s2, s3, s4;
initial
begin
s1=strque[0];
s2=strque[1];
s3=strque[2];
s4=strque[3];
$display("s1=%s s2=%s s3=%s s4=%s",s1,s2,s3,s4);
.
.
.

24-30

SystemVerilog Testbench Constructs

end

The $display system task displays:

s1=first s2=second s3=third s4=fourth

You also assign values to the elements using the element number,
for example:

int intque [$] = {1,2,3};
initial
begin
intque[0]=4;
intque[1]=5;
intque[2]=6;
$display("intque[0]=%0d intque[1]=%0d intque[2]=%0d",
intque[0],intque[1],intque[2]);
.
.
.
end

The $display system task displays:

intque[0]=4 intque[1]=5 intque[2]=6

Concatenation operations, for adding elements, are not yet
supported, for example:

intque = {0,intque};
intque = {intque, 4};

Removing elements from a queue are not yet supported, for example:

strque = strque [1:$];
intque = intque[0:$-1];

24-31

SystemVerilog Testbench Constructs

Queue Methods

There are the following built-in methods for queues:

size
Returns the size of a queue.

program prog;
int intque [$] = {1,2,3};

initial
begin
for (int i = 0; i < intque.size; i++)
 $display(intque[i]);
end
endprogram

insert
Inserts new elements into the queue. This method takes two
arguments: the first is the number of the element, the second is
the new value.

program prog;
string strque [$] = {"first","second","third","forth"};

initial
begin
for (int i = 0; i < strque.size; i++)
 $write(strque[i]," ");
$display(" ");
strque.insert(1,"next");
strque.insert(2,"somewhere");
for (int i = 0; i < strque.size; i++)
 $write(strque[i]," ");
$display(" ");
end
endprogram

24-32

SystemVerilog Testbench Constructs

The $display system tasks display the following:

first second third forth
first next somewhere second third forth

delete
Removes an element from the queue, specified by element
number. If you don’t specify an element number, this method
deletes all elements in the queue.

string strque [$] = {"first","second","third"};

initial
begin
for (int i =0; i<strque.size; i++)
 $write(strque[i]," ");
$display(" ");
strque.delete(1);
for (int i =0; i<strque.size; i++)
 $write(strque[i]," ");
end

The system tasks display the following:

first second third
first third

pop_front
Removes and returns the first element of the queue.

string strque [$] = {"first","second","third"};
string s1;
initial
begin
$write("the elements of strque are ");
for (int i =0; i<strque.size; i++)
 $write(strque[i]," ");
$display("\ns1 before pop contains %s ",s1);
s1 = strque.pop_front;
$display("s1 after pop contains %s ",s1);
$write("the elements of strque are ");

24-33

SystemVerilog Testbench Constructs

for (int i =0; i<strque.size; i++)
 $write(strque[i]," ");
end

The system tasks display the following:

the elements of strque are first second third
s1 before pop contains
s1 after pop contains first
the elements of strque are second third

string strque [$] = {"first","second","third"};
string s1;
initial
begin
for (int i =0; i<strque.size; i++)
 $write(strque[i]," ");
$display(" ");
s1 = strque.pop_front;
for (int i =0; i<strque.size; i++)
 $write(strque[i]," ");
end

The system tasks display the following:

first second third
second third

pop_back
Removes and returns the last element in the queue.

program prog;
string strque [$] = {"first","second","third"};
string s1;
initial
begin
$write("the elements of strque are ");
for (int i =0; i<strque.size; i++)
 $write(strque[i]," ");
$display("\ns1 before pop contains %s ",s1);
s1 = strque.pop_back;

24-34

SystemVerilog Testbench Constructs

$display("s1 after pop contains %s ",s1);
$write("the elements of strque are ");
for (int i =0; i<strque.size; i++)
 $write(strque[i]," ");
end
endprogram
The system tasks display the following:

the elements of strque are first second third
s1 before pop contains
s1 after pop contains third
the elements of strque are first second

push_front and push_back
Add elements to the front and back of the queue.

int intque [$] = {1,2,3};

initial
begin
for(int i = 0; i < intque.size; i++)
 $write(intque[i]," ");
intque.push_front(0);
intque.push_back(4);
$write(" \n");
for(int i = 0; i < intque.size; i++)
 $write(intque[i]," ");
end

The system tasks display the following:

1 2 3
0 1 2 3 4

The foreach Loop

A foreach loop iterates through an array. Its argument is any kind
of array and the loop variables designate the indexes of the array.
The following is an elementary example of the use of this construct:

24-35

SystemVerilog Testbench Constructs

module test;
bit [11:10][9:8][7:0] bit_array1;
initial
begin
foreach (bit_array1[dim1,dim2])

 bit_array1 [dim1][dim2]=dim1*dim2;
foreach (bit_array1[dim1, dim2])
 $display("bit_array1[%1d][%1d]=%0d",
dim1,dim2,bit_array1[dim1][dim2]);
end
endmodule

The bit data type array named bit_array1 has three dimensions.
The first foreach loop iterates through the first two dimensions
11:10 and 9:8, to assign 8-bit values to these elements.

The second foreach loop displays the deposited values.

The $display system task displays the following:

bit_array1 [11][9]=99
bit_array1 [11][8]=88
bit_array1 [10][9]=90
bit_array1 [10][8]=80

The foreach loop also works with other types of arrays, such as this
example of a string array:

module test;
string words [2];
initial
begin
words [1] = "verification";
words [0] = "simulation";
foreach (words [j])

 $display("string element number %1b",j,
 "contains \"",words[j],"\"");

end

24-36

SystemVerilog Testbench Constructs

endmodule

The $display system task displays the following:

string element number 0 contains "simulation"
string element number 1 contains "verification"

The foreach loop also works with queues and dynamic and
associative arrays. The following is an example with a dynamic
array:

program test;
integer fixed_int_array[3] = {0, 1, 2};
integer dynamic_int_array[];
initial
begin
dynamic_int_array=new[3](fixed_int_array);
foreach (dynamic_int_array[dim1])

 $display("dynamic_int_array [%1d]=%0d",
 dim1,dynamic_int_array[dim1]);
end
endprogram

The $display system task displays the following:

dynamic_int_array [0]=0
dynamic_int_array [1]=1
dynamic_int_array [2]=2

The following is an example with an associative array:

program test;
bit [2:0] assoc_array1 [*];
initial
begin
assoc_array1[0]=3'b000;
assoc_array1[1]=3'b001;

24-37

SystemVerilog Testbench Constructs

assoc_array1[7]=3'b111;
foreach (assoc_array1[dim1])
 $display("assoc_array1 [%1d]=%0d",
 dim1,assoc_array1[dim1]);
end
endprogram

The $display system task displays the following:

assoc_array1 [0]=0
assoc_array1 [1]=1

assoc_array1 [7]=7

Array Aggregates (Reduction/Manipulation) Methods in
Constraints

SystemVerilog includes a set of array reduction methods which allow
declarations of complex constraints for arrays and queues in a
compact and flexible format.

The following is the syntax for these methods:

 function array_or_expression_type method
 (array_type iterator = item)

The array aggregate expression is a valid part of a constraint
expression and can be used any place that a variable can be used,
with the exception of solve-before constraints.

24-38

SystemVerilog Testbench Constructs

List of Aggregate Methods

The following code is an example of the aggregate method, sum() in
an inline constraint block:

program test;

class myclass;

rand int b[2:0];
int a[3:0] = {2,4,6,8};

function void post_randomize();
if((b[0] == 28) && (b[2] == 28))

 $display("test Passed");
else

 $display("test Failed");
endfunction
endclass

myclass mc = new;
initial begin

int i;
 i = mc.randomize() with { foreach (b [j]) b[j] ==

 a.sum(temp) with (a[temp.index] + 2);};

Table 24-1

Method Description
sum() Performs addition and returns sum of array elements

product() Performs multiplication, and returns product of array
elements

and() Performs bitwise AND operation, and returns bit-wise AND
of array elements.

or() Performs bitwise OR operation, and returns bit-wise OR of
array elements

xor() Performs logical XOR operation, and returns logical XOR
of all array elements.

24-39

SystemVerilog Testbench Constructs

 if(i)
 $display("Randomization Success");
 else

$display("Randomization Fails");
end

endprogram

Notes
1. Empty array - If the array over which the aggregate operation is

defined has size 0, then the behavior is as follows:

- array.sum(): The expression is substituted by 0.

- array.product(): The expression is substituted by 1.

For all other aggregate methods there is a runtime error if
reference to the aggregate operation is in an ON constraint block.

2. Array types - The array aggregate methods and the foreach loop
support the fixed size array, dynamic array, associative array,
and SmartQ types of arrays in every context.

Unsupported features in Array aggregates:
• Using virtual interfaces to refer to variables inside array

constraints.

• Array aggregates of SV style (and, xor, or, etc.)

• Array aggregates outside constraint blocks (and, xor, or, etc).

• Array aggregates with usage as follows: array.cum with (item ==
item.index).

24-40

SystemVerilog Testbench Constructs

Classes

The user-defined data type, class, is composed of data members of
valid SystemVerilog data types (known as properties) and tasks or
functions (known as methods) for manipulating the data members.
The properties and methods, taken together, define the contents and
capabilities of a class instance (also referred to as an object).

Use the class and endclass keywords to declare a class.

class B;
int q = 3;
function int send (int a);

send = a * 2;
endfunction

task show();
$display("q = %0d", q);

endtask
endclass

In the above example, the members of class “B” are the property, q,
and the methods send() and show().

Note:

- See “Class Packet Example” on page 24-66 for a more complex
example of a class declaration. The name of the class is
“Packet.”

- Unpacked unions inside classes are not yet supported. Packed
unions and packed and unpacked structures inside classes are
supported.

class myclass;
typedef struct packed{ int int1;

24-41

SystemVerilog Testbench Constructs

 logic [7:0] log1;
 } struct1;

struct1 mystruct;

typedef struct packed { int intt1; logic [31:0] logg1; }
pstruct1;

typedef union packed {
 pstruct1 u_pstruct1;
 } p_union1;

endclass

Creating an Instance (object) of a Class

A class declaration is the template from which objects are created.
When a class is constructed the object is built using all the properties
and methods from the class declaration.

To create an object (that is, an instance) of a declared class, there
are two steps. First, declare a handle to the class (a handle is a
reference to the class instance, or object):

class_name handle_name;

Then, call the new() class method:

handle_name = new();

The following example expands on the above example to show how
to create an instance of class “B.”

program P;
class B;

int q = 3;
function int send (int a);

24-42

SystemVerilog Testbench Constructs

send = a * 2;
endfunction

task show();
$display("q = %0d", q);

endtask
endclass

 initial begin
B b1; //declare handle, b1

 b1 = new; //create an object by calling new
 end

endprogram

The above two steps can be merged into one for instantiating a class
at the time of declaration:

class_name handle_name = new();

For example:

B b1 = new;

The new() method of the class is a method which is part of every
class. It has a default implementation which simply allocates memory
for the object and returns a handle to the object.

Constructors

You can declare your own new() method. In such a case, the
prototype that you must follow is:

function new([arguments]);
// body of method

endfunction

Use this syntax when using the user-defined constructor:

24-43

SystemVerilog Testbench Constructs

handle_name = new([arguments]);

Arguments are optional.

Below is an example of a user-defined constructor:

program P;

class B; //declare class
 integer command;
 function new(integer inCommand = 1);

command = inCommand;
$display("command = %d", command);

 endfunction
endclass
endprogram

When called, new() will print the value passed to it as the value of
command.

When a class property has been initialized in its declaration, the
user-defined new() constructor can be used to override the initialized
value. The following example is a variant of the first example in this
section.

program P;
class A;

 int q = 3; //q is initialized to 3
 function new();
 q = 4; //constructor overrides & assigns 4
 endfunction

endclass
 A a1;
 initial

begin
 a1 = new;
 $display("The value of q is %0d.", a1.q);
 end

endprogram

24-44

SystemVerilog Testbench Constructs

The output of this program is:

The value of q is 4.

If a property is not initialized by the constructor, it is implicitly
initialized, just like any other variable, with the default value of its data
type.

Assignment, Re-naming and Copying

Consider the following:

class Packet;
...

endclass

Packet p1;

Packet p1; creates a variable, p1, that can hold the handle of an
object of class Packet. The initial default value of p1 is null. The
object does not yet exist, and p1 does not contain an actual handle,
until an instance of type Packet is created as shown below:

p1 = new(); //if no arguments are being passed, () can be
 //omitted. e.g., p1=new;

Another variable of type Packet can be declared and assigned the
handle, p1 to it as shown below:

Packet p2;
p2 = p1;

In this case, there is still only one object. This single object can be
referred to with either variable, p1 or p2.

24-45

SystemVerilog Testbench Constructs

Now consider the following, assuming p1 and p2 have been declared
and p1 has been instantiated:

p2 = new p1;

The handle p2 now points to a shallow copy of the object referenced
by p1. Shallow copying creates a new object consisting of all
properties from the source object. Objects are not copied, only their
handles. That is, a shallow copy is a duplication of members, including
handles, of an object´s first level constituents in the hierarchy.
However, an object referenced by a copied handle is not, itself,
copied. That is, an object contained within an object is not copied,
only the referential handle.

Static Properties

The static keyword is used to identify a class property that is shared
with all instances of the class. A static property is not unique to a
single object (that is, all objects of the same type share the property).
A static variable is initialized once.

Syntax

static data_type variable;

Example

program test;
class Parcel;

static int count = 2;
function new();

count++;
endfunction

endclass

24-46

SystemVerilog Testbench Constructs

initial begin
 Parcel pk1 = new;
 Parcel pk2 = new;
 Parcel pk3 = new;

 $display("%d Parcel", pk3.count);
 $display("%d Parcel", pk2.count);
 $display("%d Parcel", pk1.count);

end
endprogram

Output

 5 Parcel
 5 Parcel
 5 Parcel

In the above example, every time an object of type Parcel is created,
the new() function is invoked and the static variable count is
incremented. The final value of count is “5.” If count is declared as
non-static, the output of the above program is:

 3 Parcel
 3 Parcel

3 Parcel

Global Constant Class Properties

The const keyword is used to designate a class property as
read-only. Class objects are dynamic objects, therefore either global
or instance properties can be designated “const.” At present, only
global constants are supported.

When declared, a global constant class property includes an initial
value. Consider the following example:

//global_const.sv
program test;

24-47

SystemVerilog Testbench Constructs

class Xvdata_Class;
const int pi = 31412;//const variable

endclass

 Xvdata_Class data;
 initial begin
 data = new();
 data.pi = 42; //illegal and will generate

 //compile time error
 end

endprogram

The line, data.pi=42, is not valid and yields the following compile
time error message:

Error-[IUCV] Invalid use of 'const' variable
 Variable 'pi' declared as 'const' cannot be used

 in this context
 "global_const.sv", 17: data.pi = 42;

Method Declarations: Out of Class Body Declarations

The following example demonstrates the usage of scope resolution
for:

• Declaring class function outside class

• Accessing class enum label in inline constraint block

• Declaring constraint block out of class and also accessing class
enum label inside that block

program prog;

typedef enum {X, Y} A;

class C;
 typedef enum {S1,S2,S3,S4} E; //enum declared inside class

24-48

SystemVerilog Testbench Constructs

rand A a1;
rand E e1;

extern function f1();
constraint c;

endclass

//out of class body method declared with the help of ::
//operator
function C::f1();
int i;
 $display("Accessing enum label in constraint block
 through :: operator");
 repeat (5)
 begin
 i = this.randomize();
 if(i)
 $display("e1 = %s", this.e1.name);
 else
 $display("Randomization Failed");
 end

 // accessing enum label through :: operator in out
 // of class body method
 $display("Accessing enum label in function block
 through :: operator");
 i = this.randomize with {e1 != C::S2;};
 if(i)
 $display("e1 = %s", this.e1.name);
 else
 $display("Randomization Failed");
endfunction

// out of block constraint declaration accessing enum label
// through :: operator
constraint C::c { a1 == X; e1 inside {C::S1,C::S2,C::S3}; }

C c1 = new; // creating object of class C

initial begin
 c1.f1();

24-49

SystemVerilog Testbench Constructs

 end
endprogram

The Output of this program is

Accessing enum label in constraint block through :: operator
e1 = S1
e1 = S2
e1 = S3
e1 = S1
e1 = S1
Accessing enum label in function block through :: operator
e1 = S3

Class Extensions

Subclasses and Inheritance

SystemVerilog’s OOP implementation provides the capability of
inheriting all the properties and methods from a base class, and
extending its capabilities within a subclass. This concept is called
inheritance. Additional properties and methods can be added to this
new subclass.

For example, suppose we want to create a linked list for a class
“Packet.” One solution would be to extend Packet, creating a new
subclass that inherits the members of the parent class (see Class
Packet Example on page 66 for class “Packet” declaration).

class LinkedPacket extends Packet;
LinkedPacket next;
function LinkedPacket get_next();

get_next = next;
endfunction

24-50

SystemVerilog Testbench Constructs

endclass

Now, all of the methods and properties of Packet are part of
LinkedPacket - as if they were defined in LinkedPacket - and
LinkedPacket has additional properties and methods. We can also
override the parent’s methods, changing their definitions.

Abstract classes

A group of classes can be created that are all “derived” from a
common abstract base class. For example, we might start with a
common base class of type BasePacket that sets out the structure
of packets but is incomplete; it would never be instantiated. It is
“abstract.” From this base class, a number of useful subclasses can
be derived: Ethernet packets, token ring packets, GPSS packets,
satellite packets. Each of these packets might look very similar, all
needing the same set of methods, but they would vary significantly
in terms of their internal details.We start by creating the base class
that sets out the prototype for these subclasses. Since it will not be
instantiated, the base class is made abstract by declaring the class
as virtual:

virtual class BasePacket;

By themselves, abstract classes are not tremendously interesting,
but, these classes can also have virtual methods. Virtual methods
provide prototypes for subroutines, all of the information generally
found on the first line of a method declaration: the encapsulation
criteria, the type and number of arguments, and the return type if it
is needed. When a virtual method is overridden, the prototype must
be followed exactly:

virtual class BasePacket;
virtual function integer send(bit[31:0] data);

24-51

SystemVerilog Testbench Constructs

endfunction
endclass

class EtherPacket extends BasePacket;
function integer send(bit[31:0] data)

// body of the function
...

endfunction
endclass

EtherPacket is now a class that can be instantiated.

If a subclass which is extended from an abstract class is to be
instantiated, then all virtual methods defined in the abstract class
must have bodies either derived from the abstract class, or provided
in the subclass. For example:

program P;
virtual class Base;

 virtual task print(string s);
 $display("Base::print() called from %s", s);
 endtask

 extern virtual function string className();

endclass

class Derived extends Base;
 function string className();
 return "Derived";
 endfunction

endclass
Derived d = new;
initial #1 d.print("");
endprogram

24-52

SystemVerilog Testbench Constructs

Methods of non-abstract classes can also be declared virtual. In this
case, the method must have a body, since the class, and its
subclasses, must be able to be instantiated. It should be noted that
once a method is declared as “virtual,” it is forever virtual. Therefore,
the keyword does not need to be used in the redefinition of a virtual
method in a subclass.

Polymorphism

The ability to call a variety of functions using the exact same interface
is called polymorphism.

Suppose we have a class called Packet. Packet has a task called
display(). All the derived classes of Packet will also have a display()
task, but the base version of display() does not satisfy the needs of
the derived classes. In such a case we want the derived class to
implement its own version of the display() task to be called.

To achieve polymorphism the base class must be abstract (defined
using the virtual identifier) and the method(s) of the class must be
defined as virtual. The abstract class (see page 50 for definition of
abstract class) serves as a template for the construction of derived
classes.

virtual class Packet;
extern virtual task display();

endclass

The above code snippet defines an abstract class, Packet. Within
Packet the virtual task, display(), has been defined. display() serves
as a prototype for all classes derived from Packet. Any class which
derives from Packet() must implement the display() task. Note that
the prototype is enforced for each derived task (that is, must keep
the same arguments, etc.).

24-53

SystemVerilog Testbench Constructs

class MyPacket extends Packet;
task display();

$display("This is the display within
MyPacket");

endtask
endclass

class YourPacket extends Packet;
task display();

$display("This is the display within
YourPacket");

endtask
endclass

This example illustrates how the two classes derived from Packet
implement their own specific version of the display() method.

All derived classes can be referenced by a base class object. When
a derived class is referenced by the base class, the base class can
access the virtual methods within the derived class through the
handle of the base class.

program polymorphism;
//include class declarations of Packet, MyPacket

 //and YourPacket here

MyPacket mp;
YourPacket yp;
Packet p; //abstract base class

initial
begin

mp = new;
yp = new;
p = mp; // mp referenced by p
p.display();// calls display in MyPacket
p = yp;
p.display();// calls display in YourPacket

end
endprogram

Output:

24-54

SystemVerilog Testbench Constructs

This is the display within MyPacket
This is the display within YourPacket

This is a typical, albeit small, example of polymorphism at work.

Scope Resolution Operator ::

Scope resolution operator allows you to access user defined class
types as shown in the following example:

program p;

 class A;
 typedef enum {red,yellow,blue} color;
 typedef byte MYBYTE;
 endclass

 A::MYBYTE b1 = 8'hff; //declaring b1 of class byte type
 A::color c1; //declaring c1 of class enum type

 initial begin
 $display("%h",b1);
 $display("%0d",c1.first);
 $display("%0d",c1.next);
 end
endprogram

The Output of the program is:

ff
0
1

24-55

SystemVerilog Testbench Constructs

super keyword

The super keyword is used from within a derived class to refer to
properties of the parent class. It is necessary to use super when the
property of the derived class has been overridden, and cannot be
accessed directly.

program sample;
class Base;

 integer p;
virtual task display();

 $display("\nBase: p=%0d", p);
 endtask
 endclass

 class Extended extends Base;
 integer q;
 task display();
 super.display(); //refer to Base "display()"
 $display("\nExtended: q=%0d\n", q);
 endtask
 endclass

 Base b1;
 Extended e1;

 initial begin
 b1 = new; // b1 points to instantiated object of Base
 e1 = new; // e1 points to object of Extended

b1.p = 1; //property "p" of Base initialized to 1
b1.display(); //will print out "Base: p=1"

 e1.p = 2; //"p" of Base is now 2
 e1.q = 3; //"q" of Extended initialized to 3

e1.display(); //prints "Base: p=2 Extended: q=3"
end
endprogram

Output of the above program is:

Base: p=1

24-56

SystemVerilog Testbench Constructs

Base: p=2

Extended: q=3

In the above example, the method, display() defined in Extended
calls display(), which is defined in the super class, Base. This is
achieved by using the super keyword.

The property may be a member declared a level up or a member
inherited by the class one level up. Only one level of super is
supported.

When using the super keyword within the constructor, new, it must
be the first statement executed in the constructor. This is to ensure
the initialization of the superclass prior to the initialization of the
subclass.

Casting

$cast enables you to assign values to variables that might not
ordinarily be valid because of differing data type.

The following example involves casting a base class handle (“b2”),
which actually holds an extended class-handle (“e1”), at runtime back
into an extended class-handle (“e2”).

program sample;
class Base;

integer p;
virtual task display();

$write("\nBase: p=%0d\n", p);
 endtask

endclass

class Extended extends Base;

24-57

SystemVerilog Testbench Constructs

integer q;
virtual task display();

super.display();
 $write("Extended: q=%0d\n", q);

endtask
endclass

Base b1 = new(), b2;
Extended e1 = new(), e2;

initial begin
b1.p = 1;
$write("Shows the original base property p\n");

 b1.display(); // Just shows base property
e1.p = 2;
e1.q = 3;
$write("Shows the new value of the base property, p,

 and value of the extended property, q\n");

e1.display(); // Shows base and extended properties
// Have the base handle b2 point to the extended object

 b2 = e1;
$write("The base handle b2 is pointing to the

Extended object\n");
b2.display(); // Calls Extended.display

// Try to assign extended object in b2 to extended handle e2
$write("Using $cast to assign b2 to e2\n");

 if ($cast(e2, b2))
e2.display(); // Calls Extended.display

else
$write("cast_assign of b2 to e2

failed\n");
 end
endprogram

Output of the above program is:

Shows the base property p, which is originally 1
Base: p=1

24-58

SystemVerilog Testbench Constructs

Shows new value of the base property, p, and value of the
extended property, q
Base: p=2
Extended: q=3

The base handle b2 is pointing to the Extended object
Base: p=2
Extended: q=3

Using $cast to assign b2 to e2
Base: p=2
Extended: q=3

The $cast() can be used to cast non-enum types into an enum-type
destination.

$cast(enum1, int1)

The following case is supported as long as enum1 and enum2 are of
same base enum-type:

$cast(enum1, enum2)

Enumerated types can, however, be cast into any other non-enum
types (that is, they can be used as the source argument in $cast()
without any restrictions):

$cast(int1, enum1) // supported, destination non-enum
(int)

Chaining Constructors

To understand the relational use of the terms “base” and “super” as
employed to refer to classes, consider the following code fragment:

24-59

SystemVerilog Testbench Constructs

class ClassA;
...

endclass

class Class_a extends ClassA;
...

endclass

class class_ab extends Class_a;
...

endclass

class Class_b extends ClassA;
...

endclass

Both Class_a and Class_b are extended from ClassA using the
extends keyword, making ClassA the base class for these two
subclasses. Class_ab extends from Class_a, making Class_a the
base class for the subclass, Class_ab. Both ClassA and Class_a are
super classes since they each have subclasses extended from them.

24-60

SystemVerilog Testbench Constructs

Figure 24-1 Base and Sub Classes

When a subclass is instantiated, the constructor of the extended
super class is implicitly called. If that class, in turn, has a super class,
it will implicitly call the constructor of that class. This will continue up
the hierarchy until no further super classes exist. In Figure 24-2,

Base Class

Subclass

 ClassA

Class_a

Class_ab

Class_b

24-61

SystemVerilog Testbench Constructs

Figure 24-2 Chaining Constructors

when Class_ab is instantiated, the “new” constructor for Class_a is
called. In turn, the “new” constructor for ClassA is called. Since
ClassA is the last super class in the chain, an object of Class_ab is
then created. When Class_b is instantiated, the “new” constructor for
ClassA is called and an object of Class_b is created.

This process is called “chaining constructors.”

If the initialization method of the super-class requires arguments,
you have two choices. If you want to always supply the same
arguments, you can specify them at the time you extend the class:

class EtherPacket extends Packet(5);

Base Class

Subclass

 ClassA

Class_a

Class_ab

Class_b

24-62

SystemVerilog Testbench Constructs

This will pass 5 to the new() routine associated with “Packet”.

A more general approach is to use the super keyword to call the
superclass constructor.

function new();
super.new(5);

endfunction

If included, the call to super() must be the first executable statement
(that is, not a declaration) in the constructor.

Accessing Class Members

Properties

A property declaration may be preceded by one of these keywords:

• local

• protected

The default protection level for class members is “public.” Global
access is permitted via class_name.member.

In contrast, a member designated as local is one that is only visible
from within the class itself.

A protected class property (or method) has all of the characteristics
of a local member, except that it can be inherited, and is visible to
subclasses.

24-63

SystemVerilog Testbench Constructs

Accessing Properties

A property of an object can be accessed using the dot operator (.).
The handle name for the object precedes the dot, followed by the
qualifying property name (for example, address, command).

instance_name.property_name

Methods
Tasks or functions, known as “methods,” can be designated as
local, public, or protected. They are public by default.

Accessing Object Methods

An object´s methods can be accessed using the dot operator (.). The
handle for the object precedes the dot, followed by the method.

program access_object_method;
class B;

int q = 3;
function int send (int a);

send = a * 2;
endfunction

task show();
$display("q = %0d", q);

endtask
endclass

initial begin
B b1; //declare handle
b1 = new; // instantiate
b1.show(); //access show() of object b.1
$display("value returned by b1.send() = %0d",

b1.send(4));//access send()of object b.1
end

endprogram

24-64

SystemVerilog Testbench Constructs

Output of program

q = 3
value returned by b1.send() = 8

“this” keyword

The this keyword is used to unambiguously refer to properties or
methods of the current instance. For example, the following
declaration is a common way to write an initialization task:

program P;
class Demo;

integer x;
task new (integer x);

this.x = x;
endtask

endclass
endprogram

The x is now both a property of the class and an argument to the task
new(). In the task new(), an unqualified reference to x will be resolved
by looking at the innermost scope, in this case the subroutine
argument declaration. To access the instance property, we qualify it
with this to refer to the current instance.

24-65

SystemVerilog Testbench Constructs

The following is another, complete, example.

program P;
class Demo;

integer x=4;
function integer send(integer x);

this.x = x*3;
endfunction
task show();

$display("The value of x in the object of
type Demo is = %d", send(this.x));

endtask
endclass
intial begin

integer x=5;
Demo D =new;

D.show();
$display("The value of the global variable x is

%0d", x);
end

endprogram

The output of this program is:

The value of x in the object of type Demo is = 12
The value of the global variable x is =5

24-66

SystemVerilog Testbench Constructs

Class Packet Example

class Packet;
bit [3:0] command; //property declarations
bit [40:0] address;
bit [4:0] master_id;
integer time_requested;
integer time_issued;
integer status;

function new(); // initialization
command = 0;
address = 41’b0;
master_id = 5’bx;

endfunction

task clean(); //method declaration
command = 0;
address = 0;
master_id = 5’bx;

endtask

task issue_request(int delay); //method
// declaration send request to bus

endtask

function integer current_status(); //method
// declaration

current_status = status;
endfunction

endclass

Unpacked Structures in Classes

The following code examples shows an unpacked structure in a
class:

program test;

24-67

SystemVerilog Testbench Constructs

class myclass;
.
.
.
typedef struct { int int1;

 logic [7:0] log1;
 } struct1;
struct1 mystruct1;
.
.
.
endclass
endprogram

24-68

SystemVerilog Testbench Constructs

Random Constraints

SystemVerilog has constructs for the random testing of a design and
a means of constraining the random testing to find hard to reach
corner cases.

Note:
To enable the new constraint features, use the -ntb_opts
new_constraints compile-time option.

Random Variables

You need variables to which VCS assigns random values. There are
two types of random variables and two different keywords to begin
their declarations:

rand
Specifies a standard random variable

randc
Specifies a random-cyclic variable.

The following is an example of a standard random variable
declaration:

rand bit [7:0] randbit1;

Variable randbit1 has eight bits so its possible values range from
0 to 255. The chances that VCS assigns any of these values is
precisely 1/256.

The following is an example of a random-cyclic variable declaration:

randc bit [1:0] randc1;

24-69

SystemVerilog Testbench Constructs

Variable randc1 has two bits so its possible values range from 3 to
0. VCS derives a random order, or permutation, of all the possible
values, and assigns the values in the permutation in a sequence.

If VCS assigns a value of 3, it won’t assign 3 again until it first assigns
2, 1, and 0 (in no particular order), and after it assigns the permutation,
it derives the next permutation, beginning with any of the possible
values.

If this were a standard random variable, after VCS assigns the 3 value,
there is a 1/4 chance that VCS assigns the 3 again, but because it is
a random-cyclic variable, after VCS assigns the 3, there is no chance
that 3 will also be the next assigned value.

Random variables can only be declared in a class.

class Bus;
 rand bit [15:0] addr;
 rand bit [15:0] data;
 .
 .
 .

endclass

Constraint Blocks

Constraints are specified in a constraint block. A constraint block can
be declared in the same class in which the random variables are
declared as well as in a class extended from the base class in which
the random variable is defined (see page 58 for definition of “base
class”) A constraint block begins with the keyword constraint.

program prog;

24-70

SystemVerilog Testbench Constructs

class myclass;
 rand logic [1:0] log1,log2,log3;
 randc logic [1:0] log4;
 constraint c1 {log1 > 0;}
 constraint c2 {log2 < 3;}

endclass

myclass mc = new;

initial
repeat (10)

 if(mc.randomize()==1)
 $display("log1 = %0d log2=%0d log3=%0d

log4=%0d",mc.log1, mc.log2,
 mc.log3, mc.log4);

endprogram

In this program block class myclass contains the following:

• Declarations for standard random variables, with the logic data
type and two bits, named log1, log2, and log3.

• A declaration for cyclic-random variable, with the logic data type
and two bits, named log4.

• Constraint c1 which says that the random values of log1 must be
greater than 0.

• Constraint c2 which says that the random values of log2 must be
less than 3.

The randomize() method is described in “Randomize Methods” on
page 24-100.

The $display system task displays the following:

log1 = 1 log2=1 log3=1 log4=2

24-71

SystemVerilog Testbench Constructs

log1 = 1 log2=2 log3=0 log4=0
log1 = 2 log2=0 log3=1 log4=1
log1 = 1 log2=1 log3=1 log4=3
log1 = 3 log2=2 log3=1 log4=0
log1 = 3 log2=2 log3=3 log4=3
log1 = 3 log2=1 log3=0 log4=2
log1 = 1 log2=1 log3=1 log4=1
log1 = 2 log2=0 log3=2 log4=3
log1 = 1 log2=0 log3=2 log4=0

The possible values of all the random variables range from 3 to 0,
but the values of log1 are never 0, and the values of log2 are never
greater than 3. VCS can assign the same value to log3 over again,
but never assigns the same value to log4 over again until it has cycled
through all the other legal values.

By means of in-line constraints, a constraint block can be declared
for random variables declared in a class while calling the randomize()
method on that class’ object. (See section entitled “In-line
Constraints“ on page 108).

program test;
class base;

 rand int r_a;
endclass
base b = new;

initial begin
int ret;
ret = b.randomize with {r_a > 0; r_a <= 10;} ;

// where my declaration {r_a >0 ; r_a <= 10; }
// is now a constraint block

 if(ret == 1)
 $display("Randomization success");
 else

$display("Randomization Failed");
end

endprogram

24-72

SystemVerilog Testbench Constructs

External Declaration

You can declare a constraint block outside of a class declaration.

program prog1;

class cl1;
 rand integer rint1, rint2, rint3;
 constraint constr1;
endclass

constraint cl1::constr1 { rint1 < rint2; rint2 < rint3; }
endprogram

Inheritance

Constraints follow the same rules of inheritance as class variables,
tasks, and functions.

 class myclass;
 rand logic [1:0] log1,log2,log3;
 randc logic [1:0] log4;
 constraint c1 {log1 > 0;}
 constraint c2 {log2 < 3;}

endclass

class myclass2 extends myclass;
 constraint c2 {log2 < 2;}

endclass

myclass2 mc = new;

The keyword extends specifies that class myclass2 inherits from
class myclass and then can change constraint c2, specifying that it
must be less than 2, instead of less than 3.

24-73

SystemVerilog Testbench Constructs

Set Membership

You can use the inside operator to specify a set of possible values
that VCS randomly applies to the random variable.

program prog;

class myclass;
 rand int int1;
 constraint c1 {int1 inside {1, [5:7], [105:107]};}

endclass

myclass mc = new;
initial
repeat (10)

 if(mc.randomize()==1)
 $display("int1=%0d",mc.int1);

endprogram

Constraint c1 specifies that the possible values for int1 are as follows:

• 1

• a range beginning with 5 and ending with 7

• a range beginning with 105 and ending with 107

The $display system task displays the following:

int1=1
int1=7
int1=5
int1=107
int1=106
int1=5
int1=5
int1=6
int1=107
int1=1

24-74

SystemVerilog Testbench Constructs

All these values are equally probable.

In the following example, the inside operator is used to specify
possible values in an integer array:

program test;

class pkt;
integer bills[0:8] = { 1, 2, 5, 10, 20, 50, 100, 500,

1000 };
rand integer v;
constraint c4 { v inside bills; }

endclass

int result;
pkt Pkt=new();

initial
 begin
 repeat (10) begin

result = Pkt.randomize();
$display("v is %d\n",Pkt.v);

end
end
endprogram

The $display system task displays the following:

v is 1
v is 100
v is 1000
v is 500
v is 10
v is 1
v is 20
v is 1

24-75

SystemVerilog Testbench Constructs

Weighted Distribution

You can use the dist operator to specify a set of values or ranges
of values, where you give each value or range of values a weight,
and the higher the weight, the more likely VCS is to assign that value
to the random variable.

If we modify the previous example as follows:

program prog;

class myclass;
 rand int int1;
 constraint c1 {int1 dist {[1:2] := 1, [6:7] :/ 5, 9

:=10};}
endclass

myclass mc = new;
int stats [1:9];
int i;

initial begin
 for(i = 1; i < 10; i++) stats[i] = 0;
 repeat (1700)
 if(mc.randomize()==1) begin
 stats[mc.int1]++;
 //$display("int1=%0d",mc.int1);
 end
 for(i = 1; i < 10; i++)
 $display("stats[%d] = %d", i, stats[i]);
 end

endprogram

constraint c1 in class myclass is now:

constraint c1 {int1 dist {[1:2] := 1, [6:7] :/ 5, 9
:=10};}

Constraint C1 now specifies the possible values of int1 are as follows:

24-76

SystemVerilog Testbench Constructs

• A range of 1 to 2, each value in this range has a weight of 1. The
:= operator, when applied to a range, specifies applying the
weight to each value in the range.

• A range of 6 to 7 with a weight of 5. The :/ operator specifies
applying the weight to the range as a whole.

• 9 with a weight of 10, which is twice as much as the weight for 6.

The repeat loop repeats 1700 times so that we have a large enough
sample. The following table shows the various values of int1 during
simulation:

Implications

An implication is an expression that must be true before VCS applies
the constraint.

program prog;

class Bus;
 randc bit randcvar;
 bit norandvar;

value of int number of times int has this value fraction of the simulation time

1 105 1/17
2 98 1/17
3 0
4 0
5 0
6 248 2.5/17
7 251 2.5/17
8 0
9 998 10/17

24-77

SystemVerilog Testbench Constructs

 constraint c1 { (norandvar == 1) -> (randcvar ==
0);}

endclass

Bus bus = new;

initial
begin

 bus.norandvar = 0;
#5 bus.norandvar = 1;
#5 bus.norandvar = 0;
#5 $finish;

end

initial
repeat (15)

 #1 if (bus.randomize() ==1)
 $display("randcvar = %0b norandvar = %0b at %0t",
 bus.randcvar, bus.norandvar,$time);

endprogram

In constraint c1, when variable norandvar has a 1 value (the
implication expression), VCS constrains random variable randcvar to
0. The -> token is the implication operator.

The $display system task displays the following:

randcvar = 0 norandvar = 0 at 1
randcvar = 1 norandvar = 0 at 2
randcvar = 0 norandvar = 0 at 3
randcvar = 1 norandvar = 0 at 4
randcvar = 0 norandvar = 1 at 5
randcvar = 0 norandvar = 1 at 6
randcvar = 0 norandvar = 1 at 7
randcvar = 0 norandvar = 1 at 8
randcvar = 0 norandvar = 1 at 9
randcvar = 1 norandvar = 0 at 10
randcvar = 0 norandvar = 0 at 11
randcvar = 0 norandvar = 0 at 12

24-78

SystemVerilog Testbench Constructs

randcvar = 0 norandvar = 0 at 13
randcvar = 1 norandvar = 0 at 14

When variable norandvar is 0, random-cyclic variable randcvar is
either 0 or 1. When variable norandvar is 1, random-cyclic variable
randcvar is always 0.

if else Constraints

An alternative to an implication constraint is the if else constraint.
The if else constraint allows a constraint or constraint set on the
else condition.

program prog;

class Bus;
 randc bit [2:0] randcvar;
 bit norandvar;

 constraint c1 { if (norandvar == 1)
 randcvar == 0;
 else
 randcvar inside {[1:3]};}

endclass

Bus bus = new;

initial
begin

 bus.norandvar = 0;
#5 bus.norandvar = 1;
#5 bus.norandvar = 0;
#5 $finish;

end

initial
repeat (15)

 #1 if (bus.randomize() ==1)

24-79

SystemVerilog Testbench Constructs

 $display("randcvar = %0d norandvar = %0b at %0t",
bus.randcvar, bus.norandvar,$time);

endprogram

 constraint c1 { if (norandvar == 1)
 randcvar == 0;
 else
 randcvar inside {[1:3]};}

Constraint c1 specifies that when variable norandvar has the 1 value,
VCS constrains random-cyclic variable randcvar to 0, and when
norandvar doesn’t have the 1 value, in other words when it has the
0 value, VCS constrains random-cyclic variable randcvar to 1, 2, or 3.

The $display system task displays the following:

randcvar = 1 norandvar = 0 at 1
randcvar = 2 norandvar = 0 at 2
randcvar = 3 norandvar = 0 at 3
randcvar = 3 norandvar = 0 at 4
randcvar = 0 norandvar = 1 at 5
randcvar = 0 norandvar = 1 at 6
randcvar = 0 norandvar = 1 at 7
randcvar = 0 norandvar = 1 at 8
randcvar = 0 norandvar = 1 at 9
randcvar = 1 norandvar = 0 at 10
randcvar = 2 norandvar = 0 at 11
randcvar = 3 norandvar = 0 at 12
randcvar = 3 norandvar = 0 at 13
randcvar = 2 norandvar = 0 at 14

When norandvar is 1, VCS always assigns 0 to randcvar.

Global Constraints

Constraint expressions involving random variables from other objects
are called global constraints.

24-80

SystemVerilog Testbench Constructs

program prog;

class myclass;
 rand bit [7:0] randvar;

endclass

class myextclass extends myclass;
 rand myclass left = new;
 rand myclass right = new;
 constraint c1 {left.randvar <= randvar;

right.randvar <= randvar;}
endclass
endprogram

In this example, class myextclass extends class myclass. In class
myextclass are two randomized objects (or instances) of class
myclass. They are named left and right and are randomized because
they are declared with the rand keyword.

Constraint C1 specifies that the version of randvar in the left object
must be less than or equal to randvar in myclass. Similarly the version
of randvar in the right object must be less than or equal to randvar in
myclass.

Constraint c1 is a global constraint because it refers to a variable in
myclass.

Default Constraints
You can specify default constraints by placing the keyword “default”
ahead of a constraint block definition, as illustrated in the following
example:.

[default] constraint constraint_name {constraint_expressions}

24-81

SystemVerilog Testbench Constructs

A default constraint for a particular variable is deemed applicable if
no other non-default constraints apply to that variable. The solver
satisfy all applicable default constraints for all variables. If the
applicable default constraints cannot be satisfied, the solver
generates a solver failure.

The following example illustrates the specification of default
constraints.

Example 24-1 Default Constraint
default constraint foo{

x > 0;
x < 5;

}

If no other non-default constraints apply to variable x, then the solver
satisfies the specified default constraints.

Properties of Default Constraints.

• All constraint expressions in a default constraint block are
considered default constraints.

• You can specify multiple default constraints, possibly in multiple
constraint blocks, specified for multiple random variables are
solved together.

• You can query the status of a default constraint block using
constraint_mode(), and they can turned ON or OFF.

• You cannot define unnamed constraint blocks (that is,
randomize() with) as default. The compiler generates an error.

• You can define a default constraint block to any variable visible
in the scope where it is declared.

24-82

SystemVerilog Testbench Constructs

• A default constraint block can be defined externally (that is, in a
different file from the one in which the constraint block is
declared).

• You can use ordering constraints in default blocks, but these
constraints will be treated as non-default constraints.

Overriding default constraints.

Default constraints are applied when they are not overridden by any
non-default constraints and contain at least one default variable.
Default variables are variables that are rand with rand mode ON
and part of the default constraint. VCS ignores default constraints
that do not have any default variables in it.

A non-default constraint must possess the following properties to
override a default constraint:

• The constraint mode for the constraint block having a non-default
constraint must be ON, or the non-default constraint must be
inside a randomize-with constraint block.

• Must have at least one default variable of the default constraint
block.

• If the default variable is on the right-hand side of the guarded
constraint, the guard must be TRUE, irrespective of it having
random variables.

• Must not be a ordering constraint.

The non-default constraint does not override the default constraint if
the default variable is in the guard of the non-default constraint.

24-83

SystemVerilog Testbench Constructs

A default constraint does not override other default constraints under
any condition. Thus, if you declare all constraint blocks as default,
then none of them will be overridden.

program P;

class C;
rand reg[3:0] x;
default constraint c1 {x == 0;}

endclass
class D extends C;

constraint d1 {x > 5;}
endclass

initial
begin

D d = new();
d.randomize();
d.d1.constraint_mode(0);
d.randomize();

end
endprogram

In the example, the default constraint in block c1 is overriden by the
non-default constraint in block d1. The first call to randomize picks a
value between 6 and 15 for x, since the non-default constraint is
applicable. The default constraint is ignored. The second call
switches off the non-default constraint, and a value of 0 will be
picked for x in the call to randomize because the default constraint is
applied.

program P;
 class D;

rand reg[3:0] x;
reg y;
default constraint c1 {x >= 3; x <= 5;}
constraint d1 {y -> x > 5;}

endclass

24-84

SystemVerilog Testbench Constructs

initial
begin

D d = new();
d.y = 1;
d.randomize();
d.y = 0;
d.randomize();

end
endprogram

In the example, the default constraint in block c1 is overriden by the
non-default constraint in block d1. The first call to randomize will pick
a value between 6 and 15 for x, since the non-default constraint is
applicable, given that the guard evaluates to TRUE. The default
constraint is ignored. The guard for the non-default constraint
evaluates to FALSE in the second call, and a value of between 3 and
5 will be picked for x in the next call to randomize. In this randomize()
call, the default constraint is applied.

program test;
class A;

rand reg[3:0] x;
rand reg[3:0] y;

default constraint T{
x == 10 ; y == 10;

}
constraint E {

y == 0;
}
function void post_randomize();

$display("x = %0d y = %0d\n", x, y);
endfunction

endclass

initial
begin

integer ret;
A a = new;
ret = a.randomize();

end
endprogram

24-85

SystemVerilog Testbench Constructs

Output

x = 10 y = 0

In the example, x = 10 since only the second constraint in the default
constraint block is overridden.

program test;

class A;
rand reg[3:0] x;
rand reg[3:0] y;
rand reg g;
default constraint T{x + y == 10;}
constraint E {g -> y == 1;}

function void post_randomize();
$display("x = %0d y = %0d g = %0d\n", x, y, g);

endfunction
endclass

initial
begin

integer ret;
A a = new;

$display("First call to randomize,
the guard g evaluates to FALSE\n");

ret = a.randomize() with {a.g == 0;};

$display("Second call to randomize, the
guard g evaluates to TRUE\n");

 ret = a.randomize() with {a.g == 1;};

$display("Third call to randomize, constraint mode of
constraint block E is OFF \n");

a.E.constraint_mode(0);
a.g.rand_mode(0);
ret = a.randomize();

end
endprogram

24-86

SystemVerilog Testbench Constructs

Output:

First call to randomize,the guard g evaluates to FALSE
x = 9 y = 1 g = 0
Second call to randomize,the guard g evaluates to TRUE
x = 3 y = 1 g = 1
Third call to randomize, constraint mode of constraint block E is OFF
x = 1 y = 9 g = 1

In the first call to randomize, the guard is evaluated to FALSE.
Therefore, the constraint does not override the default constraint and
consequently x + y == 10. In the second call to randomize, the guard
is evaluates to TRUE. Therefore, the non-default constraint is valid
and it overrides the default constraint. In the third call to randomize,
the constraint block is turned OFF. Since the non-default constraint
is turned off, the default constraint is not overridden and x + y == 10.

program test;
class A;

rand reg[3:0] x;
rand reg[3:0] y;
default constraint T{x + y == 10;}
function void post_randomize();

$display("x = %0d y = %0d\n", x, y);
endfunction

endclass

initial
begin

integer ret;
A a = new;
$display("First call to randomize, rand mode of x

 and y are ON\n");
ret = a.randomize();
$display("Second call to randomize, rand mode of x

 and y are OFF\n");
a.x.rand_mode(0);
a.y.rand_mode(0);
a.x = 0;
a.y = 0;
ret = a.randomize();
$display("Return status of randomize is %0d" ret);

end
endprogram

24-87

SystemVerilog Testbench Constructs

Output

First call to randomize, rand mode of x and y are ON
x = 3 y = 7
Second call to randomize, rand mode of x and y are OFF
x = 0 y = 0
Return status of randomize is 1

In the first call to randomize, the default is not overridden and
consequently, x + y == 10;

In the second call to randomize, the rand mode of x and y are turned
OFF and both are set to 0. In this call the default variables are rand
mode OFF and the default constraint is there fore ignored. If not the
randomize() would fail and return 0.

Variable Ordering

In an implication like the following:

constraint c1 { select -> data == 0;}

The select variable “implies” that data is 0, in this case, when select
is 1, data is 0.

The default behavior is for the constraint solver to solve for both
select and data at the same time. Sometimes you can assist the
constraint solver by telling it to solve for one variable first. You can
do this with another constraint block that specifies the order in which
the constraint solver solves the variables:

constraint c1 { select -> data == 0;}
constraint c2 (solve select before data;}

Note:
Ordering also changes the distribution of values.

24-88

SystemVerilog Testbench Constructs

Unidirectional Constraints
The current extension to the constraint language allows the
specification of partition points in the constraint set using the unary
function $void()or using the hard keyword in conjunction with
solve-before, improving the performance and capacity of the solver
system.

• $void()

• solve-before hard

$void(). The constraint language allows the use of built-in unary
identity function, $void(). Any valid constraint expression can be a
parameter to the $void() function.

Syntax

function return_type $void(expression);

return_type

Is the same as that of expression.

expression

Can be any valid constraint expression.

Example 24-2
constraint b1{

y inside {2,3};
x % $void(y) == 0;

}

Semantics

24-89

SystemVerilog Testbench Constructs

The $void() function imposes an ordering among the variables. All
parameters to $void() function calls in a constraint are solved for
before the constraint is solved.

The support set of a constraint (that is, the set of variables that
participate in that constraint) is split into two sets, namely, those that
are $void() parameters, and those that are not $void()
parameters.

1. The constraint is not considered for solving when the function
parameters incident on it are solved, that is, the function
parameters are solved before the constraint is solved.

2. The constraint can be solved when any of the non-function
parameters incident on it are solved.

3. The constraint is solved when at least one non-function parameter
incident on it is solved, unless the constraint has no non-function
parameters incident on it. In that case, the constraint acts as a
checker.

4. When the constraint is solved, all previously unsolved
non-function parameters incident on it get solved.

5. The ordering directives derived from the use of void in constraints
in OFF constraint blocks are ignored, and do not affect partitioning
in any way.

Consider the following constraint block in example:

constraint b1{
y inside {2,3};
x % $void(y) == 0;
x != (y+r);
z == $void(x*y)
r == 5;

24-90

SystemVerilog Testbench Constructs

}

Figure 24-1

Figure 24-1 illustrates the dependencies between the variables. The
variable y must be solved before x (see x% $void(y) ==0;). y and
x must be solved before z (see z==$void(x*y);). Therefore, the
solving order is y, x and then z.

When can r be solved for?

• Can r be solved at the same time as y?

Consider the constraint x !=(y+r). If no solving order is
specified by unidirectional constraints, then r can be solved at the
same time as y and x. However, because of the existence of x%
$void(y) ==0 in the same constraint block, an ordering is
imposed. y, which is a function parameter in x%$void(y) ==0,
must be solved before x. This means that the three variables
cannot be solved for at the same time in x!=(y+r). y is
solved in y inside {2,3}, before x and r are solved.

Table 24-2

Constraint Function Parameter Non-Function Parameter
y inside {2,3}; y

x%void(y)==0; y x

x!=(y+r); x,y.r

z==void(x*y); x,y z

r == 5; r

24-91

SystemVerilog Testbench Constructs

• Can r be solved at the same time as x?

Consider x !=(y+r) again. Figure 24-1 illustrates that the
relationship between r and x is bidirectional which means there is
no unidirectional constraint imposed between these two
variables as well as there is no ordering dependency between x
and r therefore, the constraints can be solved at the same time.

The solving order:

1. y

2. x and r

3. z

The constraints used for solving x,y, z and r are:

1. y is solved using the constraint y inside {2,3}.

2. x and r are solved using the constraints x%y == 0, x!=y+r and
r==5.

3. z is solved using the constraints z==x*y.

A warning message will be issued for the following usage of $void():

• The entire constraint expression being the parameter to $void()
(for example, constraint b1 {$void(x<y);})

- The runtime will ignore the $void() specification.

• Expressions with only constants and state variables, including
loop variables in the case of array constraints, being parameters
to $void() (for example, constraint b1{x==$void(5);})

- the runtime will ignore the $void() specification.

24-92

SystemVerilog Testbench Constructs

• A void() function being applied to a sub-expression of the
parameter of another void() function (for example, constraint
b1{x==$void(y + $void(z));}

- the runtime will ignore the nested $void() specifications (that
is, same as x==$void(y+z).

Whenever the compile is not able to detect such conditions, no
warning is issued at runtime.

solve-before hard. The solve-before construct allows for an optional
hard modifier.

Example 24-3
constraint b1{

y inside (2,3};
x%y == 0;
solve y before x hard;

}

The use of hard solve-before imposes an ordering mechanism
between the variables. You can use ordering to assign a priority
order to each variable. A higher priority indicates that the variable
should be solved earlier.

Array Variable: If the argument to solve before hard is an array, the
array is expanded into its individual elements before ordering is
imposed which is similar to solve-before operation. See page 97 for
examples on how this happens.

The set of variables incident on a constraint is split into two sets –
those at the lowest priority among the incident variables and those
not at the lowest priority. Then the following semantic rules apply:

1. The constraint is not considered when any but the lowest priority
variables incident on it are solved (that is, the higher priority
variables are solved before the constraint is solved.

24-93

SystemVerilog Testbench Constructs

2. The constraint is solved when the lowest priority variables incident
on it are solved.

3. When the constraint is solved, all lowest priority variables incident
on it get solved.

4. hard solve-before constraints in OFF constraint blocks are
ignored, and do not affect partitioning in any way.

Example 24-4
constraint b1 {

y inside {2,3};
x % y == 0;
x != y;
z == x * y;
solve y before x hard;
solve x before z hard;

}

Figure 24-2 Dependencies between variables

The constraint(s) used for solving x,y and z:

1. y is solved using the constraint: y inside (2,3};

Table 24-3

Constraint Early Late
y in{2,3}; y

x%y == 0; y x

x !=y; y x

z==x*y; x,y z

24-94

SystemVerilog Testbench Constructs

2. x is solved using the constraints: x%y == 0; x!=y;

3. z is solved using the constraint: z ==x*y;

The sequence in which the constraints are solved is exactly as listed
in the previous section.

solve-hard before and $void(). $void() and solve-before hard
have the same behavior regarding partitioning the solver-space (that
is, every randomized variable inside the $void() or solve-before
hard is solved first and set to static values prior to randomizing any
other variables in the constraint).

The difference is that you can use the void construct as part of the
expression, whereas solve-before hard is on a separate line, by
itself.

Effect of rand_mode on Unidirectional Constraints. Using
rand_mode to turn a variable OFF has the same effect as declaring
the variable as non-random. Thus, ordering directives on it are
dropped. This results in the dropping some transitive ordering
relationships as well. For example in:.

constraint b1 {
y inside {2,3};
x % $void(y) == 0;
x != y; z == $void(x);

}

If x were to be turned OFF, then there would be no ordering
relationship left between y and z either.

Extensions to Semantics. The introduction of unidirectional
constructs has resulted in extensions to the semantics of numerous
pre-existing constraint constructs.

24-95

SystemVerilog Testbench Constructs

Semantics of solve-before construct without the hard modifier
The solve-before constraints that are not modified by the “hard”
directive will be used together in a partition. Thus, the non-hard
solve-before constraints will not affect the partitioning, but will affect
the order of variable assignment within a partition, very much like
they affect the order of variable assigning on the complete problem
prior to this release.

This is illustrated by the following example:

constraint b1 {
y inside {2,3};
x % y == 0;
x != y;
z == void(x * z);
solve y, z before x;

}

The sequence in which the constraints are solved is:

1. x, y are solved using the constraints y inside {2,3}; x%y
== 0; solve y before x;.

2. z is solved using the constraint z == x*y; Note that since x is
already solved at this point, the constraint solve z before x is
irrelevant and hence dropped.

Semantics for Array Constraints (Solving Array Sizes)
Either of the two constructs defined above can be used to determine
the partition to be solved when solving for the size of an array. The
following example is used to illustrate the semantics:

24-96

SystemVerilog Testbench Constructs

class B;
rand integer x[$]; rand bit[1:0] k;
constraint b1 {

x.size() == k; k != 2;
foreach(x, i) {
$void(k-1) == i -> x[i] == 0;
}

}
endclass

The constraints x.size() = k; k != 2; are solved for, since the
use of the $void() function call renders k unconstrained in the
constraint inside the foreach loop.

The use of $void() in this example specifies that k is solved for
before any of the members of the x array.

The following example illustrates the other important semantic:

Example 24-5
class B;

rand integer x[$];
rand bit[1:0] k;

constraint b1 {
x.size() == $void(k);
k != 2;
foreach(x, i) {

k-1 == i -> x[i] == 0;
}

}
endclass

In this case, k has to be solved before x.size(), and x.size()
needs to be solved before expanding the foreach loop. Hence, there
is an implicit ordering between x.size() and x[i], requiring that
x.size() gets solved first. As a result, the sequence in which the
constraints will be solved:

1. k is solved for using the constraints k !=2.

2. x.size() is solved for using the constraints x.size() == k.

24-97

SystemVerilog Testbench Constructs

3. The loop is expanded and all the members of the x array are
solved for.

The semantics of array constraints in the presence of $void calls
are as follows:

1. Implicit ordering relations are introduced between array sizes and
members of the array, *only* those with variable expressions in
the index.

• Array sizes are solved before the constraints inside loops are
solved or constraints involving array aggregate methods calls are
solved.

Semantics of Default Constraints
With the introduction of partitions, it is possible that some random
variables over which constraints are defined are solved before the
default constraint itself. In such a case, the solver will consider
previously solved random variables like state variables. When the
default constraint is solved, it is disabled only if any of the currently
being solved random variables incident on it are overridden. This is
consistent with current semantics of default constraints, when
considered in the context of the partition being solved.

Consider this example:

Example 24-6
default constraint b1 {

x <= y;
}
constraint b1 {

z == $void(y);
z => x == 0;
y inside {0, 1};

}

The sequence in which the constraints are solved is:

24-98

SystemVerilog Testbench Constructs

1. y is solved using the constraint y inside {0,1}.

2. z, x are solved using the default constraint x<=y and the
non-default constraints z==y; z=>x ==0;. the default
constraint applies if and only if z is 0 (that is, if and only if y was
chosen as 0 in the previous partition.).

Semantics of randc
There is an existing semantic of the solver, wherein randc variables
are solved in partitions that contain a single randc variable, after
which they behave like state variables when solving for non-randc
rand variables.

Example 24-7
randc bit[3:0]x;
rand bit[3:0] y,z;

constraint b1{
y inside {0,1};
x<12;
if(y){

x<5;
} else{

x<10;
}
z>x;

}

The sequence in which the above constraints are solved is:

1. x is solved for using the constraint x<12.

2. y and z are solved for using the remaining constraints. Note that
this could result in a failure, depending on the solution picked in
the previous step. For example, if x were picked as 11 in the
previous step, then there would be no solution for y in this step.

Thus, all randc variables are solved before all rand variables.

24-99

SystemVerilog Testbench Constructs

However, when unidirectional constraints are used in the presence
of randc variables, it is possible that rand variables could be solved
before randc variables.

Example 24-8
randc bit[3:0]x;
rand bit[3:0] y,z;

constraint b1{
y inside {0,1};
x<12;
if($void(y)){

x<5;
} else{

x<10;
}
z>x;

}

The sequence in which the constraints are solved is:

1. y is solved using the constraint y inside {0,1}.

2. x is solved using the constraints if(y) x<5 else x<10;
x<12.

3. z is solved using the constraint z>x.

Static Constraint Blocks

The keyword static preceding the keyword constraint, makes a
constraint block static, and calls to the constraint_mode()
method occur to all instances of the constraint in all instances of the
constraint’s class.

static constraint c1 { data1 < data2;}

24-100

SystemVerilog Testbench Constructs

Randomize Methods

randomize()

Variables in an object are randomized using the randomize() class
method. Every class has a built-in randomize() method.

randomize()
Generates random values for active random variables, subject to
active constraints, in a specified instance of a class. This method
returns a 1 if VCS generates these random values, otherwise it
returns 0. Examples of the use of this method appear frequently
in previous code examples.

pre_randomize() and post_randomize()

Every class contains built-in pre_randomize() and post_randomize()
tasks, that are automatically called by randomize() before and after
it computes new random values.

You may override the pre_randomize() method in any class to perform
initialization and set pre-conditions before the object is randomized.
Also, you may override the post_randomize() method in any class to
perform cleanup, print diagnostics, and check post-conditions after
the object is randomized.

The following example involves a case where the pre_randomize()
method is used to instantiate and initialize the rand dynamic array,
payload[], before randomize() is called. The post_randomize()
method is used to display the size of the payload[] after randomize()
is called. program test;

class size;
rand bit [7:0] s; //random variable s

24-101

SystemVerilog Testbench Constructs

constraint con_size {
s > 0;
s < 50;

}
endclass

class Pkt;
integer header[7];
rand bit [7:0] payload[];
size sz;

 function void pre_randomize();
/* Randomize the sz.s variable and instantiate
the dynamic array. */

integer res;
sz = new();
res = sz.randomize(); /* calling randomize()

on object sz of class size. Randomizes rand
variable s (constrained to >0 and <50 */

 if(res==0)
 $display("Randomization Failed");
 else

begin
if((sz.s>0) && (sz.s<50))/* check for
size between 0 and 50*/

 payload = new[sz.s];/* the new[] operator
allocates storage and initializes the
rand variable s in sz*/

else
 $display("Failed to generate proper

size");
end //end of outer else block

endfunction

function void post_randomize();
/* display size of payload dynamic array using

 the size() built-in method*/
$display("payload.size = %d", payload.size);

endfunction
endclass

Pkt pkt;

24-102

SystemVerilog Testbench Constructs

integer success,i;

initial begin
pkt = new(); //instantiate pkt

for (int j = 0; j < 5; j++)
begin

success = pkt.randomize(); /*calling randomize
on object of class packet*/

if(success==0)
$display("Randomization Failed");

else
$display("Randomization Succeeded");

end // end of for loop
end // end of initial block
endprogram

The output of the program is:

payload.size = 12
Randomization Succeeded
payload.size = 17
Randomization Succeeded
payload.size = 8
Randomization Succeeded
payload.size = 40
Randomization Succeeded
payload.size = 10
Randomization Succeeded

Controlling Constraints

The predefined constraint_mode() method can be used either as a
task or a function. The constraint_mode() task controls whether a
constraint is active or inactive. The predefined constraint_mode()
function reports the current ON/OFF value for the specified variable.
All constraints are initially active.

24-103

SystemVerilog Testbench Constructs

Syntax:

task object[.constraint_identifier]::constraint_mode
(bit ON | OFF);

or

function int
object.constraint_identifier::constraint_mode();

In the following example, there are two constraint blocks defined in
a class, bus. The constraint_mode() method, when used as a task,
turns on and off the word_align and addr_range constraints.
constraint_mode() is also being used as a function to report the ON/
OFF value of the two constraints.

‘define N 5
program test;
class bus;

 rand bit [15:0] addr;
 constraint word_align {addr[0] == 1'b0;}
 constraint addr_range{addr >= 0 && addr <= 15;}

endclass

task generateRandomAddresses(integer how_many);
integer i;
for(i = 1; i <= how_many; i++) begin

bb.randomize();
$display("bb.addr = %d",bb.addr);

 end
endtask

bus bb = new;
initial begin

// By default all constraints are ON
if (bb.word_align.constraint_mode() &&
 bb.addr_range.constraint_mode())

begin
 $display("======both constraints ON ======");
 end

24-104

SystemVerilog Testbench Constructs

 else
 $display("Error with constraint_mode");

generateRandomAddresses(`N);

// turn OFF "word_align" constraint in "bb"
bb.word_align.constraint_mode(0);
$display("=========one constraint ON =======");
generateRandomAddresses(`N);

// turn OFF all constraints in "bb"
bb.constraint_mode(0);
$display("=========both constraints OFF =======");
generateRandomAddresses(`N);

// turn ON "addr_range" constraint in "bb"
bb.addr_range.constraint_mode(1);

$display("=========one constraint ON =======");
generateRandomAddresses(`N);

// turn ON all constraint in "bb"
bb.constraint_mode(1);
$display("=========both constraints ON =======");
generateRandomAddresses(`N);

 end
endprogram
Output of the above program:
=========both constraints ON =======
bb.addr = 14
bb.addr = 2
bb.addr = 4
bb.addr = 8
bb.addr = 2
=========one constraint ON =======
bb.addr = 2
bb.addr = 9
bb.addr = 9
bb.addr = 9
bb.addr = 3
=========both constraints OFF =======
bb.addr = 44051

24-105

SystemVerilog Testbench Constructs

bb.addr = 36593
bb.addr = 19491
bb.addr = 6853
bb.addr = 48017
=========one constraint ON =======
bb.addr = 11
bb.addr = 8
bb.addr = 15
bb.addr = 7
bb.addr = 4
=========both constraints ON =======
bb.addr = 2
bb.addr = 10
bb.addr = 12
bb.addr = 10
bb.addr = 8

Disabling Random Variables

SystemVerilog provides the predefined rand_mode() method to
control whether a random variable is active or inactive. Initially, all
random variables are active.

The rand_mode() method can be used either as a task or a function.

The rand_mode() task specifies whether or not the random variable
is ON or OFF.

task object[.randvar_identifier]::rand_mode(bit ON |
OFF);

where ON is “1” and OFF is “0.”

As a function, rand_mode() reports the current value (ON or OFF) of
the specified variable.

Syntax:

24-106

SystemVerilog Testbench Constructs

function int object.randvar_identifier::rand_mode();

rand_mode() returns -1 if the specified variable does not exist within
the class hierarchy or it exists but is not declared as rand or randc.

In the following example, there are two random variables defined in
a class, bus. The rand_mode() method, when used as a task, turns
on and off the random variables, addr and data. rand_mode() is
also being used as a function to report on the value (ON or OFF) of
the two random variables.

`define N 5
program test;

class bus;
 rand bit [15:0] addr;
 rand bit [31:0] data;
 constraint CC { data > 0; addr > 0; addr < 255; data

< 512;}
endclass

task generateRandomAddresses(integer how_many);
integer i;

 for(i = 1; i <= how_many; i++) begin
bb.randomize();

 $display("bb.addr = %d,, bb.data =
%d",bb.addr,bb.data);

 end
endtask

bus bb = new;

initial begin
// By default all random variables are ON
if (bb.addr.rand_mode() && bb.data.rand_mode())

begin
 $display("======both random variables ON

======");
end

else
 $display("Error with rand_mode");

24-107

SystemVerilog Testbench Constructs

generateRandomAddresses(`N);

// turn OFF "data" random variable in "bb"
bb.data.rand_mode(0);
$display("======one random variable ON ======");
generateRandomAddresses(`N);

 // turn OFF all random variables in "bb"
 bb.rand_mode(0);

$display("======both random variables OFF======");
generateRandomAddresses(`N);

// turn ON "data" constraint in "bb"
bb.data.rand_mode(1);
$display("======one random variable ON========");
generateRandomAddresses(`N);

// turn ON all random variable in "bb"
bb.rand_mode(1);
$display("======both random variables ON ======");
generateRandomAddresses(`N);

end
endprogram

Output of the above program:

======both random variables ON =======
bb.addr = 88,, bb.data = 12
bb.addr = 49,, bb.data = 381
bb.addr = 185,, bb.data = 5
bb.addr = 212,, bb.data = 486
bb.addr = 49,, bb.data = 219
=======one random variable ON ========
bb.addr = 3,, bb.data = 219
bb.addr = 130,, bb.data = 219
bb.addr = 26,, bb.data = 219
bb.addr = 90,, bb.data = 219
bb.addr = 121,, bb.data = 219
======both random variables OFF=======
bb.addr = 121,, bb.data = 219

24-108

SystemVerilog Testbench Constructs

bb.addr = 121,, bb.data = 219
bb.addr = 121,, bb.data = 219
bb.addr = 121,, bb.data = 219
bb.addr = 121,, bb.data = 219
========one random variable ON========
bb.addr = 121,, bb.data = 456
bb.addr = 121,, bb.data = 511
bb.addr = 121,, bb.data = 67
bb.addr = 121,, bb.data = 316
bb.addr = 121,, bb.data = 405
======both random variables ON =======
bb.addr = 18,, bb.data = 491
bb.addr = 231,, bb.data = 113
bb.addr = 118,, bb.data = 230
bb.addr = 46,, bb.data = 96
bb.addr = 155,, bb.data = 298

In-line Constraints

You can use the randomize() method and the with construct to
declare in-line constraints outside of the class for the random
variables, at the point where you call the randomize() method.

program prog;

class Bus;
 rand bit [2:0] bitrand1;
endclass

Bus bus = new;

task inline (Bus bus);
int int1;

24-109

SystemVerilog Testbench Constructs

 repeat (10)
 begin
 int1 = bus.randomize() with {bitrand1[1:0] ==

 2'b00;};
 if (int1 ==1) $display("bitrand1 = %0b",

 bus.bitrand1);
 end
endtask

initial
inline(bus);

endprogram

The $display system task displays the following

bitrand1 = 100
bitrand1 = 100
bitrand1 = 100
bitrand1 = 0
bitrand1 = 100
bitrand1 = 100
bitrand1 = 0
bitrand1 = 100
bitrand1 = 100
bitrand1 = 0

In-line Constraint Checker

The randomize() method can act as a checker when a special “null”
argument is specified. In this case, randomize(null) assigns no
random values. It only returns a status. The status “1” is returned if
all constraints are satisfied. A “0” is returned otherwise. The in-line
random variable control mechanism can also be used to force the
randomize() method to behave as a checker.

24-110

SystemVerilog Testbench Constructs

The following example illustrates the usage of in-line constraint
checker.

program test;

class myclass;
 rand int a, b; // random variable a,b

 constraint cc { a + b == 4;}

 function new(); // constructor initiliazing values of a
// and b

 a = 2;
 b = 2;
 endfunction

endclass

myclass mc = new;
int i;
initial begin

 $display("Calling Randomize method with null args :-");
 i = mc.randomize(null); // values of a and b should be

// preserved
 $display("a = %0d, b = %0d, return from method = %0d",

mc.a, mc.b, i); // should display a and b as 2
end
endprogram

The output of this program is:

Calling Randomize method with null args :-
a = 2, b = 2, return from method = 1

24-111

SystemVerilog Testbench Constructs

Random Number Generation

SystemVerilog includes a number of system functions to work with
random numbers. Some of these are:

$urandom()

The system function $urandom() generates pseudorandom numbers.
It returns an unsigned 32-bit number every time this function is called.
The syntax is:

$urandom(seed)

The seed is an optional argument that determines the sequence of
the random number that are generated. It could also be an
expression. The same sequence is always generated for the same
seed.

The following program explains the usage of $urandom().

program test();

bit [7:0] a,b,c,d;

initial begin
 $display("Generation of random number with seed 3 :");
 a = $urandom(3);
 b = $urandom();
 c = $urandom();
 d = $urandom();
 $display("a = %0d,b= %0d, c = %0d, d = %0d",a,b,c,d);

 $display("Generation of random number with seed 4 :");
 a = $urandom(4);
 b = $urandom();
 c = $urandom();
 d = $urandom();
 $display("a = %0d,b= %0d, c = %0d, d = %0d",a,b,c,d);

24-112

SystemVerilog Testbench Constructs

 $display("Generation of random number with seed 3 :");
 a = $urandom(3);
 b = $urandom();
 c = $urandom();
 d = $urandom();
 $display("a = %0d,b= %0d, c = %0d, d = %0d",a,b,c,d);
end
endprogram

The output of this program is:

Generation of random number with seed 3 :
a = 229,b= 175, c = 7, d = 99
Generation of random number with seed 4 :
a = 228,b= 15, c = 254, d = 230
Generation of random number with seed 3 :
a = 229,b= 175, c = 7, d = 99

$urandom_range()

The system function $urandom_range() generates random numbers
within a certain range. The syntax is:

$urandom_range(unsigned int maxval, unsigned int minval)

The function returns an unsigned integer between maxval and minval
(inclusive of them). If one of the arguments is omitted, then the
function will return an unsigned integer between the argument
specified and zero.

The following program explains the usage of $urandom_range().

program test();

logic [3:0] a,a1;
bit [2:0] b;

initial begin

24-113

SystemVerilog Testbench Constructs

 a = 10; a1 = 3;
 $display("Generating random numbers with urandom_range

 with expressions in range");
 //generating value of b between 7 and 3
 b = $urandom_range((a-a1), a1); //expressions as

 args to urandom_range
 $display("value of b generated with range %0d and

 %0d is %0d",a-a1,a1,b);

 //generating value of b between 3 and 7
 b = $urandom_range(a1,(a-a1));
 $display("value of b generated with range %0d and

 %0d is %0d",a1,a-a1,b);

 $srandom(2); // changing the seed for thread

 //generating value of b between 0 and 7 (omitting
 one of the range value)
 b = $urandom_range(a-a1);
 $display("value of b generated with range %0d and
 %0d is %0d",0,a-a1,b);
 end
endprogram

The output of this program is:

Generating random numbers with urandom_range with
expressions in range

value of b generated with range 7 and 3 is 6
value of b generated with range 3 and 7 is 7
value of b generated with range 0 and 7 is 0

$srandom()

You can use the system function $srandom() to manually set the seed
for random number generation. The syntax is:

$srandom(seed)

24-114

SystemVerilog Testbench Constructs

Providing the same seed ensures that the same set of random values
are generated by the random number generator.

The following program demonstrates that the same random numbers
are generated for the same seed.

program test;

logic [3:0] a, b;

initial begin
 $display("Setting the seed as 2 through srandom");
 $srandom(2);
 repeat (2)
 begin
 a = $urandom();
 b = $urandom();
 $display("a = %0d, b = %0d", a, b);
 end // end of repeat block
 $display("Changing the seed as 1 through srandom");
 $srandom(1);
 repeat (2)
 begin
 a = $urandom();
 b = $urandom();
 $display("a = %0d, b = %0d", a, b);
 end // end of repeat block
 $display("Setting the seed once again to 2 through
 srandom");
 $srandom(2);
 repeat (2)
 begin
 a = $urandom();
 b = $urandom();
 $display("a = %0d, b = %0d", a, b);
 end // end of repeat block
end // end of initial block
endprogram

24-115

SystemVerilog Testbench Constructs

The output of this program is:

Setting the seed as 2 through srandom
a = 8, b = 3
a = 14, b = 3
Changing the seed as 1 through srandom
a = 12, b = 13
a = 15, b = 9
Setting the seed once again to 2 through srandom
a = 8, b = 3
a = 14, b = 3

Seeding for Randomization

The srandom() method initializes the current Random Number
Generator (RNG) of objects or threads using the value of the seed.

The following example involves using srandom() to initialize the RNG
for an object using a real variable as the seed.

program test;

class A;
 rand logic [7:0] x;
endclass

real r = 1;

A a;
int d1,d2,d3,d4;
initial begin

a = new;
a.srandom(r);//the r is the seed for RNG of a
d1 = a.randomize();
if(d1 == 1) //if randomize() is successful
d2 = a.x; //assign value of the variable x in a to d2
a.srandom(r+1);
d1 = a.randomize();
if(d1 == 1)

24-116

SystemVerilog Testbench Constructs

d3 = a.x;
a.srandom(r);
d1 = a.randomize();
if(d1 == 1)

d4 = a.x;
if((d2 == d4) && (d2 != d3))

$display("test passed");
else

$display("test failed");
end
endprogram

Output of the above program is:

test passed

randcase Statements

The randcase construct specifies a block of statements with
corresponding weights attached to them. Weights can be any
expression. When a randcase statement occurs, one of the statement
with weights is executed at random. If the weight is an expression,
then it is evaluated each time the randcase statement is executed. If
the weight is zero, then that branch is not executed. The randcase
statements can be nested.

program test;

int a= 2;
logic [3:0] b;

//variables to keep count of how many time a particular case
//is executed in randcase
int count_2,count_c;

function f1();

24-117

SystemVerilog Testbench Constructs

 randcase

 a+3 : count_2++; // simple add expression as weight

 10 : count_c++; // constant used as weight

 endcase
endfunction

initial begin
 repeat (15)
 f1();
 $display("Number of times a+3 called is %0d", count_2);
 $display("Number of times constant called is %0d",
 count_c);
 end
endprogram

The output of this program is:

Number of times a+3 called is 5
Number of times constant called is 10

This example defines a randcase block of two statements with
different weights (one as an expression and another as an integer).
The probability that any single statement will be selected for execution
is determined by the formula weight/total_weight. Therefore, in this
example, the probability of the first statement being executed is 0.33,
and the second statement is 0.66.

Random Sequence Generation

Note:
Random sequence generation is an LCA feature.

24-118

SystemVerilog Testbench Constructs

SystemVerilog’s sequence generation allows you to specify the
syntax of valid sequences using BNF-like notation. Random
sequences are ideal for generating streams of instructions for which
it is easier to specify the syntax of valid streams than the constraints
on specific values.

This section includes the following:

• RSG Overview

• Production Declaration

• Production Controls

RSG Overview

The syntax for programming languages is often expressed in Backus
Naur Form (BNF) or some derivative thereof. Parser generators use
this BNF to define the language to be parsed. However, it is possible
to reverse the process. Instead of using the BNF to check that
existing code fits the correct syntax, the BNF can be used to
assemble code fragments into syntactically correct code. The result
is the generation of pseudo-random sequences of text, ranging from
sequences of characters to syntactically and semantically correct
assembly language programs.

SystemVerilog’s implementation of a stream generator, the RSG, is
defined by a set of rules and productions encapsulated in a
randsequence block.

The general syntax to define a RSG code block is:

randsequence ([production_identifier])
production {production}

endsequence

24-119

SystemVerilog Testbench Constructs

Note:Nesting of randsequence blocks is not supported

When the randsequence block is executed, random production
definitions are selected and streamed together to generate a random
stream. How these definitions are generated is determined by the
base elements included in the block.

Any RSG code block is comprised of production definitions. Native
Testbench also provides weights, production controls, and
production system functions to enhance production usage. Each of
these RSG components is discussed in detail in subsequent
sections.

Production Declaration

A language is defined in BNF by a set of production definitions. The
syntax to define a production is:

[function_datatype] production_identifier
[(tf_port_list)]:rs_rule{|rs_rule};

production_identifier

Is the reference name of the production definition.

tf_port_list

task/function port list.

rs_rule

The syntax for rs_rule is:

rs_production_list [:= weight_specification
[rs_code_block]]

rs_production_list

24-120

SystemVerilog Testbench Constructs

 The syntax for rs_production_list is:

 rs_prod{rs_prod} | rand join [(expression)]
production_item production_item {production_item}

weight_specification

The syntax for weight_specification is:

integral_number | ps_identifier | (expression)

(see also “Weights for Randomization” on page 24-122)

rs_code_block

The syntax for rs_code_block is:

{{data_declaration}{statement_or_null}}

The following table provides the syntax for the non-terminals within
rs_production_list, weight_specification, and rs_code_block, and the
non-terminals therein.

non-terminal Syntax

rs_prod production_item |rs_code_block | rs_if_else |rs_repeat |
rs_case

rs_code_block {{data_declaration}}{statement_or_null}}
rs_if_else if(expression) product_item [else production_item]

see also “if-else Statements” on page 24-123
rs_repeat repeat(expression) production_item

see also “repeat Loops” on page 24-126
rs_case case(expression) rs_case_item {rs_case_item} endcase

see also “case Statements” on page 24-125
re_case_item expression{,expression} : production_item | default [:]

production_item;
see also “case Statements” on page 24-125

production_item production_identifier[(list_of_arguments)]

24-121

SystemVerilog Testbench Constructs

A randsequence block is made up of one or more productions,
yielding a “production list.”

Productions are made up of terminals and non-terminals, as seen in
the above syntax description. A terminal is an indivisible code
element. It needs no further definition beyond the code block
associated with it. A non-terminal is an intermediate variable defined
in terms of other terminals and non-terminals. If a production item is
defined using non-terminals, those non-terminals must then be
defined in terms of other non-terminals and terminals using the
production definition construct. Ultimately, every non-terminal has to
be broken down into its base terminal elements.

Multiple production items specified in a production list can be
separated by white space or by the or operator (|). Production items
separated by white space indicate that the items are streamed
together in sequence. Production items separated by the | operator
force a random choice, which is made every time the production is
called.

The following is an example of a program including a randsequence
block.

program p;
initial begin
 randsequence()
 main : repeat (10) TOP;
 TOP: RJ {$display("");};
 RJ: rand join (1.0) S1 S2 S3;
 S1 : A B;
 S2 : C D;
 S3 : E F G;
 A : {$write ("A");};
 B : {$write ("B");};
 C : {$write ("C");};
 D : {$write ("D");};
 E : {$write ("E");};

24-122

SystemVerilog Testbench Constructs

 F : {$write ("F");};
 G : {$write ("G");};
 endsequence
end
endprogram

Production Controls

SystemVerilog provides several mechanisms that can be used to
control productions: weights for randomization, if-else statements,
case statements, and repeat loops.

This section includes:

• Weights for Randomization

• if-else Statements

• case Statements

• repeat Loops

• break Statement

Weights for Randomization

Weights can be assigned to production items to change the
probability that they are selected when the randsequence block is
called.

Syntax

rs_production_list[:= weight_specification [rs_code_block]]

24-123

SystemVerilog Testbench Constructs

weight_specification

The syntax for weight_specification is:

integral_number | ps_identifier | (expression)

The expression can be any valid SystemVerilog expression that
returns a non-negative integer. Function calls can be made within
the expression, but the expression must return a numeric value,
or else a simulation error is generated.

Assigning weights to a production item affects the probability that it
is selected when the randsequence block is called. Weight should
only be assigned when a selection is forced with the | operator. The
weight for each production item is evaluated when its production
definition is executed. This allows you to change the weights
dynamically throughout a sequence of calls to the same production.

if-else Statements

A production can be conditionally referenced using an if-else
statement.

The syntax to declare an if-else statement within a production
definition is:

if(expression) product_item [else production_item]

expression

Can be any valid SystemVerilog expression that evaluates to a
boolean value.

24-124

SystemVerilog Testbench Constructs

If the conditional evaluates to true, the first production item is selected.
If it evaluates to false, the second production item is selected. The
else statement can be omitted. If it is omitted, a false evaluation
ignores the entire if statement. The following is an example of a
production definition with an if-else statement.

assembly_block : if (nestingLevel > 10) seq_block else
any_block;

This example defines the production assembly_block. If the
variable nestingLevel is greater than 10, the production item
seq_block is selected. If nestingLevel is less than or equal to
10, any_block is selected.

24-125

SystemVerilog Testbench Constructs

case Statements

A general selection mechanism is provided by the case statement.
The syntax to declare a case statement within a production definition
is:

case(expression)
rs_case_item {rs_case_item}

endcase

expression

Is evaluated. The value of the expression is successively
checked, in the order listed, against each rs_case_item. The
production corresponding to the first matching case found is
executed, and control is passed to the production definition
whose name is in the case item with the matching case
expression. If other matches exist, they are not executed. If no
case item value matches the evaluated primary expression and
there is no default case, nothing happens.

rs_case_item

Can be any valid SystemVerilog expression or
comma-separated list of expressions. Expressions separated by
commas allow multiple expressions to share the same statement
block. The syntax is:

expression{,expression}: production_item | default [:]
production_item;

A case statement must have at least one case item aside from the
default case, which is optional. The default case must be the last
item in a case statement. The following is an example of a production
definition using a case statement:

24-126

SystemVerilog Testbench Constructs

repeat Loops

The repeat loop is used to loop over a production a specified number
of times.

The syntax to declare a repeat loop within a production definition is:

repeat(express) production_item

expression

Can be any valid SystemVerilog expression that evaluates to a
non-negative integer, including functions that return a numeric
value.

The expression is evaluated when the production definition is
executed. The value specifies how many times the corresponding
production item is executed. The following is an example of a
production definition using a repeat loop.

randsequence()
...
seq_block : repeat (random()) integer_instruction;
...

endsequence

This example defines the production seq_block, which repeats the
production item integer_instruction a random number of
times, depending on the value returned by the random() system
function.

break Statement

The break statement is used to terminate a randsequence block.

24-127

SystemVerilog Testbench Constructs

Syntax

break;

A break statement can be executed from within an rs_code_block
within a production definition. When a break statement is executed,
the randsequence block terminates immediately and control is
passed to the first line of code after the randsequence block. The
following is an example of a production definition using a break
statement.

return Statement

The return statement is used to interrupt the execution of the current
production. After the current production is aborted, the execution
continues on the next item in the production from which the call is
made.

Syntax

return;

The return statement passes control to the next production item in
the production from which the call is made without executing any
code in between. The following is an example of a production
definition using a return statement:

24-128

SystemVerilog Testbench Constructs

Aspect Oriented Extensions

The Aspect oriented extensions is a Limited Customer availability
(LCA) feature in NTB(SV) and requires a separate license. Please
contact your Synopsys AC for a license key.

Aspect-Oriented Programming (AOP) methodology complements
the OOP methodology using a construct called aspect or an
aspect-oriented extension (AOE) that can affect the behavior of a
class or multiple classes. In AOP methodology, the terms “aspect”
and “aspect-oriented extension” are used interchangeably.

Aspect oriented extensions in SV allow testbench engineers to
design testcase more efficiently, using fewer lines of code.

AOP addresses issues or concerns that prove difficult to solve when
using Object-Oriented Programming (OOP) to write
constrained-random testbenches.

Such concerns include:

1. Context-sensitive behavior.

2. Unanticipated extensions.

3. Multi-object protocols.

In AOP these issues are termed cross-cutting concerns as they cut
across the typical divisions of responsibility in a given programming
model.

In OOP, the natural unit of modularity is the class. Some of the cross
cutting concerns, such as "Multi-object protocols" , cut across
multiple classes and are not easy to solve using the OOP

24-129

SystemVerilog Testbench Constructs

methodology. AOP is a way of modularizing such cross-cutting
concerns. AOP extends the functionality of existing OOP derived
classes and uses the notion of aspect as a natural unit of modularity.
Behavior that affects multiple classes can be encapsulated in
aspects to form reusable modules. As potential benefits of AOP are
achieved better in a language where an aspect unit can affect
behavior of multiple classes and therefore can modularize the
behavior that affects multiple classes, AOP ability in SV language is
currently limited in the sense that an aspect extension affects the
behavior of only a single class. It is useful nonetheless, enabling test
engineers to design code that efficiently addresses concerns
"Context-sensitive behavior" and "Unanticipated extensions".

AOP is used in conjunction with object-oriented programming. By
compartmentalizing code containing aspects, cross-cutting
concerns become easy to deal with. Aspects of a system can be
changed, inserted or removed at compile time, and become
reusable.

It is important to understand that the overall verification environment
should be assembled using OOP to retain encapsulation and
protection. NTB's Aspect-Oriented Extensions should be used only
for constrained-random test specifications with the aim of minimizing
code.

SV’s Aspect-Oriented Extensions should not be used to:

• Code base classes and class libraries

• Debug, trace or monitor unknown or inaccessible classes

• Insert new code to fix an existing problem

24-130

SystemVerilog Testbench Constructs

For information on the creation and refinement of verification
testbenches, see the Reference Verification Methodology User
Guide.

Aspect-Oriented Extensions in SV

In SV, AOP is supported by a set of directives and constructs that
need to be processed before compilation. Therefore, an SV program
with these Aspect oriented directives and constructs would need to
be processed as per the definition of these directives and constructs
in SV to generate an equivalent SV program that is devoid of aspect
extensions, and consists of traditional SV. Conceptually, AOP is
implemented as pre-compilation expansion of code.

This chapter explains how AOE in SV are directives to SV compiler
as to how the pre-compilation expansion of code needs to be
performed.

In SV, an aspect extension for a class can be defined in any scope
where the class is visible, except for within another aspect extension.
That is, aspect extensions can not be nested.

An aspect oriented extension in SV is defined using a new top-level
extends directive. Terms aspect and “extends directive” have been
used interchangeably throughout the document. Normally, a class is
extended through derivation, but an extends directive defines
modifications to a pre-existing class by doing in-place extension of
the class. in-place extension modifies the definition of a class by
adding new member fields and member methods, and changing the
behavior of earlier defined class methods, without creating any new
subclasse(s). That is, SV’s Aspect-Oriented Extensions change the
original class definition without creating subclasses. These changes
affect all instances of the original class that was extended by AOEs.

24-131

SystemVerilog Testbench Constructs

An extends directive for a class defines a scope in SV language.
Within this scope exist the items that modify the class definition.
These items within an extends directive for a class can be divided
into the following three categories.

• Introduction

Declaration of a new property, or the definition of a new method,
a new constraint, or a new coverage group within the extends
directive scope adds (or introduces) the new symbol into the
original class definition as a new member. Such declaration/
definition is called an introduction.

• Advice

An advice is a construct to specify code that affects the behavior
of a member method of the class by weaving the specified code
into the member method definition. This is explained in more
detail later. The advice item is said to be an advice to the affected
member method.

• Hide list:

Some items within an extends directive, such as a virtual method
introduction, or an advice to virtual method may not be
permissible within the extends directive scope depending upon
the hide permissions at the place where the item is defined. A
hide list is a construct whose placement and arguments within
the extends directive scope controls the hide permissions. There
could be multiple hide lists within an extends directive.

24-132

SystemVerilog Testbench Constructs

Processing of AOE as a Precompilation Expansion

As a precompilation expansion, AOE code is processed by VCS to
modify the class definitions that it extends as per the directives in
AOE.

A symbol is a valid identifier in a program. Classes and class
methods are symbols that can be affected by AOE. AOE code is
processed which involves adding of introductions and weaving of
advices in and around the affected symbols. Weaving is performed
before actual compilation (and thereby before symbol resolution),
therefore, under certain conditions, introduced symbols with the
same identifier as some already visible symbol, can hide the already
visible symbols. This is explained in more detail in Section , “hide_list
details,” on page 24-157. The preprocessed input program, now
devoid of AOE, is then compiled.

24-133

SystemVerilog Testbench Constructs

Syntax:

extends_directive ::=
extends extends_identifier

(class_identifier)[dominate_list];
extends_item_list

endextends

dominate_list ::=
dominates(extends_identifier

{,extends_identifier});

extends_item_list ::=
extends_item {extends_item}

extends_item ::=
class_item
| advice
| hide_list

class_item ::=
class_property
| class_method
| class_constraint
| class_coverage
| enum_defn

advice ::= placement procedure

placement ::=
before
| after
| around

procedure ::=
| optional_method_specifiers task

task_identifier(list_of_task_proto_formals);
| optional_method_specifiers function

function_type

function_identifier(list_of_function_proto_formals)
endfunction

 advice_code ::= [stmt] {stmt}

24-134

SystemVerilog Testbench Constructs

 stmt ::= statement
 | proceed ;

hide_list ::=
hide([hide_item {,hide_item}]);

hide_item ::=
// Empty
| virtuals
| rules

The symbols in boldface are keywords and their syntax are as
follows:

extends_identifier

 Name of the aspect extension.

class_identifier

 Name of the class that is being extended by the extends directive.

dominate_list

Specifies extensions that are dominated by the current directive.
Domination defines the precedence between code woven by
multiple extensions into the same scope. One extension can
dominate one or more of the other extensions. In such a case, you
must use a comma-separated list of extends identifiers.

dominates(extends_identifier
{,extends_identifier});

A dominated extension is assigned lower precedence than an
extension that dominates it. Precedence among aspects extensions
of a class determines the order in which introductions defined in the

24-135

SystemVerilog Testbench Constructs

aspects are added to the class definition. It also determines the order
in which advices defined in the aspects are woven into the class
method definitions thus affecting the behavior of a class method.
Rules for determination of precedence among aspects are explained
later in “Precedence” on page 24-143.

class_property

 Refers to an item that can be parsed as a property of a class.

class_method

 Refers to an item that can be parsed as a class method.

class_constraint

 Refers to an item that can be parsed as a class constraint.

class_coverage

 Refers to an item that can be parsed as a coverage_group in a
class.

advice_code

 Specifies to a block of statements.

statement

 Is an SV statement.

procedure_prototype

A full prototype of the target procedure. Prototypes enable the advice
code to reference the formal arguments of the procedure.

24-136

SystemVerilog Testbench Constructs

opt_method_specifiers

Refers to a combination of protection level specifier (local, or
protected), virtual method specifier (virtual), and the static method
specifier (static) for the method.

task_identifier

 Name of the task.

function_identifier

 Name of the function.

function_type

 Data type of the return value of the function.

list_of_task_proto_formals

 List of formal arguments to the task.

list_of_function_proto_formals

 List of formal arguments to the function.

placement

Specifies the position at which the advice code within the advice is
woven into the target method definition. Target method is either the
class method, or some other new method that was created as part
of the process of weaving, which is a part of pre-compilation
expansion of code. The overall details of the process of “weaving”
are explained in Pre-compilation Expansion details. The placement

24-137

SystemVerilog Testbench Constructs

element could be any of the keywords, before, after, or around, and
the advices with these placement elements are referred to as before
advice, after advice and around advice, respectively.

proceed statement

The proceed keyword specifies an SV statement that can be used
within advice code. A proceed statement is valid only within an
around block and only a single proceed statement can be used
inside the advice code block of an around advice. It cannot be used
in a before advice block or an after advice block. The proceed
statement is optional.

hide_list

Specifies the permission(s) for introductions to hide a symbol, and/
or permission(s) for advices to modify local and protected methods.
It is explained in detail in Section , “hide_list details,” on
page 24-157.

Weaving advice into the target method

The target method is either the class method, or some other new
method that was created as part of the process of weaving.
“Weaving” of all advices in the input program comprises several
steps of weaving of an advice into the target method. Weaving of an
advice into its target method involves the following.

A new method is created with the same method prototype as the
target method and with the advice code block as the code block of
the new method. This method is referred to as the advice method.

24-138

SystemVerilog Testbench Constructs

The following table shows the rest of the steps involved in weaving
of the advice for each type of placement element (before, after, and
around).

Within an extends directive, you can specify only one advice can be
specified for a given placement element and a given method. For
example, an extends directive may contain a maximum of one
before, one after, and one around advice each for a class method
Packet::foo of a class Packet, but it may not contain two before
advices for the Packet::foo.

Target method:

task myTask();
$display("Executing original code\n");

endtask

Table 24-4 Placement Elements

Element Description
before Inserts a new method-call statement

that calls an advice method. The
statement is inserted as the first
statement to be executed before any
other statements.

after Creates a new method A with the target
method prototype, with its first
statement being a call to the target
method. Second statement with A is a
new method call statement that calls
the advice method. All the instances
in the input program where the target
method is called are replaced by newly
created method calls to A. A is
replaced as the new target method.

around All the instances in the input program
where the target method is called are
replaced by newly created method calls
to the advice method.

24-139

SystemVerilog Testbench Constructs

Advice:

before task myTask ();
$display("Before in aoe1\n");

endtask

Weaving of the advice in the target method yields the following.

task myTask();
mytask_before();
$display("Executing original code\n");

endtask

task mytask_before ();
$display("Before in aoe1\n");

endtask

Note that the SV language does not impose any restrictions on the
names of newly created methods during pre-compilation expansion,
such as mytask_before . Compilers can adopt any naming
conventions such methods that are created as a result of the
weaving process.

Example 24-9

Target method:

task myTask();
$display("Executing original code\n");

endtask

Advice:

after task myTask ();
$display("Before in aoe1\n");

endtask

24-140

SystemVerilog Testbench Constructs

Weaving of the advice in the target method yields the following.

 task myTask_newTarget();
myTask();
myTask_after();

endtask

task myTask();
$display("Executing original code\n");

endtask

task myTask_after ();
$display("After in aoe1\n");

endtask

As a result of weaving, all the method calls to myTask() in the input
program code are replaced by method calls to myTask_newTarget().
Also, myTask_newTarget replaces myTask as the target method for
myTask().

Target method:

task myTask();
$display("Executing original code\n");

endtask

Advice:

around task myTask ();
$display("Around in aoe1\n");

endtask

24-141

SystemVerilog Testbench Constructs

Weaving of the advice in the target method yields the following.

 task myTask_around();
$display("Around in aoe1\n");

endtask

task myTask();
$display("Executing original code\n");

endtask

As a result of weaving, all the method calls to myTask() in the input
program code are replaced by method calls to myTask_around().
Also, myTask_around() replaces myTask() as the target method for
myTask().

During weaving of an around advice that contains a proceed
statement, the proceed statement is replaced by a method call to
the target method.

Example 24-10

Target method:

task myTask();
$display("Executing original code\n");

endtask

Advice:

around task myTask ();
proceed;
$display("Around in aoe1\n");

endtask

24-142

SystemVerilog Testbench Constructs

Weaving of the advice in the target method yields:

 task myTask_around();
myTask();
$display("Around in aoe1\n");

endtask

task myTask();
$display("Executing original code\n");

endtask

As a result of weaving, all the method calls to myTask() in the input
program code are replaced by method calls to myTask_around().
The proceed statement in the around code is replaced with a call to
the target method myTask(). Also, myTask_around replaces
myTask as the target method for myTask().

Pre-compilation Expansion details

Pre-compilation expansion of a program containing AOE code is
done in the following order:

1. Preprocessing and parsing of all input code.

2. Identification of the symbols, such as methods and classes
affected by extensions.

3. The precedence order of aspect extensions (and thereby
introductions and advices) for each class is established.

4. Addition of introductions to their respective classes as class
members in their order of precedence. Whether an introduction
can or can not override or hide a symbol with the same name that
is visible in the scope of the original class definition, is dependent
on certain rules related to the hide_list parameter. For a detailed
explanation, see “hide_list details” on page 24-157.

24-143

SystemVerilog Testbench Constructs

5. Weaving of all advices in the input program are weaved into their
respective class methods as per the precedence order.

These steps are described in more detail in the following sections.

Precedence

Precedence is specified through the dominate_list (see
“dominate_list” on page 24-134) There is no default precedence
across files; if precedence is not specified, the tool is free to weave
code in any order. Within a file, dominance established by
dominate_lists always overrides precedence established by the
order in which extends directives are coded. Only when the
precedence is not established after analyzing the dominate lists of
directives, is the order of coding used to define the order of
precedence.

Within an extends directive there is an inherent precedence between
advices. Advices that are defined later in the directive have higher
precedence that those defined earlier.

Precedence does not change the order between adding of
introductions and weaving of advices in the code. Precedence
defines the order in which introductions to a class are added to the
class, and the order in which advices to methods belonging to a
class are woven into the class methods.

Example 24-11
// Beginnning of file Input.vr

program top ;
 initial begin

packet p;
p = new();
p.send();

 end
endprogram

24-144

SystemVerilog Testbench Constructs

class packet;
...
// Other member fields/methods
...
task send();
 $display("Sending data\n");
endtask

endclass

extends aspect_1(packet) dominates (aspect_2, aspect_3);
after task send(); // Advice 1

$display("Aspect_1: send advice after\n");
endtask

endextends

extends aspect_2(packet);
after task send() ; // Advice 2

$display("Aspect_2: send advice after\n");
endtask

endextends

extends aspect_3(packet);
around task send(); // Advice 3

$display("Aspect_3: Begin send advice around\n");
proceed;
$display("Aspect_3: End send advice around\n");

endtask
before task send(); // Advice 4

 $display("Aspect_3: send advice before\n");
endtask

endextends

// End of file Input.vr

In Example 24-11, multiple aspect extensions for a class named
packet are defined in a single SV file. As specified in the dominating
list of aspect_1, aspect_1 dominates both aspect_2 and aspect_3.
As per the dominating lists of the aspect extensions, there is no
precedence order established between aspect_2 and aspect_3, and

24-145

SystemVerilog Testbench Constructs

since aspect_3 is coded later in Input.vr than aspect_2, aspect_3
has higher precedence than aspect_2. Therefore, the precedence of
these aspect extensions in the decreasing order of precedence is:

{aspect_1, aspect_3, aspect_2}

This implies that the advice(s) within aspect_2 have lower
precedence than advice(s) within aspect_3, and advice(s) within
aspect_3 have lower precedence than advice(s) within aspect_1.
Therefore, advice 2 has lower precedence than advice 3 and advice
4. Both advice 3 and advice 4 have lower precedence than advice 1.
Between advice 3 and advice 4, advice 4 has higher precedence as
it is defined later than advice 3. That puts the order of advices in the
increasing order of precedence as:

{2, 3, 4, 1}.

Adding of Introductions
Target scope refers to the scope of the class definition that is being
extended by an aspect. Introductions in an aspect are appended as
new members at the end of its target scope. If an extension A has
precedence over extension B, the symbols introduced by A are
appended first.

Within an aspect extension, symbols introduced by the extension are
appended to the target scope in the order they appear in the
extension.

There are certain rules according to which an introduction symbol
with the same identifier name as a symbol that is visible in the target
scope, may or may not be allowed as an introduction. These rules
are discussed later in the chapter.

24-146

SystemVerilog Testbench Constructs

Weaving of advices
An input program may contain several aspect extensions for any or
each of the different class definitions in the program. Weaving of
advices needs to be carried out for each class method for which an
advice is specified.

Weaving of advices in the input program consists of weaving of
advices into each such class method. Weaving of advices into a
class method A is unrelated to weaving of advices into a different
class method B, and therefore weaving of advices to various class
methods can be done in any ordering of the class methods.

For weaving of advices into a class method, all the advices
pertaining to the class method are identified and ordered in the order
of increasing precedence in a list L. This is the order in which these
advices are woven into the class method thereby affecting the
run-time behavior of the method. The advices in list L are woven in
the class method as per the following steps. Target method is
initialized to the class method.

a. Advice A that has the lowest precedence in L is woven into the
target method as explained earlier. Note that the target method
may either be the class method or some other method newly
created during the weaving process.

b. Advice A is deleted from list L.
c. The next advice on list L is woven into the target method. This

continues until all the advices on the list have been woven into
list L.

It would become apparent from the example provided later in this
section how the order of precedence of advices for a class method
affects how advices are woven into their target method and thus the
relative order of execution of advice code blocks. Before and after
advices within an aspect to a target method are unrelated to each

24-147

SystemVerilog Testbench Constructs

other in the sense that their relative precedence to each other does
not affect their relative order of execution when a method call to the
target method is executed. The before advice’s code block executes
before the target method code block, and the after advice code block
executes after the target method code block. When an around
advice is used with a before or after advice in the same aspect, code
weaving depends upon their precedence with respect to each other.
Depending upon the precedence of the around advice with respect
to other advices in the aspect for the same target method, the around
advice either may be woven before all or some of the other advices,
or may be woven after all of the other advices.

As an example, weaving of advices 1, 2, 3, 4 specified in aspect
extensions in Example 24-11 leads to the expansion of code in the
following manner. Advices are woven in the order of increasing
precedence {2, 3, 4, 1} as explained earlier.

Example 24-12
// Beginnning of file Input.vr

program top ;
packet p;
p = new();
p.send_Created_a();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

p$display("Sending data\n”);
endtask

task send_Created_a();
send();
send_after_Created_b();

endtask

task send_after_Created_b();

24-148

SystemVerilog Testbench Constructs

$display("Aspect_2: send advice after\n");
endtask

endclass

extends aspect_1(packet) dominates (aspect_2, aspect_3);
after task send(); // Advice 1

$display("Aspect_1: send advice after\n");
endtask

endextends

extends aspect_3(packet);
around task send(); // Advice 3

$display("Aspect_3: Begin send advice around\n");
proceed;
$display("Aspect_3: End send advice around\n");

endtask

before task send(); // Advice 4
 $display("Aspect_3: send advice before\n");

endtask
endextends

// End of file Input.sv

This Example 24-12 shows what the input program looks like after
weaving advice 2 into the class method. Two new methods
send_Created_a and send_after_Created_b are created in the
process and the instances of method call to the target method
packet::send are modified, such that the code block from advice 2
executes after the code block of the target method packet::send.

Example 24-13
// Beginnning of file Input.vr

program top;
packet p;
p = new();
p.send_around_Created_c();

endprogram

class packet;
...
// Other member fields/methods

24-149

SystemVerilog Testbench Constructs

...
task send();

$display("Sending data\n”);
endtask

task send_Created_a();
send();
send_after_Created_b();

endtask

task send_after_Created_b();
$display("Aspect_2: send advice after\n");

endtask

task send_around_Created_c();
$display("Aspect_3: Begin send advice around\n");
send_Created_a();
$display("Aspect_3: End send advice around\n");

endtask
endclass

extends aspect_1(packet) dominates (aspect_2, aspect_3);
after task send(); // Advice 1

$display("Aspect_1: send advice after\n");
endtask

endextends

extends aspect_3(packet);
before task send(); // Advice 4

 $display("Aspect_3: send advice before\n");
endtask

endextends

// End of file Input.sv

This Example 24-13 shows what the input program looks like after
weaving advice 3 into the class method. A new method
send_around_Created_c is created in this step and the instances of
method call to the target method packet::send_Created_a are
modified, such that the code block from advice 3 executes around
the code block of method packet::send_Created_a. Also note that
the proceed statement from the advice code block is replaced by a

24-150

SystemVerilog Testbench Constructs

call to send_Created_a. At the end of this step,
send_around_Created_c becomes the new target method for
weaving of further advices to packet::send.

Example 24-14

// Beginnning of file Input.vr

program top;
packet p;
p = new();
p.send_around_Created_c();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

$display("Sending data\n”);
endtask

task send_Created_a();
send();
send_after_Created_b();

endtask

task send_after_Created_b();
$display("Aspect_2: send advice after\n");

endtask

task send_around_Created_c();
send_before_Created_d();
 $display("Aspect_3: Begin send advice around\n");
send_after_Created_a();
 $display("Aspect_3: End send advice around\n");

endtask

task send_before_Created_d();
 $display("Aspect_3: send advice before\n");

endtask
endclass

 extends aspect_1(packet) dominates (aspect_2, aspect_3);
after task send(); // Advice 1

$display("Aspect_1: send advice after\n");

24-151

SystemVerilog Testbench Constructs

endtask
endextends

// End of file Input.sv

This Example 24-14 shows what the input program looks like after
weaving advice 4 into the class method. A new method
send_before_Created_d is created in this step and a call to it is
added as the first statement in the target method
packet::send_around_Created_c. Also note that the outcome would
have been different if advice 4 (before advice) was defined earlier
than advice 3 (around advice) within aspect_3, as that would have
affected the order of precedence of advice 3 and advice. In that
scenario the advice 3 (around advice) would have weaved around
the code block from advice 4 (before advice), unlike the current
outcome.

Example 24-15

// Beginnning of file Input.vr

program top;
packet p;
p = new();
p.send_Created_f();

endprogram

class packet;
...
// Other member fields/methods
...
task send();

$display("Sending data\n”);
endtask

task send_Created_a();
send();
send_Created_b();

endtask

task send_after_Created_b();

24-152

SystemVerilog Testbench Constructs

$display("Aspect_2: send advice after\n");
endtask

task send_around_Created_c();
send_before_Created_d();
$display("Aspect_3: Begin send advice around\n");
send_after_Created_a();
$display("Aspect_3: End send advice around\n");

endtask

task send_before_Created_d();
 $display("Aspect_3: send advice before\n");

endtask
task send_after_Created_e();

$display("Aspect_1: send advice after\n");
endtask

task send_Created_f();
send_around_Created_c();
send_after_Created_e()

endtask
endclass

// End of file Input.sv

This Example 24-15 shows the input program after weaving of all
four advices {2, 3, 4, 1}. New methods send_after_Created_e and
send_Created_f are created in the last step of weaving and the
instances of method call to packet::send_around_Created_c were
replaced by method call to packet::send_Created_f.

When executed, output of this program is:

Aspect_3: send advice before
Aspect_3: Begin send advice around
Sending data
Aspect_2: send advice after
Aspect_3: End send advice around
Aspect_1: send advice after

Examples of code containing around advice

24-153

SystemVerilog Testbench Constructs

// Begin file input.vr

program top;
foo f;
f = new();
f.myTask();

endprogram

class foo;
int i;
task myTask();

$display("Executing original code\n");
endtask

endclass
extends aoe1 (foo) dominates(aoe2);

around task myTask();
proceed;
$display("around in aoe1\n");

endtask
endextends
extends aoe2 (foo);

around task myTask();
proceed;
$display("around in aoe2\n");

endtask
endextends
// End file input.sv

When aoe1 dominates aoe2, as in func1, the output when the
program is executed is:

Executing original code
around in aoe2
around in aoe1

Example 24-16

// Begin file input.vr

program top;
foo f;

24-154

SystemVerilog Testbench Constructs

f = new();
f.myTask();

endprogram

class foo;
int i;
task myTask();

printf("Executing original code\n");
endtask

endclass
extends aoe1 (foo);

around task myTask();
proceed;
printf("around in aoe1\n");

endtask
endextends
extends aoe2 (foo) dominates (aoe1);

around task myTask();
proceed;
printf("around in aoe2\n");

endtask
endextends
// End file input.sv

On the other hand, when aoe2 dominates aoe1 as in this Example
24-16, the output is:

Executing original code
around in aoe1
around in aoe2

Symbol resolution details:
As introductions and advices defined within extends directives are
pre-processed as a pre-compilation expansion of the input program,
the pre-processing occurs earlier than final symbol resolution stage
within a compiler. Therefore, it possible for AOE code to reference
symbols that were added to the original class definition using AOEs.

24-155

SystemVerilog Testbench Constructs

Because advices are woven after introductions have been added to
the class definitions, advices can be specified for introduced
member methods and can reference introduced symbols.

An advice to a class method can access and modify the member
fields and methods of the class object to which the class method
belongs. An advice to a class function can access and modify the
variable that stores the return value of the function.

Furthermore, members of the original class definition can also
reference symbols introduced by aspect extensions using the extern
declarations (?). Extern declarations can also be used to reference
symbols introduced by an aspect extension to a class in some other
aspect extension code that extends the same class.

An introduction that has the same identifier as a symbol that is
already defined in the target scope as a member property or member
method is not permitted.

Examples:

Example 24-17

// Begin file example.vr

program top;
packet p;
p = new();
p.foo();

endprogram

class packet;
task foo(integer x); //Formal argument is "x"

$display("x=%0d\n", x);
endtask

endclass

extends myaspect(packet);
// Make packet::foo always print: "x=99"

24-156

SystemVerilog Testbench Constructs

before task foo(integer x);
x = 99; //force every call to foo to use x=99

endtask
endextends

// End file example.sv

The extends directive in Example 24-17 sets the x parameter inside
the foo() task to 99 before the original code inside of foo() executes.
Actual argument to foo() is not affected, and is not set unless
passed-by-reference using ref.

Example 24-18
// Begin file example.sv
program top ;

packet p;
p = new();
$display(“Output is: %d\n”, p.bar());

endprogram

class packet ;
function integer bar();

bar = 5;
$display(“Point 1: Value = %d\n”, bar);

endfunction
endclass

extends myaspect(packet);
after function integer bar();

$display(“Point 2: Value = %d\n”, bar);
bar = bar + 1; // Stmt A
$display(“Point 3: Value = %d\n”, bar);

endfunction
endextends

// End file example.sv

An advice to a function can access and modify the variable that
stores the return value of the function as shown in Example 24-18,
in this example a call to packet::bar returns 6 instead of 5 as the final
return value is set by the Stmt A in the advice code block.

24-157

SystemVerilog Testbench Constructs

When executed, the output of the program code is:

Point 1: Value = 5
Point 2: Value = 5
Point 3: Value = 6
Output is: 6

 hide_list details
The hide_list item of an extends_directive specifies the
permission(s) for introductions to hide symbols, and/or advice to
modify local and protected methods. By default, an introduction does
not have permission to hide symbols that were previously visible in
the target scope, and it is an error for an extension to introduce a
symbol that hides a global or super-class symbol.

The hide_list option contains a comma-separated list of options such
as:

• The virtuals option permits the hiding (that is, overriding) of
virtual methods defined in a super class. Virtual methods are the
only symbols that may be hidden; global, and file-local tasks and
functions may not be hidden. Furthermore, all introduced
methods must have the same virtual modifier as their overridden
super-class and overriding sub-class methods.

• The rules option permits the extension to suspend access rules
and to specify advice that changes protected and local virtual
methods; by default, extensions cannot change protected and
local virtual methods.

• An empty option list removes all permissions, that is, it resets
permissions to default.

In Example 24-19, the print method introduced by the extends
directive hides the print method in the super class.

24-158

SystemVerilog Testbench Constructs

Example 24-19
class pbase;

virtual task print();
$display("I’m pbase\n");

endtask
endclass

class packet extends pbase;
task foo();

$display(); //Call the print task
endtask

endclass

extends myaspect(packet);
hide(virtuals); // Allows permissions to

// hide pbase::print task

virtual task print();
$display("I’m packet\n”);

endtask
endextends

As explained earlier, there are two types of hide permissions:

a. Permission to hide virtual methods defined in a super class
(option virtuals) is referred to as virtuals-permission. An aspect
item is either an introduction, an advice, or a hide list within an
aspect. If at an aspect item within an aspect, such permission
is granted, then the virtuals-permission is said to be on or the
status of virtuals-permission is said to be on at that aspect item
and at all the aspect items following that, until a hide list that
forfeits the permission is encountered. If virtuals-permission is
not on or the status of virtuals-permission is not on at an aspect
item, then the virtuals-permission at that item is said to be off
or the status of virtuals-permission at that item is said to be off

24-159

SystemVerilog Testbench Constructs

b. Permission to suspend access rules and to specify advice that
changes protected and local virtual methods (option "rules") is
referred to as rules-permission. If within an aspect, at an aspect
item, such permission is granted, then the rules-permission is
said to be on or the status of rules-permission is said to be on
at that aspect item and at all the aspect items following that,
until a hide list that forfeits the permission is encountered. If
rules-permission is not on or the status of rules-permission is
not on at an aspect item, then the rules-permission at that item
is said to be off or the status of rules-permission at that item is
said to be off.

Permission for one of the above types of hide permissions does not
affect the other. Status of rules-permission and hide-permission
varies with the position of an aspect item within the aspect. Multiple
hide_list(s) may appear in the extension. In an aspect, whether an
introduction or an advice that can be affected by hide permissions is
permitted to be defined at a given position within the aspect
extension is determined by the status of the relevant hide permission
at the position. A hide_list at a given position in an aspect can
change the status of rules-permission and/or virtuals-permission at
that position and all following aspect items until any hide permission
status is changed again in that aspect using hide_list.

Example 24-20 illustrates how the two hide permissions can change
at different aspect items within an aspect extension.

Example 24-20
class pbase;

virtual task print1();
$display("pbase::print1\n");

endtask

virtual task print2();
 $display("pbase::print2\n");
endtask

endclass

24-160

SystemVerilog Testbench Constructs

class packet extends pbase;
task foo();

$display();
endtask

local virtual task rules-test();
$display("Rules-permission example\n");

endtask
endclass

extends myaspect(packet);

// At this point within the myaspect scope,
// virtuals-permission and rules-permission are both off.

hide(virtuals); // Grants virtuals-permission

// virtuals-permission is on at this point within aspect,
// and therefore can define print1 method introduction.
virtual task print1();

$display("packet::print1\n”);
endtask

hide(); // virtuals-permission is forfieted

hide(rules); // Grants rules-permission

// Following advice permitted as rules-permission is on
before local virtual task rules-test();

$display("Advice to Rules-permission example\n");
endtask

hide(virtuals); // Grants virtuals-permission

// virtuals-permission is on at this point within aspect,
// and therefore can define print2 method introduction.
virtual task print2();

$display("packet::print2\n”);
endtask

endextends

Examples
Introducing new members into a class:

24-161

SystemVerilog Testbench Constructs

Example 24-21 is shows how AOE can be used to introduce new
members into a class definition. myaspect adds a new property,
constraint, coverage group, and method to the packet class.

Example 24-21
class packet;

rand bit[31:0]...
...

endclass

extends myaspect(packet);
integer sending_port;

constraint con2 {
hdr_len == 4;

}

coverage_group cov2 @(posedge CLOCK);
coverpoint sending_port;

endgroup

task print_sender();
$display("Sending port = %0d\n", sending_port);

endtask
endextends

As mentioned earlier, new members that are introduced should not
have the same name as a symbol that is already defined in the class
scope. So, AOE defined in the manner shown in Example 24-22 will
is not allowed, as the aspect myaspect defines x as one of the
introductions when the symbol x is already defined in class foo.

Example 24-22 : Non permissible introduction
class foo;

rand integer myfield;
integer x;
...

endclass

extends myaspect(foo);
integer x ;

24-162

SystemVerilog Testbench Constructs

constraint con1 {
myfield == 4;

}
endextends

Examples of advice code

In Example 24-23, the extends directive adds advices to the
packet::send method.

Example 24-23 :
// Begin file example.sv

program test;
packet p;
p = new();
p.send();

endprogram

class packet;
task send();

$display("Sending data\n”);
endtask

endclass

extends myaspect(packet);
before task send();

$display("Before sending packet\n");
endtask

after task send();
$display("After sending packet\n");

endtask
endextends

// End file example.sv

When Example 24-23 is executed, the output is:

Before sending packet
Sending data
After sending packet

24-163

SystemVerilog Testbench Constructs

In Example 24-24, extends directive myaspect adds advice to turn
off constraint c1 before each call to the foo::pre_randomize method.

Example 24-24 :
class foo;

rand integer myfield;
constraint c1 {

myfield == 4;
}

endclass
extends myaspect(foo);

before task pre_randomize();
constraint_mode(OFF, "c1")

endtask
endextends

In Example 24-23, extends directive myaspect adds advice to set a
property named valid to 0 after each call to the foo::post_randomize
method.

Example 24-25 :
class foo;

integer valid;
rand integer myfield;
constraint c1 {

myfield == 4;
}

endclass

extends myaspect(foo);
after task post_randomize();

valid = 0;
endtask

endextends

Example 24-25 shows an aspect extension that defines an around
advice for the class method packet::send. When the code in example
is compiled and run, the around advice code is executed instead of
original packet::send code.

24-164

SystemVerilog Testbench Constructs

Example 24-26
// Begin file example.sv

program test;
packet p;
p = new();
p.setLen(5000);
p.send();
p.setLen(10000);
p.send();

endprogram

class packet;
integer len;
task setLen(integer i);

len = i;
}
task send();

$display("Sending data\n”);
endtask

endclass

extends myaspect(packet);
around task send();

if (len < 8000){
proceed;

}
else{

$display("Dropping packet\n");
}

endtask
endextends

// End file example.sv

This Example 24-26 also demonstrates how the around advice code
can reference properties such as len in the packet object p. When
executed the output of the above example is,

Sending data
Dropping packet

24-165

SystemVerilog Testbench Constructs

Array manipulation methods

VCS-NTB provides the following types of built-in methods for
analyzing and manipulating arrays.

- Array ordering methods

- Array locator methods

- Array reduction methods

Note: For the integral types the with construct is not required but for
non integral type like class objects, mailbox or semaphores using
the with construct enhances the array manipulation methods
ability to deliver.

Array ordering methods

The array ordering methods are used to change the order and
rearrange the elements of any arrays.

reverse()
The reverse() method puts all the elements in the reverse order.
Specifying a with construct here will result in a compiler error.

Syntax

task array_name.reverse();

Example 24-27
int SQint[$] = {1, 2, 3, 4}; //SQint contains 1, 2, 3, 4
SQint.reverse(); // SQint contains 4, 3, 2, 1

24-166

SystemVerilog Testbench Constructs

sort()
The sort() method sorts the element in an ascending order using the
expression in the with construct. The with expression is optional here.

Syntax

task array_name.sort() [with (expression)];

Example 24-28
queue1.sort();
queue2.sort() with (item.i);

In the first example the queue1 is sorted in ascending order of the
value of the elements provided they are of a integral type. In the
second example queue2 is a queue of class objects and the class
contains an element i, here the objects are sorted in ascending order
depending on the value of the member variable i.

rsort()
The rsort() method sorts the elements in the array in a descending order
using the expression in the with construct. The with expression is
optional here.

Syntax

task array_name.rsort() [with (expression)];

Example 24-29
queue1.rsort();
queue2.sort() with (item.i * item.r);

24-167

SystemVerilog Testbench Constructs

In the first example the elements in the queue1 are sorted in
descending order of their values provided they are of a integral type.
In the second example queue2 is a queue of class objects and the
class contains an element i and r, now the objects are sorted in
descending order depending on the product value of the member
variable i and r.

Array locator methods

- Array locator methods

- Array index locator methods

The array locator methods are used to search all the element in an
array that satisfies a given expression. These methods return a queue
containing all element that satisfy the expression.

 The array index locator methods are used to search an array for all
the indices that satisfies a given expression and returns an integer
queue with the indices of all elements that satisfy the expression.

Note: For associative arrays the array index locator methods return
a queue of their index type with the indices of all elements that
satisfy the expression..

find()
The find() method finds all the elements satisfying the expression using
the with construct. If the match fails or if the array is empty an empty
queue is returned. The with expression is required and is not optional.

Syntax

function array_type[$] array_name.find() with (expression);

24-168

SystemVerilog Testbench Constructs

Example 24-30
queue2 = queue1.find() with (queue1.leg() > 5);

In the example, queue1 contains a set of strings, all the elements
whose string length is greater than 5 are returned and they are
assigned in the same order to the queue queue2.

find_index()
The find_index() method returns the indexes of all the elements
satisfying the expression using the with construct. If the match fails or if
the array is empty an empty queue is returned. The with expression is
required and is not optional.

Syntax

function int_or_index_type[$] array_name.find_index()
 with (expression);

Example 24-31
indices1 = queue1.find_index() with (item > 5);

In the example, all the indices of the elements that are greater than
5 are returned and they are assigned in the same order to the queue
indices1.

find_first()
The find_first()method finds the first element satisfying the
expression using the with construct. If the array is empty, a warning
message is issued and an empty queue is returned. The with expression is
required and is not optional.

Syntax

24-169

SystemVerilog Testbench Constructs

function array_type[$] array_name.first() with (expression);

Example 24-32
value = queue1.first() with (item > 5);
object = queue1.first() with (item.x > 5);

In the first example, the first element which is greater than 5 is
returned. In the second example, the first element with the member
variable greater than 5 is returned.

find_first_index()
The find_first_index() method returns the first index satisfying the
expression using with construct. If the array is empty or no match is
found with the expression then an empty queue is returned. The with
expression is required and is not optional.

Syntax

function int_or_index_type[$] array_name.find_first_index()
 with (expression);

Example 24-33
index = queue1.first _index() with (item > 5);
index = queue1.first _index() with (item.y > 5);

The first example returns the index of the first element which is greater
than 5. In the second example, the index of the first element that
contains the member variable y greater than 5 is returned.

24-170

SystemVerilog Testbench Constructs

find_last()
The find_last() method returns a queue with the last element
satisfying the expression. If the array is empty, a warning message is issued
and an empty queue is returned. The with expression is required and is not
optional.

Syntax

function array_type[$] array_name.last() with (expression);

Example 24-34
value = array1.last() with (item == 5);
object = array1.last() with (item.x == 5);

In the first example, the last element which is equal to 5 is returned.
In the second example, the last element that has its member variable
x equal to 5 is returned.

find_last_index()
The find_last_index() method returns a queue with the last index
satisfying the expression. If the array is empty or no match is found with the
expression then an empty queue is returned. The with expression is
required and is not optional.

Syntax

function int_or_index_type[$] array_name.find_last_index()
 with (expression);

Example 24-35
value = array1. find_last_index() with (item > 5);
value = array1. find_last_index() with (item.x == 5);

24-171

SystemVerilog Testbench Constructs

In the first example, the index of the last element which is greater
than 5 is returned. In the second example, the index of the last
element has its member variable x equal to 5 is returned.

min()
The min() method returns a queue with the minimum value element for
the integral types. For non-integral types the method returns a queue with
the element whose with expression evaluates to a minimum. If the array
is empty, a warning message is issued and a type dependent default value is
returned. The with expression is optional here.

Syntax

function array_type[$] array_name.min() [with (expression)];

Example 24-36
value = array1.min(); // Array1 is of type integer or reg
object = array1.min() with (item.x >5);
object = array1.min() with (item.x * item.y);

The first example, returns a minimum value element of the array. The
second example returns the element that has the minimum value of
the member variable x. The third example returns the element that
has the minimum value of the product of the member values of x and
y.

max()
The max() method returns a queue with the maximum value element for
the integral types. For non-integral types the method returns a queue with
the element whose with expression evaluates to a maximum. If the array
is empty a warning message is issued and a type dependent default value is
returned. The with expression is optional here.

24-172

SystemVerilog Testbench Constructs

Syntax

function array_type[$] array_name.max() [with (expression)];

Example 24-37
value = array1.max();
object = array1.max() with (item.x >5);
object = array1.max() with (item.x * item.y);

The first example, returns a maximum value element of the array.
The second example returns the element that has the maximum value
of the member variable x. The third example returns the element that
has the maximum value of the product of the member values of x and
y.

unique()
The unique()method returns all elements with unique values or elements
whose expression is unique. If the array is empty or if no match is found
with the expression, then an empty queue is returned. The with expression
is optional here.

Syntax

function array_type[$] array_name.unique() [with (expression)];

Example 24-38
array2 = array1.unique();

In the example only unique elements from the array are returned.

24-173

SystemVerilog Testbench Constructs

unique_index()
The unique_index()method returns the indexes of all elements with
unique values or whose expression is unique. If the array is empty or if no
match is found with the expression then an empty queue is returned. The
with expression is optional here.

Syntax

function int_or_index_type[$] unique_index() [with (expression)];

Example 24-39
array2 = array1.unique_index();

In the example indices of only the unique elements are returned.

Array reduction methods

Array reduction methods are used to evaluate and reduce an array
to a single value. The optional with clause can be used to specify the
elements for reduction. These methods return a reduced single value
as the array element type. If the with clause is specified, they return
the type of the expression in the with clause.

sum()
The sum() method computes the sum of all the array elements for integral
types. The with expression is optional for integral types. When the with
expression is specified for non-integral types they returns the sum of the
member variables specified using the with expression.

Syntax

function expression_or_array_type array_name.sum() [with (expression)]

24-174

SystemVerilog Testbench Constructs

Example 24-40
value = Qint.sum(); // Calculates sum of all elements
value = QPacket.sum() with (item.pkt_size); // Computes sum of

 // member pkt_size for all elements of queue SQPacket.

In the first example the sum of all the elements of the queue Qint is
calculated. The second example computes sum of member variable
pkt_size for all elements of queue QPacket is calculated.

product()
The product() method computes the product of all the array elements for
integral types. The with expression is optional for integral types. When
the with expression is specified for non-integral types they returns the
product of the member variables specified using the with expression.

Syntax

function expression_or_array_type array_name.product()
 [with (expression)];

Example 24-41
value = Qint.product(); // Calculates product of all elements
value = QPacket.product() with (item.pkt_size);// Computes

 // product of member pkt_size for all elements of queue QPacket.

In the first example the product of all the elements of the queue Qint
is calculated. The second example computes product of member
variable pkt_size for all elements of queue QPacket is calculated.

24-175

SystemVerilog Testbench Constructs

and()
The and() method computes the bitwise AND (&) of all the array elements
for integral types. The with expression is optional for integral types. When
the with expression is specified for non-integral types they returns the
bitwise AND (&) of the member variables specified using the with
expression.

Syntax

function expression_or_array_type array_name.and() [with (expression)];

Example 24-42
value = Qint.and(); // Calculates bitwise AND of all elements
value = QPacket.and() with (item.pkt_size); // Computes bitwise

 // AND of member pkt_size for all elements of queue QPacket.

In the first example the bitwise AND of all the elements of the queue
Qint is calculated. The second example computes bitwise AND of
member variable pkt_size for all elements of queue QPacket is
calculated.

or()
The or() method computes the bitwise OR (|) of all the array elements
for integral types. The with expression is optional for integral types. When
the with expression is specified for non-integral types they returns the
bitwise OR (|) of the member variables specified using the with
expression.

Syntax

function expression_or_array_type array_name.or() [with (expression)];

24-176

SystemVerilog Testbench Constructs

Example 24-43
value = Qint.or(); // Calculates sum of all elements
value = QPacket.or()with (item.pkt_size); // Computes bitwise

 // OR of member pkt_size for all elements of queue QPacket.

In the first example the bitwise OR of all the elements of the queue
Qint is calculated. The second example computes bitwise OR of
member variable pkt_size for all elements of queue QPacket is
calculated.

xor()
The xor() method computes the logical xor (^) of all the array
elements for integral types. The with expression is optional for integral
types. When the with expression is specified for non-integral types they
returns the logical xor (^) of the member variables specified using the
with expression.

Syntax

function expression_or_array_type array_name.xor() [with (expression)];

Example 24-44
value = Qint.xor(); // Calculates XOR of all elements
value = QPacket.xor()with (item.pkt_size); // Computes bitwise

 // XOR of member pkt_size for all elements of queue QPacket.

In the first example the logical XOR of all the elements of the queue
Qint is calculated. The second example computes logical XOR of
member variable pkt_size for all elements of queue QPacket is
calculated.

24-177

SystemVerilog Testbench Constructs

Interprocess Synchronization and Communication

Semaphores

SystemVerilog semaphores are not signal devices. They are buckets
that contain keys, where competing resources, such as different initial
blocks in a program, require keys from the bucket to continue
processing.

program prog;

semaphore sem1 = new(2);

initial
begin:initial1
 #1 sem1.get(1);
 $display("initial1 takes 1 key at %0t", $time);
 #6 sem1.put(1);
 $display("initial1 returns 1 key at %0t",$time);
 #1 sem1.get(1);
 $display("initial1 takes 1 key at %0t", $time);

end

initial
begin:initial2
 #5 sem1.get(2);
 $display(" inital2 takes 2 keys at %0t",$time);
 #5 sem1.put(1);
 $display(" inital2 returns 1 key at %0t",$time);

end
endprogram

In this program there are two initial blocks, labeled by the label on
their begin-end blocks, initial1 and intital2.

24-178

SystemVerilog Testbench Constructs

The program has a semaphore named sem1 that starts with two keys,
as specified with the semaphore keyword and new() method.

If it were not for initial2, initial1 would do the following:

1. Take a key at simulation time 1 (using the get method).

2. Return a key at time 7 (using the put method).

3. Take a key again at time 8 (using the get method).

If it were not for initial1, initial2 would do the following:

1. Take two keys at simulation time 5 (using the get method).

2. Return one key at time 10 (using the put method).

However both initial blocks contend for a limited number of keys that
they need in order to finish executing, in taking keys that the other
needs, they interrupt each other’s processing. The $display system
tasks display the following:

initial1 takes 1 key at 1
initial1 returns 1 key at 7
 inital2 takes 2 keys at 7
 inital2 returns 1 key at 12
initial1 takes 1 key at 12

The initial block initial2 could be rewritten to use the try_get method
to see if a certain number of keys are available, for example:

initial
begin:initial2
 #5 if(sem1.try_get(2))
 begin
 sem1.get(2);
 $display("inital2 takes 2 keys at %0t",$time);
 end

24-179

SystemVerilog Testbench Constructs

 #5 sem1.put(1);
 $display("inital2 returns 1 key at %0t",$time);

end
endprogram

In the revised initial2, at simulation time 5, the try_get method
checks to see if there are two keys in sem1. There aren’t, because
initial1 took one. At time 10 the put method “returns” a key to sem1.
Actually the get and put methods only decrement and increment a
counter for the keys, there are no keys themselves, so initial2 can
increment the key count without having previously decrementing this
count.

The $display system tasks display the following:

initial1 takes 1 key at 1
initial1 returns 1 key at 7
initial1 takes 1 key at 8
inital2 returns 1 key at 10

Semaphore Methods

Semaphores have the following built-in methods:

new (number_of_keys)
You use this method with the semaphore keyword. It specifies
the initial number of keys in the semaphore.

put(number_of_keys)
Increments the number of keys in the semaphore.

24-180

SystemVerilog Testbench Constructs

get(number_of_keys)
Decrements the number of keys in the semaphore. If there aren’t
the specified number of keys in the semaphore, VCS halts
simulation of the process (initial block, task, etc.) until there the
put method in another process increments the number of keys
to the sufficient number.

try_get (number_of_keys)
Decrements the number of keys in the semaphore. If there aren’t
the specified number of keys in the semaphore, this method
returns a 0. If the semaphore has the specified number of keys,
this method returns 1. After returning the value, VCS executes
the next statement.

Mailboxes

Mailboxes are FIFO containers for messages that are expressions.

Note:The SystemVerilog 3.1a LRM specifies that you can specify a
maximum number of messages that a mailbox can hold, but this
feature isn’t implemented yet.

program prog;

mailbox mbx = new ();
int i,j;
int k = 10;

initial
begin
repeat(3)

 begin
 #5 mbx.put(k);
 i = mbx.num();
 $display("No. of msgs in mbx = %0d at %0t",i,$time);
 k = k + 1;

24-181

SystemVerilog Testbench Constructs

 end
i = mbx.num();
repeat (3)

 begin
 #5 $display("No. of msgs in mbx = %0d j = %0d at

%0t",i,j,$time);
 mbx.get(j);
 i = mbx.num();
 end

end
endprogram

This program declares a mailbox named mbx with the mailbox
keyword and the new() method.

The initial block does the following:

1. Executes a repeat loop three times which does the following:

a. Puts the value of k in the mailbox.
b. Assigns the number of messages in the mailbox to i.
c. Increments the value of k.

2. Execute another repeat loop three times that does the following:

a. Displays the number of messages in the mailbox, the value of
j, and the simulation time.

b. Assigns the first expression in the mailbox to j.
c. Assigns the number of messages to i.

The $display system tasks display the following:

No. of msgs in mbx = 1 at 5
No. of msgs in mbx = 2 at 10
No. of msgs in mbx = 3 at 15
No. of msgs in mbx = 3 j = 0 at 20
No. of msgs in mbx = 2 j = 10 at 25
No. of msgs in mbx = 1 j = 11 at 30

24-182

SystemVerilog Testbench Constructs

Mailbox Methods

Mailboxes use the following methods:

new()
Along with the mailbox keyword, declares a new mailbox. You
cannot yet specify the maximum number of messages with this
method.

num()
Returns the number of messages in the mailbox.

put(expression)
Puts another message in the mailbox.

get(variable)
Assigns the value of the first message to the variable. VCS
removes the first message so that the next message becomes
the first method. If the mailbox is empty, VCS suspends simulation
of the process (initial block, task, etc.) until a put method put a
message in the mailbox.

try_get(variable)
Assigns the value of the first message to the variable. If the
mailbox is empty, this method returns the 0 value. If the message
is available, this method returns a non-zero value. After returning
the value, VCS executes the next statement.

peek(variable)
Assigns the value of the first message to the variable without
removing the message. If the mailbox is empty, VCS suspends
simulation of the process (initial block, task, etc.) until a put
method put a message in the mailbox.

24-183

SystemVerilog Testbench Constructs

try_peek(variable)
Assigns the value of the first message to the variable without
removing the message. If the mailbox is empty, this method
returns the 0 value. If the message is available, this method
returns a non-zero value. After returning the value, VCS executes
the next statement.

Note VCS does an assignment compatibility check instead of
equivalent types check for the mailbox methods.

Events

SystemVerilog has a number of extensions to named events. These
extensions are as follows:

Waiting for an Event

Persistent Trigger

Merging Events

Reclaiming Named Events

Event Comparison

Waiting for an Event

You can enter a hierarchical name for a named event in an event
control.

`timescale 1ns/1ns
program prog;

24-184

SystemVerilog Testbench Constructs

task t1;
event evt1;
#5 -> evt1;
endtask

initial
t1;

initial
@(t1.evt1) $display("t1.evt1 happened at %0t",$time);

endprogram

The $display system task displays the following:

t1.evt1 happened at 5

Persistent Trigger

The triggered property persists on a named event throughout the
time step when it is triggered, preventing a race condition, for
example, when a named event is triggered and is evaluated in an
event control during the same time step.

program prog;

event evt1,evt2;

initial
-> evt1;

initial
begin
wait (evt1.triggered);
$display("evt1 triggered");
end

initial

24-185

SystemVerilog Testbench Constructs

fork
 -> evt2;
 begin
 wait (evt2.triggered);
 $display("evt2 occurred");
 end
join

endprogram

The $display system tasks display the following:

evt1 triggered
evt2 occurred

Merging Events

You can assign a SystemVerilog named event to another named
event. When you do, they alias each other and when VCS executes
a line calling for the triggering of one of these events, VCS triggers
both named events.

program prog;

event evt1, evt2, evt3;

initial
begin
evt2 = evt3; // this is an alias
evt1 = evt3; // this is an alias
#2 -> evt1;
end

initial
#1 @ (evt1) $display("evt1 triggerred");

initial
#1 @ (evt2) $display("evt2 triggerred");

24-186

SystemVerilog Testbench Constructs

initial
#1 @ (evt3) $display("evt3 triggerred");

endprogram

The $display system tasks display the following:

evt1 triggerred
evt2 triggerred
evt3 triggerred

IMPORTANT:
When you merge events, the merger takes effect only in
subsequent event controls or wait statements.

In this example, the merging occurred at time 0, the event controls
at time 1, and the triggering of the events at time 2.

Reclaiming Named Events

When you assign the null keyword to a named event, that named
event no longer can synchronize anything. In an event control it might
block forever or not at all. In a wait statement, it is as if the named
event were undefined, and triggering the named event causes no
simulation events.

program prog;
event evt1;

initial
begin
evt1 = null;
#5 -> evt1;
end

initial

24-187

SystemVerilog Testbench Constructs

#1 @(evt1) $display("evt1 triggered");

initial
begin
#5 wait (evt1.triggered);
$display("evt1 occurred");
end
endprogram

The $display system tasks do not display anything.

Event Comparison

You can use the equality and inequality operators to see if named
events are aliased to each other or have been assigned the null value,
for example:

program prog;

event evt1, evt2, evt3;

initial
begin
evt1 = evt2;
if (evt1 == evt2)
 $display("evt1 == evt2");
if (evt1 === evt2)
 $display("evt1 === evt2");
if (evt1 != evt3)
 $display("evt1 != evt3");
if (evt3 != null)
 $display("evt3 != null");
end
endprogram

The $display system tasks display the following:

evt1 == evt2

24-188

SystemVerilog Testbench Constructs

evt1 === evt2
evt1 != evt3
evt3 != null

In comparing named events, the case equality operator === works
the same as the equality operator ==, and the case inequality operator
!== works the same as the inequality operator !=.

Clocking Blocks

A clocking block encapsulates a group of signals that are sampled or
synchronized by a common clock. It defines the timing behavior of
those signals with respect to the associated clock. Consequently,
timing and synchronization details for these signals is separate from
the structural, functional, and procedural elements of the testbench.
This enables synchronous events, input sampling, and synchronous
drives to be written without explicitly using clocks or specifying timing.

Clocking blocks can be declared inside a program block or inside an
interface.

Clocking Block Declaration

The syntax for declaring a clocking block is:

clocking clocking_identifier @clocking_event;
[default clocking_dir clocking_skew [clocking_dir

clocking_skew];]
{clocking_dir [clocking_skew][clocking_dir

 [clocking_skew]]signal_identifier [=
 hierarchical_identifier]
 {,signal_identifier [= hierarchical_identfier]};}

endclocking[: clocking_identifier]

24-189

SystemVerilog Testbench Constructs

clocking_identifier

Name of the clocking block being declared.

clocking_event

Event that acts as the clock for the clocking block (for example:
posedge, negedge of a clocking signal):

@(posedge clk)

or

@(clk)

Note:
Program signals cannot be used inside a clocking event
expression.

clocking_dir

Direction of the signal: input, output or inout. If you specify more
than one clocking_dir, they must be in the order input...output:

input clocking_skew output clocking_skew

The inout signal cannot be used in the declaration of a default
skew. Also, if the clocking_dir of a clocking block signal is inout,
you cannot specify a clocking_skew. For example:

inout #1 d; //results in a syntax error
inout d; //is fine

24-190

SystemVerilog Testbench Constructs

clocking_skew

Determines how long before the synchronized edge the signal is
sampled, or how long after the synchronized edge the signal is
driven. A clocking_skew can consist of an edge identifier and a
delay control, just an edge identifier, or just the delay control. The
edge identifiers are posedge and negedge. The edge can be
specified only if the clocking event is a singular clock (that is, a
simple edge of a single signal like @(posedge clk), @(clk),
@(negedge top.clk), etc.).The delay control is introduced by "#"
followed by the delay value. The following are examples of legal
clocking_skews:

 input #0 i1;
output negedge #2 i2;
input #1 output #2;

Note:
Time literals (e.g., #10ns and #2ns) are not supported in this
release.

The skew for an input signal is implicitly negative (that is, sampling
occurs before the clock event). The skew for an output signal is
implicitly positive (that is, the signal is driven after the clock event).

Note:
#1step is the default input skew unless otherwise specified.
However, an explicit #1step skew is not yet supported.

signal_identifier

Identifies a signal in the scope enclosing the clocking block
declaration, and declares the name of a signal in the clocking
block. Unless a hierarchical_expression is used, both the signal
and the clocking_item names shall be the same. For example:

24-191

SystemVerilog Testbench Constructs

input #1 i1;

where i1 is the signal_identifier.

Note:
A clocking block signal can only be connected to a scalar, vector,
packed array, integer or real variable. Program signals are not
allowed in clocking block signal declarations.

hierarchical_identifier

Hierarchical path to the signal being assigned to the
signal_identifier. For example:

input negedge #2 i = top.i2;

where i2 is defined in a module top.

Note:
see page 182 of the System Verilog LRM 3.1a for a formal
definition of the syntax for declaring the clocking block.

Note:
Slices and concatenations are not yet implemented

A single skew can be declared for the entire clocking block. For
example:

default input #10;

You can override default skews when you declare a signal.

The following example includes a clocking block embedded in a
program:

`timescale 1ns/1ns

module top;

24-192

SystemVerilog Testbench Constructs

reg out3;
reg out1;
reg clk = 0;

p1 p(out3,clk,out1);

assign out1 = out3;

initial forever begin
 clk = 0;
 #10;
 clk = 1;
 #10;
 end
endmodule

program p1(output reg out3,input logic clk,input reg in);

 clocking cb @(posedge clk);
 output #3 out2 = out3; //CB output signal
 input #0 out1 = in;
 endclocking

 initial
 #200 $finish;

 initial begin
 $display($time,,,cb.out1);
 cb.out2 <= 0; //driving output at "0" time
 @(cb.out1); //sampling input for change
 $display($time,,,cb.out1);
 #100;
 $display($time,,,cb.out1);

 cb.out2 <= 1; //driving o/p at posedge of clk

 @(cb.out1);

 $display($time,,,cb.out1);

24-193

SystemVerilog Testbench Constructs

 end

endprogram

The output of this program is:

 0 x
 30 0
 130 0

150 1

Input and Output Skews

The skew for input and inout signals determines how long before
clocking_event the signal is sampled. The skew for output and inout
signals determines how long after the clock_event the signal is driven.

Figure 24-3 Driving and sampling on the negative edge of the clock

For more details see section 15.3 of the SystemVerilog LRM 3.1a.

Clock

input skew output skew

input signal output signal
sampled here driven here

24-194

SystemVerilog Testbench Constructs

Hierarchical Expressions

Every signal in a clocking block is associated with a program port or
a cross module reference.

As described when defining hierarchical_identifier, the hierarchical
path is assigned to the defined in the clocking block.

clocking cb2 @ (negedge clk);
input #0 b = top.q;

endclocking

Below is an example of the hierarchical_identifier as a program port:

program p1(output reg out3,input logic clk,input reg in);
clocking cb @(posedge clk);

 output #3 out2 = out3;//out3 and in = program ports
 input #0 out1 = in;

endclocking
endprogram

Signals in Multiple Clocking Blocks

The signals (clocks, input, outputs, or inouts) associated with one
clocking block can be associated with any other clocking blocks. For
example:

program test(input bit clk_1, input bit clk_2,
 input reg [15:0] data);

default clocking data @(posedge clk_1);
 input data;
endclocking

clocking address @(posedge clk_2);
 input data;

24-195

SystemVerilog Testbench Constructs

endclocking

Clocking blocks that use the same clock can share the same
synchronization event. For example:

program test(input bit clk_1, input reg [15:0] address,
 input reg [15:0] data);

default clocking data @(posedge clk_1);
 input data;
endclocking

clocking address @(posedge clk_1);
 input address;
endclocking

Clocking Block Scope and Lifetime

Signals associated with a clocking block can be accessed by using
a dot (.) operator. For example:

clocking CB_1 @(posedge clk_1);
 input data;
 input address;
endclocking

CB_1.data;
CB_1.address;

The scope of a clocking block is local to its enclosing module,
interface, or program. Clocking blocks cannot be nested. They cannot
be declared inside packages, functions, tasks, and outside all
declarations in a compilation unit. The lifetime of a clocking block is
static.

24-196

SystemVerilog Testbench Constructs

Clocking Block Events

The clocking_identifier can be used to refer to the clocking_event of
a clocking block. For example:

clocking cb1 @(posedge clk);
input #0 i1;
input negedge #2 address;

endclocking

The clocking event of the cb1 clocking block can be used to wait for
that particular event:

@(cb1);

Therefore, @(cb1) is equivalent to @(posedge clk).

Default Clocking Blocks

One clocking block can be specified as the default clocking block for
all cycle delay operations within a given module, program, or
interface.

Syntax:

default clocking clocking_identifier

 or

clocking_declaration ::==
[default] clocking [clocking_identifier] clocking_event;

endclocking

clocking_identifier

Name of a clocking block.

24-197

SystemVerilog Testbench Constructs

Note:
You can specify only one default clocking block in a program,
module, or interface. VCS issues a compilation error if you specify
more than one default clocking block.

For example:

program test(input bit clk, input reg [15:0] data);

default clocking bus @(posedge clk);
 input data;
endclocking

initial begin
 ## 5;
 if (bus.data == 10)
 ## 1;
 else
 ##2;
end

endprogram

Cycle Delays

Cycle delays can be used to postpone or delay the execution by a
specified number of clock cycles or clocking events. The term cycle
refers to the clock associated with the default clocking block.The ##
operator is used to specify cycle delay.

Syntax:

integral_number | integer | (expression)

expression

24-198

SystemVerilog Testbench Constructs

Any SystemVerilog expression that evaluates to a positive integer
value.

For example:

2;
(x+1);

Note:
VCS issues a compilation error if you use a cycle delay without
specifying a default clocking block for the current module,
interface, or program.

Input Sampling

All inputs and inouts of a clocking block are sampled at the
clocking_event for that block. The following is skew related behavior
involving regions:

• When the skew is #0, the signal value in the Observed region
corresponds to the value sampled.

• When the skew is not #0, then the signal value at the Postponed
region of the timestep skew time-units prior to the clocking event
corresponds to the value sampled.

• When the skew is #1step, the signal value in the Preponed region
corresponds to the value sampled.

The last sampled value of signal replaces the signal when the signal
appears in an expression.

Note:
See section 14.3 of the SystemVerilog LRM 3.1a for definitions
of Observed, Postponed and Preponed regions.

24-199

SystemVerilog Testbench Constructs

Synchronous Events

The event control operator, @, is used for explicit synchronization.
This operator causes a process to wait for a particular event (that is,
signal value change, or a clocking event) to occur.

Syntax

@ (expression);

expression

denotes clocking block input or inout, or a slice, which may include
dynamic indices. The dynamic indices are evaluated when
@(expression) executes.

For examples, see pages 189-190 of the SystemVerilog LRM3.1a

Synchronous Drives

The output (or inout) signals defined in a clocking block are used to
drive values onto their corresponding signals in the DUT at a specified
time. That is, the corresponding signal changes value at the indicated
clocking event as indicated by the output skew.

Note: For the syntax for specifying a synchronous drive, see section
15.14 of the SystemVerilog LRM 3.1a.

Consider the following clocking block and synchronous drives:

clocking cb1 @(posedge clk);
default output #2;
input #2 output #0 a = a1;
output b = b1;

endclocking

24-200

SystemVerilog Testbench Constructs

initial
begin

@ (cb1); //synchronising with clocking event
cb1.a <= 0; //drive at first posedge
cb1.b <= 0; //drive after skew on first posedge

 ##2 cb1.a <= 1;
 ##1 cb1.b <= 1; //drive after 3 clock cycles

end

The expression cb1.a (and cb1.b) is referred to as the
clockvar_expression in the SystemVerilog LRM 3.1a (see page 190).

Note:Synchronous drives with a blocking cycle delay is supported.
However, a synchronous drive with an intra cycle delay is not yet
supported.

Drive Value Resolution

When the same net is an output from multiple clocking blocks, then
the net is driven to its resolved signal value. When the same variable
is an output from multiple clocking blocks, then the last drive
determines the value of the variable.

Clocking Blocks in SystemVerilog Assertions

You can enter a clocking block as a clock signal for an assertion,
property, or sequence. When you do the clocking event in the clocking
block becomes the clock signal. The following is an example of a
clocking block in an assertion:

clocking ck1 @(posedge clk) ;
...
endclocking

24-201

SystemVerilog Testbench Constructs

sequence seq ;
 @(ck1) a ##1 b ;
endsequence

A: assert property (@(ck1) a ##1 b) ;
N: assert property (seq) ;

In this example the clocking block named ck1 is specified a the clock
signal in the sequence and the two assertions. The clocking event in
the clocking block, posedge clk, becomes the clock signal.

Sequences and Properties in Clocking Blocks

You can enter sequences and properties in a clocking block and then
use them in an assertion. When you do, the clocking event for the
clocking block becomes the clock signal for the sequence or property.
The following is an example of a property in a clocking block:

clocking ck1 @(posedge clk) ;
property prop1;
 a ##1 b ;
endproperty
endclocking

A: assert property (ck1.prop1) ;

Here property prop1 is declared in the clocking block named ck1. The
clock signal for the property is posedge clk. You enter the property
in an assertion by specifying the clocking block and then the property.

24-202

SystemVerilog Testbench Constructs

SystemVerilog Assertions Expect Statements

SystemVerilog assertions expect statements differ from assert,
assume, and cover statements in the following ways:

• expect statements must appear in a SystemVerilog programs,
whereas assert, assume, and cover statements can appear in
modules, interfaces, and programs.

• You can declare sequences and properties and use them as
building blocks for assert, assume, and cover statements, but
this is not true for expect statements. expect statements don’t
have sequences, neither explicitly or implicitly. expect
statements have properties, but properties are not explicitly
declared with the property keyword.

Note:

- assert, assume, and cover statements cannot appear in
clocking blocks.

- assert, assume, and cover statements can appear in
programs on an early availability basis.

In an expect statement you specify a clock signal and have the
option of specifying an edge for clocking events and delays, just like
assert and cover statements, but these are not followed by a
sequence, instead there is just a clock delay and an expression. There
are action blocks that execute based on the truth or falsity of the
expression. The clock delay can be a range of clocking events, and
VCS evaluates the expression throughout that range. You can specify
that the clock delay and evaluation of the expression must repeat a
number of times (you can’t both have a range of clocking events and
also use repetition).

24-203

SystemVerilog Testbench Constructs

The following is an example of an expect statement:

e1: expect (@(posedge clk) ##1 in1 && in2)
 begin
 . // statements VCS executes
 . // if in1 && in2 is true
 .
 end
 else
 begin
 . // Statements VCS executes
 . // if in1 && in2 is false
 .
 end

Where:

e1:
Is an instance name for the expect statement. You can use any
unique name you want, followed by a colon (:).

expect
The expect keyword.

(@(posedge clk) ##1 in1 && in2)
Is the property of the expect statement. Such properties are
enclosed in parentheses. This property is the following:

@(posedge clk)
the clock signal is clk, the clocking event is a rising edge
(posedge) on clk. Using the posedge keyword means that it,
with the clock signal, are an expression and so are also
enclosed in parentheses.

##1
Is a clock delay. It specifies waiting for one clocking event, then
evaluating the expression.

in1 && in2
Is an expression. If true, VCS executes the first action block

24-204

SystemVerilog Testbench Constructs

called the success block. if false VCS executes the second
action blockafter the keyword else, called the failure block.

Here is another example of an expect statement. This one calls for
evaluating the expression after a range of clocking events.

e2: expect (@(posedge clk) ##[1:9] in1 && in2)
 begin
 . // statements VCS executes
 . // if in1 && in2 is true
 .
 end
 else
 begin
 . // Statements VCS executes
 . // if in1 && in2 is false
 .
 end

This expression calls for evaluation the expression after 1, 2, 3, 4, 5,
6, 7, 8, and 9 clocking events, a range of clocking events from 1 to 9.

Here is another example of an expect statement. This one calls for
evaluating the expression to be true a number of times after the clock
delay.

e3: expect (@(posedge clk) ##1 in1 && in2 [*5])
 begin
 . // statements VCS executes
 . // if in1 && in2 is true
 .
 end
 else
 begin
 . // Statements VCS executes
 . // if in1 && in2 is false
 .
 end

24-205

SystemVerilog Testbench Constructs

[*] is the consecutive repeat operator. This expect statement calls
for waiting a clock delay and then seeing if the expression is true, and
doing both of these things five times in a row.

Note:
You can use the [*] consecutive repeat operator when you
specify a range of clocking events such as ##[1:9].

The following is a code example that uses expect statements:

module test;
logic log1,log2,clk;

initial
begin
log1=0;
log2=0;
clk=0;
#33 log1=1;
#27 log2=1;
#120 $finish;
end

always
#5 clk=~clk;

tbpb tbpb1(log1, log2, clk);
endmodule

program tbpb (input in1, input in2, input clk);
bit bit1;

initial
begin

e1: expect (@(posedge clk) ##1 in1 && in2)
 begin
 bit1=1;
 $display("success at %0t in %m\n",$time);
 end

24-206

SystemVerilog Testbench Constructs

 else
 begin
 bit1=0;
 $display("failure at %0t in %m\n",$time);
 end
e2: expect (@(posedge clk) ##[1:9] in1 && in2)
 begin
 bit1=1;
 $display("success at %0t in %m\n",$time);
 end
 else
 begin
 bit1=0;
 $display("failure at %0t in %m\n",$time);
 end
e3: expect (@(posedge clk) ##1 in1 && in2 [*5])
 begin
 bit1=1;
 $display("success at %0t in %m\n",$time);
 end
 else
 begin
 bit1=0;
 $display("failure at %0t in %m\n",$time);
 end

end
endprogram

The program block includes an elementary clocking block, specifying
a clocking event on the rising edge of clk, and no skew for signals in1
and in2.

The $display system tasks in the failure and success action blocks
display the following:

failure at 15 in test.tbpb1.e1

success at 65 in test.tbpb1.e2

24-207

SystemVerilog Testbench Constructs

success at 125 in test.tbpb1.e3

Virtual Interfaces

A Virtual Interface (VI) allows a variable to be a dynamic reference
to an actual instance of an interface. VCS classifies such a variable
with the Virtual Interface data type. Here is an example:

interface SBus;
 logic req, grant;
endinterface

module m;
SBus sbus1();
SBus sbus2();
.
.
.

endmodule

program P;
virtual SBus bus;

initial
begin
 bus = m.sbus1; // setting the reference to a real
 // instance of Sbus
 $display(bus.grant); // displaying m.sbus1.grant
 bus.req <= 1; // setting m.sbus1.req to 1
 #1 bus = m.sbus2;
 bus.req <= 1;
end
endprogram

24-208

SystemVerilog Testbench Constructs

Scope of Support

VCS supports virtual interface declarations in the following locations:

• program blocks and classes (including any named sub-scope)

• tasks or functions inside program blocks or classes (including any
named sub-scope).

Variables with the virtual interface data type can be either of the
following:

• SystemVerilog class members.

• Program, task, or function arguments.

You cannot declare a virtual interface in a module or interface
definition.

Virtual Interface Modports

If only a subset of Interface data members is bundled into a modport,
a variable can be declared as “virtual Interface_name.modport_name”:

Example.

interface SBus;
 logic req, grant;
 modport REQ(input req);
endinterface
program P;
virtual Sbus.REQ sb;

The semantic meaning is the same as in the example above with the
difference that sb is now a reference only to a portion of Sbus and

24-209

SystemVerilog Testbench Constructs

writing assignments are subject to modport direction enforcement so
that, for example, “sb.req = 1" would become illegal now (violates
input direction of the modport REQ).

Driving a Net Using a Virtual Interface

There are two ways of driving interface nets from a testbench. These
are:

• Via clocking block:

interface intf(input bit clk);
 wire w1;
 clocking cb @ (posedge clk);
 output w1;
 endclocking
endinterface

• By including a driver updated by a continuous assignment from a
variable within the interface

interface intf;
 wire w1;
 reg r1;
 assign w1 = r1;
endinterface

This example demonstrates driving an interface net in a design.

Virtual Interface Modports and Clocking Blocks

You can reference an interface clocking block signal directly by using
dot notation. The clocking information can be sent to the testbench
only through modport if interface is having modports. The following
example demonstrates this.

24-210

SystemVerilog Testbench Constructs

interface intf(input clk);
 int d;
 clocking cb @(posedge clk);
 default input #2 output #2;
 inout d;
 endclocking

 modport CB(clocking cb); //synchronous testbench modport
 modport master(inout d); //asynchronous testbench modport
endinterface

module top;
 bit clk;

 always #5 clk = ~clk;
 intf INTF(clk);
 tb TB(INTF);
endmodule

program tb(intf.CB ckb); //CB type modport is used to pass
 //clocking information with interface signals

 virtual intf.CB x = ckb;

 initial
 #200 $finish;

 initial begin
 x.cb.d <= 1; @(x.cb.d); $display($time,,x.cb.d);
 x.cb.d <= 2; @(x.cb.d); $display($time,,x.cb.d);
 //x.d <= 3; illegal as signal not visible via
 //CB modport
 end
endprogram

The output of this example is:

 15 1
 25 2

24-211

SystemVerilog Testbench Constructs

In the above example, if the modport passed to the testbench is of
asynchronous type “intf.master” then the program will be:

program tb(intf.master ckb);
 virtual intf.master x = ckb;

initial begin
 x.d <= 1; @(x.d); $display($time,,x.d);
 x.d <= 2; @(x.d); $display($time,,x.d);
 end
endprogram

The output of this example is:

 0 1
 0 2

Since clocking information is not passed through modport, the values
are driven irrespective of clock.

Array of Virtual Interface

You can declare an array of virtual interfaces like any other array.
Arrays of virtual interfaces can have aggregate assignment with
arrays of interface instance. You can pass the entire array of virtual
interfaces or a part of it can be passed to procedural methods
(including class constructor).

The following program illustrates how to use arrays of virtual
interfaces:

interface intf;
 int k = 30;
endinterface

24-212

SystemVerilog Testbench Constructs

program p;
 virtual intf VI[3:0];

 initial begin
 VI = top.INTF; //aggregate assignment
 $display(VI[0].k);
 t1(VI);//passing whole VI array to task
 end

 task t1(virtual intf vif[3:0]);
 $display(vif[0].k);
 endtask
endprogram

module top;
 intf INTF [3:0]();
endmodule

The output of this program is:

 30
 30

Driving/sampling of interface signals through Virtual Interface array
elements is possible.For example:

VI[0].k <= 10; //valid drive
@ (VI[0].k); //valid wait

Clocking Block

Similarly to modport, a clocking block inside interface instance can
be referred to by a virtual variable:

interface SyncBus(input bit clk);
 wire w;
 clocking cb @(posedge clk);
 output w;
 endclocking

24-213

SystemVerilog Testbench Constructs

endinterface
....
program P;
virtual SyncBus vi;
...
initial vi.cb.w <= 1;
...
endprogram

In this case the assignment executes in accordance with the clocking
block semantics.

Event Expression/Structure

Consider SyncBus as defined in the section “Clocking Block” .

task wait_on_expr(virtual SyncBus vi1, virtual SyncBus vi2);
 @(posedge (vi1.a & vi2.a))
 $display(vi1.b, vi2.b);
endtask

There is a principal difference between Vera and SV in that the “@”
operator can have an operand that is a complex expression. We
support all event expression that involve virtual interface variables.

Structures inside an interface can also be referred to by means of a
virtual interface.

Null Comparison

We support:

• Comparison of vi variable with NULL.

• Runtime error if uninitialized virtual interface is used

24-214

SystemVerilog Testbench Constructs

begin
 virtual I vi;
 vi.data <= 1;
end

• NULL assignment

virtual I vi = NULL;

Not Yet Implemented

• Named type that involves virtual interface

- typedef struct {reg rl; virtual I ii} T;

- typedef virtual I T;

• Comparison of vi variables

By definition, vi1 == vi2 iff they refer to the same instance of an
interface (or both NULL).

• VI variables defined in the design.

• Class member variable access through VI when is declared in
parent interface.

Coverage

The VCS implementation of SystemVerilog supports the
covergroup construct. Covergroups are specified by the user. They
allow the system to monitor values and transitions for variables and
signals. They also enable cross coverage between variables and
signals.

24-215

SystemVerilog Testbench Constructs

VCS collects all the coverage data during simulation and generates
a database. VCS provides a tool to read the database and generate
text or HTML reports.

The covergroup Construct

The covergroup construct specifies the set of cover points of
interest, crosses of these cover points and the clocking event that
tells VCS when to sample these cover points during simulation.

A covergroup can be declared inside a module or the program block.
When declared inside a module they generate a separate instance
of the covergroup for each instance of the module created.

program prog;

bit clk = 0;

enum {red, blue, yellow} colors;
colors my_color;

covergroup cg1 @(posedge clk);
cp1 : coverpoint my_color;

endgroup

cg1 cg1_1 = new;

initial
repeat (15)
 #5 clk = ~clk;

initial
begin
 #40 my_color = blue;
 #23 my_color = yellow;
end

24-216

SystemVerilog Testbench Constructs

endprogram

This program contains the following:

• The enumerated data type colors, with members named red, blue,
and yellow (whose default values are 0, 1, and 2).

• A variable of type colors called my_color

• A covergroup named cg1 that specifies the following:

- the clocking event that is the rising edge on signal clk.

- the coverage point that is to monitor the values of the variable
my_color. The identifier of the coverage point, for hierarchical
name purposes, is cp1.

• an instantiation of covergroup cg1 using the new method.

A covergroup can be defined inside a class. Furthermore there can
be multiple covergroups in a class.

The following is an example of declaring a covergroup inside a class.

program P;
class MyClass;

int m_a;
covergroup Cov @(posedge clk);

coverpoint m_a;
endgroup

function new();
Cov = new;

endfunction
endclass

endprogram

24-217

SystemVerilog Testbench Constructs

Defining a Coverage Point

In a coverage point definition you can specify the following:

• bins for value ranges

• bins for value transitions

• bins for illegal coverage point values

Bins for Value Ranges

You use the curly braces { } and the bins keyword to specify the
bins for a coverage point, for example:

covergroup cg1 @ (posedge clk);
coverpoint data
{
bins some_name [] = {[1:20]};
}
endgroup

In coverage point data:

• The keyword bins specifies one or more bins for coverage data.

• The name some_name is an identifier for all the bins. It is the root
bin name.

• The empty square brackets [] specifies there will be a separate
bin for each value in the specified range.

• The range of value follows the equal sign = and is in the nested
set of curly braces { }. This range is 1 through 20. The range is
always specified as lowest_value:highest_value.

24-218

SystemVerilog Testbench Constructs

Coverage point data will have 20 bins, the first named some_name_1
and the last named some_name_20.

Bin Value/ Range Resolution
The values corresponding to the range specified by a bin for a
coverpoint are resolved according to the precision and sign-ness of
the corresponding coverpoint expression.

To evaluate a bin hit and update the hit count the coverpoint and bin
expressions are compared and evaluated.

A warning is generated in the following cases.

• If the coverpoint expression is unsigned and bin expressions is
signed and is a negative value.

• If the assignment equivalence of the coverpoint and bin
expression does not match.

• If the bin expression evaluates to a value that contains X or Z bits.

The following rules shall apply when a warning is issued for a bin
element:

- If there is a single element described in the bin range which is
outside the scope of the evaluated coverpoint expression then
the element is not considered for the bin expression.

- If the elements that describe the bin range, contains x or z bits
then every value in the range would generate a warning and
the elements are not considered for the bin expression.

- If the elements that describe the bin range are outside the
scope of the evaluated coverpoint expression then the bin
range is accordingly adjusted to the min and max values
corresponding to the evaluated coverpoint values.

24-219

SystemVerilog Testbench Constructs

Example :

bit [1:0] cp_exp1;
// type evaluates to the value range of 0 to 3

bit signed [2:0] cp_exp2;
// type evaluates to the value range of -4 to 3

covergroup g1 @(posedge clk);
coverpoint cp_exp1 {

bins b_exp1 = {1, [2:5] };
bins b_exp2 = { -1, [1:4]};

}
coverpoint cp_exp2 {

bins b_exp3 = {1, [2:5], [6:10] };
}
endgroup

Warnings Issued and their resolutions
A warning is issued for the bin b_exp1 since the range [2:5] exceeds
the upper bound for the coverpoint cp_exp1. The bin b_exp1 is
evaluated and adjusted to the max value of the coverpoint. Here the
bin b_exp1 is evaluated as {1, [2:3]}.

A warning is issued for the bin b_exp2 since the singleton value -1
exceeds the upper bound for the coverpoint cp_exp1. The bin b_exp2
is evaluated such that the -1 value is not considered. Here the bin
b_exp2 is evaluated as {[1:3]}.

A warning is issued for the bin b_exp3 since the range [2:5] and
[6:10] exceeds the upper bound for the coverpoint cp_exp3. The
bin b_exp3 is evaluated such that the range [2:5] is adjusted to the
max value of the coverpoint and the range [6:10] is completely
ignored. Here the bin b_exp3 is evaluated as {1, [2:3]}.

24-220

SystemVerilog Testbench Constructs

You can specify different bins for different value ranges, for example:

coverpoint data
{

bins first_ten = {[1:10]};
bins second_ten = {[11:20]};

}

Here the coverage information about when the coverage point data
has the values 1 to 10 is in the bin named first_ten, and the information
about when data has the values from 11 to 20 is in the bin named
second_ten.

You can specify a default bin with the default keyword, for example:

coverpoint data
{

bins bin1 = {[1:5]};
bins bin2 = {[6:10]};
bins bin3 = default;

}

In this example coverage information about when data has the values
1-10 is in bins bin1 and bin2, information about all other values is in
bin3.

You can specify a list of value ranges for example:

coverpoint data
{

bins bin1 = {[0:3],5,7,[9:10]};
bins bin2 = {4,6,8};
bins bin3 = default;

}

24-221

SystemVerilog Testbench Constructs

Here the information about when data is 0, 1, 2, 3, 5, 7, 9, and 10 is
in bin1, the information about when data is 4, 6, and 8 is in bin2, and
the information about when data has any other value is in bin3.

When you instantiate the covergroup, you can make the covergroup
a generic covergroup and then pass integers to specify value ranges
in the new method, for example:

covergroup cg1 (int low, int high) @ (posedge clk);
coverpoint data
{

bins bin1 = {[low:high]};
}

endgroup

cg1 cg1_1 = new(0,10); // 0 is the low value
 // 10 is the high value
 // of the range

Bins for Value Transitions

In a transition bin you can specify a list of sequences for the
coverpoint. Each sequence is a set of value transitions, for example:

coverpoint data
{

bins from0 = (0=>1),(0=>2),(0=>3);
bins tran1234 = (1=>2=>3=>4);
bins bindef = default;

}

In this example, coverage information for the sequences 0 to 1, 0 to
2, or 0 to 3 is in the bin named from0. Coverage information about
when data transitions occurred from 1 to 2 and then 3 and then 4 is
in bin tran1234.

24-222

SystemVerilog Testbench Constructs

You can use range lists to specify more than one starting value and
more than one ending value, for example:

bins from1and5to6and7 = (1,5=>6,7);

Is the equivalent of:

bins from1and5to6and7 = (1=>6, 1=>7, 5=>6, 5=>7);

You can use the repetition [*] operator, for example:

bin fivetimes3 = (3 [*5]);

Is the equivalent of:

bin fivetimes3 = (3=>3=>3=>3=>3);

You can specify a range of repetitions, for example:

bin fivetimes4 = (4 [*3:5]);

Is the equivalent of:

bin threetofivetimes4 = (4=>4=>4,4=>4=>4=>4,4=>4=>4=>4=>4);

Specifying Illegal Coverage Point Values

Instead of specifying a bin with the bins keyword, use the
illegal_bins keyword to specify values or transitions that are
illegal.

coverpoint data
{

illegal_bins badvals = {7,11,13};
illegal_bins badtrans = (5=>6,6=>5);
bins bindef = default;

24-223

SystemVerilog Testbench Constructs

}

VCS displays an error message when the coverage point reaches
these values or makes these transitions.

Defining Cross Coverage

Cross coverage is when there are two coverage points that you want
VCS to compare to see if all the possible combinations of the possible
values of the two coverage points occurred during simulation.
Consider the following example:

program prog;
bit clk;
bit [1:0] bit1,bit2;

covergroup cg1 @(posedge clk);
 bit1: coverpoint bit1;
 bit2: coverpoint bit2;
 bit1Xbit2: cross bit1, bit2;
endgroup

cg1 cg1_1 = new;

initial
begin
 clk = 0;
 repeat (200)
 begin
 bit1 = $random();
 bit2 = $random();
 #5 clk = ~clk;
 #5 clk = ~clk;
 end
end

endprogram

24-224

SystemVerilog Testbench Constructs

In covergroup cg1 there are two coverpoints labeled bit1 and bit2. In
addition, there is the following:

1. the bit1Xbit2 identifier for the cross.

2. The cross keyword, specifying the coverpoints to be crossed.

Both coverpoints are two-bit signals. The four possible values of each
are 0 through 3. There are 16 possible combinations of values.

The prog.txt file for this code contains the following:

 Automatically Generated Cross Bins

 bit1 bit2 # hits at least
 ===
 auto[0] auto[0] 10 1
 auto[0] auto[1] 13 1
 auto[0] auto[2] 12 1
 auto[0] auto[3] 5 1
 auto[1] auto[0] 12 1
 auto[1] auto[1] 18 1
 auto[1] auto[2] 10 1
 auto[1] auto[3] 13 1
 auto[2] auto[0] 19 1
 auto[2] auto[1] 16 1
 auto[2] auto[2] 17 1
 auto[2] auto[3] 6 1
 auto[3] auto[0] 6 1
 auto[3] auto[1] 15 1
 auto[3] auto[2] 16 1
 auto[3] auto[3] 12 1
 ===

There are 16 cross coverage bins, one for each possible combination.

Defining Cross Coverage Bins

24-225

SystemVerilog Testbench Constructs

The binsof construct supplies the coverage bins for the expression
argument, which can be either a coverpoint or a coverpoint bin.

covergroup cg1 @(posedge clk);
 cp1 : coverpoint bit1
 {
 bins lowcp1vals = {[0:7]};
 bins hicp1vals = {[8:15]};
 }
 cp2 : coverpoint bit2
 {
 bins lowcp2vals = {[0:7]};
 bins hicp2vals = {[8:15]};
 }
 cp1Xcp2 : cross cp1, cp2
 {

 bins bin1 = binsof(cp1) intersect {[0:7]};
 bins bin2 = binsof(cp1.hicp1vals) ||

 binsof(cp2.hicp2vals);
 bins bin3 = binsof(cp1) intersect {[0:1]} &&

 binsof(cp2) intersect {[0:3]};
 }
endgroup

In this example, the respective cross coverage bins, bin1, bin2, and
bin3 receive data whenever the corresponding right hand side binsof
expressions are satisfied. For example, bin1 receives data when
any bin of cp1 whose value range overlaps with the range [0:7]
receives data. In this case bin1 receive data whenever bin
lowcp1vals of coverpoint cp1 receives data.

24-226

SystemVerilog Testbench Constructs

Similarly, cross bin, bin2 receives data whenever either bin
hicp1vals, of coverpoint cp1, receives data, or bin hicp2vals, of
cover point cp2, receives data. Cross bin, bin3 receives data if any
bin of cover point cp1, whose value range overlaps with the range
[0:1], receives data, and, for the same sample event occurrence, any
bin of cover point cp2, whose value range overlaps with the range
[0:3], also receives data. In this example, cross bin bin3 receives
data when bin lowcp1vals, of cover point cp1, receives data, and
bin lowcp2vals, of cover point cp2, also receives data.

If none of the user-defined cross bins match, then VCS automatically
creates an auto cross bin to store the hit count for each unique
combination of the cover point bins.

Cumulative and Instance-based Coverage

Coverage statistics can be gathered both cumulatively and on a per-instance
basis.

Cumulative Coverage

Cumulative implies that coverage statistics (that is, bin hit counts and
coverage numbers) are computed for the covergroup definition. In this case
all instances of the covergroup contribute to a single set of statistics
maintained for the covergroup definition. By default, VCS computes
cumulative coverage information.

An example of when this kind of coverage is useful is when covering a
packet class. Cumulative coverage will provide information for all the
packet instances of the class.

24-227

SystemVerilog Testbench Constructs

Note:
In cumulative mode, only cumulative information can be queried for.
Furthermore, the coverage reports only report on cumulative data for
the covergroup definitions, and not instances.

Instance-based Coverage

Instance-based coverage statistics involve computing coverage statistics for
every instance of a covergroup as well as the covergroup definition as a
whole. VCS computes per-instance coverage statistics when you set the
cumulative attribute of the option.per_instance to 1.

Module based Covergroup Instances
The covergroups defined inside a module creates a separate
instances of the covergroup for every instance of the module created.
The coverage statistics is calculated for every instance of the module
created separately even when the option.per_instance is set to 0.

Coverage Options

You can specify options for the coverage of a covergroup with the
type_option.option=argument keyword and argument for
specifying options, for example:

covergroup cg2 @(negedge clk);
type_option.weight = 3;
type_option.goal = 99;
type_option.comment = "Comment for cg2";
 cp3 : coverpoint bit3;
 cp4 : coverpoint bit4;
endgroup

These options specify the following:

24-228

SystemVerilog Testbench Constructs

type_option.weight = integer;
Specifies the weight of the covergroup when calculating the
overall coverage. Specify an unsigned integer. The default weight
value is 1.

type_option.goal = integer;
Specifies the target goal of the covergroup. Specify an integer
between 0 and 100. The default goal is 90.

Note:
 “Coverage number” is a percentage. If all bins of a covergroup
are covered, then the coverage number for that covergroup is
100%.

type_option.comment = "string";
A comment in the report on the covergroup.

You can also apply these option to coverage points, for example:

covergroup cg1 @(posedge clk);
 cp1 : coverpoint bit1
 {
 type_option.weight = 333;
 type_option.goal = 50;
 type_option.comment = "Comment for bit1";
 }
 cp2 : coverpoint bit2;
endgroup

You can also apply these options to instances using the
instance_name.option.option_name=argument keyword
and argument, for example:

covergroup cg1 @(posedge clk);
 cp1 : coverpoint bit1;
 cp2 : coverpoint bit2;
endgroup

24-229

SystemVerilog Testbench Constructs

cg1 cg1_1 = new;

initial
begin
 cg1_1.option.weight = 10;
 cg1_1.option.goal = 75;
.
.
.
end

Instance specific options are procedural statements in an initial block.

There are additional options that are just for instances:

instance_name.option.at_least=integer
Specifies the minimum number of hits in a bin for VCS to consider
the bin covered.

instance_name.option.detect_overlap=boolean
The boolean argument is 1 or 0. When boolean is 1, VCS
displays a warning message when there is an overlap between
the range list or transitions list of two bins for the coverage point.

instance_name.option.name[=string]

This option is used to specify a name for the covergroup instance.
If a name is not specified, a name is automatically generated.

instance_name.option.per_instance=boolean
The boolean argument is 1 or 0. When boolean is 1, VCS keeps
track of coverage data for the instance.

24-230

SystemVerilog Testbench Constructs

Predefined Coverage Methods

SystemVerilog provides a set of predefined covergroup methods
described in this section. These predefined methods can be invoked
on an instance of a covergroup. They follow the same syntax as
invoking class functions and tasks on an object.

Predefined Coverage Group Functions

The predefined methods supported at this time are:

• get_coverage()

• get_inst_coverage()

• set_inst_name(string)

• sample()

• stop()

• start()

get_coverage()
Calculates the coverage number for the covergroup type (see
page 228 for definition). Return type: real.

Below is an example of using get_coverage() to calculate the
coverage number of a covergroup:

program test();
reg clk = 0;
reg [2:0] var = 3'b001;
class A;
covergroup covType @(clk); //covergroup, covType, defined

 //in class A,
 cp1: coverpoint var {

24-231

SystemVerilog Testbench Constructs

 bins s0 = {[0 : 2]} ;
 bins s1 = { 3 };
 bins s2 = { 4 };
 bins s3 = { 5 };
 bins s4 = { 6 };
 bins s5 = { 7 };
 }
endgroup

function new;
 covType = new(); //instantiate the embedded covergroup
endfunction

endclass

A A_inst;

initial begin
 repeat (10) begin
 #5 clk = ~clk;
 var = var + 1;
/* get_coverage() calculates the number of the embedded

covergroup covType as a whole */
 $display("var=%b coverage=%f\n", var,

A_inst.covType.get_coverage());
 end
end

initial
A_inst = new();

endprogram
Output of program:
var=010 coverage=0.000000

var=011 coverage=16.666666

var=100 coverage=33.333332

var=101 coverage=50.000000

var=110 coverage=66.666664

24-232

SystemVerilog Testbench Constructs

var=111 coverage=83.333336

var=000 coverage=100.000000

var=001 coverage=100.000000

var=010 coverage=100.000000

var=011 coverage=100.000000

See the get_coverage(), stop(), start() example on page 235 for
another example of using the get_coverage() function.

get_inst_coverage()
Calculates the coverage number for coverage information related
to the covergroup instance. Return type: real.

program test();
reg clk = 0;
reg [2:0] var = 3'b001;

covergroup covType (input integer param1) @(clk);
 cp1: coverpoint var {
 bins s0 = { [0 : param1] } ;
 bins s1 = { 3 };
 bins s2 = { 4 };
 bins s3 = { 5 };
 }
type_option.per_instance =1;
endgroup

covType cov1;

initial begin
 repeat (5) begin
 #5 clk = ~clk;
 var = var + 1;
 $display("var=%b coverage=%f\n", var,

cov1.get_inst_coverage());

24-233

SystemVerilog Testbench Constructs

 end
end

initial
 cov1 = new(2);

endprogram

The output of the program is:

va1r=010 coverage=0.000000

va1r=011 coverage=25.000000

va1r=100 coverage=50.000000

va1r=101 coverage=75.000000

va1r=110 coverage=100.000000

set_inst_name(string)
The instance name is set to string. Return type: void.

In the example below, cov1 is the name of an instance that is of type
covType, declared as such (covType cov1; cov1 = new(2);).
The name is changed to new_cov1 after calling
set_inst_name("new_cov1").

program test();
reg clk = 0;
reg [2:0] var = 3'b001;

covergroup covType (input integer param1) @(clk);
 cp1: coverpoint var {
 bins s0 = { [0 : param1] } ;
 bins s1 = { 3 };
 }
endgroup

covType cov1;

24-234

SystemVerilog Testbench Constructs

initial
begin
 cov1 = new(2);
 $display("Original instance name is %s\n",

cov1.option.name);
 cov1.set_inst_name("new_cov1");//change instance name
 $display("Instance name after calling set_inst_name()

is %s\n", cov1.option.name);
end

endprogram

Output of the program is:

Original instance name is cov1

Instance name after calling set_inst_name() is new_cov1

sample()
sample() triggers sampling of the covergroup instance. Return
void.

program test();
reg clk = 0;
reg [2:0] var = 3'b001;

covergroup covType ();
 cp1: coverpoint var {
 bins s0 = { 0 };
 bins s1 = { 1 };
 bins s2 = { 2 };
 bins s3 = { 3 };
 bins s4 = { 4 };
 bins s5 = { 5 };
 bins s6 = { 6 };
 bins s7 = { 7 };
 }
endgroup

24-235

SystemVerilog Testbench Constructs

covType cov1;

initial
 cov1 = new();

initial begin
 repeat (10) begin
 #10 clk = ~clk;
 var = var + 1;
 end
end
initial begin
 repeat (40) begin
 #3 cov1.sample();
 end
end
endprogram

stop()
When called, collecting of coverage information is stopped for that
instance. Return type: void. See the get_coverage(), stop(), start()
example on page 235.

start()
When called, collecting of coverage information resumes for that
instance. Return type: void. See the get_coverage(), stop(), start()
example on page 235.

get_coverage(), stop(), start() example
program test();
reg clk = 0;
reg [2:0] var = 3'b001;

covergroup covType (input integer param1) @(clk);
 cp1: coverpoint var {
 bins s0 = { [0 : param1] } ;
 bins s1 = { 3 };

24-236

SystemVerilog Testbench Constructs

 bins s2 = { 4 };
 bins s3 = { 5 };
 bins s4 = { 6 };
 bins s5 = { 7 };
 }
endgroup

covType cov1;

initial begin
 repeat (10) begin
 #5 clk = ~clk;
 var = var + 1;
 $display("var=%b covergae=%f\n", var,

cov1.get_coverage());
 end
end

initial
begin
 cov1 = new(2);
 cov1.stop();
 cov1.option.weight = 5;
 #30 cov1.start();
end

endprogram

OUTPUT:

var=010 covergae=0.000000

var=011 covergae=0.000000

var=100 covergae=0.000000

var=101 covergae=0.000000

var=110 covergae=0.000000

24-237

SystemVerilog Testbench Constructs

var=111 covergae=0.000000

var=000 covergae=16.666666

var=001 covergae=33.333332

var=010 covergae=33.333332

var=011 covergae=33.333332

Unified Coverage Reporting

The db based coverage reporting has been replaced by the Unified
Report Generator (URG). The URG generates combined reports for
all types of coverage information. The reports may be viewed through
through an overall summary "dashboard" for the entire design/
testbench.

The format of the text report generated by the URG is enhanced and
different from the text report that used to be generated by the vcs
-cov_report command line options. Any scripts that use these old
command line options now need to be modified to use the URG
options.

The functional coverage database files and their location have been
changed. The coverage database is written to a top-level coverage
directory. By default this directory name is simv.vdb. In general its
name comes from the name of the executable file, with the .vdb
extension. The reporting tool shipped with VCS version 2006.06
cannot read coverage databases generated using previous versions
of VCS. Similarly, the reporting tool shipped with VCS 2006.06
versions cannot read coverage databases generated using VCS
2006.06.

24-238

SystemVerilog Testbench Constructs

The Coverage Report

During simulation VCS creates a default database directory simv.vdb.
For the code example above, VCS writes the simv.vdb directory in
the current directory. This directory contains the coverage database
and all the information VCS needs to write a coverage report. There
are two types of coverage reports:

• an ASCII text file

• an HTML file

The ASCII Text File

The command to instruct VCS to generate a coverage report in ASCII
format is:

urg -dir simv.vdb -format text

The -format text option instructs VCS to generate, text reports
(dashboard.txt, grpinfo.txt, tests.txt and groups.txt) in a separate
directory called urgReport. The ASCII coverage report grpinfo.txt for
the previous code example is as follows:

Group : cg1_SHAPE_0
==
Group : cg1_SHAPE_0
==
Score Weight Goal
100.00 1 100
--

Samples for Group : cg1_SHAPE_0

Variable Expected Covered Percent Goal Weight

24-239

SystemVerilog Testbench Constructs

Total 3 3 100.00
cp1 3 3 100.00 100 1
--

Summary for variable cp1
 Expected Covered Percent
User Defined Bins 3 3 100.00

User Defined Bins for cp1

Bins name count at least
auto_yellow 2 1
auto_blue 2 1
auto_red 4 1

The report begins with a summary of the coverage for the
covershapes created. There is 100% coverage, meaning that VCS
saw all possible values for the coverage point(s) in the covergroup.

For coverage point cp1, the report says the following:

• The coverage point, in this case variable my_color, reached all
its possible values.

• There were no user defined bins.

• VCS created bins for the coverage point named auto_blue,
auto_red, and auto_yellow, all named after the members of the
enumerated type colors, blue, red, and yellow.

• There were four hits for bin auto_red, this means that during
simulation, there were four clocking events (rising edge on signal
clk) where VCS detected that the value of the variable my_color
was red.

• There were two hits for bins auto_blue and auto_yellow.

24-240

SystemVerilog Testbench Constructs

The HTML File

The command to instruct VCS to generate a coverage report in HTML
format is:

urg -dir simv.vdb

This command instructs VCS to generate, coverage reports
(dashboard.html, grp0.html, tests.html and groups.html) in the
directory urgReports. The HTML coverage report grp0.html for the
previous code example is as follows:

The report has links to other .html reports. Click on them to see the
appropriate information.

Please refer to the Unified Report generator for more details

24-241

SystemVerilog Testbench Constructs

Persistent Storage of Coverage Data and
Post-Processing Tools

Unified Coverage Directory and Database Control

A coverage directory named simv.vdb contains all the testbench
functional coverage data. This is different from previous versions of
VCS, where the coverage database files were stored by default in
the current working directory or the path specified by
coverage_database_filename. For your reference, VCS
associates a logical test name with the coverage data that is
generated by a simulation. VCSassigns a default test name; you can
override this name by using the
coverage_set_test_database_name task.

$coverage_set_test_database_name
 ("test_name"[,"dir_name"]);

VCS avoids overwriting existing database file names by generating
unique non-clashing test names for consecutive tests.

For example, if the coverage data is to be saved to a test name called
pci_test, and a database with that test name already exists in the
coverage directory simv.vdb, then VCS automatically generates the
new name pci_test_gen1 for the next simulation run. The following
table explains the unique name generation scheme details.

24-242

SystemVerilog Testbench Constructs

Table 24-5 Unique Name Generation Scheme

You can disable this method of ensuring database backup and force
VCS to always overwrite an existing coverage database. To do this,
use the following system task::

$coverage_backup_database_file (flag);

The value of flag can be:

• OFF for disabling database backup.

• ON for enabling database backup.

In order to not save the coverage data to a database file (for example,
if there is a verification error), use the following system task:

$coverage_save_database (flag);

The value of flag can be:

• OFF for disabling database backup.

• ON for enabling database backup.

 Test Name Database

pci_test Database for the first testbench run.

pci_test_gen_1 Database for the second testbench run

pci_test_gen_2 Database for the 3rd testbench run

pci_test_gen_n Database for the nth testbench run

24-243

SystemVerilog Testbench Constructs

Loading Coverage Data
Both cumulative coverage data and instance-specific coverage data
can be loaded. The loading of coverage data from a previous VCS
run implies that the bin hits from the previous VCS run to this run are
to be added.

Loading Cumulative Coverage Data

The cumulative coverage data can be loaded either for all coverage
groups, or for a specific coverage group. To load the cumulative
coverage data for all coverage groups, use the following syntax:

$coverage_load_cumulative_data("test_name"[, "dir_name"]);

In this task, "dir_name" is optional. If you do not specify a "dir_name",
by default, simv.vdb is taken as the directory containing the database.

The above task directs VCS to find the cumulative coverage data for
all coverage groups found in the specified database file and to load
this data if a coverage group with the appropriate name and definition
exists in this VCS run.

To load the cumulative coverage data for just a single coverage
group, use the following syntax:

$coverage_load_cumulative_cg_data("test_name",
 "covergroup_name"[, "dir_name"]);

In this task, "dir_name" is optional. If you do not specify a "dir_name",
by default, simv.vdb is taken as the directory containing the database.

24-244

SystemVerilog Testbench Constructs

In the Example 1-1, below, there is a SystemVerilog class MyClass
with an embedded covergroup covType. VCS finds the cumulative
coverage data for the covergroup MyClass:covType in the database
file Run1 and loads it into the covType embedded coverage group
in MyClass.

Example 24-45
class MyClass;

integer m_e;
covergroup covType @m_e;
 cp1 : coverpoint m_e;
endgroup

endclass
...
$coverage_load_cumulative_cg_data("Run1", "MyClass::covType");

Loading Instance Coverage Data

The coverage data can be loaded for a specific coverage instance.
To load the coverage data for a standalone coverage instance, use
the following syntax:

$covgLoadInstFromDbTest
 (coverage_instance,"test_name"[, "dir_name"]);

In this task, "dir_name" is optional. If you do not specify a "dir_name",
by default, simv.vdb is taken as the directory containing the database.

To load the coverage data for an embedded coverage instance, use
the following syntax:

$covgLoadInstFromDbTest
 (class_object.cov_group_name,"test_name"[, "dir_name"]);

In this task, "dir_name" is optional. If you do not specify a "dir_name",
by default, simv.vdb is taken as the directory containing the database.

24-245

SystemVerilog Testbench Constructs

The commands above direct VCS to find the coverage data for the
specified instance name in the database, and load it into the coverage
instance.

In the Example 1-2, there is a SystemVerilog class MyClass with an
embedded covergroup covType. Two objects obj1 and obj2 are
instantiated, each with the embedded covergroup covType. VCS
will find the coverage information for the coverage instance
obj1:covType from the database file Run1, and load this coverage
data into the newly instantiated obj1 object. Note that the object
obj2 will not be affected as part of this load operation.

Example 24-46
class MyClass;

integer m_e;
covergroup covType @m_e;
 cp1 : coverpoint m_e;
endgroup

endclass
...
MyClass obj1 = new;
$covgLoadInstFromDbTest(obj1,"Run1");
MyClass obj2 = new;

Note:

The compile time or runtime options -cm_dir and -cm_name will
over write the calls to coverage_set_test_database_name
and loading coverage data tasks.

-cm_dir directory_path_name

As a compile-time or runtime option, specifies an alternative name
and location for the default simv.vdb directory, VCS automatically
adds the extension .vdb to the directory name if not specified.

24-246

SystemVerilog Testbench Constructs

-cm_name filename

As a compile-time or runtime option, specifies an alternative test
name instead of the default name. The default test name is "test".

VCS NTB (SV) Memory Profiler

The VCS NTB(SV) memory profiler is a Limited Customer availability
(LCA) feature in NTB(SV) and requires a separate license. Please
contact your Synopsys AC for a license key.

VCS has been enhanced to support profiling of memory consumed
by the following dynamic data types:

• associative Array

• dynamic Array

• smart Queue

• string

• event

• class

Use Model

The $vcsmemprof() task can be called from the CLI or the UCLI
interface. The syntax for $vcsmemprof() is as follows:

$vcsmemprof("filename", "w|a+");

24-247

SystemVerilog Testbench Constructs

filename

Name of the file where the memory profiler dumps the report.

w | a+

w and a+ designate the mode in which the file is opened. Specify
w for writing and a+ for appending to an existing file.

UCLI Interface

Compile-time

The dynamic memory profiler is enabled only if you specify +dmprof
on the VCS compile-time command line:

vcs -ntb -sverilog +dmprof dut_filename.v testbench_filename.sv \
[-debug | -debug_all]

Note:
Use the -sverilog compile-time option when compiling
SystemVerilog code.

Runtime

At runtime, invoke $vcsmemprof() from the UCLI command line
prompt as follows:

simv -ucli //Invokes the ucli prompt
ucli>call {$vcsmemprof("memprof.txt", "w|a+")}

CLI Interface

Compile-time

The dynamic memory profiler is enabled only if you specify +dmprof
on the VCS compile-time command line:

24-248

SystemVerilog Testbench Constructs

vcs -ntb -sverilog +dmprof dut_filename.v testbench_filename.sv \
[-debug | -debug_all]

Note:
Use the -sverilog compile-time option when compiling
SystemVerilog code.

Runtime

At runtime, invoke $vcsmemprof() from the CLI command line
prompt as follows. You can make the call to $vcsmemprof() at any
point during the simulation:

simv -s //Invokes the cli prompt
cli_0>$vcsmemprof("memprof.txt", "w|a+")

The memory profiler reports the memory consumed by all the active
instances of the different dynamic data types. As noted above, the
memory profiler report is dumped in the filename specified in the
$vcsmemprof() call.

Incremental Profiling

Each invocation of $vcsmemprof() appends the profiler data to the
user specified file. The time at which the call is made is also reported.

This enables you to narrow down the search for any memory issue.

Only Active Memory Reported

The memory profiler reports only memory actively held at the current
simulation time instant by the dynamic data types.

Consider the following OpenVera program:

 task t1() {

24-249

SystemVerilog Testbench Constructs

integer arr1[*];
arr1 = new[500];

delay(5);
}

task t2() {
integer arr2[*];
arr2 = new[500];

delay(10);
}

program main {
fork
{

t1();
}
{

t2();
}
join all

}

In this program, if $vcsmemprof() is called between 0 and 4 ns, then
both arr1 and arr2 are active. If the call is made between 5 and
10 ns, then only arr2 is active and after 10 ns, neither is active.

VCS NTB (SV) Dynamic Memory Profile Report

 The profile report includes the following sections.

1. Top level view

Reports the total dynamic memory consumed in all the SV
programs and that consumed in all the SV modules in the
system.

2. Module View

Reports the dynamic memory consumed in each SV module in
the system.

24-250

SystemVerilog Testbench Constructs

3. Program View

Reports the dynamic memory consumed in each SV program in
the system.

4. Program To Construct View

a. Task-Function-Thread section
Reports the total dynamic memory in each active task, function
and thread in the module/program.

b. Class Section
Reports the total dynamic memory consumed in each class in
the module/program.

c. Dynamic data Section
Reports the total memory consumed in each of dynamic
testbench data types - associative arrays, dynamic arrays,
queues, events, strings, in the module/program.

5. Module To Construct View:

Same as "Program To Construct View".

24-251

SystemVerilog Testbench Constructs

The Direct Programming Interface (DPI)

The Direct Programming Interface (DPI) is a Limited Customer
availability (LCA) feature in NTB (SV) and requires a separate license.
Please contact your Synopsys AC for a license key.

The DPI is an interface between SystemVerilog and another
language such as C. Using DPI you can directly call a function in the
other language.

Note:

 Currently DPI is implemented only for the C/C++ languages.

Import Functions - SystemVerilog calling C/C++

The import task/functions are C/C++ functions that can be called
from the SystemVerilog code. You must declare them before you
can use them. After you declare an import function, you can call it
like any procedural statement in your SystemVerilog code.

Import tasks and functions can have 0 or more formal input, output,
and inout arguments. Import functions can either return a value or be
defined as void, while import tasks never return a value.

Import functions can have the properties context or pure while the
import tasks can have the property context only.

Syntax:

Declaration :
import "DPI" [cname =] [pure] function type name (args);
import "DPI" [cname =] [pure][context] task name (args);

24-252

SystemVerilog Testbench Constructs

Example:

import "DPI" context task c_task(input int addr);

program top;
 initial c_task(1000);
 initial c_task(2000);
endprogram

#include <svdpi.h>
 void c_task(int addr) {
 ...
 }

vcs -sverilog top.sv c_task.c

Export Functions- C/C++ Calling SystemVerilog

The export tasks/functions are SystemVerilog tasks/functions that
can be called from C/C++ languages. You must declare them before
you can use them. Export function declarations are allowed only in
the scope in which the function is defined and only one declaration
per function is allowed in a given scope.

The export functions and tasks have the same restrictions on
argument types and return values as the import functions.

Syntax:

Declaration :
export "DPI" [cname =] function name (args);
export "DPI" [cname =] task name (args);

24-253

SystemVerilog Testbench Constructs

Example:

import "DPI" task c_test(int addr);
initial c_task(1000);
export "DPI" task sv_add;
function int sv_add(input int a, input int b);
 sv_add = a+b;
endtask

#include <svdpi.h>
extern void sv_add(int, int);
void c_task(int addr) {
 ...
 sv_add(addr, 10);
 ...
}

vcs -sverilog top.sv c_task.c

Note:

You can export all SystemVerilog functions except class member
functions.

Limitations
In the current implementation of the DPI, import and export functions
are supported with some restrictions on the following data types:

• Unpacked structs/unions, byte, shortint, longint, and shortreal.

• Unpacked arrays of the above types

Include Files
The SystemVerilog 3.1a LRM defines the C layer for the DPI. The
C-layer of the DPI provides two include files:

24-254

SystemVerilog Testbench Constructs

• The main include file, $VCS_HOME/lib/svdpi.h, is defined in the
SystemVerilog 3.1 standard and defines the canonical
representation, all basic types, and all interface functions.The file
also provides function headers and defines a number of helper
macros and constants. See section D.9.1 of the SystemVerilog
3.1 LRM.

The following functions are not implemented:

• The second include file, $VCS_HOME/lib/svdpi_src.h, defines
only the actual representation of packed arrays and its contents
are unique to VCS.

svGetNameFromScope svAckDisabledState

svGetCallerInfo svIsDisabledState

24-255

SystemVerilog Testbench Constructs

Time Consuming Blocking Tasks

When SystemVerilog calls a C import task, this task can then call
blocking (context) SystemVerilog tasks. This is particularly useful if
the C code must call a read/write task in a SystemVerilog BFM
model.

Note that the C task must be initially called from SystemVerilog using
an import task call. For example, the following C code contains a test
that calls the SystemVerilog apb_write task as needed to issue
writes on an APB bus.

#include<svdpi.h>
extern void abp_write(int, int);

void c_test(int base) {
 int addr, data;
 for(addr=base; addr<base+5; addr++) {
 data = addr * 100;
 apb_write(addr, data);
 printf("C_TEST: APB_Write : addr = 0x%8x, data = 0x%8x\n",
addr, data);
 }
}

24-256

SystemVerilog Testbench Constructs

SystemVerilog File

This SV code calls C_test(), which then calls the blocking APB_Write
task in SystemVerilog. The APB_Write task has a simple semaphore
to ensure unique access.

import "DPI" context task c_test(input int base_addr);
program top;
 semaphore bus_sem = new(1);

 export "DPI" task apb_write;
 task apb_write(input int addr, data);
 bus_sem.get(1);
 #10 $display("VLOG : APB Write : Addr = %x, Data = %x
", addr, data);
 #10 ifc.addr <= addr;
 #10 ifc.data <= data;
 bus_sem.put(1);
 endtask

 initial begin
 fork
 c_test(32'h1000);
 c_test(32'h2000);
 join
 end

endprogram

The VCS command line compiles the files.

vcs -sverilog top.sv c_test.c -R

25-1

Source Protection

25
Source Protection 1

Source protection changes the source description of a Verilog model
so that others cannot read or understand it but they can still simulate
it. Source protection enables you to protect proprietary information
about your designs but enables users in companies that purchase
your designs to simulate them.

VCS provides three ways to protect your source description:

• Mangling of source description:
Mangling replaces identifiers in the source description with
identifiers that obscure the design. Mangling does not change the
structure of the source description in that the keywords and syntax
remains intact.

• Encrypting of source description:
Encrypting makes the entire source description unreadable.
SDF files can also be encrypted, however, you cannot mangle or
make a binary executable from SDF files.

25-2

Source Protection

• Creating a VMC model from source description:
A VMC model is an executable binary that you compile from your
Verilog model. To simulate the VMC model you link it to VCS. VMC
is a separate Synopsys product.

These source protection methods vary in the levels of security they
provide, their impact on performance, platform and vendor
independence, and PLI and CLI access as described in Table 25-1,
Source Protection Methods.

Note:
This chapter describes mangling and encrypting. For information
on creating a VMC model see the VMC User’s Guide.

Table 25-1 Source Protection Methods
Method Level of Security Performance Platform

Independence
Vendor
Independence

PLI and CLI
Access

Mangling Alters only the
identifiers. You
can read the
structure of the
source
description.

Same as
VCS or third
party Verilog
simulator

Yes, the output
is an ASCII file

Yes, you can
simulate the
resulting model
in any Verilog
simulator

Yes, however
the identifiers
are difficult to
understand.

Encrypting Alters the entire
source
description but
some identifiers
can be seen in
generated C code

Same as
VCS

Yes, the output
is an ASCII file

No, the
encrypted
output is in a
format that only
VCS can read.

Yes, but only if
you know the
identifiers
before they
were encrypted

VMC Absolute, the
output is an
executable binary

Some impact
on small and
active VMC
models

No, you can
only simulate a
VMC model on
the platform
that was used
to generate it.

Yes, using
standard PLI
access

No access into
VMC models

25-3

Source Protection

Encrypting Source Files

Encrypt Using Compiler Directives

You use compiler directives and command line options to encrypt
source and SDF files. VCS creates copies of your files with encrypted
contents. The following sections describe how you encrypt Verilog
source and SDF files:

• The section “Encrypting Specified Regions” on page 25-4
describes how you can specify what part of your source
description you want VCS to encrypt.

• The section “Encrypting The Entire Source Description” on page
25-5 describes how you can encrypt all the contents of your source
description.

• The section “Encrypting SDF Files” on page 25-9 describes the
source protection options for SDF files.

• The section “Specifying Encrypted Filename Extensions” on page
25-10 specifies how you can override the default filename
extensions for encrypted files. The default extension is .vp.

• The section “Specifying Encrypted File Locations” on page 25-10
describes how you can specify the location of the encrypted files
that VCS creates. The default is the same directory as the original
source or SDF file.

• The section “Multiple Runs and Error Handling” on page 25-10
describes how you can circumvent problems that can occur when
you perform multiple encryptions of the same files or encounter
error conditions.

25-4

Source Protection

Encrypting Specified Regions

You can control what part of your source VCS encrypts in the new
files and which part remains readable. To do so you do the following:

1. Enclose the part of your source that you want VCS to encrypt
between the ‘protect and the ‘endprotect compiler directives.

2. Include the +protect option on the vcs command line.

When you run VCS with the +protect option:

- VCS creates new files for the Verilog source files you specify
on the vcs command line.

- VCS replaces the ‘protect and ‘endprotect compiler
directives with the ‘protected and ‘endprotected compiler
directives and encrypts all the Verilog source description
between these ‘protected and ‘endprotected compiler
directives.

The new files have the same filename except that VCS appends a
“p” to the filename extension of the new files. For example, if you run
source protection for a source file named my_design.v, VCS names
the new file with encrypted source my_design.vp. This is the default
filename extension for the new file. You can specify a different
extension.

The following is an example of a Verilog source file with a region of
the source that you want protected:

module top(inp, outp);
input [7:0] inp;
output [7:0] outp;
reg [7:0] count;
assign outp = count;

25-5

Source Protection

always
begin:counter
`protect //begin protected region
reg [7:0] int;
count = 0;
int = inp;
while (int)

begin
if (int [0]) count = count + 1;

int = int >> 1;
end
`endprotect //end protected region

end
endmodule

The following is the contents of the new file after you run source
protection with the +protect option:

module top(inp, outp);
input [7:0] inp;
output [7:0] outp;
reg [7:0] count;
assign outp = count;
always
begin:counter

`protected
%%AqDtf%,%,%,%,%,%,-%,%,UB@%,|%5%B%<z%,NIS%A-%,%,DH
?%,NIW%A-%,%,PONKB%,%4NIS%3-%,%,%,%,EB@NI-%,%,%,%,%
RIS%,%?%,DHRIS%,%1%,%;%A-%,%,%,%,%,%,NIS%,%?%,NIS%

,%,$
`endprotected

//end protected region
end
endmodule

Encrypting The Entire Source Description

You can encrypt all the modules and UDPs in the new Verilog source
files that VCS creates without yourself entering ‘protect and
‘endprotect compiler directives in your source code.

25-6

Source Protection

To do so include the +autoprotect, +auto2protect or

+auto3protect option on the vcs command line. The difference
between these options is where VCS begins to encrypt the Verilog
source description in modules and UDPs. This difference is as
follows:

+autoprotect
The +autoprotect option encrypts the module port list (or UDP
terminal list) in addition to the body of the module (or UDP.)

+auto2protect
The +auto2protect option does not encrypt the module port list
(UDP terminal list). Instead encryption begins after the semicolon
following the port or terminal list. This difference produces a
syntactically correct module or UDP header statement.

+auto3protect
The +auto3protect option does what the +auto2protect option
does except that it does not encrypt parameter declarations that
precede the first port declaration.

When you include the +auto2protect option, VirSim and third party
tools are able to parse the encrypted source files without decoding
the encrypted source description that follows these lists. For this
reason Synopsys recommends the use of +auto2protect option
instead of +autoprotect option.

When you include the +auto2protect option:

• VCS creates new files for the Verilog source files you specify on
the vcs command line.

25-7

Source Protection

• VCS inserts the ‘protected compiler directive after the module
header and the ‘endprotected compiler directive before the
endmodule keyword. VCS encrypts the Verilog source between
the ‘protected and ‘endprotected compiler directives that it
inserts.

The following is an example of a Verilog source file whose entire
contents you want to encrypt with source protection:

module top(inp, outp);
parameter size=8;
input [size-1:0] inp;
output [size-1:0] outp;
reg [7:0] count;
assign outp = count;
parameter stoptime=100;
always
begin:counter
 reg [size-1:0] int;
 count = 0;
 int = inp;
 while (int)
 begin
 if (int [0]) count = count + 1;
 int = int >> 1;
 end
 #stoptime $stop;
end
endmodule

The following is an example of the contents of the new source file
VCS creates when you run source protection with the
+auto2protect option:

module top(inp, outp);
`protected
\,MGH?JR[D?0R_D#+XJ(MQD#HgXV@ZUVI2+HT)1OS)C8#L7OA[9ge#^#5@WO0P_<
,Y)[^ZVDDCBf<EB?2(=)>S#aSR58?]Qgg6\#OOf<^.+RK[6<#2&X>SZM:)F9>
VLf:FHRSd[QP=WCC\gA;=g5M=>PG5EDUaZ:#/If[CTXV9RKJNNOf]>Cfgg[4&W.f
=2FD]<,R0?@:B0R:?\4fP_dgaGgF_IB9MV#E1M?b2)Cd._<:&@,KV\a5:Q3D]CPL
[9HDe2.gQYL0;_Y^V\a;_Ag-fP;+K\;GUU/:HXFf;gaGJ1fO8_f1M)eGF8LRRY]

25-8

Source Protection

CB75+Q/]R_IAP/>HS+b<XFP,-BHfcZTIG0-QILLIa1#.RbX6.K?Oc8f5]f);BW=Q
FVa@-^&@e+:K0>(?(&ZL:4Z:.F[<5J)gQ+CaA]^7\.N^/0@RRZQe-]A,Z+L>?FQG
([A0S=LXHPgN[<Dg5fQG?^6IUP7.VV3a@$
`endprotected
endmodule

The following is an example of the contents of the new source file
VCS creates when you run source protection with the
+auto3protect option:

module top(inp, outp);
parameter size=8;
`protected
\,MGH?JR[D?0R_D#+XJ(MQD#HgXV@ZUVI2+HT)1OS)C8#L7OA[9ge#^#5@WO0P_<
,Y)[^ZVDDCBf<EB?2(=)>S#aSR58?]Qgg6\#OOf<^.+RK[6<#2&X>SZM:)F9>
VLf:FHRSd[QP=WCC\gA;=g5M=>PG5EDUaZ:#/If[CTXV9RKJNNOf]>Cfgg[4&W.f
=2FD]<,R0?@:B0R:?\4fP_dgaGgF_IB9MV#E1M?b2)Cd._<:&@,KV\a5:Q3D]CPL
[9HDe2.gQYL0;_Y^V\a;_Ag-fP;+K\;GUU/:HXFf;gaGJ1fO8_f1M)eGF8LRRY]
CB75+Q/]R_IAP/>HS+b<XFP,-BHfcZTIG0-QILLIa1#.RbX6.K?Oc8f5]f);BW=Q
FVa@-^&@e+:K0>(?(&ZL:4Z:.F[<5J)gQ+CaA]^7\.N^/0@RRZQe-]A,Z+L>?FQG
([A0S=LXHPgN[<Dg5fQG?^6IUP7.VV3a@$
`endprotected
endmodule

Notice that parameter size is not encrypted but parameter stoptime is.

The following is an example of the contents of the new file VCS
creates when you run source protection with the +autoprotect
option:

module top
`protected
>Z.>B/)c?G.-UDVP<^?H0Yb_HSKg0>@UY0+-eY-/@YK^^Q3g+K6c\\5#ge+/8McF
WaK-/QI-?Gc^d8.))aeZ1gQBZbE_1.[U;1dVZ9b#.(A336;]&NM^GF,dR34)I]GZ
FEc-R?e1V3Mb1SUUB,J7R4[T\LZe?BDb#^@7/_5IAdM<(J.BN7\[<[^We?@JeVSf
FKC)D.#bB@C#L^I4(55SG>:SXgTL^&GCG<&&6bQO;;EG)S]2d7X6,U:,<:S:<<KM
=&<OWaR?Ef.SEQW;RKYD.F\Se&WE+ALI=PafD8b:T[4#gbK??IgJ@4c&0?#H]1:1
4HJ)e)G^U4:Y)^4@48:Gf:I6Ue)NG\JH:@fL5Q3?Gc+R)#)9f3g-cA(CM2fTf&(:
_+HVA=2@:MR&^=>5EbYF63a\/BQ71<H>\GMJe&,PIA&I_9O4fMd7#PNW1?KgK2UP
XbVJ+FB\;6IY)+QZQTBS<+f;c:YeOc7eI(G:cT#1&7E]Jda1^]]H@cNWM$
`endprotected
endmodule

In this file encryption begins after the module identifier instead of after
the port list.

25-9

Source Protection

Encrypting SDF Files

To create a new SDF file with encrypted content include, on the vcs
command line, the +sdfprotect option with the SDF filename.

For example, the following is the contents of an SDF file named
delays.sdf, that you want to encrypt.

(DELAYFILE
 (DESIGN"test")
 (VENDOR"Synopsys")
 (DIVIDER.)
 (VOLTAGE:1:)
 (PROCESS"typical")
 (TEMPERATURE:1:)
 (TIMESCALE10ps)
 (CELL
 (CELLTYPE"leaf")
 (INSTANCEleaf1)
 (DELAY
 (ABSOLUTE
 (IOPATH in1 out1 (50.5))
 (IOPATH in2 out2 (51.5))
 (IOPATH in3 out3 (00.5))
 (IOPATH in4 out4 (01.5))))
)
)

The following is the contents of the delays.sdfp file that VCS creates:

`protected
'AtDV?SR[VNQ^[R%B7777777777?SRD^PY77777775crdc5>%B7T~Zexyx
{xp~Yt5>%B7777777777?S^A^SRE7777779>%B7777777777777777?GEXT
RDD7777775cng~Ytv{5>%B7777777777?CRZ77?C^ZRDTV[R7777&'gd>%B
7777777777?TR[[%B777777777777777777777?^YDCVYTR777{rvq&>%B
777777777777?SR[VN%B77777777777?^XGVC_7~Yy&7xbc&7?%G'9%G>>%
B7777777777779%G>>%B777777777777?^XGVC_7~Yy%I7xbc%I7?''9%G>>
%B77xbc%H7?'&9%G>>>>%B7777777777>%B77777777>%B%B$
`endprotected

25-10

Source Protection

Specifying Encrypted Filename Extensions

You can specify a different extension for the new filenames by adding
the new extension as a suffix to the +protect, +auto2protect,
+autoprotect, or +sdfprotect options.

For example, if you include the +protect.protected option on the
vcs command line, for the source file named my_design.v, the
encrypted new filename is my_design.v.protected.

Specifying Encrypted File Locations

You can specify the directory where VCS writes the new and
encrypted files with the +putprotect+ option followed by the path to
the directory where you want VCS to create the new files. Include this
option along with the +protect, +auto2protect, +autoprotect,
or +sdfprotect option on the vcs command line.

Make sure there are no spaces between the +putprotect+ option
and the path to this directory. For example, with the following
command line:

vcs cache.v +auto2protect.encrypt +putprotect+/u/design/
cache

VCS creates the encrypted file cache.v.encrypt in the directory
/u/design/cache.

Multiple Runs and Error Handling

When VCS creates encrypted files:

25-11

Source Protection

• If the encrypted file already exists, VCS outputs an error message
and does not overwrite the existing file. This error message is:
Error: file 'filename.vp' already exists.

• If an error condition exists in the source file, VCS continues to
create the encrypted file. This file might be corrupt.

To circumvent these problems you can use the +deleteprotected
source protection option. This option disables the check for an
existing encrypted file and deletes the encrypted file if an error
condition occurred in that file.

Permitting CLI/PLI Access to Encrypted Modules

The +pli_unprotected option can be used to disable the normal
PLI/CLI protection that is placed on encrypted modules. The output
files will still be encrypted, but CLI and PLI users will not be prevented
from accessing data in the modules.

This option is used in conjunction with the +protect, +autoprotect
or +auto2protect options. This option only affects the modules in
the current file(s). Modules in files which were encrypted without using
this flag are still fully protected.

This option only affects encrypted verilog files. It is ignored when
encrypting SDF files.

Note: Turning off PLI/CLI protection will allow users of your modules
to access object names and values, etc. In essence, the source
code for your module could be substantially reconstructed using
the CLI debugging commands and PLI acc routines.

25-12

Source Protection

Simulating Encrypted Models

When you simulate an encrypted model, information about
hierarchical names and design objects is protected. This means that
some CLI commands, such as those that display hierarchical names
and design objects at a specified level of the hierarchy, do not work
at protected levels of the design hierarchy. Protected levels are the
encrypted levels.

Certain system tasks continue to work in protected levels of the design
hierarchy but you need to know the hierarchical names in these
protected regions and there is no way, other than from the vendor
that encrypted the model, that you can obtain the hierarchical names
in protected levels.

The -Xman compile-time option does not work in protected source
descriptions.

Using the CLI

Some CLI commands whose arguments are design objects or
instances do not work when these objects are in protected regions.
These CLI commands are:

Note:
The info command continues to display the simulation time.

info scope show

25-13

Source Protection

Some CLI commands whose arguments are design objects continue
to work but only if you know the hierarchical name of the object. These
CLI commands are:

You must know the hierarchical path names to use these commands.

Using System Tasks

The following system tasks continue to display design information
from a protected region of a design:

Note:
For $display the %m format specification does not work in
protected regions

Writing PLI Applications

PLI access is restricted for encrypted modules. Any module which
has any portion of it protected will cause the entire module to be
deemed protected.

All acc_next_... type routines are blocked on protected modules.
For example, acc_next_port() will immediately return NULL when
operating on an instance who's module definition is protected.

The routine acc_object_of_type() can be used to determine if a
module (or macromodule or primitive) is protected. Usage is:

always break force once
print release set tbreak

$display $write $monitor $strobe $gr_waves

25-14

Source Protection

if (acc_object_of_type(obj, accProtected)) {
printf("object %s is from a protected module\n",

acc_fetch_name(obj));
}

If the object passed to acc_object_of_type() is a design object in
a module, a port or register for example, the status of the parent
module will be returned.

Mangling Source Files

The purpose of mangling is to create a Verilog source file that is
functionally the same as an original Verilog file or set of Verilog files,
but in the new Verilog source file the identifiers (module, instance, or
signal names) no longer make any sense and all the comments are
removed, making it very difficult to understand the design contained
in the new file.

 Mangling does not change the structure of the source description, in
the new mangled file the keywords and syntax remain the same as
those in the original Verilog file or set of Verilog files.

One use for this new Verilog source file is that you can send the
mangled file to VCS_support@synopsys.com so that our Corporate
Applications Engineers can examine problems you are experiencing
while maintaining the only intelligible copy of your design at your site.

The name of the mangled source file you create is tokens.v.

You mangle your source description with the -Xmangle or
-Xmangle=number option. When you enter this option, VCS creates
a file named tokens.v that contains the mangled source description.

25-15

Source Protection

You can substitute -Xman for -Xmangle. The argument number can
be 1 or 4:

-Xman=1
Randomly changes names and identifiers to provide a more
secure code.

-Xman=4
Preserves variable names but removes comments.

-Xman=12
Does the same as -Xman=4 but also adds comments about the
system tasks in the source and the source file and line numbers
of the module headers.

-Xman=28
Does the same as -Xman=12 but adds a statistical analysis of
the design.

The following is an example of Verilog source description before
mangling:

module demo (modulus1,cpuData);
input [7:0] modulus1;
output [255:0] cpuData;
integer cpuTmpCnt;
reg [0:34] iPb[0:10]; //incoming pbus data buffer
reg [255:0] cpuDatareg;
assign cpuData = cpuDatareg;
function [0:255] merge_word;
input [0:31] source_word;
input [0:2] word_index;
begin
end
endfunction
initial begin
cpuDatareg = 256'h0;
for(cpuTmpCnt = 0; cpuTmpCnt<8; cpuTmpCnt=cpuTmpCnt+1)
begin : assemble_incoming
reg [0:34] inData35;

25-16

Source Protection

inData35=iPb[cpuTmpCnt];
$display("\tiPb[%0h]=%b, %h", cpuTmpCnt,
iPb[cpuTmpCnt],iPb[cpuTmpCnt] >> 3);

cpuDatareg=merge_word(cpuData,inData35[0:31],cpuTmpCn
t);
end
end
endmodule

The following is the mangled code in tokens.v produced by the
-Xmangle or -Xmangle=1 option:

‘portcoerce
‘inline
// No timescale specified
module Memoe(Remoe, Afmoe);

input [7:0] Remoe;
output [255:0] Afmoe;

integer Ifmoe;
reg [255:0] Wfmoe;

reg [0:34] Sfmoe[0:10];

assign Afmoe = Wfmoe;

function [0:255] Hgmoe;

input [0:255] Sgmoe;
input [0:31] Ehmoe;
input [0:2] Qhmoe;

reg [0:255] Sgmoe;
reg [0:31] Ehmoe;
reg [0:2] Qhmoe;
begin
end
endfunction

25-17

Source Protection

initial begin
Wfmoe = 256’b0;
for (Ifmoe = 0; (Ifmoe < 8); Ifmoe = (Ifmoe + 1)) begin : Bimoe

reg [0:34] Timoe;
Timoe = Sfmoe[Ifmoe];
$display("iPb[%0h]=%b, %h", Ifmoe, Sfmoe[Ifmoe],
(Sfmoe[Ifmoe] >> 3));
Wfmoe = Hgmoe(Afmoe, Timoe[0:31], Ifmoe);
end
end
endmodule

Notice that comments are not included in the mangled file.

The following is the mangled code in tokens.v produced by the
-Xmangle=4 option:

‘portcoerce
‘inline
// No timescale specified
module demo(modulus1, cpuData);

input[7:0] modulus1;
output[255:0] cpuData;

integer cpuTmpCnt;
reg [255:0] cpuDatareg;

reg [0:34] iPb[0:10];

assign cpuData = cpuDatareg;

function [0:255] merge_word;

input[0:255] source_line;
input[0:31] source_word;
input[0:2] word_index;

25-18

Source Protection

reg [0:255] source_line;
reg [0:31] source_word;
reg [0:2] word_index;
begin
end
endfunction

initial begin
 cpuDatareg = 256’b0;
 for (cpuTmpCnt = 0; (cpuTmpCnt < 8); cpuTmpCnt =

(cpuTmpCnt + 1))
 begin : assemble_incoming

 reg[0:34] inData35;
 inData35 = iPb[cpuTmpCnt];
 $display("iPb[%0h]=%b, %h", cpuTmpCnt,

iPb[cpuTmpCnt],
 (iPb[cpuTmpCnt] >> 3));

 cpuDatareg = merge_word(cpuData, inData35[0:31],
cpuTmpCnt);

 end
end

endmodule

The comment is removed and default compiler directives and a
comment about timescales is added.

The following is the mangled code in tokens.v produced by the
-Xmangle=12 option:

/* System Tasks:
$display

*/

‘portcoerce
‘inline
/* Source file "mangle2.v", line 1 */
// No timescale specified
module demo(modulus1, cpuData);

25-19

Source Protection

input[7:0] modulus1;
output[255:0] cpuData;

integer cpuTmpCnt;
reg [255:0] cpuDatareg;

reg [0:34] iPb[0:10];

assign cpuData = cpuDatareg;

function [0:255] merge_word;

input[0:255] source_line;
input[0:31] source_word;
input[0:2] word_index;

reg [0:255] source_line;
reg [0:31] source_word;
reg [0:2] word_index;
begin
end
endfunction

initial begin
 cpuDatareg = 256’b0;
 for (cpuTmpCnt = 0; (cpuTmpCnt < 8); cpuTmpCnt =

(cpuTmpCnt + 1))
 begin : assemble_incoming

 reg[0:34] inData35;
 inData35 = iPb[cpuTmpCnt];
 $display("iPb[%0h]=%b, %h", cpuTmpCnt,

iPb[cpuTmpCnt],
 (iPb[cpuTmpCnt] >> 3));

 cpuDatareg = merge_word(cpuData, inData35[0:31],
cpuTmpCnt);

 end
end

endmodule

25-20

Source Protection

Here there are additional comments about the system tasks used and
the source file and line number of the module header.

The following is the mangled code in tokens.v produced by the
-Xmangle=28 option:

/* System Tasks:
$display

*/

‘portcoerce
‘inline
/* Source file "mangle2.v", line 1 */
// No timescale specified
module demo(modulus1, cpuData);

input[7:0] modulus1;
output[255:0] cpuData;

integer cpuTmpCnt;
reg [255:0] cpuDatareg;

reg [0:34] iPb[0:10];

assign cpuData = cpuDatareg;

function [0:255] merge_word;

input[0:255] source_line;
input[0:31] source_word;
input[0:2] word_index;

reg [0:255] source_line;
reg [0:31] source_word;
reg [0:2] word_index;
begin
end
endfunction

initial begin

25-21

Source Protection

 cpuDatareg = 256’b0;
 for (cpuTmpCnt = 0; (cpuTmpCnt < 8); cpuTmpCnt =

(cpuTmpCnt + 1))
 begin : assemble_incoming

 reg[0:34] inData35;
 inData35 = iPb[cpuTmpCnt];
 $display("iPb[%0h]=%b, %h", cpuTmpCnt,

iPb[cpuTmpCnt],
 (iPb[cpuTmpCnt] >> 3));

 cpuDatareg = merge_word(cpuData, inData35[0:31],
cpuTmpCnt);

 end
end

endmodule

// ===================
// DESIGN STATISTICS
// ===================
// Static<!> Elaborated<@>
// ------ ----------
// No. of module instances: 1 1
// No. of comb. udp instances: 0 0
// No. of seq. udp instances: 0 0
// No. of gates: 0 0
// No. of continuous assignments: 1 1
// No. of module+udp port connects: 0 0
// No. of registers (vector+scalar): 7 7
// No. of memories: 1 1
// No. of scalar nets: 0 0
// No. of vector nets: 2 2
// No. of named events: 0 0
// No. of always blocks: 0 0
// No. of initial blocks: 1 1
// No. of fork/join blocks: 0 0
// No. of verilog tasks: 0 0
// No. of verilog functions: 1 1
// No. of verilog task calls: 0 0
// No. of verilog function calls: 1 1
// No. of system task calls: 1 1
// No. of user task calls: 0 0
// No. of system function calls: 0 0

25-22

Source Protection

// No. of user function calls: 0 0
// No. of hierarchical references: 0 0
// No. of concatenations: 0 0
// No. of force/release statements: 0 0
// No. of bit selects: 0 0
// No. of part selects: 1 1
// No. of non-blocking assignments: 0 0
// No. of specify blocks<#>: 0 0
// No. of timing checks: 0 0
//
// No. of top level modules: 1
// modules: 1
// No. of udps: 0
// seq. udps: 0
// comb. udps: 0
// No. of module+udp ports: 2
// No. of system tasks: 1
// No. of user tasks: 0
// No. of system functions: 0
// No. of user functions: 0
//
// Footnotes:
// ---------
// <!> No. of unique instances of a construct as it appears
// in the source.
// <@> No. of instances of a construct when the design //
is elaborated.
// <#> Multiple specify blocks in the SAME module are //
combined and counted as ONE block.

Note: If you are creating a mangled tokens.v file to send to Synopsys
for technical support, we advise checking to see if you can
duplicate the problem using the tokens.v file. Also please include
with this file a copy of the vcs and simv command lines that
duplicate the problem and any SDF files that need to be back
annotated and C source files or object files for PLI applications
that need to be linked to the simv executable.

25-23

Source Protection

Creating A Test Case

Here is a quick way to create a small test case:

1. Remove -o option if you are using it.

2. Add the-Xman=4 option to your vcs command line (in addition to
whatever other options you are using) and run VCS.
VCS will not actually compile your design, instead it generates a
file called tokens.v.

3. Rename the tokens.v file to tokens.orig

4. Run the following command line:

vcs tokens.orig

5. Cut out the problem module from tokens.orig and paste it into a
new file, say test.v.

6. Run the following command line:

vcs -Xman=4 test.v -v tokens.orig

This will create a new tokens.v file

7. Run the following command line again:

vcs tokens.v

Do this to verify that the problem still exists.

8. Zip the tokens.v file

9. FTP the tokens.v.gz file to us:

a. Connect to our FTP site by entering:
ftp ftp.synopsys.com

25-24

Source Protection

b. At the Name prompt, enter anonymous.
At the Password prompt, enter your e-mail address.

c. At the ftp> prompt enter:
cd incoming

d. Enter the following FTP command:
binary

e. Enter the following FTP command:
put tokens.v.gz

10. Now send e-mail to VCS_support@synopsys.com informing us
that you have uploaded the test case.

Preventing Mangling of Top-Level Modules

You can prevent the mangling of top-level modules in your source
description with the -Xnomangle option. The syntax for this option is:

-Xnomangle=.first | module_identifier
[, module_identifier...]

For example:

-Xnomangle=.first

Prevents the mangling of the first module VCS encounters in the
source description.

-Xnomangle=top1,top2

Prevents the mangling of modules top1 and top2

25-25

Source Protection

The -Xnomangle option should only be used on top level modules,
i.e., ones that are not called by any other module in the design being
mangled. The code which performs the mangling knows how to
identify module and port declarations, but not module references.
Thus, if you exempt a module which is referenced by some other
module, the reference will try to use the mangled name instead of the
original (and fail).

25-26

Source Protection

A-1

VCS Environment Variables

A
VCS Environment Variables A

There are a number of variables you use to set up the simulation
environment in VCS.

This appendix covers the following topics:

• Simulation Environment Variables

• Optional Environment Variables

A-2

VCS Environment Variables

Simulation Environment Variables

ERROR_WHEN_UNBOUNDTo run VCS, you need to set the
following basic environment variables:

$VCS_HOME
When you or someone at your site installed VCS, the installation
created a directory that we call the vcs_install_dir directory.
Set the $VCS_HOME environment variable to the path of the
vcs_install_dir directory. For example:

setenv VCS_HOME /u/net/eda_tools/vcs2005.06

PATH
On UNIX, set this environment variable to $VCS_HOME/bin. Add
the following directories to your PATH environment variable:

set path=($VCS_HOME/bin\
 $VCS_HOME/‘$VCS_HOME/bin/vcs -platform‘/bin\
 $path)

Also make sure the path environment variable is set to a bin
directory containing a make or gmake program.

LM_LICENSE_FILE
The definition can either be an absolute path name to a license
file or to a port on the license server. Separate the arguments in
this definition with colons. For example:

setenv LM_LICENSE_FILE 7182@serveroh:/u/net/server/
eda_tools/license.dat

A-3

VCS Environment Variables

Optional Environment Variables

VCS also includes the following environment variables that you can
set in certain circumstances.

DISPLAY_VCS_HOME
Enables the display, at compile time, of the path to the directory
specified in the VCS_HOME environment variable. Specify a
value other than 0 to enable the display. For example:

setenv DISPLAY_VCS_HOME 1

SYSTEMC
Specifies the location of the SystemC simulator used with the VCS
/ SystemC cosimulation interface. See Chapter 19, "Using the
VCS / SystemC Cosimulation Interface".

TMPDIR
Specifies the directory used by VCS and the C compiler to store
temporary files during compilation.

VCS_CC
Indicates the C compiler to be used. To use the gcc compiler
specify:

setenv VCS_CC gcc

VCS_COM
Specifies the path to the VCS compiler executable named vcs1,
not the compile script. If you receive a patch for VCS you might
need to set this environment variable to specify the patch. This
variable is for solving problems that require patches from VCS
and should not be set by default.

A-4

VCS Environment Variables

VCS_LIC_EXPIRE_WARNING
By default VCS displays a warning 30 days before a license
expires. You can specify that this warning begin fewer days before
the license expires with this environment variable, for example:

VCS_LIC_EXPIRE_WARNING 5

To diable the warning, enter the 0 value:

VCS_LIC_EXPIRE_WARNING 0

VCS_LOG
Specifies the runtime log file name and location.

VCS_NO_RT_STACK_TRACE
Tells VCS not to return a stack trace when there is a fatal error
and instead dump a core file for debugging purposes.

VCS_RUNTIME
Specifies which runtime library named libvcs.a VCS uses.
This variable is for solving problems that require patches from
VCS and should not be set by default.

VCS_SWIFT_NOTES
Enables the printf PCL command. PCL is the Processor Control
Language that works with SWIFT microprocessor models.
To enable it, set this environment variable’s value to 1.

B-1

Compile-Time Options

B
Compile-Time Options B

The vcs command performs compilation of your designs and creates
a simulation executable. Compiled event code is generated and used
by default. The generated simulation executable, called simv, can
then be used to run multiple simulations.

This section describes the vcs command and related options.

Syntax:

vcs source_files [source_or_object_files] options

Here:

source_files

The Verilog or OVA source files for your design separated by
spaces.

C-2

Compile-Time Options

source_or_object_files

Optional C files (.c), object files (.o), or archived libraries (.a).
These are DirectC or PLI applications that you want VCS to link
into the binary executable file along with the object files from your
Verilog source files. When including object files include the -cc
and -ld options to specify the compiler and linker that generated
them.

options

Compile-time options that control how VCS compiles your Verilog
source files.

The following is an example command line used at compile time:

% vcs top.v toil.v +v2k

For complete usage information on the vcs command, see Chapter
3, "Compiling Your Design".

This appendix lists the following:

• Options for Accessing Verilog Libraries

• Options for Incremental Compilation

• Options for Help and Documentation

• Options for SystemVerilog

• Options for OpenVera Native Testbench

• Options for Different Versions of Verilog

• Options for Initializing Memories and Regs

• Options for Using Radiant Technology

C-3

Compile-Time Options

• Options for 64-bit Compilation

• Options for Debugging

• Options for Finding Race Conditions

• Options for Starting Simulation Right After Compilation

• Options for Compiling OpenVera Assertions (OVA)

• Options for Compiling For Simulation With Vera

• Options for Compiling For Coverage Metrics

• Options for Discovery Visual Environment and UCLI

• Options for Converting VCD and VPD Files

• Options for Specifying Delays

• Options for Compiling an SDF File

• Options for Profiling Your Design

• Options for File Containing Source File Names and Options

• Options for Compiling Runtime Options into the simv Executable

• Options for Pulse Filtering

• Options for PLI Applications

• Options to Enable and Disable Specify Blocks and Timing Checks

• Options to Enable the VCS DirectC Interface

• Options for Negative Timing Checks

• Options for Flushing Certain Output Text File Buffers

• Options for Simulating SWIFT VMC Models and SmartModels

C-4

Compile-Time Options

• Options for Controlling Messages

• Options for Cell Definition

• Options for Licensing

• Options for Controlling the Assembler

• Options for Controlling the Linker

• Options for Controlling the C Compiler

• Options for Source Protection

• Options for Mixed Analog/Digital Simulation

• Options for Changing Parameter Values

• “Checking for X and Z Values in Conditional Expressions” on page
B-57

• Options to Specify the Time Scale

• General Options

Options for Accessing Verilog Libraries

-v filename
Specifies a Verilog library file. VCS looks in this file for definitions
of the module and UDP instances that VCS found in your source
code but for which it did not find the corresponding module or UDP
definitions in your source code.

-y directory
Specifies a Verilog library directory. VCS looks in the source files
in this directory for definitions of the module and UDP instances
that VCS found in your source code but for which it did not find
the corresponding module or UDP definitions in your source code.

C-5

Compile-Time Options

VCS looks in this directory for a file with the same name as the
module or UDP identifier in the instance (not the instance name).
If it finds this file, VCS looks in the file for the module or UDP
definition to resolve the instance.
Include the +libext compile-time option to specify the file name
extension of the files you want VCS to look for in these directories.

+incdir+directory+
Specifies the directory or directories that VCS searches for include
files used in the `include compiler directive. More than one
directory may be specified, separated by the plus (+) character.

+libext+extension+
Specifies that VCS search only for files with the specified file name
extensions in a library directory. You can specify more than one
extension, separating the extensions with the plus (+) character.
For example, +libext+.v+.V+ specifies searching for files with
either the .v or .V extension in a library. The order in which you
add file name extensions to this option does not specify an order
in which VCS searches files in the library with these file name
extensions.

+liborder
Specifies searching for module definitions for unresolved module
instances through the remainder of the library where VCS finds
the instance, then searching the next and then the next library on
the vcs command line before searching in the first library on the
command line.

+librescan
Specifies always searching libraries for module definitions for
unresolved module instances beginning with the first library on
the vcs command line.

+libverbose
Tells VCS to display a message when it finds a module definition

C-6

Compile-Time Options

in a source file in a Verilog library directory that resolves a module
instantiation statement that VCS read in your source files, a library
file, or in another file in a library directory. The message is as
follows:

Resolving module "module_identifier"

By default, VCS does not display this message when it finds a
module definition in a Verilog library file that resolves a module
instantiation statement.

Options for Incremental Compilation

-Marchive=number_of_module_definitions
By default, VCS compiles module definitions into individual object
files and sends all the object files in a command line to the linker.
Some platforms use a fixed-length buffer for the command line
and if VCS sends too long a list of object files this buffer overflows
and the link fails. A solution to this problem is to have the linker
create temporary object files containing more than one module
definition so there are fewer object files on the linker command
line. You enable creating these temporary object files, and specify
how many module definitions are in these files, with this option.
Using this option briefly doubles the amount of disk space used
by the linker because the object files containing more than one
module definition are copies of the object files for each module
definition. After the linker creates the simv executable it deletes
the temporary object files.

-Mupdate[=0]
By default, VCS overwrites the makefile between compilations. If
you wish to preserve the makefile between compilations, enter
the 0 argument with this option. Entering this option without the 0

C-7

Compile-Time Options

argument specifies the default condition, which is incremental
compilation and updating the makefile.

-Mdefine=name=value
Adds a definition to the makefile.

-Mdelete
Use this option for the rare occurrence when the chmod -x simv
command in the makefile can’t change the permissions on an old
simv executable. This option replaces this command with the rm
-f simv command in the makefile.

-Mdirectory=directory
Specifies the incremental compile directory. The default name for
this directory is csrc, and its default location is your current
directory. You can substitute the shorter -Mdir for
-Mdirectory.

-Mfilename=prefix
Base name (prefix) for C source and object files.

-Minclude=filename
Adds an include statement to the makefile.

-Mldcmd=value
Format string used to invoke the linker directly.

-Mlib=dir
Provides VCS with a central place to look for the descriptor
information before it compiles a module and a central place to get
the object files when it links together the executable. It allows you
to use the parts of a design that have been already tested and
debugged by other members of your team without recompiling the
modules for these parts of a design (see “Incremental
Compilation” on page 3-3). You can specify more than one place
for VCS to look for descriptor information and object files by
providing multiple arguments with this option. For example:

C-8

Compile-Time Options

vcs design.v -Mlib=/design/dir1 -Mlib=/design/dir2
Or you can specify more than one directory with this option, using
a colon (:) as a delimiter between them, for example:

vcs design.v -Mlib=/design/dir1:/design/dir2

-Mloadlist=value
Directly invokes the linker to link programs if value is Yes.

-Mmakefile=filename
Names the generated makefile (default is makefile).

-Mmakeprogram=program
Specifies the make program that analyzes dependencies,
compiles what needs compiling, links, builds, and performs the
necessary steps to produce the executable file that you run to
simulate your design with VCS.

Commonly used make programs include the make program that
comes with your operating system and gmake from the GNU
foundation. The make program from your operating system is the
default make program.

If you are including options for the make program then include the
entire argument in quotation marks. Also you can shorten this
option to -Mmakep.

The following example shows how to include the -j option to the
gmake program to specify parallel compilation:

-Mmakep="gmake -j 4"

In this example the 4 argument to the -j option for gmake
specifies using four CPUs for parallel compilation. You can also
use the VCS -jnumber_of_CPUs compile-time option to do this.

-Mrelative_path
Use this option if your linker has a limitation on the length of the
linker line in the make file. If you specify a relative path with the

C-9

Compile-Time Options

-Mlib option, the -Mrelative_path option does not expand
the relative path to an absolute path on the linker line in the make
file.

-Msrclist=filename
Specifies the name of source list file that lists all object files created
by VCS. The default is filelist.

-noIncrComp
Disable incremental compilation.

Options for Help and Documentation

-h or -help
Lists descriptions of the most commonly used VCS compile and
runtime options.

-doc
Starts a PDF file reader to display the PDF file for the VCS
Documentation Navigator. This option tells VCS to execute the
following system command:

"$PDF_READER $VCS_HOME/doc/UserGuide/navigator.pdf"

By default, PDF_READER is set to the first acroread executable
(the Adobe Acrobat reader) that it finds in the directories specified
for your PATH environment variable. You can set the
PDF_READER environment variable to other PDF file display
tools, for example xpdf on Linux.

Options for SystemVerilog

-sverilog
Enables the extensions to the Verilog language specified in the
Accellera SystemVerilog specification.

C-10

Compile-Time Options

-ignore keyword_argument

Suppresses warning messages depending on which keyword
argument is specified. The keyword arguments are as follows:

unique_checks
Suppresses warning messages about unique if and unique
case statements.

priority_checks
Suppresses warning messages about priority if and
priority case statements.

all
Suppresses warning messages about unique if, unique
case, priority if and priority case statements.

-assert keyword_argument

The keyword arguments are as follows:

disable
Disables all SystemVerilog assertions in the design.

enable_diag
Enables further control of results reporting on SystemVerilog
assertions with runtime options.

filter_past
Ignores assertions defined with the $past system task when
the past history buffer is empty. For instance, at the very
beginning of the simulation, the past history buffer is empty. So
the first sampling point and subsequent sampling points should
be ignored until the past buffer has been filled with respect to
the sampling point.

disable_cover
Disables coverage for cover statements.

C-11

Compile-Time Options

dumpoff
Disables the dumping of SVA information in the VPD file during
simulation.

vpiSeqBeginTime
Enables you to see the simulation time that a SystemVerilog
assertion sequence starts when using Debussy.

vpiSeqFail
Enables you to see the simulation time that a SystemVerilog
assertion sequence doesn’t match when using Debussy.

-sv_pragma
Tells VCS to compile the SystemVerilog Assertions code that
follows the sv_pragma keyword in a single line or multi-line
comment.

Options for OpenVera Native Testbench

+debug_all
Enables you to use the OpenVera testbench GUI.

-ntb
Enables the use of the OpenVera testbench language constructs
described in the OpenVera Language Reference Manual: Native
Testbench.

-ntb_cmp
Compiles and generates the testbench shell (file.vshell) and
shared object files. Use this option when compiling the .vr file
separately from the design files.

-ntb_define macro
Specifies any OpenVera macro name on the command line. You
can specify multiple macro names using the plus (+) character.

C-12

Compile-Time Options

-ntb_filext .ext
Specifies an OpenVera file name extension. You can specify
multiple file name extensions using the plus (+) character.

-ntb_incdir directory_path
Specifies the include directory path for OpenVera files. You can
specify multiple include directories using the plus (+) character.

-ntb_noshell
Tells VCS not to generate the shell file. Use this option when you
recompile a testbench.

-ntb_opts keyword_argument
The keyword arguments are as follows:

ansi
Preprocesses the OpenVera files in the ANSI mode. The default
preprocessing mode is the Kernighan and Ritchie mode of the
C language.

check
Reports errors, during compilation or simulation, when there is
an out-of-bound or illegal array access.

dep_check
Enables dependency analysis and incremental compilation.
Detects files with circular dependencies and issues an error
message when VCS cannot determine which file to compile
first.

no_file_by_file_pp
By default, VCS does file-by-file preprocessing on each input
file, feeding the concatenated result to the parser. This
argument disables this behavior.

C-13

Compile-Time Options

print_deps
Tells VCS to display the dependencies for the source files on
the screen or in the specified file. Enter this argument with the
dep_check argument.

tb_timescale=value
Specifies an overriding timescale for the testbench. The
timescale is in the Verilog format (for example, 10ns/10ns).

tokens
Preprocesses the OpenVera files to generate two files,
tokens.vr and tokens.vrp. The tokens.vr contains
the preprocessed result of the non-encrypted OpenVera files,
while the tokens.vrp contains the preprocessed result of the
encrypted OpenVera files. If there is no encrypted OpenVera
file, VCS sends all the OpenVera preprocessed result to the
tokens.vr file.

use_sigprop
Enables the signal property access functions. For example,
vera_get_ifc_name().

vera_portname
Specifies the following:

- The Vera shell module name is named vera_shell.

- The interface ports are named ifc_signal.

- Bind signals are named, for example, as: \if_signal[3:0].

For example, if “adder” is the name of the interface, specifying
-ntb_opts vera_portname causes VCS to use the
following shell module:

vera_shell vshell(
.SystemClock (SystemClock),
.adder_inp1 (inp1),
.adder_inp2 (inp2),

C-14

Compile-Time Options

...
);

Without vera_portname, the Vera shell module name is
based on the name of the OpenVera program by default. Bind
signals are named, for example, as: \ifc.signal[3:0]. The
interface ports are named \ifc.signal.

In this example, assume that “adder” is the name of the
OpenVera program:

adder_test vshell(
 .SystemClock (SystemClock),
 .\adder.inp1 (inp1),
 .\adder.inp2 (inp2),
 ...

);

You can enter more than one keyword argument, using the plus
(+) character. For example:

-ntb_opts use_sigprop+vera_portname

-ntb_shell_only
Generates only a .vshell file. Use this option when compiling a
testbench separately from the design file.

 -ntb_sfname filename
Specifies the file name of the testbench shell.

-ntb_sname module_name
Specifies the name and directory where VCS writes the testbench
shell module.

-ntb_spath
Specifies the directory where VCS writes the testbench shell and
shared object files. The default is the compilation directory.

-ntb_vipext .ext
Specifies an OpenVera encrypted-mode file extension to mark

C-15

Compile-Time Options

files for processing in OpenVera encrypted IP mode. Unlike the
-ntb_filext option, the default encrypted-mode extensions
.vrp, .vrhp are not overridden, and will always be in effect. You
can pass multiple file extensions at the same time using the plus
(+) character.

-ntb_vl
Specifies the compilation of all Verilog files, including the design,
the testbench shell file, and the top-level Verilog module.

Options for Different Versions of Verilog

+systemverilogext+ext
Specifies a file name extension for SystemVerilog source files. If
you use a different file name extension for the SystemVerilog part
of your source code, and this option, you can omit the -sverilog
option.

+verilog2001ext+ext
Specifies a file name extension for Verilog 2001 source files. If
you use a different file name extension for the Verilog 2001 part
of your source code, and this option, you can omit the +v2k option.

+verilog1995ext+ext
Specifies a file name extension for Verilog 1995 files. Using this
option allows you write Verilog 1995 code that would be invalid in
Verilog 2001 or SystemVerilog code, such as using Verilog 2001
or SystemVerilog keywords, like localparam and logic, as
names.

Note:
Do not enter all three of these options on the same command line.

C-16

Compile-Time Options

Options for Initializing Memories and Regs

+vcs+initmem+0|1|x|z
Initializes all bits of all memories in the design. See “Initializing
Memories and Regs” on page 3-8.

+vcs+initreg+0|1|x|z
Initializes all bits of all regs in the design. See “Initializing
Memories and Regs” on page 3-8.

Options for Using Radiant Technology

+rad
Performs Radiant Technology optimizations on your design.

+optconfigfile+filename
Specifies a configuration file that lists the parts of your design you
want to optimize (or not optimize) and the level of optimization for
these parts. You can also use the configuration file to specify ACC
write capabilities. See “Applying Radiant Technology to Parts of
the Design” on page 3-36.

Options for 64-bit Compilation

-full64
Enables compilation and simulation in 64-bit mode. See
“Initializing Memories and Regs” on page 3-8.

-comp64
Enable 64 bit compilation that generates a 32-bit simv executable.
See “Initializing Memories and Regs” on page 3-8.

C-17

Compile-Time Options

Options for Debugging

-line
Enables source-level debugging tasks such as stepping through
the code, displaying the order in which VCS executed lines in your
code, and the last statement executed before simulation stopped.
Typically you enter this option with a +cli option.

For example: vcs +cli+1 -line

+cli+[module_identifier=]level_number
Enables command line interface (CLI) interactive debugging
commands. Using this option creates the Direct Access Interface
Directory, by default named simv.daidir, in the directory where
VCS creates the executable file. See “The Direct Access Interface
Directory” on page 3-7.

The level number enables more and more commands. The level
number can be any number between 1 and 4:

 +cli+1 or +cli
Enables commands that display the value of nets and registers
and deposit values on registers

+cli+2
Same as above, plus enables callbacks on signals, that is
commands that do something when there is a value change.
For example:
break signal_name

+cli+3
Same as above, plus enables force and release of nets. For
example:
force net=0
This level number does not enable forcing values on registers.

C-18

Compile-Time Options

+cli+4
Same as above, plus enables force and release of registers.

Using these options also creates the Direct Access Interface
Directory, by default named simv.daidir, in the directory where
VCS creates the executable file.

You can include a module identifier (name) in this option to enable
a level of CLI commands for all instances of the module. If you
want to enable CLI commands in other modules, enter another
+cli option, for example:

vcs source.v +cli+dev1=4 +cli+dev2=4

This command line enables level four CLI commands in all
instances of modules dev1 and dev2.

+cliedit
In UNIX, enables tcsh-like CLI mode. This mode enables you to
use the GNU command line editing interface for entering CLI
commands. For example, with this mode, entering Control - p
displays the previous CLI command at the CLI prompt.

To use this option you first must download a zipped tar file from
the Synopsys FTP site, unzip it, extract this tar file, and set the
GNURL_HOME environment variable. You may want to install this
file at a location accessible to all users at your site. To do so:

1. Enter on a command line FTP FTP.synopsys.com

2. At the FTP Name prompt enter anonymous.
This enables a guest login.

3. Enter your E-mail address as your password.

4. Enter the FTP command cd TOOLS to move to the directory
that contains the tar file.

C-19

Compile-Time Options

5. Enter the FTP command bin.

6. Enter the FTP command get readline-2.0.tar.gz. This
downloads the file to your current directory.

7. Enter the FTP command quit to exit FTP.

8. Unzip the tar file by entering:

gunzip readline-2.0.tar.gz.

9. Extract the tar file by entering, for example:

tar xvf readline-2.0.tar

10. This creates the readline-2.0 directory. In that directory is the
make_gnurl script.

11. Execute the make_gnurl script. This script builds the gnurl.o
and other object files that you need for this option. It creates
a subdirectory that it names after the UNIX platform you use,
for example, sparc. It writes the gnurl.o and other object files
in that subdirectory.

12. Set the GNURL_HOME environment variable to the
subdirectory created by the script, for example:
setenv GNURL_HOME /u/eng/readline-2.0/sparc
Instead of setting this environment variable you can copy the
gnurl.o and other object files in the subdirectory to the lib
directory in your VCS installation.

Documentation for this mode is included in the readline-2.0/doc
directory.

+acc+level_number
Old method to enable PLI ACC capabilities for the entire design.
Synopsys recommends that you do not use this option. The level
number can be any number between 1 and 4:

C-20

Compile-Time Options

+acc or +acc+1
Enables all capabilities except breakpoints and delay
annotation.

+acc+2
Above, plus breakpoints

+acc+3
Above, plus module path delay annotation

+acc+4
Above, plus gate delay annotation

+applylearn+filename
Recompiles your design to enable only the ACC capabilities that
you needed for the debugging operations you did, such as
applying breakpoints to signals or stepping through the code in
certain parts of your design, during a previous simulation of the
design. ACC capabilities enable debugging operations but slow
down your simulation so you only want to apply them where you
need them.

You record where you last used them, in a previous simulation,
with the +vcs+learn+pli runtime option. This option records
where you used ACC capabilities in a file named pli_learn.tab. If
you do not change the file’s name or location, you can omit
+filename from the +applylearn compile-time option.

 Options for Finding Race Conditions

+race
Specifies that VCS generate a report of all the race conditions in
the design and write this report in the race.out file during
simulation. See “The Dynamic Race Detection Tool” on page 11-2.

C-21

Compile-Time Options

+race=all
Analyzes the source code during compilation to look for coding
styles that cause race conditions. See “The Static Race Detection
Tool” on page 11-13.

+racecd
Specifies that during simulation VCS generate a report of the race
conditions in the design between the ‘race and ‘endrace
compiler directives and write this report in the race.out file. See
“The Dynamic Race Detection Tool” on page 11-2.

+race_maxvecsize=size
Specifies the largest vector signal for which the dynamic race
detection tool looks for race conditions.

Options for Starting Simulation Right After Compilation

-R
Runs the executable file immediately after VCS links it together.

-s
Specifies stopping simulation just as it begins and entering the
CLI interactive mode. Use this option on the vcs command line
along with the -R and +cli options. The -s option is also a
runtime option on the simv command line.

-i filename
Specifies a file containing CLI commands that VCS executes
when simulation starts. After the end of that file is reached, input
commands are taken from the standard input. This option works
only when you also include the -R and -s options. It is normally
entered with the +cli+number compile-time option. This option
is also accepted by the output simv executable; it is really a
runtime option but it is frequently entered on the vcs command
line.

C-22

Compile-Time Options

Options for Compiling OpenVera Assertions (OVA)

-ovac
Starts the OVA compiler for checking the syntax of OVA files that
you specify on the vcs command line. This option is for when you
first start writing OVA files and need to make sure that they can
compile correctly.

-ova_cov
Enables viewing results with functional coverage.

-ova_cov_events
Enables coverage reporting of expressions.

-ova_cov_hier filename
Limits functional coverage to the module instances specified in
filename.

-ova_debug | -ova_debug_vpd
Enables viewing results with DVE.

-ova_file filename
Identifies filename as an assertion file. It is not required if the
file name ends with .ova. For multiple assertion files, repeat this
option with each file.

-ova_filter_past
Ignores assertions defined with the past operator when the past
history buffer is empty. For instance, at the very beginning of the
simulation the past history buffer is empty. So, a check/forbid at
the first sampling point and subsequent sampling points should
be ignored until the past buffer has been filled with respect to the
sampling point.

-ova_enable_diag
Enables further control of result reporting with runtime options.

C-23

Compile-Time Options

-ova_inline
Enables compiling of OVA code that is written inline with a Verilog
design.

-ova_lint
Enables general rules for the OVA linter.

-ova_lint_magellan
Enables Magellan rules for the OVA linter.

Options for Compiling For Simulation With Vera

-vera
Specifies the standard VERA PLI table file and object library.

-vera_dbind
Specifies the VERA PLI table file and object library for dynamic
binding.

Options for Compiling For Coverage Metrics

For more detailed information on these options see the VCS /VCS
MX Coverage Metrics User Guide.

-cm line|cond|fsm|tgl|path|branch|assert
Specifies compiling for the specified type or types of coverage.
The arguments specifies the types of coverage:

line
Compile for line or statement coverage.

cond
Compile for condition coverage.

C-24

Compile-Time Options

fsm
Compile for FSM coverage.

tgl
Compile for toggle coverage.

path
Compile for path coverage.

branch
Compile for branch coverage

assert
Compile for SystemVerilog assertion coverage.

If you want VCS to compile for more than one type of coverage, use
the plus (+) character as a delimiter between arguments, for example:

-cm line+cond+fsm+tgl

The -cm option is also a runtime option and an option on the cmView
command line.

-cm_assert_hier filename
Limits assertion coverage to the module instances specified in
filename. Specify the instances using the same format as VCS
coverage metrics. If this option is not used, coverage is
implemented on the whole design.

-cm_cond arguments
Modifies condition coverage as specified by the argument or
arguments:

basic
Only logical conditions and no multiple conditions.

std
The default: only logical, multiple, sensitized conditions.

C-25

Compile-Time Options

full
Logical and non-logical, multiple conditions, no sensitized
conditions.

allops
Logical and non-logical conditions.

event
Signals in event controls in the sensitivity list position are
conditions.

anywidth
Enables conditions that need more than 32 bits.

sop
Specifies condition SOP coverage.

for
Enables conditions in for loops.

tf
Enables conditions in user-defined tasks and functions.

sop
Tells VCS that when it reads conditional expressions that
contain the ^ bitwise XOR and ~^ bitwise XNOR operators, it
should reduce the expression to negation and logical AND or
OR.

You can specify more than one argument. You do this by using the
plus (+) character between arguments. For example:

-cm_cond basic+allops

-cm_count
Enables cmView to do the following:

- In toggle coverage, reports not just whether a signal toggled
from 0 to 1 and 1 to 0, but also the number of times it toggled.

C-26

Compile-Time Options

- In FSM coverage, reports not just whether an FSM reached a
state, and had such a transition, but also the number of times
it did.

- In condition coverage, reports not just whether a condition was
met or not, but also the number of times the condition was met.

- In line coverage, reports not just whether a line was executed,
but how many times.

-cm_constfile filename
Specifies a file listing signals and 0 or 1 values. VCS compiles for
line and condition coverage as if these signals were permanently
at the specified values and you included the -cm_noconst
option.

-cm_dir directory_path_name
Specifies an alternative name and location for the simv.cm
directory. The -cm_dir option is also a runtime option and a
cmView command line option.

-cm_fsmcfg filename
Specifies an FSM coverage configuration file.

-cm_fsmopt keyword_argument
The keyword arguments are as follows:

allowTemp
By default, the variable that holds the current state of the FSM
must be directly assigned a numerical constant or the value of
a variable that holds the next state of the FSM. This keyword
allows FSM extraction when there is indirect assignment to the
variable that holds the current state.

C-27

Compile-Time Options

optimist
Specifies identifying illegal transitions when VCS extracts FSMs
in FSM coverage. cmView then reports illegal transitions in
report files.

report2StateFsms
By default, VCS does not extract two state FSMs. This keyword
tells VCS to extract them.

reportvalues
Specifies reporting the value transitions of the reg that holds
the current state of a One Hot or Hot Bit FSM where there are
parameters for the bit numbers of the signals that hold the
current and next state. The default behavior is to identify these
parameters as the states of the FSM and report assignments
to their bits as state transitions.

reportWait
Enables VCS to monitor transitions when the signal holding the
current state is assigned the same state value.

reportXassign
Enables the extraction of FSMs in which a state contains the X
(unknown) value.

-cm_fsmresetfilter filename
Filters out transitions in assignment statements controlled by if
statements where the conditional expression (following the
keyword if) is a signal you specify in the file. This filtering out
can be for the specified signal in any module definition or in the
module definition you specify in the file. You can also specify the
FSM and whether the signal is true or false in the file.

-cm_hier filename
When compiling for line, condition, toggle or FSM coverage,
specifies a configuration file that lists the module definitions,
instances and sub-hierarchies, and source files that you want VCS

C-28

Compile-Time Options

to either exclude from coverage or exclusively compile for
coverage.

-cm_ignorepragmas
Tells VCS to ignore pragmas for coverage metrics.

-cm_libs yv|celldefine
Specifies compiling for coverage source files in Verilog libraries
when you include the yv argument. Specifies compiling for
coverage module definitions that are under the ‘celldefine
compiler directive when you include the celldefine argument.
You can specify both arguments together using the plus (+)
character.

-cm_line contassign
Specifies enabling line coverage for Verilog continuous
assignments.

-cm_name filename
As a compile-time or runtime option, specifies the name of the
intermediate data files. When starting cmView, specifies the name
of the report files.

-cm_noconst
Tells VCS not to monitor for conditions that can never be met or
lines that can never execute because a signal is permanently at
a 1 or 0 value. See the VCS/ VCS MX Coverage Metrics User
Guide.

-cm_opfile filename
Specifies a file that contains a list of signals that you want to also
treat as observation points.

-cm_pp [gui]|[batch]
Tells VCS to start cmView. By default, VCS starts cmView in batch
mode.

C-29

Compile-Time Options

gui
Tells VCS to start the cmView graphical user interface to display
coverage data.

batch
Tells VCS to start cmView to write reports in batch mode. This
is the default operation.

You enter cmView command line options to the right of this option
and its argument.

-cm_resetfilter filename
Filters out FSM coverage transitions in assignment statements
controlled by if statements where the conditional expression
(following the keyword if) is a signal you specify in the file. This
filtering out can be for the specified signal in any module definition
or in the module definition you specify in the file. You can also
specify the FSM and whether the signal is true or false in the file.

-cm_scope "argument"
Limits the scope of what part of the design VCS compiles for
coverage. It takes an argument that is similar, but not identical to,
a line in the configuration file for the -cm_hier option. The
difference is that the + (plus) and - (minus) follow the tree, module,
file and filelist keywords instead of preceding them as they do in
the configuration file. You can enter more than one
-cm_scope option. The argument must be enclosed in quotation
marks. The following is an example of the use of this option:

vcs -cm_scope "tree+top.inst1" -cm_scope "file-
testshell.v"

-cm_tglfile filename
Specifies displaying at runtime a total toggle count for one or more
subhierarchies specified by the top-level module instance entered
in the file. This option is also a runtime option.

C-30

Compile-Time Options

-cm_tgl mda
Enables toggle coverage for Verilog-2001 multidimensional
arrays (MDAs) and SystemVerilog unpacked MDAs. Not required
for SystemVerilog packed MDAs.

Options for Discovery Visual Environment and UCLI

-debug
Enables DVE and UCLI debugging. This option does not enable
line stepping.

-debug_all
Enables DVE and UCLI debugging including line stepping.

-ucli
Forces runtime to go into UCLI mode by default.

-gui
When used at compile time, starts DVE at runtime.

-debug_pp
Enables minimal debug access so as to allow VPD dumping and
assertion debug. You can view the results inside DVE in
postprocessing mode.

Creates a VPD file (when used with the Verilog system task
$vcdpluson) and enables DVE for postprocessing a design.
Using -debug_pp can save compilation time by eliminating the
overhead of compiling with -debug and -debug_all.

-PP
Enables you to enter system tasks like $vcdpluson in your
Verilog source code to create a VPD file during simulation. This
option minimizes net data details for faster post-processing.

C-31

Compile-Time Options

-assert dve
Enables SystemVerilog assertions tracing in the VPD file. This
tracing enables you to see assertion attempts.

Note:
The –debug_pp option writes a smaller VPD file than –debug
-PP making for less overhead.

+vpdfile+filename
Specifies the name of the generated VPD file. You can also use
this option for post-processing, where it specifies the name of the
VPD file.

+vcdfile+filename
Specifies the VCD file you want to use for post-processing.

+vpdfileswitchsize+number_in_MB
Specifies a size for the vpd file. When the vpd file reaches this
size, VCS closes this file and opens a new one with the same

Options for Converting VCD and VPD Files

-vcd2vpd vcd_filename vcdplus_filename
Tells VCS to find and run the vcd2vpd utility that converts a VCD
file to a VPD file. VCS inputs to the utility the specified VCD file
and the utility outputs the specified VPD file.

-vpd2vcd vcdplus_filename vcd_filename
Tells VCS to find and run the vpd2vcd utility that converts a VPD
file to a VCD file. VCS inputs to the utility the specified VPD file
and the utility outputs the specified VCD file.

C-32

Compile-Time Options

Options for Specifying Delays

+allmtm
Specifies enabling the simv executable for the +mindelays,
+typdelays, or +maxdelays options at runtime, instead of at
compile-time, to specify which of the minimum, typical, or
maximum delay values to use during simulation from min:typ:max
delay value triplets in module path delays and timing delays. This
option is also used for compiling SDF files.

This option does not work for min:typ:max delay value triplets in
other delay specification in your source code. Do not use this
option with the +maxdelays, +mindelays, or +typdelays
compile-time options. For more information, see “Specifying
Min:Typ:Max Delays at Runtime” on page 13-38.

+charge_decay
Enables charge decay in trireg nets. Charge decay will not work
if you connect the trireg to a transistor (bidirectional pass)
switch such as tran, rtran, tranif1, or rtranif0.

+delay_mode_path
For modules that contain specify blocks, ignores the delay
specifications on all gates and switches and uses only the module
path delays and the delay specifications on continuous
assignments.

+delay_mode_zero
Changes all the delay specifications on all gates, switches, and
continuous assignments to zero and changes all module path
delays in specify blocks to zero.

+delay_mode_unit
Ignores the module path delays in specify blocks and changes all
the delay specifications on all gates, switches, and continuous
assignments to the shortest time precision argument of all the

C-33

Compile-Time Options

‘timescale compiler directives in the source code. The default
time unit and time precision argument of the ‘timescale compiler
directive is 1s.

+delay_mode_distributed
Ignores the module path delays in specify blocks and uses only
the delay specifications on all gates, switches, and continuous
assignments.

+maxdelays
Specifies using the maximum timing delays in min:typ:max delay
triplets in delay specifications and also in delay entries in SDF
files. See “Min:Typ:Max Delays” on page 13-37.

+mindelays
Specifies using the minimum timing delays in min:typ:max delay
triplets in delay specifications and also in delay entries in SDF
files. See “Min:Typ:Max Delays” on page 13-37.

+typdelays
Specifies using the typical timing delays in min:typ:max delay
triplets in delay specifications and also in delay entries in SDF
files. See “Min:Typ:Max Delays” on page 13-37.

+multisource_int_delays
Enables the multisource INTERCONNECT feature, including
transport delays with full pulse control. See “INTERCONNECT
Delays” on page 13-32.

+nbaopt
Removes all intra-assignment delays in all the nonblocking
assignment statements in the design. Many users enter a #1 intra-
assignment delay in nonblocking procedural assignment
statements to make debugging in the Wave window easier. For
example:

reg1 <= #1 reg2;

C-34

Compile-Time Options

These delays impede the simulation performance of the design
so after debugging you can remove these delays with this option.

Note:
The +nbaopt option removes all intra-assignment delays in all
the nonblocking assignment statements in the design, not just the
#1 delays.

+old_iopath
By default VCS replaces negative module path delays in SDF files
with a 0 delay. If you include this option, VCS replaces these
negative delays with the delay specified in a module’s specify
block.

-negdelay
Enables the use of negative values in IOPATH and
INTERCONNECT entries in SDF files.

+transport_int_delays
Enables transport delays for delays on nets with a delay
backannotated from an INTERCONNECT entry in an SDF file.
The default is inertial delays. See “Transport and Inertial Delays”
on page 12-2, “Enabling Transport Delays” on page 12-7 and
“INTERCONNECT Delays” on page 13-32.

+transport_path_delays
Enables transport delays for module path delays. See “Transport
and Inertial Delays” on page 12-2 and “Enabling Transport
Delays” on page 12-7".

C-35

Compile-Time Options

Options for Compiling an SDF File

+allmtm
Specifies compiling separate files for minimum, typical, and
maximum delays when there are min:typ:max delay triplets in SDF
files. If you use this option, you can use the +mindelays,
+typdelays, or +maxdelays options at runtime to specify
which compiled SDF file VCS uses. Do not use this option with
the +maxdelays, +mindelays, or +typdelays compile-time
options. See “Specifying Min:Typ:Max Delays at Runtime” on
page 13-38.

+csdf+precompile
Precompiles your SDF file into a format that VCS can parse when
it compiles your Verilog code. See “Precompiling an SDF File” on
page 13-7.

+csdf+precomp+dir+directory
Specifies the directory path where you want VCS to write the
precompiled SDF file. See “Specifying an Alternative Name and
Location” on page 13-8.

+csdf+precomp+ext+ext
Specifies an alternative to the "_c" character string addition to the
file name extension of the precompiled SDF file. See “Specifying
an Alternative Name and Location” on page 13-8.

+maxdelays
Specifies using the maximum timing delays in min:typ:max delay
triplets when compiling the SDF file. See “Min:Typ:Max Delays”
on page 13-37. The mtm_spec argument to the $sdf_annotate
system task overrides this option. See “The $sdf_annotate
System Task” on page 13-3.

+mindelays
Specifies using the minimum timing delays in min:typ:max delay

C-36

Compile-Time Options

triplets when compiling the SDF file. See “Min:Typ:Max Delays”
on page 13-37. The mtm_spec argument to the $sdf_annotate
system task overrides this option. See “The $sdf_annotate
System Task” on page 13-3.

-negdelay
Enables the use of negative values in IOPATH and
INTERCONNECT entries in SDF files.

+oldsdf
Disables compiling the SDF file. Use this option if you cannot meet
the conditions for compiling SDF files. See “Limitations on
Compiling the SDF File” on page 13-5.

+sdf_nocheck_celltype
For a module instance to which an SDF file backannotates delay
data, disables comparing the module identifier in the source code
with the CELLTYPE entry in the SDF file. See “Disabling
CELLTYPE Checking in SDF Files” on page 13-15.

+typdelays
Specifies using the typical timing delays in min:typ:max delay
triplets when compiling the SDF file. See “Min:Typ:Max Delays”
on page 13-37. The mtm_spec argument to the $sdf_annotate
system task overrides this option. See “The $sdf_annotate
System Task” on page 13-3.

+vcs+mipdexpand
This option is used when backannotating SDF delay values from
an ASCII text SDF file at runtime, as specified by the +oldsdf
compile-time option, which disables compiling the SDF file during
compilation. If the SDF file contains PORT entries for the
individual bits of a port, using this option enables VCS to
backannotate these PORT entry delay values. Similarly, using this
compile-time option enables a PLI application to pass delay
values to individual bits of a port.

C-37

Compile-Time Options

As an alternative to using this option, you can use the
‘vcs_mipdexpand compiler directive or you can enter the mipb
ACC capability in your PLI table file. For example:

$sdf_annotate call=sdf_annotate_call
acc+=rw,mipb:top_level_mod+

When you compile the SDF file (recommended) the
backannotation of the delay values for individual bits of a port does
not require this option.

Options for Profiling Your Design

+prof
Specifies that VCS writes the vcs.prof file during simulation. This
file tells you which module definitions, module instances, and
Verilog constructs in your design use the most CPU time. See
“Profiling the Simulation” on page 4-13.

+vissymbols
Makes symbols visible when you are using the prof or gprof
program (not the VCS profiler that is enabled by the +prof option)
to profile generated code.

C-38

Compile-Time Options

Options for File Containing Source File Names and
Options

-f filename
Specifies a file name that contains a list of absolute path names
for Verilog source files and compile-time options.

You can enter in this file all the compile-time options that begin
with a plus (+) character with three exceptions: do not enter the
+comp64, +full64, or +memopt compile-time options.

You can also enter the following compile-time options that begin
with a minus (-) character:

You can also enter the runtime options in this file so that VCS
compiles them into the simv executable.

You cannot include C source or object file names, for PLI
applications, in this file.

You can specify a path name for the filename argument. Note
that you can also enter the -f option in this file with the path name
of another file that also contains a list of absolute path names for
Verilog source files and compile-time options.

-F filename
Similar to the -f option, but if you specify a path name for the
filename argument, you do not have to list absolute path names
for the Verilog source files that you list in the file. VCS uses the
path to this file as the path to the Verilog source files.
Nested files are not supported.

-f -gen_asm -gen_obj

-line -l -u -v -y

C-39

Compile-Time Options

-file filename
This option is for problems you might encounter with entries in
files specified with the -f or -F options. This file can contain more
compile-time options and different kinds of files. It can contain
options for controlling compilation, PLI options and object files.

You can also use escape characters and meta-characters like $,
‘, and ! in this file and they will expand. For example:

-CFLAGS '-I$VCS_HOME/include'
/my/pli/code/$PROJECT_VERSION/treewalker.o
-P /my/pli/code/$PROJECT_VERSION/treewalker.tab

You can comment out entries in this file with the Verilog // and /
* */ comment characters.

Options for Compiling Runtime Options into the simv
Executable

+plusarg_save
Some runtime options must be preceded by the +plusarg_save
option for VCS to compile them into the executable. You can
specify this option either on the vcs command line or in the file
specified with the -f or -F option.

+plusarg_ignore
Tells VCS not to compile the following runtime options into the
simv executable. This option is typically used in the file that you
specify with the -f compile-time option and is used to counter the
+plusarg_save option on a previous line.

C-40

Compile-Time Options

Options for Pulse Filtering

 +pulse_e/number
Displays an error message and propagates an X value for any
path pulse whose width is less than or equal to the percentage of
the module path delay specified by the number argument but is
still greater than the percentage of the module path delay specified
by the number argument to the +pulse_r/number option.

+pulse_r/number
Rejects any pulse whose width is less than number percent of
the module path delay. The number argument is in the range of
0 to 100.

+pulse_int_r
Same as the existing +pulse_r option, except it applies only to
INTERCONNECT delays.

+pulse_int_e
Same as the existing +pulse_e option, except it applies only to
INTERCONNECT delays.

+pulse_on_event
Specifies that when VCS encounters a pulse shorter than the
module path delay, VCS waits until the module path delay elapses
and then drives an X value on the module output port and displays
an error message. It drives that X value for a simulation time equal
to the length of the short pulse or until another simulation event
drives a value on the output port. See “Pulse Control” on page
12-7.

+pulse_on_detect
Specifies that when VCS encounters a pulse shorter than the
module path delay, VCS immediately drives an X value on the
module output port, and displays an error message. It does not
wait until the module path delay elapses. It drives that X value

C-41

Compile-Time Options

until the short pulse propagates through the module or until
another simulation event drives a value on the output port. See
“Specifying the Delay Mode” on page 12-20.

Options for PLI Applications

+applylearn+filename
Recompiles your design to enable only the ACC capabilities that
you needed for the debugging operations you did during a
previous simulation of the design.

-e new_name_for_main
Specifies the name of your main() routine. You write your own
main() routine when you are writing a C++ application or when
your application does some processing before starting the simv
executable.

Note:
Do not use the -e options with the VCS /SystemC
Cosimulation Interface.

-P pli.tab
Compiles a user-defined PLI definition table file.

+vpi
Enables the use of VPI PLI access routines.

-load shared_library:registration_routine
Specifies the registration routine in a shared library for a VPI
application.

-use_vpiobj
Specifies the vpi_user.c file that enables you to use the
vpi_register_systf VPI access routine.

C-42

Compile-Time Options

Options to Enable and Disable Specify Blocks and
Timing Checks

+pathpulse
Enables the search for the PATHPULSE$ specparam in specify
blocks.

+nospecify
Suppresses module path delays and timing checks in specify
blocks. This option can significantly improve simulation
performance.

+notimingcheck
Tells VCS to ignore timing check system tasks when it compiles
your design. This option can moderately improve simulation
performance. The extent of this improvement depends on the
number of timing checks that VCS ignores. You can also use this
option at runtime to disable these timing checks after VCS has
compiled them into the executable. However, the executable
simulates faster if you include this option at compile-time so that
the timing checks are not in the executable. If you need the
delayed versions of the signals in negative timing checks but want
faster performance, include this option at runtime. The delayed
versions are not available if you use this option at compile-time.
See “Enabling Negative Timing Checks” on page 14-13.

Note:
VCS recognizes +notimingchecks to be the same as
+notimingcheck when you enter it on the vcs or simv
command line.

+no_notifier
Disables toggling of the notifier register that you specify in some
timing check system tasks. This option does not disable the

C-43

Compile-Time Options

display of warning messages when VCS finds a timing violation
that you specified in a timing check.

+no_tchk_msg
Disables display of timing violations but does not disable the
toggling of notifier registers in timing checks. This is also a runtime
option.

Options to Enable the VCS DirectC Interface

+vc+[abstract+allhdrs+list]
The +vc option enables extern declarations of C/C++ functions
and calling these functions in your source code. See The VCS
DirectC Interface User Guide. The optional suffixes to this option
are as follows:

+abstract
Enables abstract access through vc_handles.

+allhdrs
Writes the vc_hdrs.h file that contains external function
declarations that you can use in your Verilog code.

+list
Displays all the C/C++ functions that you called in your Verilog
source code.

Options for Negative Timing Checks

+neg_tchk
Enables negative values in timing checks. See “Enabling
Negative Timing Checks” on page 14-13.

+old_ntc
Prevents the other timing checks from using delayed versions of

C-44

Compile-Time Options

the signals in the $setuphold and $recrem timing checks. See
“Other Timing Checks Using the Delayed Signals” on page 14-14.

+NTC2
In $setuphold and $recrem timing checks, specifies checking
the timestamp and timecheck conditions when the original data
and reference signals change value instead of when their delayed
versions change value. See “Checking Conditions” on page
14-18.

+overlap
Enables accurate simulation of multiple non-overlapping violation
windows for the same signals specified with negative delay values
back annotated from an SDF file to timing checks. See “Using
Multiple Non-Overlapping Violation Windows” on page 14-23.

Options for Flushing Certain Output Text File Buffers

When VCS creates a log file, VCD file, or a text file specified with the
$fopen system function, VCS writes the data for the file in a buffer
and periodically dumps the data from the buffer to the file on disk.
The frequency of these dumps varies depending on many factors
including the amount of data that VCS has to write to the buffer as
simulation or compilation progresses. If you need to see or use the
latest information in these files more frequently than the rate at which
VCS normally flushes this data, these options tell VCS to flush the
data more often during compilation or simulation.

+vcs+flush+log
Increases the frequency of flushing both the compilation and
simulation log file buffers.

+vcs+flush+dump
Increases the frequency of flushing all VCD file buffers.

C-45

Compile-Time Options

+vcs+flush+fopen
Increases the frequency of flushing all the buffers for the files
opened by the $fopen system function.

+vcs+flush+all
Shortcut option for entering all three of the +vcs+flush+log,
+vcs+flush+dump, and +vcs+flush+fopen options.

These options do not increase the frequency of dumping other text
files, including the VCDE files specified by the $dumpports system
task or the simulation history file for LSI certification specified by the
$lsi_dumpports system task.

These options can also be entered at runtime. Entering them at
compile-time modifies the simv executable so that it runs as if these
options were always entered at runtime.

Options for Simulating SWIFT VMC Models and
SmartModels

-lmc-swift
Includes the LMC SWIFT interface. See Chapter 16, "SWIFT VMC
Models and SmartModels".

-lmc-swift-template
Generates a Verilog template for a SWIFT Model. See
“Generating Verilog Templates” on page 16-4.

Options for Controlling Messages

+libverbose
Tells VCS to display a message when it finds a module definition
in a source file in a Verilog library directory that resolves a module

C-46

Compile-Time Options

instantiation statement that VCS read in your source files, a library
file, or in another file in a library directory. The message is:

Resolving module "module_identifier"

VCS does not display this message when it finds a module
definition in a Verilog library file that resolves a module
instantiation statement.

+lint=[no]ID|none|all
Enables messages that tell you when your Verilog code contains
something that is bad style but is often used in designs. See “Using
Lint” on page 3-10.

-no_error ID+ID
Changes the error messages with the UPIMI and IOPCWM IDs
to warning messages with the -no_error compile-time option.
You include one or both IDs as arguments, for example:

-noerror UPIMI+IOPCWM

This option does not work with the ID for any other error message.

-notice
Enables verbose diagnostic messages.

-q
Quiet mode; suppresses messages such as those about the C
compiler VCS is using, the source files VCS is parsing, the
top-level modules, or the specified timescale.

-V
Verbose mode; compiles verbosely. The compiler driver program
prints the commands it executes as it runs the C compiler,
assembler, and linker. If you include the -R option with the -V
option, the -V option is also passed to runtime executable, just as
if you had entered simv -V

C-47

Compile-Time Options

-Vt
Verbose mode; provides CPU time information. Like -V, but also
prints the amount of time used by each command. Use of the -Vt
option can cause the simulation to slow down.

+warn=[no]ID|none|all
Uses warning message IDs to enable or disable display of warning
messages. In the following warning message:

Warning-[TFIPC] Too few instance port connections

The text string TFIPC is the message ID. The syntax of this option
is as follows:

+warn=[no]ID|none|all,...

Where:

The following are examples that show how to use this option:

no Specifies disabling warning messages with the ID that follows. There is
no space between the keyword no and the ID.

none Specifies disabling all warning messages. IDs that follow, in a
comma-separated list, specify exceptions.

all Specifies enabling all warning messages, IDs that follow preceded by
the keyword no, in a comma separated list, specify exceptions

+warn=noIPDW Enables all warning messages except the warning
with the IPDW ID

+warn=none,TFIPC Disables all warning messages except the warning
with the TFIPC ID.

+warn=noIPDW,noTFIPC Disables the warning messages with the IPDW and
TFIPC IDs.

+warn=all Enables all warning messages. This is the default.

C-48

Compile-Time Options

Options for Cell Definition

+nolibcell
Does not define as a cell modules defined in libraries unless they
are under the `celldefine compiler directive.

+nocelldefinepli+0
Enables recording in VPD files, the transition times and values of
nets and registers in all modules defined under the ‘celldefine
compiler directive or defined in a library that you specify with the
-v or -y compile-time options. This option also enables full PLI
access to these modules. This option also overrides a
nocelldefinepli entry in the .tab files in the
vcs_install_dir/virsimdir subdirectory.

+nocelldefinepli+1
Disables recording in VPD files, the transition times and values
of nets and registers in all modules defined under the
‘celldefine compiler directive. This option also disables full PLI
access to these modules. Modules in a library file or directory are
not affected by this option unless they are defined under the
‘celldefine compiler directive.

+nocelldefinepli+2
Disables recording in VPD files, the transition times and values
of nets and registers in all modules defined under the
‘celldefine compiler directive or defined in a library that you
specify with the -v or -y compile-time options whether the
modules in these libraries are defined under the ‘celldefine
compiler directive or not. This option also disables PLI access to
these modules.

Disabling recording of transition times and values of the nets and
registers in library cells can significantly increase simulation
performance.

C-49

Compile-Time Options

As an alternative to using the +nocelldefinepli+1 option, you
can add an entry in the virsims.tab AND virsims_pp.tab files
(located in $VCS_HOME/virsims_support) to turn off VPD
dumping for modules defined under the `celldefine compiler
directive. Enter the keyword nocelldefinepli with appropriate
spaces in the $virsim line. For example:

$virsim data=0 check=vp_check_virsims
misc=vp_misc_virsims callback nocelldefinepli
acc+=rw,cbka:*

Note:
Disabling recording transitions in library cells is intended for
batch-simulation only and not for interactive debugging with DVE.
Any attempt in DVE to access a part of your design for which VPD
has been disabled may have unexpected results.

Options for Licensing

+vcs+lic+vcsi
Checks out three VCSi licenses to run VCS.

+vcsi+lic+vcs
Checks out a VCS license to run VCSi when all VCSi licenses are
in use.

+vcs+lic+wait
Tells VCS to wait for a network license if none is available.

+vcsi+lic+wait
Tells VCSi to wait for a network license if none is available.

-ID
Returns useful information about a number of things: the version
of VCS that you have set the VCS_HOME environment variable
to, the name of your work station, your work station’s platform, the

C-50

Compile-Time Options

host ID of your work station (used in licensing), the version of the
VCS compiler (same as VCS) and the VCS build date.

Options for Controlling the Assembler

-gen_asm
Enables assembly code generation mode. Use this option if you
encounter problems in native code generation. Not supported on
IBM RS/6000 AIX.

-as assembler
Selects an alternate assembler. Not supported on IBM RS/6000
AIX.

-ASFLAGS options
Passes options to assembler. Not supported on IBM RS/6000 AIX.

-C
Stops after generating the assembly code intermediate files. If you
also enter the -gen_asm option, it does not assemble the
assembly code files. Use this option if you want to assemble by
hand. This option can also be used with the -gen_c options for
disabling C code compilation.

Options for Controlling the Linker

-ld linker
Specifies an alternate front-end linker. Only applicable in
incremental compile mode, which is the default.

-LDFLAGS options
Passes flag options to the linker. Only applicable in incremental
compile mode, which is the default.

C-51

Compile-Time Options

-c
Tells VCS to compile the source files, generate the intermediate
C, assembly, or object files, and compile or assemble the C or
assembly code, but not to link them. Use this option if you want
to link by hand.

-lname
Links the name library to the resulting executable. Usage is the
letter l followed by a name (no space between l and name). For
example: -lm (instructs VCS to include the math library).

-syslib libs
Specifies system libraries. For example -syslib -ly -lc
includes the machine-specific system libraries. Normally, libs
entered on the vcs command line using -lname option are placed
in front of libvcs.a on the link line. The -syslib option tells VCS
to place the specified libs after libvcs.a on the link line.

Options for Controlling the C Compiler

-gen_c
Generates C language code. This is the default in IBM RS/6000
AIX.

-cc compiler
Specifies an alternate C compiler

-CC options
Passes options to the C compiler or assembler.

-CFLAGS options
Pass options to C compiler. Multiple -CFLAGS are allowed. Allows
passing of C compiler optimization levels. For example, if your C
code, test.c, calls a library file in your VCS installation under
$VCS_HOME/include, use any of the following CFLAGS option

C-52

Compile-Time Options

arguments:
%vcs top.v test.c -CFLAGS "-I$VCS_HOME/include"
or
%setenv CWD ‘pwd‘
%vcs top.v test.c -CFLAGS "-I$CWD/include"
or
%vcs top.v test.c -CFLAGS "-I../include"

Note:
The reason to enter "../include" is because VCS creates a default
csrc directory where it runs gcc commands. The csrc directory is
under your current working directory. Therefore, you need to
specify the relative path of the include directory to the csrc
directory for gcc C compiler. Further, you cannot edit files in the
csrc because VCS automatically creates this directory.

-cpp
Specifies the C++ compiler.

Note:
If you are entering a C++ file, or an object file compiled from a
C++ file, on the vcs command line, you must tell VCS to use
the standard C++ library for linking. To do this enter the
-lstdc++ linker flag with the -LDFLAGS compile-time option.
For example:

vcs source.v source.cpp -P my.tab \
-cpp /net/local/bin/c++ -LDFLAGS -lstdc++

-jnumber_of_processes
Specifies the number of processes that VCS forks for parallel
compilation. There is no space between the "j" character and the
number. You can use this option in any compilation mode: directly
generating object files from the parallel compilation of your Verilog
source files (-gen_obj, default on the HP, Solaris, and Linux

C-53

Compile-Time Options

platforms), generating intermediate assembly files (-gen_asm)
and then their parallel assembly, or generating intermediate C files
(-gen_c) and their parallel compilation.

-C
Stops after generating the C code intermediate files if you also
enter the -gen_c option, does not compile the C code files
(-gen_c is the default on IBM RS/6000 AIX). Use this option if
you want to compile by hand. This option can also be used with
the -gen_asm option for disabling assembly.

-O0
Suppresses optimization for faster compilation (but slower
simulation). Suppresses optimization both for how VCS writes
intermediate C code files and how VCS compiles these files. This
option is the uppercase letter "O" followed by a zero with no space
between them.

-Onumber
Specifies an optimization level for how VCS both writes and
compiles intermediate C code files. The number can be in the 0-4
range; 2 is the default, 0 and 1 decrease optimization, 3 and 4
increase optimization. This option is the uppercase letter "O"
followed by 0, 1, 2, 3 or 4 with no space between them. The -O0
variant has special mention above.

-override-cflags
Tells VCS not to pass its default options to the C compiler. VCS
has a number of C compiler options that it passes to the C compiler
by default. The options it passes depends on the platform, whether
it’s a 64 or 64-32 bit compilation and other factors. VCS passes
these options and then passes the options you specify with the
-CFLAGS compile-time option.

C-54

Compile-Time Options

Options for Source Protection

+autoprotect[file_suffix]
Creates a protected source file; all modules are encrypted.

+auto2protect[file_suffix]
Creates a protected source file that does not encrypt the port
connection list in the module header; all modules are encrypted.

+auto3protect[file_suffix]
Creates a protected source file that does not encrypt the port
connection list in the module header or any parameter
declarations that precede the first port declaration; all modules
are encrypted.

+deleteprotected
Allows overwriting of existing files when doing source protection.

+pli_unprotected
Enables PLI and CLI access to the modules in the protected
source file being created (PLI and CLI access is normally disabled
for protected modules).

+protect[file_suffix]
Creates a protected source file, only encrypting `protect/
`endprotect regions.

+putprotect+target_dir
Specifies the target directory for protected files.

+sdfprotect[file_suffix]
Creates a protected SDF file.

-Xmangle=number
Produces a mangled version of input, changing variable names
to words from list. Useful to get an entire Verilog design into a

C-55

Compile-Time Options

single file. Output is saved in tokens.v file. You can substitute
-Xman for -Xmangle.

The argument number can be 1, 4, 12, or 28:

-Xman=1
Randomly changes names and identifiers, and removes
comments, to provide more secure code.

-Xman=4
Preserves variable names but removes comments.

-Xman=12
Does the same thing as -Xman=4 but also enters, in comments,
the original source file name and the line number of each
module header.

-Xman=28
Does the same thing as -Xman=12 but also writes at the bottom
of the file comprehensive statistics about the contents of the
original source file.

-Xnomangle=.first|module_identifier,...
Specifies module definitions whose module and port identifiers
VCS does not change. You use this option with the -Xman option.
The .first argument specifies the module by location (first in
file) rather than by identifier. You can substitute -Xnoman for
-Xnomangle.

C-56

Compile-Time Options

Options for Mixed Analog/Digital Simulation

+ad=partition_filename
Specifies the partition file that you use in mixed Analog/Digital
simulation to specify the part of the design simulated by the analog
simulator, the analog simulator you want to use, and the
resistance mapping information that maps analog drive resistance
ranges to Verilog strengths.

-ams_discipline discipline_name
Specifies the default discrete discipline in VerilogAMS.

-ams_iereport
If information on auto-inserted connect modules (AICMs) is
available, displays this information on the screen and in the log file.

 +bidir+1
Tells VCS to finish compilation when it finds a bidirectional
registered mixed-signal net.

 +print+bidir+warn
Tells VCS to display a list of bidirectional, registered, mixed signal
nets.

Options for Changing Parameter Values

-pvalue+parameter_hierarchical_name=value
Changes the specified parameter to the specified value. See
“Changing Parameter Values From the Command Line” on page
3-12.

C-57

Compile-Time Options

-parameters filename
Changes parameters specified in the file to values specified in the
file. The syntax for a line in the file is as follows:

assign value path_to_parameter

The path to the parameter is similar to a hierarchical name except
that you use the forward slash character (/) instead of a period as
the delimiter. See “Changing Parameter Values From the
Command Line” on page 3-12.

Checking for X and Z Values in Conditional Expressions

-xzcheck [nofalseneg]
Checks all the conditional expressions in the design and displays
a warning message every time VCS evaluates a conditional
expression to have an X or Z value.

nofalseneg
Suppress the warning message when the value of a conditional
expression transitions to an X or Z value and then to 0 or 1 in
the same simulation time step.

Options to Specify the Time Scale

-timescale=time_unit/time_precision
It may happen that some source files contain the ‘timescale
compiler directive and others do not. In this case, if you specify
the source files that do not contain the ‘timescale compiler
directive on the command line before you specify the ones that
do, this is an error condition and VCS halts compilation by default.
This option enables you to specify the timescale for the source
files that do not contain this compiler directive and precede the

C-58

Compile-Time Options

source files that do. Do not include spaces when specifying the
arguments to this option.

-override_timescale=time_unit/time_precision
Overrides the time unit and precision unit for all the ‘timescale
compiler directives in the source code and, like the -timescale
option, provides a timescale for all module definitions that precede
the first ‘timescale compiler directive. Do not include spaces
when specifying the arguments to this option.

General Options

Enable Verilog 2001 Features

+v2k
Enables language features in the IEEE 1364-2001 standard.

Enable the VCS/SystemC Cosimulation Interface

-sysc
Enables SystemC cosimulation engine.
See "Using the VCS / SystemC Cosimulation Interface".

Reduce Memory Consumption

+memopt[+2]
Applies optimizations to reduce memory. See “Initializing
Memories and Regs” on page 3-8.

C-59

Compile-Time Options

TetraMAX

+tetramax
Enables simulation of TetraMAX’s testbench in zero delay mode.

Make Accessing an Undeclared Bit an Error Condition

+vcs+boundscheck
Changes reading from or writing to an undeclared bit to an error
condition instead of a warning condition.

Treat Output Ports As Inout Ports

+spl_read
Tells VCS to treat output ports as “inout” in order to facilitate more
accurate multi-driver contention analysis across module
boundaries. This option can have an adverse impact on runtime
performance.

Allow Inout Port Connection Width Mismatches

+noerrorIOPCWM
Changes the error condition, when a signal is wider or narrower
than the inout port to which it is connected, to a warning condition,
thus allowing VCS to create the simv executable after displaying
the warning message.

Specifying a VCD File

+vcs+dumpvars
A substitute for entering the $dumpvars system task, without
arguments, in your Verilog code.

C-60

Compile-Time Options

Memories and Multi-Dimensional Arrays (MDAs)

+memcbk
Enables callbacks for memories and multi-dimensional arrays
(MDAs). Use this option if your design has memories or MDAs
and you are doing any of the following:

- Writing a VCD or VPD file during simulation. For VCD files, at
runtime, you must also enter the +vcs+dumparrays runtime
option. For VPD files you must enter the $vcdplusmemon
system task. VCD and VPD files are used for post-processing
with DVE.

- Using the VCS/SystemC Interface

- Writing an FSDB file for Debussy

- Using any debugging interface application - VCSD/PLI (acc/vpi)
that needs to use value change callbacks on memories or
MDAs. APIs like acc_add_callback, vcsd_add_callback, and
vpi_register_cb need this option if these APIs are used on
memories or MDAs.

-cm_tgl mda
Enables toggle coverage for Verilog-2001 MDAs and
SystemVerilog unpacked MDAs. Not required for SystemVerilog
packed MDAs.

Specifying a Log File

-l filename
Specifies a file where VCS records compilation messages. If you
also enter the -R or -RI option, VCS records messages from both
compilation and simulation in the same file.

C-61

Compile-Time Options

Hardware Modeling

-lmc-hm
Compiles a design that instantiates a hardware model. Including
this option is an alternative to specifying the lmvc.tab PLI table
file and the lmvc.o lm_sfi.a object file and library that you need for
hardware modeling.

Changing Source File Identifiers to Upper Case

-u
Changes all the characters in identifiers to uppercase. It does not
change identifiers in quoted strings such as the first argument to
the $monitor system task. You do not see this change in the DVE
Source window but you do see it in all the other DVE windows.

Defining a Text Macro

+define+macro=value+
Defines a text macro in your source code to a value or character
string. You can test for this definition in your Verilog source code
using the ‘ifdef compiler directive. If there are blank spaces in
the character string then you must enclose it in quotation marks.
For example:

vcs design.v +define+USELIB="dir=dir1 dir=dir2"

The macro is used in a ‘uselib compiler directive:

‘uselib ‘USELIB libext+.v

C-62

Compile-Time Options

Specifying the Name of the Executable File

-o name
Specifies the name of the executable file. In UNIX the default is
simv.

Returning The Platform Directory Name

-platform
Returns the name of the platform directory in your VCS
installation directory. For example, when you install VCS on a
Solaris version 5.4 workstation, VCS creates a directory named
sun_sparc_solaris_5.4 in the directory where you install VCS. In
this directory are subdirectories for licensing, executable libraries,
utilities, and other important files and executables. You need to
set your path to these subdirectories. You can do so using this
option:

set path=($VCS_HOME/bin\
$VCS_HOME/‘$VCS_HOME/bin/vcs -platform‘/bin\
$path)

Specifying Native Code Generation

-gen_obj
Generates object code; default on Solaris, HP and Linux
platforms. Not supported on IBM RS/6000 AIX.

For Long Calls

-B
Generates long calls for large designs. Applies to HP 9000/700
models only.

C-63

Compile-Time Options

C-64

Compile-Time Options

C-1

Simulation Options

C
Simulation Options C

This appendix describes the options and syntax associated with the
simv executable. These runtime options are typically entered on the
simv command line but some of them can be compiled into the simv
executable at compile-time. See “Compiling Runtime Options Into the
simv Executable” on page 3-21.

For complete usage information on the simv executable, see Chapter
4, "Simulating Your Design".

This appendix describes the following runtime options:

• Options for Simulating OpenVera Testbenches

• Options for Simulating OpenVera Assertions

• Options for SystemVerilog Assertions

• Options for a CLI Command File

C-2

Simulation Options

• Options for Specifying VERA Object Files

• Options for Coverage Metrics

• Options for Enabling and Disabling Specify Blocks

• Options for Specifying When Simulation Stops

• Options for Recording Output

• Options for Controlling Messages

• Options for Discovery Visual Environment and UCLI

• Options for VPD Files

• Options for Controlling $gr_waves System Task Operations

• Options for VCD Files

• Options for Specifying Min:Typ:Max Delays

• Options for Flushing Certain Output Text File Buffers

• Options for Licensing

• General Options

Options for Simulating OpenVera Testbenches

+ntb_cache_dir
Specifies the directory location of the cache that VCS maintains
as an internal disk cache for randomization.

+ntb_debug_on_error
Causes the simulation to stop immediately when it encounters an
error. In addition to normal verification errors, this option halts the
simulation in case of runtime errors as well.

C-3

Simulation Options

+ntb_enable_solver_trace=value
Enables a debug mode that displays diagnostics when VCS
executes a randomize() method call. Allowed values are:

0 - Do not display (default).

1 - Displays the constraints VCS is solving.

2 - Displays the entire constraint set.

+ntb_enable_solver_trace_on_failure[=value]
Enables a mode that displays trace information only when the
VCS constraint solver fails to compute a solution, usually due to
inconsistent constraints. When the value of the option is 2, the
analysis narrows down to the smallest set of inconsistent
constraints, thus aiding the debugging process. Allowed values
are 0, 1, and 2. The default value is 2.

+ntb_exit_on_error[=value]
Causes VCS to exit when value is less than 0. The value can be:

0 - continue

1 - exit on first error (default value)

N - exit on nth error.

When the value is 0, the simulation finishes regardless of the
number of errors.

+ntb_load=path_name_to_libtb.so
Specifies loading the testbench shared object file libtb.so.

+ntb_random_seed=value
Sets the seed value to be used by the top level random number
generator at the start of simulation. The random(seed) system
function call overrides this setting. The value can be any integer
number.

C-4

Simulation Options

+ntb_solver_mode=value
Allows you to choose between one of two constraint solver modes.
When set to 1, the solver spends more preprocessing time in
analyzing the constraints during the first call to randomize() on
each class. Therefore, subsequent calls to randomize() on that
class are very fast. When set to 2, the solver does minimal
preprocessing, and analyzes the constraint in each call to
randomize(). The default is 2.

+ntb_stop_on_error
Causes the simulation to stop immediately when it encounters a
simulation error, and opens the CLI debugging environment. In
addition to normal verification errors, this option halts the
simulation in case of runtime errors. The default setting is to
execute the remaining code within the present simulation time.

Options for Simulating OpenVera Assertions

-ova_quiet [1]
Disables printing results on screen. The report file is not affected.
With the 1 argument, only a summary is printed on screen.

-ova_report [filename]
Generates a report file in addition to printing results on screen.
Specifying the full path name of the report file overrides the default
report name and location.

-ova_verbose
Adds more information to the end of the report, including
assertions that never triggered, attempts that did not finish, and
a summary with the number of assertions present, attempted, and
failed.

-ova_name name | pathname
Specifies an alternative name, or location and name, for the

C-5

Simulation Options

./simv.vdb/scov/results.db and ./simv.vdb/reports/ova.report files.
Use this option if you want data and reports from a series of
simulation runs. It is a way of preventing VCS from overwriting
these files from a previous simulation. If you just specify a name,
VCS creates the alternatively named files in the default
directories. You can also specify a different location and name for
these files by specifying the path using the slash character /. For
example:

-ova_name /net/design1/ova/run2

This example tells VCS to write run2.db and run2.report in the
/net/design1/ova directory.

The following runtime options control how VCS writes its report on
OpenVera Assertions. You can use them only if you compiled with
the -ova_enable_diag compile-time option.

-ova_filter
Blocks reporting trivial if-then successes. These happen when an
if-then construct registers a success only because the if portion
is false (and so the then portion is not checked). With this option,
reporting only shows successes in which the whole expression
matches.

-ova_max_fail N
Limits the number of failures for each assertion to N. When the
limit is reached, VCS disables the assertion. You must supply N,
otherwise no limit is set.

-ova_max_success N
Limits the total number of reported successes to N. You must
supply N, otherwise no limit is set. The monitoring of assertions
continues, even after the limit is reached.

C-6

Simulation Options

-ova_simend_max_fail N
Terminates the simulation if the number of failures for any
assertion reaches N. You must supply N, otherwise no limit is set.

-ova_success
Enables reporting of successful matches in addition to failures.
The default is to report only failures.

The following runtime options enable functional coverage. You can
use them only if you compiled with the -ova_cov compile-time
option.

-ova_cov
Enables functional coverage reporting.

-ova_cov_name filename
Specifies the file name or the full path name of the functional
coverage report file.

-ova_cov_db filename
Specifies the path name of the initial coverage file. VCS needs
the initial coverage file to set up the database.

Options for SystemVerilog Assertions

-assert keyword_argument

The keyword arguments are as follows:

dumpoff
Disables the dumping of SVA information in the VPD file during
simulation.

C-7

Simulation Options

filter
Blocks reporting of trivial implication successes. These happen
when an implication construct registers a success only because
the precondition (antecedent) portion is false (and so the
consequent portion is not checked). With this option, reporting
only shows successes in which the whole expression matches.

finish_maxfail=N
Terminates the simulation if the number of failures for any
assertion reaches N. You must supply N, otherwise no limit is
set.

global_finish_maxfail=N
Stops the simulation when the total number of failures, from all
SystemVerilog assertions, reaches N.

maxcover=N
Disables the collection of coverage information for cover
statements after the cover statements are covered N number
of times. N must be a positive integer; it can’t be 0.

maxfail=N
Limits the number of failures for each assertion to N. When the
limit is reached, VCS disables the assertion. You must supply
N, otherwise no limit is set.

maxsuccess=N
Limits the total number of reported successes to N. You must
supply N, otherwise no limit is set. VCS continues to monitor
assertions even after the limit is reached.

nocovdb
Tells VCS not to write the program_name.db database file for
assertion coverage.

C-8

Simulation Options

nopostproc
Disables the display of the SVA coverage summary at the end
of simulation. This summary looks like this for each cover
statement:

"source_filename.v", line_number:
cover_statement_hierarchical_name number attempts,
number total match, number first match, number vacuous
match

quiet
Disables the display of messages when assertions fail.

quiet1
Disables the display of messages when assertions fail but
enables the display of summary information at the end of
simulation. For example:

Summary: 2 assertions, 2 with attempts, 2 with failures

report[=path/filename]
Generates a report file in addition to printing results on your
screen. By default the report file’s name and location is ./
assert.report, but you can change it by entering the path/
filename argument. The file name can start with a number or
letter. The following special characters are acceptable in the
file name: %, ̂ , and @. Using the following unacceptable special
characters: #, &, *, [], $, (), or ! has the following
consequences:

- A file name containing # or & results in a file name truncation
to the character before the # or &.

- A file name containing * or [] results in a No match
message.

- A file name containing $ results in an Undefined variable
message.

C-9

Simulation Options

- A file name containing () results in a Badly placed ()’s
message.

- A file name containing ! results in an Event not found
message.

success
Enables reporting of successful matches, and successes on
cover statements, in addition to failures. The default is to report
only failures.

verbose
Adds more information to the end of the report specified by the
report keyword argument, and a summary with the number
of assertions present, attempted, and failed.

You can enter more than one keyword, using the plus + separator,
for example:

-assert maxfail=10+maxsucess=20+success+filter

-cm assert
Specifies monitoring for SystemVerilog assertions coverage.

-cm_assert_name path/filename
Specifies the path and file name of an initial coverage file. An initial
coverage file is needed to set up the database. By default, an
empty coverage file is loaded from the following directory:
simv.vdb/snps/fcov.

Options for a CLI Command File

-i filename
Specifies a file, containing CLI commands, that VCS executes
when simulation starts. After VCS reaches the end of that file, it

C-10

Simulation Options

takes commands from the standard input. This option is normally
used along with the -s runtime option and a +cli+number
compile-time option. A typical file for this option is the vcs.key file.

-k filename | off
Specifies an alternative name or location for the vcs.key file into
which VCS writes the CLI and DVE interactive commands that
you enter during simulation. The off argument tells VCS not to
write this file.

+cliecho
Specifies that VCS display the CLI commands in a file, which you
specify with the -i option, as VCS executes these CLI
commands.

Options for Specifying VERA Object Files

+vera_load=filename.vro
Specifies the VERA object file.

+vera_mload=filename
Specifies a text file that contains a list of VERA object files.

Options for Coverage Metrics

-cm line|cond|fsm|tgl|path|branch|assert
Specifies monitoring for the specified type or types of coverage.
The arguments specify the types of coverage:

line
Monitors for line or statement coverage.

cond
Monitors for condition coverage.

C-11

Simulation Options

fsm
Monitors for FSM coverage.

tgl
Monitors for toggle coverage.

path
Monitors for path coverage.

branch
Monitors for branch coverage

assert
Monitors for SystemVerilog assertion coverage

If you want VCS to monitor for more than one type of coverage,
use the plus (+) character as a delimiter between arguments. For
example:

simv -cm line+cond+fsm+tgl+path

The -cm option is also a compile-time option and an option on the
cmView command line.

-cm_dir directory_path_name
Specifies an alternative name and location for the simv.cm
directory. The -cm_dir option is also a compile-time option and
a cmView command line option.

-cm_glitch period
Specifies a glitch period during which VCS does not monitor for
coverage caused by value changes. The period is an interval of
simulation time specified with a non-negative integer.

-cm_log filename
As a compile-time or runtime option, specifies a log file for
monitoring for coverage during simulation. As a cmView
command line option, specifies a log file for writing reports.

C-12

Simulation Options

-cm_name filename
As a compile-time or runtime option, specifies the name of the
intermediate data files. On the cmView command line, specifies
the name of the report files.

-cm_tglfile filename
Specifies displaying a total toggle count at runtime for one or more
subhierarchies specified by the top-level module instance entered
in the file. This option is also a compile-time option.

Options for Enabling and Disabling Specify Blocks

+no_notifier
Suppresses the toggling of notifier registers that are optional
arguments of system timing checks. The reporting of timing check
violations is not affected. This is also a compile-time option.

+no_tchk_msg
Disables the display of timing violations but does not disable the
toggling of notifier registers in timing checks. This is also a
compile-time option.

+notimingcheck
Disables timing check system tasks in your design. Using this
option at runtime can improve the simulation performance of your
design, depending on the number of timing checks that this option
disables.

You can also use this option at compile time. Using this option at
compile time tells VCS to ignore timing checks when it compiles
your design so that the timing checks are not compiled into the
executable. This results in a faster simulating executable than one
that includes timing checks, which are disabled by this option at
runtime.

C-13

Simulation Options

If you need the delayed versions of the signals in negative timing
checks but want faster performance, include this option at runtime.
The delayed versions are not available if you use this option at
compile-time. See “Enabling Negative Timing Checks” on page
14-13. VCS recognizes +notimingchecks to be the same as
+notimingcheck when you enter it on the vcs or simv
command line.

Options for Specifying When Simulation Stops

+vcs+stop+time
Stop simulation at the time value specified. The time value must
be less than 232 or 4,294,967,296.

+vcs+finish+time
Ends simulation at the time value specified.The time value must
be also less than 232.

For both of these options there is a special procedure for
specifying time values larger than 232; see “Specifying a Very Long
Time Before Stopping Simulation” on page 4-8.

Options for Recording Output

-a filename
Specifies appending all messages from simulation to the bottom
of the text in the specified file as well as displaying these
messages on the standard output.

-l filename
Specifies writing all messages from simulation to the specified file
as well as displaying these messages on the standard output.

C-14

Simulation Options

Options for Controlling Messages

-q
Quiet mode; suppresses display of VCS header and summary
information. Suppresses the proprietary message at the
beginning of simulation and suppresses the VCS Simulation
Report at the end (time, CPU time, data structure size, and date).

-V
Verbose mode; displays VCS version and extended summary
information. Displays VCS compile and runtime version numbers,
and copyright information, at start of simulation.

+no_pulse_msg
Suppresses pulse error messages, but not the generation of StE
values at module path outputs when a pulse error condition
occurs.

You can enter this runtime option on the vcs command line.
You cannot enter this option in the file you use with the -f
compile-time option.

+sdfverbose
By default VCS displays no more than ten warning and ten error
messages about backannotating delay information from SDF
files. This option enables the display of all backannotation warning
and error messages.

This default limitation on backannotation messages applies only
to messages displayed on the screen and written in the simulation
log file. If you specify an SDF log file in the $sdf_annotate
system task, this log file receives all messages.

C-15

Simulation Options

+vcs+nostdout
Disables all text output from VCS including messages and text
from $monitor and $display and other system tasks. VCS still
writes this output to the log file if you include the -l option.

Options for Discovery Visual Environment and UCLI

-ucli
Starts the UCLI debugger command line

-l log_filename
Specifies a log file that contains the commands you entered and
the responses from VCS and DVE.

-i input_filename
Specifies a file containing UCLI commands. VCS executes these
at the start of simulation.

-k key_filename
Specifies a file where VCS records the UCLI commands it
executes. You can use this file as input with the -i option in a
subsequent simulation.

Options for VPD Files

+vpdbufsize+number_of_megabytes
To gain efficiency, VPD uses an internal buffer to store value
changes before saving them on disk. This option modifies the size
of that internal buffer. The minimum size allowed is what is
required to share two value changes per signal. The default size
is the size required to store 15 value changes for each signal but
not less than 2 megabytes.

C-16

Simulation Options

Note:
VCS automatically increases the buffer size as needed to comply
with this limit.

+vpdfile+filename
Specifies the name of the output VPD file (default is
vcdplus.vpd). You must include the full file name with the .vpd
extension.

+vpdfilesize +number_of_megabytes
Creates a VPD file that has a moving window in time while never
exceeding the file size specified by number_of_megabytes.
When the VPD file size limit is reached, VPD continues saving
simulation history by overwriting older history.

File size is a direct result of circuit size, circuit activity, and the
data being saved. Test cases show that VPD file sizes will likely
run from a few megabytes to a few hundred megabytes. Many
users can share the same VPD history file, which may be a reason
for saving all time value changes when you do simulation. You
can save one history file for a design and overwrite it on each
subsequent run.

+vpdfileswitchsize+number_in_MB
Specifies a size for the vpd file. When the vpd file reaches this
size, VCS closes this file and opens a new one with the same
hierarchy as the previous vpd file. There is a number suffix added
to all new vpd file names to differentiate them. For example: simv
+vpdfile+test.vpd +vpdfileswitchsize+10 The first vpd file is
named test.vpd. When its size raches 10 MB, VCS starts a new
file test_01.vpd, the third vpd file is test_02.vpd, and so on.

C-17

Simulation Options

+vpdignore
Tells VCS to ignore any $vcdplusxx system tasks and license
checking. By default, VCS checks out a VPD PLI license if there
is a $vcdplusxx system task in the Verilog source. In some
cases, this statement is never executed and VPD PLI license
checkout should be suppressed. The +vpdignore option
performs the license suppression.

+vpddrivers
Reports value changes for all drivers when there is more than one
driver. The driver values, for example, enable the Logic Browser
to identify which drivers produce an undesired X on the resolved
net. This option affects performance and memory usage for larger
designs or longer runs.

+vpdports
Causes VPD to store port information, which is then used by the
Hierarchy Browser to show whether a signal is a port and if so its
direction. This option to some extent affects simulation
initialization time and memory usage for larger designs.

+vpdnocompress
Disables the default compression of data as it is written to the
VPD file.

+vpdnostrengths
Disables the default storage of strength information on value
changes to the VPD file. Use of this option may lead to slight
improvements in VCS performance.

Options for Controlling $gr_waves System Task

C-18

Simulation Options

Operations

-grw filename
Sets the name of the $gr_waves output file to the specified
filename. The default file name is grw.dump.

+vcs+grwavesoff
Suppress $gr_waves system tasks.

Options for VCD Files

-vcd filename
Sets name of $dumpvars output file to filename. The default file
name is verilog.dump. A $dumpfile system task in the Verilog
source code overrides this option.

+vcs+dumpoff+t+ht
Turns off value change dumping ($dumpvars) at time t. ht is the
high 32 bits of a time value greater than 32 bits.

+vcs+dumpon+t+ht
Suppresses $dumpvars system task until time t. ht is the high
32 bits of a time value greater than 32 bits.

+vcs+dumparrays
Enables recording memory and multi-dimensional array values in
the VCD file. You must also have used the +memcbk compile-time
option.

C-19

Simulation Options

Options for Specifying Min:Typ:Max Delays

+maxdelays
Specifies using the maximum delays in min:typ:max delay triplets
in module path delays and timing checks, if you compiled your
design with the +allmtm compile-time option. Also specifies
using the maximum timing delays in min:typ:max delay triplets in
an uncompiled SDF file.

If you compiled the SDF file with the +allmtm compile-time
option, the +maxdelays option specifies using the compiled SDF
file with the maximum delays.

Another use for this runtime option is to specify timing for SWIFT
VMC and SmartModels when you also include the
+override_model_delays runtime option.

+mindelays
Specifies using the minimum delays in min:typ:max delay triplets
in module path delays and timing checks, if you compiled your
design with the +allmtm compile-time option. Also specifies
using the minimum timing delays in min:typ:max delay triplets in
an uncompiled SDF file.

If you compiled the SDF file with the +allmtm compile-time
option, the +mindelays option specifies using the compiled SDF
file with the minimum delays.

Another use for this runtime option is to specify timing for SWIFT
VMC and SmartModels when you also include the
+override_model_delays runtime option.

C-20

Simulation Options

+typdelays
Specifies using the typical delays in min:typ:max delay triplets in
module path delays and timing checks, if you compiled your
design with the +allmtm compile-time option. Also specifies
using the typical timing delays in min:typ:max delay triplets in an
uncompiled SDF file.

If you compiled the SDF file with the +allmtm compile-time
option, the +typdelays option specifies using the compiled SDF
file with the typical delays.

This is a default option. By default VCS uses the typical delay in
min:typ:max delay triplets in your source code and in uncompiled
SDF files unless you specify otherwise with the mtm_spec
argument to the $sdf_annotate system task; see “The
$sdf_annotate System Task” on page 13-3. Also, by default, VCS
uses the compiled SDF file with typical values.

Another use for this runtime option is to specify timing for SWIFT
VMC and SmartModels when you also include the
+override_model_delays runtime option.

Options for Flushing Certain Output Text File Buffers

When VCS creates a log file, VCD file, or a text file specified with the
$fopen system function, VCS writes the data for the file in a buffer
and periodically dumps the data from the buffer to the file on disk.
The frequency of these dumps varies depending on many factors
including the amount of data that VCS has to write to the buffer as
simulation or compilation progresses. If you need to see or use the
latest information in these files more frequently than the rate at which
VCS normally dumps this data, these options tell VCS to dump the
data more frequently. How much more frequently also depends on
many factors but the increased frequency will always be significant.

C-21

Simulation Options

+vcs+flush+log
Increases the frequency of dumping both the compilation and
simulation log files.

+vcs+flush+dump
Increases the frequency of dumping all VCD files.

+vcs+flush+fopen
Increases the frequency of dumping all files opened by the
$fopen system function.

+vcs+flush+all
Increases the frequency of dumping all log files, VCD files, and
all files opened by the $fopen system function.

These options do not increase the frequency of dumping other text
files including the VCDE files specified by the $dumpports system
task or the simulation history file for LSI certification specified by the
$lsi_dumpports system task.

You can also enter these options at compile time. There is no
performance gain to entering them at compile time.

Options for Licensing

+vcs+lic+vcsi
Checks out three VCSi licenses to run VCS.

+vcsi+lic+vcs
Checks out a VCS license to run VCSi when all VCSi licenses are
in use.

+vcs+lic+wait
Waits for network license if none is available when the job starts.

C-22

Simulation Options

General Options

Viewing the Compile-Time Options Used to Create the
Executable

-E program
Starts the program that displays the compile-time options that
were on the vcs command line when you created the simv (or
simv.exe) executable file. For example:

simv -E echo
simv -E echo > simvE.log

You cannot use any other runtime options with the -E option.

Stopping Simulation When the Executable Starts

-s
Stops simulation just as it begins, and enters interactive mode.
Use with the +cli+number option.

Recording Where ACC Capabilities are Used

+vcs+learn+pli
ACC capabilities enable debugging operations but they have a
performance cost so you only want to enable them where you
need them. This option keeps track of where you use them for
debugging operations so that you can recompile your design, and
in the next simulation, enable them only where you need them.
When you use this option VCS writes the pli_learn.tab secondary
PLI table file. You input this file with the +applylearn
compile-time option when you recompile your design.

C-23

Simulation Options

Suppressing the $stop System Task

+vcs+ignorestop
Tells VCS to ignore the $stop system tasks in your source code.

Enabling User-Defined Plusarg Options

+plus-options
User-defined runtime options to perform some operation when the
option is on the simv command line. The $test$plusargs system
task can check for such options. For an example of checking for a
user-defined plusarg runtime option “Enabling Debugging Features
At Runtime” on page 2-10.

Enabling Overriding the Timing of a SWIFT SmartModel

+override_model_delays
Instead of using the DelayRange parameter definition in the
template file, this option enables the +mindelays, +typdelays,
and +maxdelays runtime options to specify the timing used by
SWIFT SmartModels. See “Changing the Timing of a Model” on
page 16-16.

Specifying acc_handle_simulated_net PLI Routine and
MIPD Annotation

+vcs+mipd+noalias
For the PLI routine acc_handle_simulated_net, aliasing of
a loconn net and a hiconn net across the port connection is
disabled if MIPD delay annotation happens for the port. If you
specify ACC capability: mip or mipb in the pli.tab file, such aliasing
is disabled only when actual MIPD annotation happens.

C-24

Simulation Options

If during a simulation run, acc_handle_simulated_net is
called before MIPD annotation happens, VCS issues a warning
message. When this happens you can use this option to disable
such aliasing for all ports whenever mip, mipb capabilities have
been specified. This option works for reading an ASCII SDF file
during simulation and not for compiled SDF files.

D-1

Compiler Directives and System Tasks

D
Compiler Directives and System Tasks D

This appendix describes:

• Compiler Directives

• System Tasks and Functions

D-2

Compiler Directives and System Tasks

Compiler Directives

Compiler directives are commands in the source code that specify
how VCS compiles the source code that follows them, both in the
source files that contain these compiler directives and in the
remaining source files that VCS subsequently compiles.

Compiler directives are not effective down the design hierarchy. A
compiler directive written above a module definition affects how VCS
compiles that module definition, but does not necessarily affect how
VCS compiles module definitions instantiated in that module
definition. If VCS has already compiled these lower-level module
definitions, it does not recompile them. If VCS has not yet compiled
these module definitions, the compiler directive does affect how VCS
compiles them.

Note:
Compile-time options override compiler directives.

Compiler Directives for Cell Definition

`celldefine
Specifies that the modules under this compiler directive be tagged
as “cell” for delay annotation. See IEEE Std 1364-2001 page 350.
Syntax:
‘celldefine

`endcelldefine
Disables `celldefine. See IEEE Std 1364-2001 page 350.
Syntax:
‘endcelldefine

D-3

Compiler Directives and System Tasks

Compiler Directives for Setting Defaults

`default_nettype
Sets default net type for implicit nets. See IEEE Std 1364-2001
page 350. Syntax:
‘default_nettype wire | tri | tri0 | wand | triand
| tri1 | wor | trior | trireg |none

`resetall
Resets all compiler directives. See IEEE 1364-2001 page 357.
Syntax:
‘resetall

Compiler Directives for Macros

`define
Defines a text macro. See IEEE Std 1364-2001 page 351. Syntax:
‘define text_macro_name macro_text

`else
Used with ̀ ifdef. Specifies an alternative group of source code
lines that VCS compiles if the text macro specified with an ‘ifdef
compiler directive is not defined. See IEEE Std 1364-2001 page
353. Syntax:
‘else second_group_of_lines

‘elseif
Used with ̀ ifdef. Specifies an alternative group of source code
lines that VCS compiles if the text macro specified with an ‘ifdef
compiler directive is not defined but the text macro specified with
this compiler directive is defined. See IEEE Std 1364-2001 page
353.Syntax:
‘elseif text_macro_name second_group_of_lines

D-4

Compiler Directives and System Tasks

`endif
Used with ̀ ifdef.. Specifies the end of a group of lines specified
by the ‘ifdef or ‘else compiler directives. See IEEE Std 1364-
2001 page 353. Syntax:
‘endif

`ifdef
Specifies compiling the source lines that follow if the specified text
macro is defined by either the ‘define compiler directive or the
+define compile-time option. See IEEE Std 1364-2001 page
353. Syntax:
‘ifdef text_macro_name group_of_lines

The exception is the character string "VCS", whichis a predefined
text macro in VCS . So in the following source code VCS compiles
and executes the first block of code and ignores the second block
even when you don’t include ‘define VCS or +define+VCS:

‘ifdef VCS
 begin
 // Block of code for VCS
 . . .
 end
‘else
 begin
 // Alternative block of code
 . . .
 end
‘endif

When you encrypt source code VCS inserts ‘ifdef VCS before
all encrypted parts of the code.

D-5

Compiler Directives and System Tasks

‘ifndef
Specifies compiling the source code that follows if the specified
text macro is not defined. See IEEE Std 1364-2001 page 353.
Syntax:
‘ifndef text_macro_name group_of_lines

`undef
Undefines a macro definition. See IEEE Std 1364-2001 page 351.
Syntax:
‘undef text_macro_name

Compiler Directives for Detecting Race Conditions

‘race
Specifies the beginning of a region in your source code where you
want VCS to look for race conditions when you include the -
Xrace=0x1 compile time option. See “The Dynamic Race
Detection Tool” on page 11-2.

‘endrace
Specifies the end of a region in your source code where you want
VCS to look for race conditions.

Compiler Directives for Delays

`delay_mode_path
Ignores the delay specifications on all gates and switches in all
those modules under this compiler directive that contain specify
blocks. Uses only the module path delays and the delay
specifications on continuous assignments. Syntax:
‘delay_mode_path

D-6

Compiler Directives and System Tasks

`delay_mode_distributed
Ignores the module path delays specified in specify blocks in
modules under this compiler directive and uses only the delay
specifications on all gates, switches, and continuous
assignments. Syntax:
‘delay_mode_distributed

`delay_mode_unit
Ignores the module path delays. Changes all the delay
specifications on all gates, switches, and continuous assignments
to the shortest time precision argument of all the ‘timescale
compiler directives in the source code. The default time unit and
time precision argument of the ‘timescale compiler directive is
1 ns. Syntax:
‘delay_mode_unit

`delay_mode_zero
Changes all the delay specifications on all gates, switches, and
continuous assignments to zero and changes all module path
delays to zero. Syntax:
‘delay_mode_zero

D-7

Compiler Directives and System Tasks

Compiler Directives for Backannotating SDF Delay
Values

‘vcs_mipdexpand
If the +oldsdf compile-time option has been used to turn off SDF
compilation at compile-time, this compiler directive enables the
runtime backannotation of individual bits of a port declared in an
ASCII text SDF file. This is done by entering the compiler directive
over the port declarations for these ports. Similarly, entering this
compiler directive over port declarations enables a PLI application
to pass delay values to individual bits of a port.

As an alternative to using this compiler directive, you can use the
+vcs+mipdexpand compile-time option, or you can enter the
mipb ACC capability. For example:
$sdf_annotate call=sdf_annotate_call
acc+=rw,mipb:top_level_mod+

When you compile the SDF file, which Synopsys recommends,
you do not need to use this compiler directive to backannotate the
delay values for individual bits of a port.

‘vcs_mipdnoexpand
Turns off the enabling of backannotating delay values on
individual bits of a port as specified by a previous
‘vcs_mipdexpand compiler directive.

Compiler Directives for Source Protection

`endprotect
Defines the end of code to be protected. Syntax:
‘endprotect

D-8

Compiler Directives and System Tasks

`endprotected
Defines the end of protected code. Syntax:
‘endprotected

`protect
Defines the start of code to be protected. Syntax:
‘protect

`protected
Defines the start of protected code. Syntax:
‘protected

Compiler Directives for Controlling Port Coercion

`noportcoerce
Does not coerce ports to inout. Syntax:
‘noportcoerce

`portcoerce
Coerces ports as appropriate (default). Syntax:
‘portcoerce

General Compiler Directives

Compiler Directive for Including a Source File

`include
Includes source file. See IEEE Std 1364-1995 pages 224-225.
Syntax:
‘include "filename"

D-9

Compiler Directives and System Tasks

Compiler Directive for Setting the Time Scale

`timescale
Sets the timescale. See IEEE Std 1364-2001 page 357. Syntax:
‘timescale time_unit / time_precision

In VCS the default time unit is 1 s (a full second) and the default
time precision is also 1 s.

Compiler Directive for Specifying a Library

`uselib
Searches specified library for unresolved modules. You can
specify either a library file or a library directory. Syntax:
‘uselib file = filename
or
‘uselib dir = directory_name libext+.ext |
libext=.ext

Enter path names if the library file or directory is not in the current
directory. For example:

‘uselib file = /sys/project/speclib.lib

If specifying a library directory, include the libext+.ext
keyword and append to it the extensions of the source files in the
library directory, just like the +libext+.ext compile-time option,
for example:

‘uselib dir = /net/designlibs/project.lib libext+.v

D-10

Compiler Directives and System Tasks

To specify more than one search library enter additional dir or
file keywords, for example:

‘uselib dir = /net/designlibs/library1.lib dir=/
net/designlibs/library2.lib libext+.v

Here the libext+.ext keyword applies to both libraries.

Compiler Directive for Maintaining The File Name and
Line Numbers

‘line line_number "filename" level
Maintains the file name and line number. See IEEE Std 1364-2001
page 358.

Unimplemented Compiler Directives

The following compiler directives are IEEE Std 1364-1995 compiler
directives that are not yet implemented in VCS .

`unconnected_drive

‘nounconnected_drive

System Tasks and Functions

This section describes the system tasks and functions that are
supported by VCS and then lists the system tasks that it does not
support.

System tasks that are described in the IEEE Std 1364-2001 are listed
with the page number of the description.

D-11

Compiler Directives and System Tasks

System Tasks for SystemVerilog Assertions Severity

$fatal
Generates a runtime fatal assertion error. See the Accellera
SystemVerilog 3.1 LRM, page 227.

$error
Generates a runtime assertion error. See the Accellera
SystemVerilog 3.1 LRM, page 227.

$warning
Generates a runtime warning message. See the Accellera
SystemVerilog 3.1 LRM, page 227.

$info
Generates an information message. See the Accellera
SystemVerilog 3.1 LRM, page 227.

System Tasks for SystemVerilog Assertions Control

$assertoff
Tells VCS to stop monitoring any of the specified assertions that
start at a subsequent simulation time. See the Accellera
SystemVerilog 3.1 LRM, page 228.

$assertkill
Tells VCS to stop monitoring any of the specified assertions that
start at a subsequent simulation time, and stop the execution of
any of these assertions that are now occurring. See the Accellera
SystemVerilog 3.1 LRM, page 228.

$asserton
Tells VCS to resume the monitoring of assertions that it stopped
monitoring due to a previous $assertoff or $assertkill
system task. See the Accellera SystemVerilog 3.1 LRM, page 228.

D-12

Compiler Directives and System Tasks

System Tasks for SystemVerilog Assertions

$onehot
Returns true if only one bit in the expression is true. See the
Accellera SystemVerilog 3.1 LRM, page 228.

$onehot0
Returns true if at the most one bit of the expression is true (also
returns true if none of the bits are true). See the Accellera
SystemVerilog 3.1 LRM, page 228.

$isunknown
Returns true if one of the bits in the expression has an X value.
See the Accellera SystemVerilog 3.1 LRM, page 228.

System Tasks for VCD Files

VCD files are ASCII files that contain a record of a net or register’s
transition times and values. There are a number of third party products
that read VCD files to show you simulation results. VCS has the
following system tasks for specifying the names and contents of these
files:

$dumpall
Creates a checkpoint in the VCD file. When VCS executes this
system task, VCS writes the current values of all specified nets
and registers into the VCD file, whether there is a value change
at this time or not. See IEEE std 1364-2001 page 327.

$dumpoff
Stops recording value change information in the VCD file. See
IEEE std 1364-2001 page 326.

D-13

Compiler Directives and System Tasks

$dumpon
Starts recording value change information in the VCD file. See
IEEE std 1364-2001 page 326.

$dumpfile
Specifies the name of the VCD file you want VCS to record.
Syntax:
$dumpfile("filename");

$dumpflush
Empties the VCD file buffer and writes all this data to the VCD
file. See IEEE std 1364-2001 page 328.

$dumplimit
Limits the size of a VCD file. See IEEE std 1364-2001 page 327.

$dumpvars
Specifies the nets and registers whose transition times and values
you want VCS to record in the VCD file. See IEEE std 1364-2001
page 325-326.

Syntax:
$dumpvars(level_number,module_instance |
net_or_reg);

You can specify individual nets or registers or specify all the nets
and registers in an instance.

$dumpchange
Tells VCS to stop recording transition times and values in the
current dump file and to start recording in the specified new file.
Syntax:
$dumpchange("filename");

Code example:
$dumpchange("vcd16a.dmp");

D-14

Compiler Directives and System Tasks

$fflush
VCS stores VCD data in the operating system’s dump file buffer
and as simulation progresses, reads from this buffer to write to
the VCD file on disk. If you need the latest information written to
the VCD file at a specific time, use the $fflush system task.
Syntax:
$fflush("filename");

Code example:
$fflush("vcdfile1.vcd");

$fflushall
If you are writing more than one VCD file and need VCS to write
the latest information to all these files at a particular time, use the
$fflushall system task. Syntax:
$fflushall;

$gr_waves
Produces a VCD file with the name grw.dump. In this system task
you can specify a display label for a net or register whose transition
times and values VCS records in the VCD file. Syntax:
$gr_waves(["label",]net_or_reg,...);

Code example:
$gr_waves("wire w1",w1, "reg r1",r1);

D-15

Compiler Directives and System Tasks

System Tasks for LSI Certification VCD and EVCD Files

$lsi_dumpports
For LSI certification of your design, this system task specifies
recording a simulation history file that contains the transition times
and values of the ports in a module instance.
This simulation history file for LSI certification contains more
information than the VCD file specified by the $dumpvars system
task. The information in this file includes strength levels and
whether the test fixture module (test bench) or the Device Under
Test (the specified module instance or DUT) is driving a signal’s
value.
Syntax:
$lsi_dumpports(module_instance,"filename");

Code example:
$lsi_dumpports(top.middle1,"dumports.dmp");

If you would rather have the $lsi_dumpports system task
generate an extended VCD (EVCD) file instead, include the
+dumpports+ieee runtime option.

$dumpports
Creates an EVCD file as specified in IEEE Std. 1364-2001 pages
339-340.
You can, for example, input a EVCD file into TetraMAX for fault
simulation.
EVCD files are similar to the simulation history files generated by
the $lsi_dumpports system task for LSI certification, but there
are differences in the internal statements in the file. Further, the
EVCD format is a proposed IEEE standard format whereas the
format of the LSI certification file is specified by LSI.
In the past the $dumpports and $lsi_dumpports system

D-16

Compiler Directives and System Tasks

tasks both generated simulation history files for LSI certification
and had identical syntax except for the name of the system task.
Syntax of the $dumpports system task is now:
$dumpports(module_instance,[module_instance,]
"filename");

You can specify more than one module instance.
Code example:
$dumpports(top.middle1,top.middle2,
"dumports.evcd");

If your source code contains a $dumpports system task and you
want it to generate simulation history files for LSI certification,
include the +dumpports+lsi runtime option.

$dumpportsoff
Suspends writing to files specified in $lsi_dumpports or
$dumpports system tasks. You can specify a file to which VCS
suspends writing or specify no particular file, in which case VCS
suspends writing to all files specified by $lsi_dumpports or
$dumpports system tasks. See IEEE Std 1364-2001 page 340-
341. Syntax:
$dumpportsoff("filename");

$dumpportson
Resumes writing to the file after writing was suspended by a
$dumpportsoff system task. You can specify the file to which
you want VCS to resume writing or specify no particular file, in
which case VCS resumes writing to all files to which writing was
halted by any $dumpportsoff or $dumpports system tasks.
See IEEE Std 1364-2001 page 340-341. Syntax:
$dumpportson("filename");

D-17

Compiler Directives and System Tasks

$dumpportsall
By default VCS writes to files only when a signal changes value.
The $dumpportsall system task records the values of the ports
in the module instances, which are specified by the
$lsi_dumpports or $dumpports system task, whether there
is a value change on these ports or not. You can specify the file
to which you want VCS to record the port values for the
corresponding module instance or specify no particular file, in
which case VCS writes port values in all files opened by the
$lsi_dumpports or $dumpports system task. See IEEE Std
1364-2001 page 341. Syntax:
$dumpportsall("filename");

$dumpportsflush
VCS stores simulation data in a buffer during simulation from
which it writes data to the file. If you want VCS to write all
simulation data from the buffer to the file or files at a particular
time, execute this $dumpportsflush system task. You can
specify the file to which you want VCS to write from the buffer or
specify no particular file, in which case VCS writes all data from
the buffer to all files opened by the $lsi_dumpports or
$dumpports system task. See IEEE Std 1364-2001 page 342.
Syntax:
$dumpportsfush("filename");

D-18

Compiler Directives and System Tasks

$dumpportslimit
Specifies the maximum file size of the file specified by the
$lsi_dumpports or $dumpports system task. You specify the
file size in bytes. When the file reaches this limit VCS no longer
writes to the file. You can specify the file whose size you want to
limit or specify no particular file, in which case your specified size
limit applies to all files opened by the $lsi_dumpports or
$dumpports system task. See IEEE Std 1364-2001 page 341-
342. Syntax:
$dumpportslimit(filesize,"filename");

System Tasks for VPD Files

VPD files are files that store the transition times and values for nets
and registers but they differ from VCD files in the following ways:

• You can use the DVE to view the simulation results that VCS
recorded in a VPD file. You cannot actually load a VCD file directly
into DVE; when you load a VCD file DVE translates the file to VPD
and loads the VPD file.

• They are binary format and therefore take less disk space and
load much faster

• They can also record the order of statement execution so that you
can use the Source Window in DVE to step through the execution
of your code if you specify recording this information.

VPD files are commonly used in post-processing, where VCS writes
the VPD file during batch simulation, and then you review the
simulation results using DVE.

There are system tasks that specify the information that VCS writes
in the VPD file.

D-19

Compiler Directives and System Tasks

Note:
To use the system tasks for VPD files you must compile your
source code with the -I or -PP compile-time options.

$vcdplusautoflushoff
Turns off the automatic “flushing” of simulation results to the VPD
file whenever there is an interrupt, such as when VCS executes
the $stop system task. Syntax:
$vcdplusautofloshoff;

$vcdplusautoflushon
Tells VCS to “flush” or write all the simulation results in memory
to the VPD file when ever there is an interrupt, such as when VCS
executes a $stop system task or when you halt VCS using the
“.” (period) CLI command, UCLI stop command, or the Stop button
on the DVE Interactive window. Syntax:
$vcdplusautofloshon;

$vcdplusclose
Tells VCS to mark the current VPD file as completed, and close
the file. Syntax:
$vcdplusclose;

D-20

Compiler Directives and System Tasks

$vcdplusdeltacycleon
Enables delta cycle recording in the VPD file for post-processing.
Syntax:
$vcdplusevent(net_or_reg,"event_name",
"<E|W|I><S|T|D>");

Displays, in DVE, a symbol on the signal’s waveform and in the
Logic Browser. The event_name argument appears in the status
bar when you click on the symbol.
E|W|I specifies severity. E for error, displays a red symbol, W for
warning, displays a yellow symbol, I for information, displays a
green symbol.
S|T|D specifies the symbol shape. S for square, T for triangle, D
for diamond.
Enter no space between the E|W|I and the S|T|D arguments.
Do not include angle brackets < >.
There is a limit of 244 unique events.

$vcdplusdumpportsoff
Tells VCS to suspend writing to VPD file the transition times and
values of the module instance specified by
$vcdplusdumpportson system task. You can use
$vcdplusdumpportsoff system task with arguments, but it is
not required. Syntax:
$vcdplusdumpportsoff(level_number,
module_instance);

D-21

Compiler Directives and System Tasks

$vcdplusdumpportson
Records transition times and values of ports in a module instance.
A level value of 0 tells VCS to dump all levels below the specified
instance. If you do not specify a level, the default level is 1. If you
use the system task without arguments, VCS dumps all ports of
all instances of the while design in the VPD file. Syntax:
$vcdplusdumpportson(level_number,
module_instance);

Use $vcdplusdumpportson and $vcdplusdumpportsoff
system tasks to create a VPD file with port drive information for
bidirectional ports if you want to use dumpports and
dumpvcdports options in vpd2vcd filtering.

Note:
This system task records additional drive information for inout
ports of type wire. It does not dump ports with unpacked
dimensions. Furthermore, it’s unable to determine if a wire is being
forced.

$vcdplusfile
Specifies the next VPD file that DVE opens during simulation,
after it executes the $vcdplusclose system task and when it
executes the next $vcdpluson system task. Syntax:
$vcdplusfile("filename");

$vcdplusglitchon;
Turns on checking for zero delay glitches and other cases of
multiple transitions for a signal at the same simulation time.
Syntax:
$vcdplusglitchon;

D-22

Compiler Directives and System Tasks

$vcdplusflush
Tells VCS to “flush” or write all the simulation results in memory
to the VPD file at the time VCS executes this system task. Use
$vcdplusautoflushon to enable automatic flushing of
simulation results to the file when simulation stops. Syntax:
$vcdplusflush;

$vcdplusmemon
Records value changes and times for memories and multi-
dimensional arrays. Syntax:
system_task(Mda [, dim1Lsb [, dim1Rsb [, dim2Lsb
[, dim2Rsb [, ... dimNLsb [, dimNRsb]]]]]]);

Mda
This argument specifies the name of the multi-dimensional
array (MDA) to be recorded. It must not be a part select. If no
other arguments are given, then all elements of the MDA are
recorded to the VPD file.

dim1Lsb
This is an optional argument that specifies the name of the
variable that contains the left bound of the first dimension. If no
other arguments are given, then all elements under this single
index of this dimension are recorded.

dim1Rsb
This is an optional argument that specifies the name of variable
that contains the right bound of the first dimension.

Note: The dim1Lsb and dim1Rsb arguments specify the
range of the first dimension to be recorded. If no other
arguments are given, then all elements under this range of
addresses within the first dimension are recorded.

D-23

Compiler Directives and System Tasks

dim2Lsb
This is an optional argument with the same functionality as
dim1Lsb, but refers to the second dimension.

dim2Rsb
This is an optional argument with the same functionality as
dim1Rsb, but refers to the second dimension.

dimNLsb
This is an optional argument that specifies the left bound of the
Nth dimension.

dimNRsb
This is an optional argument that specifies the right bound of
the Nth dimension.

Note that MDA system tasks can take 0 or more arguments, with
the following caveats:

- No arguments: The whole design will be traversed and all
memories and MDAs will be recorded.

Note that this process may cause significant memory usage,
and simulator drag.

- One argument: If the object is a scope instance, all memories/
MDAs contained in that scope instance and its children will be
recorded. If the object is a memory/MDA, that object will be
recorded.

$vcdplusmemoff
Stops recording value changes and times for memories and multi-
dimensional arrays. Syntax is the same as the $vcdplusmenon
system task.

D-24

Compiler Directives and System Tasks

$vcdplusmemorydump
Records (dumps) a snapshot of the values in a memory or
multi-dimensional array into the VPD file. Syntax is the same as
the $vcdplusmenon system task.

$vcdplusoff
Stops recording, in the VPD file, the transition times and values
for the nets and registers in the specified module instance or
individual nets or registers. Syntax:
$vcdplusoff[(level_number,module_instance |
net_or_reg)];

where:

level_number
Specifies the number of hierarchy scope levels for which to stop
recording signal value changes (a zero value records all scope
instances to the end of the hierarchy; default is all).

module_instance
Specifies the name of the scope for which to stop recording
signal value changes (default is all).

net_or_reg
Specifies the name of the signal for which to stop recording
signal value changes (default is all).

$vcdpluson
Starts recording, in the VPD file, the transition times and values
for the nets and registers in the specified module instance or
individual nets or registers. Syntax:
$vcdpluson[(level_number,module_instance |
net_or_variable)];

where:

D-25

Compiler Directives and System Tasks

level_number
Specifies the number of hierarchy scope levels for which to
record signal value changes (a zero value records all scope
instances to the end of the hierarchy; default is all).

module_instance
Specifies the name of the scope for which to record signal value
changes (default is all).

net_or_variable
Specifies the name of the signal for which to record signal value
changes (default is all).

$vcdplustraceoff
Stops recording, in the VPD file, the order of statement execution
in the specified module instance. Syntax:
$vcdplustraceoff(module_instance);

$vcdplustraceon
Starts recording, in the VPD file, the order of statement execution
in the specified module instance and the module instances
hierarchically under it. Syntax:
$vcdplustraceon[(module_instance)];

System Tasks for SystemVerilog Assertions

IMPORTANT:
Enter these system tasks in an initial block. Do not enter
them in an always block.

$assert_monitor
Analogous to the standard $monitor system task; it continually
monitors specified assertions and displays what is happening with
them (you can only have it display on the next clock of the
assertion). Its syntax is as follows:

D-26

Compiler Directives and System Tasks

$assert_monitor([0|1,]assertion_identifier...);

Where:

0
Specifies reporting on the assertion if it is active (VCS checks
for its properties) and if not, reporting on the assertion or
assertions, whenever they start.

1
Specifies reporting on the assertion or assertions only once,
the next time they start.

If you specify neither 0 or 1, the default is 0.

assertion_identifier...
A comma separated list of assertions. If one of these assertions
is not declared in the module definition containing this system
task, specify it by its hierarchical name.

$assert_monitor_off
Disables the display from the $assert_monitor system task.

$assert_monitor_on
Re-enables the display from the $assert_monitor system
task.

System Tasks for Executing Operating System

D-27

Compiler Directives and System Tasks

Commands

$system
Executes operating system commands. Syntax:
$system("command");

Code example:
$system("mv -f savefile savefile.1");

$systemf
Executes operating system commands and accepts multiple
formatted string arguments. Syntax:
$systemf("command %s ...","string",...);

Code example:
int = $systemf("cp %s %s", "file1", "file2");

The operating system copies the file named file1 to a file named
file2.

System Tasks for Log Files

$log
If a filename argument is included, this system task stops writing
to the vcs.log file or the log file specified with the -l runtime option
and starts writing to the specified file. If the file name argument is
omitted, this system task tells VCS to resume writing to the log
file after writing to the file was suspended by the $nolog system
task. Syntax:
$log[("filename")];

Code example:
$log("reset.log");

D-28

Compiler Directives and System Tasks

$nolog
Disables writing to the vcs.log file or the log file specified by either
the -l runtime option or the $log system task. Syntax:
$nolog;

System Tasks for Data Type Conversions

$bitstoreal[b]
Converts a bit pattern to a real number.
See IEEE std 1364-2001 page 310.

$itor[i]
Converts integers to real numbers.
See IEEE std 1364-2001 page 310.

$realtobits
Passes bit patterns across module ports, converting a real number
to a 64 bit representation.
See IEEE std 1364-2001 page 310.

$rtoi
Converts real numbers to integers.
See IEEE std 1364-2001 page 310.

System Tasks for Displaying Information

$display[b|h|0];
Display arguments.
See IEEE std 1364-2001 pages 278-285.

$monitor[b|h|0]
Display data when arguments change value.
See IEEE Std 1364-2001 page 286.

D-29

Compiler Directives and System Tasks

$monitoroff
Disables the $monitor system task.
See IEEE std 1364-2001 page 286.

$monitoron
Re-enables the $monitor system task after it was disabled with
the $monitoroff system task.
See IEEE std 1364-2001 page 286.

$strobe[b|h|0];
Displays simulation data at a selected time.
See IEEE 1364-2001 page 285.

$write[b|h|0]
Displays text.
See IEEE std 1364-2001 pages 278-285.

System Tasks for File I/O

$fclose
Closes a file.
See IEEE std 1364-2001 pages 286-288.

$fdisplay[b|h|0]
Writes to a file.
See IEEE std 1364-2001 pages 288-289.

$ferror
Returns additional information about an error condition in file I/O
operations. See IEEE Std 1364-2001 pages 294-295.

$fflush
Writes buffered data to files. See IEEE Std 1364-2001 page 294.

$fgetc
Reads a character from a file. See IEEE Std 1364-2001 page 290.

D-30

Compiler Directives and System Tasks

$fgets
Reads a string from a file. See IEEE Std 1364-2001 page 290.

$fmonitor[b|h|0]
Writes to a file when an argument changes value.
See IEEE std 1364-2001 pages 287-288.

$fopen
Opens files.
See IEEE std 1364-2001 pages 286-288.

$fread
Reads binary data from a file. See IEEE Std 1364-2001 page 293.

$fscanf
Reads characters in a file. See IEEE Std 1364-2001 pages 290-
293.

$fseek
Sets the position of the next read or write operation in a file. See
IEEE Std 1364-2001 page 294.

$fstrobe[b|h|0]
Writes arguments to a file.
See IEEE std 1364-2001 pages 288-289.

$ftell
Returns the offset of a file. See IEEE Std 1364-2001 page 294.

$fwrite[b|h|0]
Writes to a file.
See IEEE Std 1364-2001 pages 88-289.

$rewind
Sets the next read or write operation to the beginning of a file.
See IEEE Std 1364-2001 page 294.

D-31

Compiler Directives and System Tasks

$sformat
Assigns a string value to a specified signal. See IEEE Std
1364-2001 pages 289-290.

$sscanf
Reads characters from an input stream. See IEEE Std 1364-2001
pages 290-293.

$swrite
Assigns a string value to a specified signal, similar to the
$sformat system function. See IEEE Std 1364-2001 pages
289-290.

$ungetc
Returns a character to the input stream. See IEEE Std 1364-2001
page 290.

System Tasks for Loading Memories

$readmemb
Loads binary values in a file into memories.
See IEEE std 1364-2001 pages 295-296.

$readmemh
Loads hexadecimal values in a file into memories.
See IEEE std 1364-2001 pages 295-296.

$sreadmemb
Loads specified binary string values into memories.
See IEEE std 11364-2001 page 744.

$sreadmemh
Loads specified string hexadecimal values into memories.
See IEEE std 1364-2001 page 744.

D-32

Compiler Directives and System Tasks

$writememb
Writes binary data in a memory to a file. Syntax:
$writememb ("filename",memory [,start_address]
[,end_address]);

Code example:
$writememb ("testfile.txt",mem,0,255);

$writememh
Writes hexadecimal data in a memory to a file. Syntax:
$writememh ("filename",memory [,start_address]
[,end_address]);

System Tasks for Time Scale

$printtimescale
Displays the time unit and time precision from the last
‘timescale compiler directive that VCS has read before it reads
the module definition containing this system task.
See IEEE std 1364-2001 pages 297-298.

$timeformat
Specifies how the %t format specification reports time
information. See IEEE std 1364-2001 pages 298-301.

System Tasks for Simulation Control

$stop
Halts simulation.
See IEEE std 1364-2001 pages 301-302.

D-33

Compiler Directives and System Tasks

$finish
Ends simulation.
See IEEE std 1364-2001 page 301.

System Tasks for Timing Checks

$disable_warnings
Disables the display of timing violations but does not disable the
toggling of notifier registers. Syntax:
$disable_warnings[(module_instance,...)];
An alternative syntax is:

$disable_warnings("timing"[,module_instance,...]);
If you specify a module instance, this system task disables timing
violations for the specified instance and all instances
hierarchically under this instance.
If you omit module instances, this system task disables timing
violations throughout the design.
Code example:
$disable_warnings(seqdev1);

$enable_warnings
Re-enables the display of timing violations after the execution of
the $disable_warnings system task. This system task does
not enable timing violations during simulation when you used the
+no_tchk_msg compile-time option to disable them. Syntax:
$enable_warnings[(module_instance,...)];
An alternative syntax is:

D-34

Compiler Directives and System Tasks

$enable_warnings("timing"[,module_instance,...]);
If you specify a module instance, this system task enables timing
violations for the specified instance and all instances
hierarchically under this instance.
If you omit module instances, this system task enables timing
violations throughout the design.

$hold
Reports a timing violation when a data event happens too soon
after a reference event.
See IEEE Std 1364-2001 pages 241-242.

$period
Reports a timing violation when an edge triggered event happens
too soon after the previous matching edge triggered event on a
signal.
See IEEE Std 1364-2001 pages 255-256.

$recovery
Reports a timing violation when a data event happens too soon
after a reference event. Unlike the $setup timing check, the
reference event must include the posedge or negedge keyword.
Typically the $recovery timing check has a control signal, such
as clear, as the reference event, and the clock signal as the data
event.
See IEEE 1364-2001 pages 245-246.

D-35

Compiler Directives and System Tasks

$recrem
Reports a timing violation if a data event occurs less than a
specified time limit before or after a reference event. This timing
check is identical to the $setuphold timing check except that
typically the reference event is on a control signal and the data
event is on a clock signal. You can specify negative values for the
recovery and removal limits. The syntax is as follows:
$recrem(reference_event, data_event,
recovery_limit, removal_limit, notifier,
timestamp_cond, timecheck_cond, delay_reference,
delay_data);
See “The $recrem Timing Check Syntax” on page 14-11 for more
information. Also see IEEE Std 1364-2001 pages 246-248.

$removal
Reports a timing violation if a the reference event, typically an
asynchronous control signal, happens too soon after the data
event, the clock signal. See IEEE Std 1364-2001 pages 244-245.

$setup
Reports a timing violation when the data event happens before
and too close to the reference event.
See IEEE Std 1364-2001 page 241. This timing check also has
an extended syntax like the $recrem timing check. This extended
syntax is not described in IEEE Std 1364-2001.

D-36

Compiler Directives and System Tasks

$setuphold
Combines the $setup and $hold system tasks.
See IEEE Std 1364-1995 page 189 for the official description.
There is also an extended syntax that is in IEEE Std 1364-2001
pages 242-244. This extended syntax is as follows:
$setuphold(reference_event, data_event,
setup_limit, hold_limit, notifier,
timestamp_cond, timecheck_cond, delay_reference,
delay_data);
See “The $setuphold Timing Check Extended Syntax” on page
14-7 for more information.

$skew
Reports a timing violation when a reference event happens too
long after a data event.
See IEEE std 1364-2001 pages 249-250.

$width
Reports a timing violation when a pulse is narrower than the
specified limit.
See IEEE std 1364-2001 pages 254-255. VCS ignores the
threshold argument.

System Tasks for PLA Modeling

$async$and$array to $sync$nor$plane
See IEEE Std 1364-2001 page 302.

System Tasks for Stochastic Analysis

$q_add
Places an entry on a queue in stochastic analysis.
See IEEE Std 1364-2001 page 307.

D-37

Compiler Directives and System Tasks

$q_exam
Provides statistical information about activity at the queue.
See IEEE Std 1364-2001 page 307.

$q_full
Returns 0 if the queue is not full, returns a 1 if the queue is full.
See IEEE Std 1364-2001 page 307.

$q_initialize
Creates a new queue.
See IEEE Std 1364-2001 page 306-307.

$q_remove
Receives an entry from a queue.
See IEEE Std 1364-2001 page 307.

System Tasks for Simulation Time

$realtime
Returns a real number time.
See IEEE Std 1364-2001 pages 309-310.

$stime
Returns an unsigned integer that is a 32-bit time.
See IEEE Std 1364-2001 page 309.

$time
Returns an integer that is a 64-bit time.
See IEEE Std 1364-2001 pages 308-309.

D-38

Compiler Directives and System Tasks

System Tasks for Probabilistic Distribution

$dist_exponential
Returns random numbers where the distribution function is
exponential.
See IEEE std 1364-2001 page 312.

$dist_normal
Returns random numbers with a specified mean and standard
deviation.
See IEEE Std 1364-2001 page 312.

$dist_poisson
Returns random numbers with a specified mean.
See IEEE Std 1364-2001 page 312.

$dist_uniform
Returns random numbers uniformly distributed between
parameters.
See IEEE Std 1364-2001 page 312.

$random
Provides a random number.
See IEEE Std 1364-2001 page 312.
Using this system function in certain kinds of statements might
cause simulation failure. See Avoiding the Debugging Problems
From Port Coercion.

System Tasks for Resetting VCS

$reset
Resets the simulation time to 0. See IEEE Std 1364-2001 pages
741-742.

D-39

Compiler Directives and System Tasks

$reset_count
Keeps track of the number of times VCS executes the $reset
system task in a simulation session. See IEEE std 1364-2001
pages 741-742.

$reset_value
System function that you can use to pass a value from before to
after VCS executes the $reset system task, that is, you can
enter a reset_value integer argument to the $reset system
task, and after VCS resets the simulation the $reset_value
system function returns this integer argument. See IEEE std 1364-
2001 pages 741-742.

General System Tasks and Functions

Checks for a Plusarg

$test$plusargs
Checks for the existence of a given plusarg on the runtime
executable command line. Syntax:
$test$plusargs("plusarg_without_the_+");.

SDF Files

$sdf_annotate
Tells VCS to backannotate delay values from an SDF file to your
Verilog design. See “The $sdf_annotate System Task” on page
13-3.

D-40

Compiler Directives and System Tasks

Counting the Drivers on a Net

$countdrivers
Counts the number of drivers on a net.
See IEEE std 1364-2001 page 738-739.

Depositing Values

$deposit
Deposits a value on a net or variable. This deposited value
overrides the value from any other driver of the net or variable.
The value propagates to all loads of the net or variable. A
subsequent simulation event can override the deposited value.
You cannot use this system task to deposit values to bit-selects
or part-selects.

Syntax:
$deposit(net_or_vaiable, value);

The deposited value can be the value of another net or variable.
You can deposit the value of a bit-select or part-select.

Fast Processing Stimulus Patterns

$getpattern
Provides for fast processing of stimulus patterns.
See IEEE std 1364-2001 page 739.

D-41

Compiler Directives and System Tasks

Saving and Restarting The Simulation State

$save
Saves the current simulation state in a file.
See IEEE std 1364-2001 pages 742-743, also see “Save and
Restart” on page -4-4.

$restart
Restores the simulation to the state that you saved in the check
file with the $save system task. Enter this system task at the CLI
prompt instead of in the source code. You can also do this by
entering the name of the check file at the system prompt. See
IEEE std 1364-2001 pages 742-743; also see “Save and Restart”
on page -4-4.

Checking for X and Z Values in Conditional Expressions

$xzcheckon
Displays a warning message every time VCS evaluates a
conditional expression to have an X or Z value.

Syntax:
$xzcheckon(hierarchical_name,level_number)

hierarchical_name
Hierarchical name of the module instance, that is, the top-level
instance of the subhierarchy for which you want to enable
checking.

level_number
Number of levels down in the subhierarchy from the specified
module instance. Checking is also enabled for the instances on
these levels.

D-42

Compiler Directives and System Tasks

$xzcheckoff

Suppress the warning message every time VCS evaluates a
conditional expression to have an X or Z value.

Syntax:
$xzcheckoff(hierarchical_name,level_number)

hierarchical_name
Hierarchical name of the module instance, that is, the top-level
instance of the subhierarchy for which you want to enable
checking.

level_number
Number of levels down in the subhierarchy from the specified
module instance. Checking is also enabled for the instances on
these levels.

IEEE Standard System Tasks Not Yet Implemented in
VCS

The following Verilog system tasks are included in the IEEE Std 1364-
2001 standards but are not yet implemented in VCS:

$dist_chi_square $dist_erlang
$dist_t $nochange

E-1

PLI Access Routines

E
PLI Access Routines E

VCS comes with a number of access routines. The following access
routines are described in this appendix:

• Access Routines for Reading and Writing to Memories

• Access Routines for Multidimensional Arrays

• Access Routines for Probabilistic Distribution

• Access Routines for Returning a String Pointer to a Parameter
Value

• Access Routines for Extended VCD Files

• Access Routines for Line Callbacks

• Access Routines for Source Protection

E-2

PLI Access Routines

• Access Routine for Signal in a Generate Block

• VCS API Routines

Access Routines for Reading and Writing to Memories

VCS comes with the a number of access routines for reading and
writing to a memory.

These access routines are as follows:

acc_setmem_int
Writes an integer value to specific bits in a Verilog memory word.
See "acc_setmem_int" on page E-4 for details.

acc_getmem_int
Reads an integer value from specific bits in a Verilog memory
word. See "acc_getmem_int" on page E-5 for details.

acc_clearmem_int
Clears a memory, that is, writes zeros to all bits. See
"acc_clearmem_int" on page E-6 for details.

acc_setmem_hexstr
Writes a hexadecimal string value to specific bits in a Verilog
memory word. See "acc_setmem_hexstr" on page E-11 for
details.

acc_getmem_hexstr
Reads a hexadecimal string value from specific bits in a Verilog
memory word. See "acc_getmem_hexstr" on page E-15 for
details.

E-3

PLI Access Routines

acc_setmem_bitstr
Writes a string of binary bits (including x and z) to a Verilog
memory word. See "acc_setmem_bitstr" on page E-16 for details.

acc_getmem_bitstr
Reads a bit string from specific bits in a Verilog memory word.
See "acc_getmem_bitstr" on page E-17 for details.

acc_handle_mem_by_fullname
Returns the handle used by acc_readmem. See
"acc_handle_mem_by_fullname" on page E-18 for details.

acc_readmem
Reads a data file and writes the contents to a memory. See
"acc_readmem" on page E-19 for details.

acc_getmem_range
Returns the upper and lower limits of a memory. See
"acc_getmem_range" on page E-21 for details.

acc_getmem_size
Returns the number of elements (or words or addresses) in a
memory. See "acc_getmem_size" on page E-22 for details.

acc_getmem_word_int
Returns the integer of a memory element. See
"acc_getmem_word_int" on page E-23 for details.

acc_getmem_word_range
Returns the least significant bit of a memory element and the
length of the element. See "acc_getmem_word_range" on page
E-24 for details.

E-4

PLI Access Routines

acc_setmem_int

You use the acc_setmem_int access routine to write an integer
value to specific bits in a Verilog memory word.

acc_setmem_int
Synopsis: Writes an integer value to specific bits in a memory word.

Syntax: acc_setmem_int (memhand, value, row, start, length)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

int value The integer value written in binary format to
the bits in the word.

int row The memory array index.

int start Bit number of the left-most bit in the memory
word where this routine starts writing the
value.

int length Starting with the start bit, specifies the total
number of bits this routine writes to.

Related
routines:

acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-5

PLI Access Routines

acc_getmem_int

You use the acc_getmem_int access routine to return an integer
value for certain bits in a Verilog memory word.

acc_getmem_int
Synopsis: Returns an integer value for specific bits in a memory word.

Syntax: acc_getmem_int (memhand, row, start, length)

Type Description

Returns: int Integer value of the bits in the memory word.

Type Name Description

Arguments: handle memhand Handle to memory

int row The memory array index

int start Bit number of the left-most bit in the memory
word where this routine starts reading the
value.

int length Specifies the total number of bits this routine
reads starting with the start bit.

Related
routines:

acc_setmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-6

PLI Access Routines

acc_clearmem_int

You use the acc_clearmem_int access routine to write zeros to
all bits in a memory.

Examples

The following code examples illustrate how to use
acc_getmem_int, acc_setmem_int, and acc_clearmem_int:

• Example D-1 shows C code that includes a number of functions
to be associated with user-defined system tasks.

• Example D-2 shows the PLI table for associating these functions
with these system tasks.

acc_clearmem_int
Synopsis: Clears a memory word.

Syntax: acc_clearmem_int (memhand)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-7

PLI Access Routines

• Example D-3 shows the Verilog source code containing these
system tasks.

Example D-1 C Source Code for Functions Calling acc_getmem_int,
acc_setmem_int, and acc_clearmem_int

#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

void error_handle(char *msg)
{
 printf("%s",msg);
 fflush(stdout);
 exit(1);
}

void set_mem()
{
 handle memhand = NULL;
 int value = -1;
 int row = -1;
 int start_bit = -1;
 int len = -1;

 memhand = acc_handle_tfarg(1);
 if(!memhand) error_handle("NULL MEM HANDLE\n");
 value = acc_fetch_tfarg_int(2);
 row = acc_fetch_tfarg_int(3);
 start_bit = acc_fetch_tfarg_int(4);
 len = acc_fetch_tfarg_int(5);

 acc_setmem_int(memhand, value, row, start_bit, len);
}

void get_mem()
{
 handle memhand = NULL;
 int row = -1;
 int start_bit = -1;
 int len = -1;
 int value = -1;

E-8

PLI Access Routines

 memhand = acc_handle_tfarg(1);
 if(!memhand) error_handle("NULL MEM HANDLE\n");
 row = acc_fetch_tfarg_int(2);
 start_bit = acc_fetch_tfarg_int(3);
 len = acc_fetch_tfarg_int(4);
 value = acc_getmem_int(memhand, row, start_bit, len);
 printf("getmem: value of word %d is : %d\n",row,value);
 fflush(stdout);
}

void clear_mem()
{
 handle memhand = NULL;

 memhand = acc_handle_tfarg(1);
 if(!memhand) error_handle("NULL MEM HANDLE\n");

 acc_clearmem_int(memhand);
}

The function with the set_mem identifier calls the IEEE standard
acc_fetch_tfarg_int routine to get the handles for arguments
to the user-defined system task that you associate with this function
in the PLI table file. It then assigns the handles to local variables and
calls acc_setmem_int to write to the specified memory in the
specified word, start bit, for the specified length.

Similarly, the function with the get_mem identifier calls the
acc_fetch_tfarg_int routine to get the handles for arguments
to a user-defined system task and assign them to local variables. It
then calls acc_gtetmem_int to read from the specified memory in
the specified word, starting with the specified start bit for the specified
length. It then displays the word index of the memory and its value.

E-9

PLI Access Routines

The function with the clear_mem identifier likewise calls the
acc_fetch_tfarg_int routine to get a handle and then calls
acc_clear_mem_int with that handle.

Example D-2 PLI Table File
$set_mem call=set_mem acc+=rw:*
$get_mem call=get_mem acc+=r:*
$clear_mem call=clear_mem acc+=rw:*

Here the $set_mem user-defined system task is associated with the
set_mem function in the C code, as are the $get_mem and
$clear_mem with their corresponding get_mem and clear_mem
function identifiers.

Example D-3 Verilog Source Code Using These System Tasks
module top;
// read and print out data of memory
parameter start = 0;
parameter finish =9 ;
parameter bstart =1 ;
parameter bfinish =8 ;
parameter size = finish - start + 1;
reg [bfinish:bstart] mymem[start:finish];
integer i;
integer len;
integer value;

initial
 begin
 // $set_mem(mem_name, value, row, start_bit, len)
 $clear_mem(mymem);

 // set values
 #1 $set_mem(mymem, 8, 2, 1, 5);
 #1 $set_mem(mymem, 32, 3, 1, 6);
 #1 $set_mem(mymem, 144, 4, 1, 8);
 #1 $set_mem(mymem,29,5,1,8);

E-10

PLI Access Routines

 // print values through acc_getmem_int
 #1 len = bfinish - bstart + 1;
 $display();
 $display("Begin Memory Values");
 for (i=start;i<=finish;i=i+1)
 begin
 $get_mem(mymem,i,bstart,len);
 end
 $display("End Memory Values");
 $display();

 // display values
 #1 $display();
 $display("Begin Memory Display");
 for (i=start;i<=finish;i=i+1)
 begin
 $display("mymem word %d is %b",i,mymem[i]);
 end
 $display("End Memory Display");
 $display();
end
endmodule

In this Verilog code, in the initial block, the following events occur:

1. The $clear_mem system task clears the memory.

2. Then the $set_mem system task deposits values in specified
words, and in specified bits in the memory named mymem.

3. In a for loop, the $get_mem system task reads values from the
memory and displays those values.

E-11

PLI Access Routines

acc_setmem_hexstr

You use the acc_setmem_hexstr access routine for writing the
corresponding binary representation of a hexadecimal string to a
Verilog memory.

This routine takes a value argument which is a hexadecimal string of
any size and puts its corresponding binary representation into the
memory word indexed by row, starting at the bit number start.

acc_setmem_hexstr
Synopsis: Writes a hexadecimal string to a word in a Verilog memory.

Syntax: acc_setmem_hexstr (memhand, hexStrValue, row, start)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

char * hexStrValue Hexadecimal string

int row The memory array index

int start Bit number of the left-most bit in the memory
word where this routine starts writing the
string.

Related
routines:

acc_setmem_int
acc_getmem_int
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-12

PLI Access Routines

Examples

The following code examples illustrates the use of
acc_setmem_hexstr:

• Example D-4 shows the C source code for an application that calls
acc_setmem_hexstr.

• Example D-5 shows the contents of a data file read by the
application.

• Example D-6 shows the PLI table file that associates the
user-defined system task in the Verilog code with the application.

• Example D-7 shows the Verilog source that calls the application.

Example D-4 C Source Code For an Application Calling
acc_setmem_hexstr

#include <stdio.h>
#include "acc_user.h"
#include "vcsuser.h"
#define NAME_SIZE 256
#define len 100
pli()
{
 FILE *infile;
 char memory_name[NAME_SIZE] ;
 char value[len];
 handle memory_handle;
 int row,start;

infile = fopen("initfile","r");
while (fscanf(infile,"%s %s %d %d ",
 memory_name,value,&row,&start) != EOF)
 {
 printf("The mem= %s \n value= %s \n row= %d \n start= %d \n ",
 memory_name,value,row,start);
 memory_handle=acc_handle_object(memory_name);
 acc_setmem_hexstr(memory_handle,value,row,start);
 }
}

E-13

PLI Access Routines

Example D-4 shows the source code for a PLI application that:

1. Reads a data file named initfile to find the memory identifiers
of the memories it writes to, the hexadecimal string to be
converted to its bit representation when written to the memory,
the index of the memory where it writes this value, and the starting
bit for writing the binary value.

2. Displays where in the memory it is writing these values

3. Calls the access routine to write the values in the initfile.

Example D-5 The Data File Read by the Application
testbench.U2.cmd_array 5 0 0
testbench.U2.cmd_array a5 1 4
testbench.U2.cmd_array a5a5 2 8
testbench.U1.slave_addr a073741824 0 4
testbench.U1.slave_addr 16f0612735 1 8
testbench.U1.slave_addr 2b52a90e15 2 12

Each line lists a Verilog memory, followed by a hex string, a memory
index, and a start bit.

Example D-6 PLI Table File
$pli call=pli acc=rw:*

Here the $pli system task is associated with the function with the
pli identifier in the C source code.

Example D-7 Verilog Source Calling the PLI Application
module testbench;
 monitor U1 ();
 master U2 ();
 initial begin
 $monitor($stime,,,
 "sladd[0]=%h sladd[1]=%h sladd[2]=%h load=%h
 cmd[0]=%h cmd[1]=%h cmd[2]=%h",

E-14

PLI Access Routines

 testbench.U1.slave_addr[0],
 testbench.U1.slave_addr[1],
 testbench.U1.slave_addr[2],
 testbench.U1.load,
 testbench.U2.cmd_array[0],
 testbench.U2.cmd_array[1],
 testbench.U2.cmd_array[2]);
 #10;
 $pli();
 end
endmodule

module master;
 reg[31:0] cmd_array [0:2];
 integer i;
initial begin //setup some default values
 for (i=0; i<3; i=i+1)
 cmd_array[i] = 32’h0000_0000;
end
endmodule

module monitor;
 reg load;
 reg[63:0] slave_addr [0:2];
 integer i;
initial begin //setup some default values
 for (i=0; i<3; i=i+1)
 slave_addr[i] = 64’h0000_0000_0000_0000;
 load = 1’b0;
end
endmodule

In Example D-7 module testbench calls the application using the
$pli user-defined system task for the application. The display string
in the $monitor system task is on two lines to enhance readability.

E-15

PLI Access Routines

acc_getmem_hexstr

You use the acc_getmem_hexstr access routine to get a
hexadecimal string from a Verilog memory.

acc_getmem_hexstr
Synopsis: Returns a hexadecimal string from a Verilog memory.

Syntax: acc_getmem_hexstr (memhand,hexStrValue,row,start,len)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

char * hexStrValue Pointer to a character array into which the
string is written

int row The memory array index

int start Bit number of the left-most bit in the memory
word where this routine starts reading the
string.

int length Specifies the total number of bits this routine
reads starting with the start bit.

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-16

PLI Access Routines

acc_setmem_bitstr

You use the acc_setmem_bitstr access routine for writing a string
of binary bits (including x and z) to a Verilog memory.

This routine takes a value argument that is a bit string of any size, which can
include the x and z values, and puts its corresponding binary representation
into the memory word indexed by row, starting at the bit number start.

acc_setmem_bitstr
Synopsis: Writes a string of binary bits to a word in a Verilog memory.

Syntax: acc_setmem_bitstr (memhand, bitStrValue, row, start)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

char * bitStrValue Bit string

int row The memory array index

int start Bit number of the left-most bit in the memory
word where this routine starts writing the
string.

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_getmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-17

PLI Access Routines

acc_getmem_bitstr

You use the acc_getmem_bitstr access routine to get a bit string,
including x and z values, from a Verilog memory.

acc_getmem_bitstr
Synopsis: Returns a hexadecimal string from a Verilog memory.

Syntax: acc_getmem_bitstr (memhand,bitStrValue,row,start,len)

Type Description

Returns: void

Type Name Description

Arguments: handle memhand Handle to memory

char * hexStrValue Pointer to a character array into which the
string is written

int row The memory array index

int start Bit number of the left-most bit in the memory
word where this routine starts reading the
string.

int length Specifies the total number of bits this routine
reads starting with the start bit.

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_clearmem_int
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-18

PLI Access Routines

acc_handle_mem_by_fullname

Returns a handle to a memory that can only be used as a parameter
to acc_readmem.

acc_handle_mem_by_fullaname
Synopsis: Returns a handle to be used as a parameter to acc_readmem only

Syntax: acc_handle_mem_by_fullname (fullMemInstName)

Type Description

Returns: handle Handle to the instance

Type Name Description

Arguments: char* fullMemInstName Hierarchical name for a memory

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-19

PLI Access Routines

acc_readmem

You use the acc_readmem access routine to read a data file into a
memory. It is similar to the $readmemb or $readmemh system tasks.

The memhandle argument must be the handle returned by
acc_handle_mem_by_fullname.

acc_readmem
Synopsis: Reads a data file into a memory

Syntax: acc_readmem (memhandle, data_file, format)

Type Description

Returns: void

Type Name Description

Arguments: handle memhandle Handle returned by
acc_handle_mem_fullname

const char* data_file Data file this routine reads

int format Specify a character that is promoted to
int. ’h’ for hexadecimal data, ’b’ for binary
data.

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-20

PLI Access Routines

Examples

The following code examples illustrate the use of acc_readmem and
acc_handle_mem_by_fullname.

Example D-8 C Source Code Calling Tacc_readmem and
acc_handle_mem_by_fullname

#include "acc_user.h"
#include "vcs_acc_user.h"
#include "vcsuser.h"

int test_acc_readmem(void)
{
 const char *memName = tf_getcstringp(1);
 const char *memFile = tf_getcstringp(2);
 handle mem = acc_handle_mem_by_fullname(memName);

 if (mem) {
 io_printf("test_acc_readmem: %s handle found\n",
memName);
 acc_readmem(mem, memFile, 'h');
 }
 else {
 io_printf("test_acc_readmem: %s handle NOT found\n",
 memName);
 }
}

Example D-9 The PLI Table File
$test_acc_readmem call=test_acc_readmem

Example D-10 The Verilog Source Code
module top;
reg [7:0] CORE[7:0];
initial $acc_readmem(CORE, "CORE");
initial $test_acc_readmem("top.CORE", "test_mem_file");
endmodule

E-21

PLI Access Routines

acc_getmem_range

You use the acc_getmem_range access routine to access the upper
and lower limits of a memory.

acc_getmem_range
Synopsis: Returns the upper and lower limits of a memory

Syntax: acc_getmem_range (memhandle, p_left_index,p_right_index)

Type Description

Returns: void

Type Name Description

Arguments: handle memhandle Handle to a memory

int* p_left_index Pointer to int

int p_right_index Pointer to int

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_size
acc_getmem_word_int
acc_getmem_word_range

E-22

PLI Access Routines

acc_getmem_size

You use the acc_getmem_size access routine to access the
number of elements in a memory.

acc_getmem_size
Synopsis: Returns the number of elements in a memory

Syntax: acc_getmem_size (memhandle)

Type Description

Returns: int The number of elements in a memory

Type Name Description

Arguments: handle memhandle Handle to a memory

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_word_int
acc_getmem_word_range

E-23

PLI Access Routines

acc_getmem_word_int

You use the acc_getmem_word_int access routine to access the
integer value of an element (or word, address, or row).

acc_getmem_word_int
Synopsis: Returns the integer value of an element

Syntax: acc_getmem_word_int (memhandle,row)

Type Description

Returns: int The integer value of a row

Type Name Description

Arguments: handle memhandle Handle to a memory

int row The element (word address, or row)
in the memory

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_range

E-24

PLI Access Routines

acc_getmem_word_range

You use the acc_getmem_word_range access routine to access
the least significant bit of an element (or word, address, or row) and
the length of the element.

acc_getmem_word_range
Synopsis: Returns the least significant bit of an element and the length of the element

Syntax: acc_getmem_word_range (memhandle,lsb,len)

Type Description

Returns: void

Type Name Description

Arguments: handle memhandle Handle to a memory

int* lsb Pointer to the least significant bit

int* len Pointer to the length of the element

Related
routines:

acc_setmem_int
acc_getmem_int
acc_setmem_hexstr
acc_getmem_hexstr
acc_setmem_bitstr
acc_getmem_bitstr
acc_handle_mem_by_fullname
acc_readmem
acc_getmem_range
acc_getmem_size
acc_getmem_word_int

E-25

PLI Access Routines

Access Routines for Multidimensional Arrays

The type for multidimensional arrays is defined in the vcs_acc_user.h
file. Its name is accMda.

We also have the following tf and access routines for accessing data
in a multidimensional array:

tf_mdanodeinfo and tf_imdanodeinfo
Returns access parameter node information from a
multidimensional array. See "tf_mdanodeinfo and
tf_imdanodeinfo" on page E-26 for details.

acc_get_mda_range
Returns all the ranges of the multidimensional array. See
"acc_get_mda_range" on page E-28 for details.

acc_get_mda_word_range
Returns the range of an element in a multidimensional array. See
"acc_get_mda_word_range()" on page E-29 for details.

acc_getmda_bitstr
Reads a bit string, including X and Z values, from an element in
a multidimensional array. See "acc_getmda_bitstr()" on page
E-31 for details.

acc_setmda_bitstr
Writes a bit string, including X and Z values, from an element in
a multidimensional array. See "acc_setmda_bitstr()" on page
E-32 for details.

E-26

PLI Access Routines

tf_mdanodeinfo and tf_imdanodeinfo

You use these routines to access parameter node information from
a multidimensional array.

Structure t_tfmdanodeinfo is defined in the vcsuser.h file as
follows:

typedef struct t_tfmdanodeinfo
{
 short node_type;
 short node_fulltype;
 char *memoryval_p;
 char *node_symbol;
 int node_ngroups;

tf_mdanodeinfo(), tf_imdanodeinfo()
Synopsis: Returns access parameter node information from a multidimensional array.

Syntax: tf_mdanodeinfo(nparam, mdanodeinfo_p)
tf_imdanodeinfo(nparam, mdanodeinfo_p, instance_p)

Type Description

Returns: mdanodeinfo_p * The value of the second argument if successful; 0 if an
error occurs

Type Name Description

Arguments: int nparam Index number of the
multidimensional array
parameter

struct
t_tfmdanodeinfo *

mdanodeinfo_p Pointer to a variable declared as
the t_tfmdanodeinfo
structure type

char * instance_p Pointer to a specific instance of a
multidimensional array

Related
routines:

acc_get_mda_range
acc_get_mda_word_range
acc_getmda_bitstr
acc_setmda_bitstr

E-27

PLI Access Routines

 int node_vec_size;
 int node_sign;
 int node_ms_index;
 int node_ls_index;
 int node_mem_size;
 int *node_lhs_element;
 int *node_rhs_element;
 int node_dimension;
 int *node_handle;
 int node_vec_type;
} s_tfmdanodeinfo, *p_tfmdanodeinfo;

E-28

PLI Access Routines

acc_get_mda_range

The acc_get_mda_range routine returns the ranges of a
multidimensional array.

If you have a multidimensional array such as the following:

reg [7:0] my_mem[255:0][255:0][31:0];

acc_get_mda_range()
Synopsis: Gets all the ranges of the multidimensional array.

Syntax: acc_get_mda_range(mdaHandle, size, msb, lsb, dim, plndx,
prindex)

Type Description

Returns: void

Type Name Description

Arguments: handle mdaHandle Handle to the multidimensional
array

int * size Pointer to the size of the
multidimensional array

int * msb Pointer to the most significant bit
of a range

int * lsb Pointer to the least significant bit
of a range

int * dim Pointer to the number of
dimensions in the
multidimensional array

int * plndx Pointer to the left index of a range

int * prndx Pointer to the right index of a range

Related
routines:

tf_mdanodeinfo and tf_imdanodeinfo
acc_get_mda_word_range
acc_getmda_bitstr
acc_setmda_bitstr

E-29

PLI Access Routines

And you call a routine, such as the following:

handle hN = acc_handle_by_name(my_mem);
acc_get_mda_range(hN, &size, &msb, &lsb, &dim, &plndx,
&prndx);

It yields the following result:

size = 8;
msb = 7, lsb = 0;
dim = 4;
plndx[] = {255, 255, 31}
prndx[] = {0, 0, 0}

acc_get_mda_word_range()

The acc_get_mda_word_range routine returns the range of an
element in a multidimensional array.

acc_get_mda_word_range()
Synopsis: Gets the range of an element in a multidimensional array.

Syntax: acc_get_mda_range(mdaHandle, msb, lsb)

Type Description

Returns: void

Type Name Description

Arguments: handle mdaHandle Handle to the multidimensional
array

int * msb Pointer to the most significant bit
of a range

int * lsb Pointer to the least significant bit of
a range

Related
routines:

tf_mdanodeinfo and tf_imdanodeinfo
acc_get_mda_range
acc_getmda_bitstr
acc_setmda_bitstr

E-30

PLI Access Routines

If you have a multidimensional array such as the following:

reg [7:0] my_mem[255:0][255:0][31:0];

And you call a routine, such as the following:

handle hN = acc_handle_by_name(my_mem);
acc_get_mda_word_range(hN, &left, &right);

It yields the following result:

left = 7;
right = 0;

E-31

PLI Access Routines

acc_getmda_bitstr()

You use the acc_getmda_bitstr access routine to read a bit
string, including x and z values, from a multidimensional array.

If you have a multidimensional array such as the following:

reg [7:0] my_mem[255:0][255:0][31:0];

And you call a routine, such as the following:

dim[]={5, 5, 10};
handle hN = acc_handle_by_name(my_mem);
acc_getmda_bitstr(hN, &bitStr, dim, 3, 3);

acc_getmda_bitstr()
Synopsis: Gets a bit string from a multidimensional array.

Syntax: acc_getmda_bitstr(mdaHandle, bitStr, dim, start, len)

Type Description

Returns: void

Type Name Description

Arguments: handle mdaHandle Handle to the multidimensional
array

char * bitStr Pointer to the bit string

int * dim Pointer to the dimension in the
multidimensional array

int * start Pointer to the start element in the
dimension

int * len Pointer to the length of the string

Related
routines:

tf_mdanodeinfo and tf_imdanodeinfo
acc_get_mda_range
acc_get_mda_word_range
acc_setmda_bitstr

E-32

PLI Access Routines

It yields the following string from my_mem[5][5][10][3:5].

acc_setmda_bitstr()

You use the acc_setmda_bitstr access routine to write a bit
string, including x and z values, into a multidimensional array.

If you have a multidimensional array such as the following:

reg [7:0] my_mem[255:0][255:0][31:0];

And you call a routine, such as the following:

dim[]={5, 5, 10};
bitstr="111";

acc_setmda_bitstr()
Synopsis: Sets a bit string in a multidimensional array.

Syntax: acc_setmda_bitstr(mdaHandle, bitStr, dim, start, len)

Type Description

Returns: void

Type Name Description

Arguments: handle mdaHandle Handle to the multidimensional
array

char * bitStr Pointer to the bit string

int * dim Pointer to the dimension in the
multidimensional array

int * start Pointer to the start element in the
dimension

int * len Pointer to the length of the string

Related
routines:

tf_mdanodeinfo and tf_imdanodeinfo
acc_get_mda_range
acc_get_mda_word_range
acc_getmda_bitstr

E-33

PLI Access Routines

handle hN = acc_handle_by_name(my_mem);
acc_setmda_bitstr(hN, &bitStr, dim, 3, 3);

It writes 111 in my_mem[5][5][10][3:5].

Access Routines for Probabilistic Distribution

VCS comes with the following API routines that duplicate the behavior
of the Verilog system functions for probabilistic distribution:

vcs_random
Returns a random number and takes no argument. See
"vcs_random" on page E-34 for details.

vcs_random_const_seed
Returns a random number and takes an integer argument. See
"vcs_random_const_seed" on page E-35 for details.

vcs_random_seed
Returns a random number and takes a pointer to integer
argument. See "vcs_random_seed" on page E-35 for details.

vcs_dist_uniform
Returns random numbers uniformly distributed between
parameters. See "vcs_dist_uniform" on page E-36 for details.

vcs_dist_normal
Returns random numbers with a specified mean and standard
deviation. See "vcs_dist_normal" on page E-37 for details.

vcs_dist_exponential
Returns random numbers where the distribution function is
exponential. See "vcs_dist_exponential" on page E-38 for details.

E-34

PLI Access Routines

vcs_dist_poisson
Returns random numbers with a specified mean. See
"vcs_random" on page E-34 for details.

These routines are declared in the vcs_acc_user.h file in
$VCS_HOME/lib.

vcs_random

You use this routine to obtain a random number.

vcs_random()
Synopsis: Returns a random number.

Syntax: vcs_random()

Type Description

Returns: int Random number

Type Name Description

Arguments: None

Related
routines:

vcs_random_const_seed vcs_random_seed vcs_dist_uniform
vcs_dist_normal vcs_dist_exponential vcs_dist_poisson

E-35

PLI Access Routines

vcs_random_const_seed

You use this routine to return a random number and you supply an
integer constant argument as the seed for the random number.

vcs_random_seed

You use this routine to return a random number and you supply a
pointer argument.

vcs_randon_const_seed
Synopsis: Returns a random number.

Syntax: vcs_random_const_seed(integer)

Type Description

Returns: int Random number

Type Name Description

Arguments: int integer An integer constant.

Related
routines:

vcs_random vcs_random_seed vcs_dist_uniform vcs_dist_normal
vcs_dist_exponential vcs_dist_poisson

vcs_random_seed()
Synopsis: Returns a random number.

Syntax: vcs_random_seed(seed)

Type Description

Returns: int Random number

Type Name Description

Arguments: int * seed Pointer to an int type.

Related
routines:

vcs_random vcs_random_const_seed vcs_dist_uniform vcs_dist_normal
vcs_dist_exponential vcs_dist_poisson

E-36

PLI Access Routines

vcs_dist_uniform

You use this routine to return a random number uniformly distributed
between parameters.

vcs_dist_uniform
Synopsis: Returns random numbers uniformly distributed between parameters.

Syntax: vcs_dist_uniform(seed, start, end)

Type Description

Returns: int Random number

Type Name Description

Arguments: int * seed Pointer to a seed integer value.

int start Starting parameter for distribution range.

int end Ending parameter for distribution range.

Related
routines:

vcs_random vcs_random_const_seed vcs_random_seed vcs_dist_normal
vcs_dist_exponential vcs_dist_poisson

E-37

PLI Access Routines

vcs_dist_normal

You use this routine to return a random number with a specified mean
and standard deviation.

vcs_dist_normal
Synopsis: Returns random numbers with a specified mean and standard deviation.

Syntax: vcs_dist_normal(seed, mean, standard_deviation)

Type Description

Returns: int Random number

Type Name Description

Arguments: int * seed Pointer to a seed integer value.

int mean An integer that is the average value of the
possible returned random numbers.

int standard_
deviation

An integer that is the standard deviation from
the mean for the normal distribution.

Related
routines:

vcs_random vcs_random_const_seed vcs_random_seed vcs_dist_uniform
vcs_dist_exponential vcs_dist_poisson

E-38

PLI Access Routines

vcs_dist_exponential

You use this routine to return a random number where the distribution
function is exponential.

vcs_dist_exponential
Synopsis: Returns random numbers where the distribution function is exponential.

Syntax: vcs_dist_exponential(seed, mean)

Type Description

Returns: int Random number

Type Name Description

Arguments: int * seed Pointer to a seed integer value.

int mean An integer that is the average value of the
possible returned random numbers.

Related
routines:

vcs_random vcs_random_const_seed vcs_random_seed vcs_dist_uniform
vcs_dist_normal vcs_dist_poisson

E-39

PLI Access Routines

vcs_dist_poisson

You use this routine to return a random number with a specified mean.

Access Routines for Returning a String Pointer to a
Parameter Value

The 1364 Verilog standard states that for access routine
acc_fetch_paramval you can cast the return value to a character
pointer using the C language cast operators(char*)(int). For
example:

str_ptr=(char*)(int)acc_fetch_paramval(...);

In 64-bit simulation you should use long instead of int:

str_ptr=(char*)(long)acc_fetch_paramval(...);

vcs_dist_poisson
Synopsis: Returns random numbers with a specified mean.

Syntax: vcs_dist_poisson(seed, mean)

Type Description

Returns: int Random number

Type Name Description

Arguments: int * seed Pointer to a seed integer value.

int mean An integer that is the average value of the
possible returned random numbers.

Related
routines:

vcs_random vcs_random_const_seed vcs_random_seed vcs_dist_uniform
vcs_dist_normal vcs_dist_exponential

E-40

PLI Access Routines

For your convenience VCS provides the
acc_fetch_paramval_str routine to directly return a string
pointer.

acc_fetch_paramval_str

Returns the value of a string parameter directly as char*.

Access Routines for Extended VCD Files

VCS provides the following routines to monitor the port activity of a
device:

acc_lsi_dumpports_all
Adds a checkpoint to the file. See "acc_lsi_dumpports_all" on
page E-42 for details.

acc_lsi_dumpports_call
Monitors instance ports. See "acc_lsi_dumpports_call" on page
E-43 for details.

acc_fetch_paramval_str
Synopsis: Returns the value of a string parameter directly as char*.

Syntax: acc_fetch_paramval_str(param_handle)

Type Description

Returns: char* string pointer

Type Name Description

Arguments: handle param_handle Handle to a module parameter or specparam.

Related
routines:

acc_fetch_paramval

E-41

PLI Access Routines

acc_lsi_dumpports_close
Closes specified VCDE files. See "acc_lsi_dumpports_close" on
page E-45 for details.

acc_lsi_dumpports_flush
Flushes cached data to the VCDE file on disk. See
"acc_lsi_dumpports_flush" on page E-46 for details.

acc_lsi_dumpports_limit
Sets the maximum VCDE file size. See
"acc_lsi_dumpports_limit" on page E-47 for details.

acc_lsi_dumpports_misc
Processes miscellaneous events. See
"acc_lsi_dumpports_misc" on page E-48 for details.

acc_lsi_dumpports_off
Suspends VCDE file dumping. See "acc_lsi_dumpports_off" on
page E-49 for details.

acc_lsi_dumpports_on
Resumes VCDE file dumping. See "acc_lsi_dumpports_on" on
page E-50 for details.

acc_lsi_dumpports_setformat
Specifies the format of the VCDE file. See
"acc_lsi_dumpports_setformat" on page E-52 for details.

acc_lsi_dumpports_vhdl_enable
Enables or disables the inclusion of VHDL drivers in the
determination of driver values. See
"acc_lsi_dumpports_vhdl_enable" on page E-53 for details.

E-42

PLI Access Routines

acc_lsi_dumpports_all

Syntax
int acc_lsi_dumpports_all(char *filename)

Synopsis

Adds a checkpoint to the file.

This is a PLI interface to the $dumpportsall system task. If the
filename argument is NULL, this routine adds a checkpoint to all
open VCDE files.

Returns

The number of VCDE files that matched.

Example D-11 Example of acc_lsi_dumpports_all
#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device",
0);
char *outfile = "device.evcd";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile)) {
/* rut-roh, error ... */
}
acc_lsi_dumpports_limit(100000, outfile);
...

if (time == yada_yada)
 acc_lsi_dumpports_off(outfile);
 ...

if (time == yada_yada_yada) {
 /* add checkpoint (no need to enable dumping) */

E-43

PLI Access Routines

 acc_lsi_dumpports_all(outfile);
 acc_lsi_dumpports_flush(outfile);
}
 ...

if (resume_dumping_now)
 acc_lsi_dumpports_on(outfile);
 ...

Caution

This routine may affect files opened by the $dumpports and
$lsi_dumpports system tasks.

acc_lsi_dumpports_call

Syntax
int acc_lsi_dumpports_call(handle instance, char *filename)

Synopsis

Monitors instance ports.

This is a PLI interface to the $lsi_dumpports task. The default file
format is the original LSI format, but you can select the IEEE format
by calling the routine acc_lsi_dumpports_setformat()
prior to calling this routine. Your tab file will need the following acc
permissions:

acc=cbka,cbk,cbkv:[<instance_name>|*].

Returns

Zero on success, non-zero otherwise. VCS displays error messages
through tf_error(). A common error is specifying a file name also
being used by a $dumpports or $lsi_dumpports system task.

E-44

PLI Access Routines

Example D-12 Example of acc_lsi_dumpports_all
#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device", 0);
char *outfile = "device.evcd";

acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);

if (acc_lsi_dumpports_call(instance, outfile)) {
 /* error */
}

Caution

Multiple calls to this routine are allowed, but the output file name must
be unique for each call.

For proper dumpports operation, your task’s miscellaneous function
must call acc_lsi_dumpports_misc() with every call it gets. This
ensures that the dumpports routines sees all of the simulation events
needed for proper update and closure of the dumpports (extended
VCD) files. For example, your miscellaneous routine would do the
following:

my_task_misc(int data, int reason)
 {
 acc_lsi_dumpports_misc(data, reason);
 ...
 }

E-45

PLI Access Routines

acc_lsi_dumpports_close

Syntax
int acc_lsi_dumpports_call(handle instance, char *filename)

Synopsis

Closes specified VCDE files.

This routine reads the list of files opened by a call to the system tasks
$dumpports and $lsi_dumpports or the routine
acc_lsi_dumpports_call() and closes all that match either the
specified instance handle or the filename argument.

One or both arguments can be used. If the instance handle is non-null,
this routine closes all files opened for that instance.

Returns

The number of files closed.

Example D-13 Example of acc_lsi_dumpports_close
#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device", 0);
char *outfile1 = "device.evcd1";
char *outfile2 = "device.evcd2";

acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_LSI);

acc_lsi_dumpports_call(instance, outfile1);
acc_lsi_dumpports_call(instance, outfile2);
 ...
acc_lsi_dumpports_close(NULL, outfile1);
 ...
acc_lsi_dumpports_close(NULL, outfile2);

E-46

PLI Access Routines

Caution

A call to this function can also close files opened by the
$lsi_dumpports or $dumpports system tasks.

acc_lsi_dumpports_flush

Syntax
int acc_lsi_dumpports_flush(char *filename)

Synopsis

Flushes cached data to the VCDE file on disk.

This is a PLI interface to the $dumpportsflush system task. If the
filename is NULL all open files are flushed.

Returns

The number of files matched.

Example D-14 Example of acc_lsi_dumpports_flush
#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device", 0);
char *outfile = "device.evcd";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile)) {
 /* rut-roh */
}
acc_lsi_dumpports_limit(100000, outfile);
...

if (time == yada_yada)
 acc_lsi_dumpports_off(outfile);
...

if (time == yada_yada_yada) {

E-47

PLI Access Routines

 /* add checkpoint (no need to enable dumping) */
 acc_lsi_dumpports_all(outfile);
 acc_lsi_dumpports_flush(outfile);
}
...

if (resume_dumping_now)
 acc_lsi_dumpports_on(outfile);
...

acc_lsi_dumpports_limit

Syntax
int acc_lsi_dumpports_limit(unsigned long filesize, char
*filename)

Synopsis

Sets the maximum VCDE file size.

This is a PLI interface to the $dumpportslimit task. If the
filename is NULL the file size is applied to all files.

Returns

The number of files matched.

Example D-15 Example of acc_lsi_dumpports_limit
#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device", 0);
char *outfile = "device.evcd";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile)) {
 /* rut-roh */
}
acc_lsi_dumpports_limit(100000, outfile);
...

E-48

PLI Access Routines

if (time == yada_yada)
 acc_lsi_dumpports_off(outfile);
...

if (time == yada_yada_yada) {
 /* add checkpoint (no need to enable dumping) */
 acc_lsi_dumpports_all(outfile);
 acc_lsi_dumpports_flush(outfile);
}
...

if (resume_dumping_now)
 acc_lsi_dumpports_on(outfile);
...

Caution

This routine may affect files opened by the $dumpports and
$lsi_dumpports system tasks.

acc_lsi_dumpports_misc

Syntax
void acc_lsi_dumpports_misc(int data, int reason)

Synopsis

Processes miscellaneous events.

This is a companion routine for acc_lsi_dumpports_call().

For proper dumpports operation, your task’s miscellaneous function
must call this routine for each call it gets.

Returns

No return value.

E-49

PLI Access Routines

Example D-16 Example or acc_lsi_dumpports_misc
#include "acc_user.h"
#include "vcs_acc_user.h"

void my_task_misc(int data, int reason)
{
 acc_lsi_dumpports_misc(data, reason);
 ...
}

acc_lsi_dumpports_off

Syntax
int acc_lsi_dumpports_off(char *filename)

Synopsis

Suspends VCDE file dumping.

This is a PLI interface to the $dumpportsoff system task. If the
filename is NULL dumping is suspended on all open files.

Returns

The number of files that matched.

Example D-17 of acc_lsi_dumpports_offExample
#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device", 0);
char *outfile = "device.evcd";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile)) {
 /* rut-roh */
}
acc_lsi_dumpports_limit(100000, outfile);
...

E-50

PLI Access Routines

if (time == yada_yada)
 acc_lsi_dumpports_off(outfile);
...

if (time == yada_yada_yada) {
 /* add checkpoint (no need to enable dumping) */
 acc_lsi_dumpports_all(outfile);
 acc_lsi_dumpports_flush(outfile);
}
...

if (resume_dumping_now)
 acc_lsi_dumpports_on(outfile);
...

Caution

This routine may suspend dumping on files opened by the
$dumpports and $lsi_dumpports system tasks.

acc_lsi_dumpports_on

Syntax
int acc_lsi_dumpports_on(char *filename)

Synopsis

Resumes VCDE file dumping.

This is a PLI interface to the $dumpportson system task. If the
filename is NULL dumping is resumed on all open files.

Returns

The number of files that matched.

Example D-18 Example of acc_lsi_dumpports_on
#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device", 0);

E-51

PLI Access Routines

char *outfile = "device.evcd";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile)) {
 /* rut-roh */
}
acc_lsi_dumpports_limit(100000, outfile);
...

if (time == yada_yada)
 acc_lsi_dumpports_off(outfile);
...

if (time == yada_yada_yada) {
 /* add checkpoint (no need to enable dumping) */
 acc_lsi_dumpports_all(outfile);
 acc_lsi_dumpports_flush(outfile);
}
...

if (resume_dumping_now)
 acc_lsi_dumpports_on(outfile);
...

Caution

This routine may resume dumping on files opened by the
$dumpports and $lsi_dumpports system tasks.

E-52

PLI Access Routines

acc_lsi_dumpports_setformat

Syntax
int acc_lsi_dumpports_setformat(lsi_dumpports_format_type
format)

Where the valid lsi_dumports_format_types are as follows:

USE_DUMPPORTS_FORMAT_IEEE

USE_DUMPPORTS_FORMAT_LSI

Synopsis

Specifies the format of the VCDE file.

Use this routine to specify which output format (IEEE or the original
LSI) should be used. This routine must be called before
acc_lsi_dumpports_call().

Returns

Zero if success, non-zero if error. Errors are reported through
tf_error().

Example D-19 Example of acc_lsi_dumpports_setformat
#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device", 0);
char *outfile1 = "device.evcd1";
char *outfile2 = "device.evcd2";

/* use IEEE format for this file */
acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_IEEE);
if (acc_lsi_dumpports_call(instance, outfile1)) {
 /* error */
}

/* use LSI format for this file */

E-53

PLI Access Routines

acc_lsi_dumpports_setformat(USE_DUMPPORTS_FORMAT_LSI);
if (acc_lsi_dumpports_call(instance, outfile2)) {
 /* error */
}
...
Caution

The runtime plusargs +dumpports+ieee and +dumpports+lsi
have priority over this routine.

The format of files created by calls to the $dumpports and
$lsi_dumpports tasks are not affected by this routine.

acc_lsi_dumpports_vhdl_enable

Syntax
void acc_lsi_dumpports_vhdl_enable(int enable)

The valid enable integer parameters are as follows:

1 enables VHDL drivers

0 disables VHDL drivers

Synopsis

Use this routine to enable or disable the inclusion of VHDL drivers in
the determination of driver values.

Returns

No return value.

Example D-20 Example of acc_lsi_dumpports_vhdl_enable
#include "acc_user.h"
#include "vcs_acc_user.h"

handle instance = acc_handle_by_name("test_bench.device", 0);

E-54

PLI Access Routines

char *outfile1 = "device.evcd1";
char *outfile2 = "device.evcd2";

/* Include VHDL drivers in this report */
acc_lsi_dumpports_vhdl_enable(1);
acc_lsi_dumpports_call(instance, outfile1);

/* Exclude VHDL drivers from this report */
acc_lsi_dumpports_vhdl_enable(0);
acc_lsi_dumpports_call(instance, outfile1);

...

Caution

This routine has precedence over the +dumpports+vhdl+enable
and +dumpports+vhdl+disable runtime options.

Access Routines for Line Callbacks

VCS comes with the a number of access routines to monitor code
execution. These access routines are as follows:

acc_mod_lcb_add
Registers a line callback routine with a module so that VCS calls
the routine whenever VCS executes the specified module. See
"acc_mod_lcb_add" on page E-55 for details.

acc_mod_lcb_del
Unregisters a line callback routine previously registered with the
acc_mod_lcb_add() routine. See "acc_mod_lcb_del" on page
E-57 for details.

acc_mod_lcb_enabled
Tests to see if line callbacks is enabled. See
"acc_mod_lcb_enabled" on page E-58 for details.

E-55

PLI Access Routines

acc_mod_lcb_fetch
Returns an array of breakable lines. See "acc_mod_lcb_fetch" on
page E-59 for details.

acc_mod_lcb_fetch2
Returns an array of breakable lines. See
"acc_mod_lcb_fetch2" on page E-60 for details.

acc_mod_sfi_fetch
Returns the source file composition for a module. See
"acc_mod_sfi_fetch" on page E-62 for details.

acc_mod_lcb_add

Syntax
void acc_mod_lcb_add(handle handleModule,

void (*consumer)(), char *user_data)

Synopsis

Registers a line callback routine with a module so that VCS calls the
routine whenever VCS executes the specified module.

The prototype for the callback routine is:

void consumer(char *filename, int lineno, char *user_data,
 int tag)

The tag field is a unique identifier that you use to distinguish between
multiple ‘include files.

Protected modules cannot be registered for callback. This routine will
just ignore the request.

E-56

PLI Access Routines

Returns

No return value.

Example D-21 Example of acc_mod_lcb_add
#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

/* VCS callback rtn */
void line_call_back(filename, lineno, userdata, tag)
char *filename;
int lineno;
char *userdata;
int tag;
{
 handle handle_mod = (handle)userdata;

 io_printf("Tag %2d, file %s, line %2d, module %s\n",
 tag, filename, lineno,
 acc_fetch_fullname(handle_mod));
}

/* register all modules for line callback (recursive) */
void register_lcb (parent_mod)
handle parent_mod;
{
 handle child = NULL;

 if (! acc_object_of_type(parent_mod, accModule)) return;

 io_printf("Registering %s\n",
 acc_fetch_fullname (parent_mod));

 acc_mod_lcb_add (parent_mod, line_call_back, parent_mod);

 while ((child = acc_next_child (parent_mod, child))) {
 register_lcb (child);
 }
}

E-57

PLI Access Routines

acc_mod_lcb_del

Syntax
void acc_mod_lcb_del(handle handleModule,

void (*consumer)(), char *user_data)

Synopsis

Unregisters a line callback routine previously registered with the
acc_mod_lcb_add() routine.

Returns

No return value.

Example D-22 Example of acc_mod_lcb_del
#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

/* VCS 4.x callback rtn */
void line_call_back(filename, lineno, userdata, tag)
char *filename;
int lineno;
char *userdata;
int tag;
{
 handle handle_mod = (handle)userdata;

 io_printf("Tag %2d, file %s, line %2d, module %s\n",
 tag, filename, lineno,
 acc_fetch_fullname(handle_mod));
}

/* unregister all line callbacks (recursive) */
void unregister_lcb (parent_mod)
handle parent_mod;
{
 handle child = NULL;

 if (! acc_object_of_type(parent_mod, accModule)) return;

 io_printf("Unregistering %s\n",

E-58

PLI Access Routines

 acc_fetch_fullname (parent_mod));

 acc_mod_lcb_del (parent_mod, line_call_back, parent_mod);

 while ((child = acc_next_child (parent_mod, child))) {
 register_lcb (child);
 }
}

Caution

The module handle, consumer routine and user data arguments must
match those supplied to the acc_mod_lcb_add() routine for a
successful delete.

For example, using the result of a call such as acc_fetch_name()
as the user data will fail, because that routine returns a different
pointer each time it’s called.

acc_mod_lcb_enabled

Syntax
int acc_mod_lcb_enabled()

Synopsis

Test to see if line callbacks is enabled.

By default the extra code required to support line callbacks is not
added to a simulation executable. You can use this routine to
determine if line callbacks have been enabled.

Returns

Non-zero if line callbacks are enabled; 0 if not enabled.

E-59

PLI Access Routines

Example D-23 Example of acc_mod_lcb_enabled
if (! acc_mod_lcb_enable) {
 tf_warning("Line callbacks not enabled. Please recompile with
-line.");
}
else {
 acc_mod_lcb_add (...);
 ...
}

acc_mod_lcb_fetch

Syntax
p_location acc_mod_lcb_fetch(handle handleModule)

Synopsis

Returns an array of breakable lines.

This routine returns all the lines in a module that you can set
breakpoints on.

Returns

The return value is an array of line number, file name pairs.
Termination of the array is indicated by a NULL file name field. The
calling routine is responsible for freeing the returned array.

typedef struct t_location {
int line_no;
char *filename;

} s_location, *p_location;

Returns NULL if the module has no breakable lines or is source
protected.

E-60

PLI Access Routines

Example D-24 Example of acc_mod_lcb_fetch
#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

void ShowLines(handleModule)
handle handleModule;
{
 p_location plocation;

 if ((plocation = acc_mod_lcb_fetch(handleModule)) != NULL) {
 int i;

 io_printf("%s:\n", acc_fetch_fullname(handleModule));

 for (i = 0; plocation[i].filename; i++) {
 io_printf(" [%s:%d]\n",
 plocation[i].filename,
 plocation[i].line_no);
 }
 acc_free(plocation);
 }
}

acc_mod_lcb_fetch2

Syntax
p_location2 acc_mod_lcb_fetch2(handle handleModule)

Synopsis

Returns an array of breakable lines.

This routine returns all the lines in a module that you can set
breakpoints on.

E-61

PLI Access Routines

The tag field is a unique identifier used to distinguish ‘include files.
For example, in the following Verilog module, the breakable lines in
the first ‘include of the file sequential.code have a different
tag than the breakable lines in the second ‘include. (The tag
numbers will match the vcs_srcfile_info_t->SourceFileTag
field. See the acc_mod_sfi_fetch() routine for details.)

module x;
initial begin
 ‘include sequential.code
 ‘include sequential.code
 end
endmodule

Returns

The return value is an array of location structures. Termination of the
array is indicated by a NULL filename field. The calling routine is
responsible for freeing the returned array.

typedef struct t_location2 {
 int line_no;
 char *filename;
 int tag;
} s_location2, *p_location2;

Returns NULL if the module has no breakable lines or is source
protected.

Example D-25 Example of acc_mod_lcb_fetch2
#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

void ShowLines2(handleModule)
handle handleModule;
{
 p_location2 plocation;

E-62

PLI Access Routines

 if ((plocation = acc_mod_lcb_fetch2(handleModule)) != NULL) {
 int i;

 io_printf("%s:\n", acc_fetch_fullname(handleModule));

 for (i = 0; plocation[i].filename; i++) {
 io_printf(" file %s, line %d, tag %d\n",
 plocation[i].filename,
 plocation[i].line_no,
 plocation[i].tag);
 }
 acc_free(plocation);
 }
}

acc_mod_sfi_fetch

Syntax
vcs_srcfile_info_p acc_mod_sfi_fetch(handle handleModule)

Synopsis

Returns the source file composition for a module. This composition
is a file name with line numbers, or, if a module definition is in more
than one file, it is an array of vcs_srcfile_info_s struct entries
specifying all the file names and line numbers for the module
definition.

Returns

The returned array is terminated by a NULL SourceFileName field.
The calling routine is responsible for freeing the returned array.

typedef struct vcs_srcfile_info_t {
 char *SourceFileName;
 int SourceFileTag;
 int StartLineNum;
 int EndLineNum;
} vcs_srcfile_info_s, *vcs_srcfile_info_p;

E-63

PLI Access Routines

Returns NULL if the module is source protected.

Example D-26 Example of acc_mod_sfi_fetch
#include <stdio.h>
#include "acc_user.h"
#include "vcs_acc_user.h"

void print_info (mod)
handle mod;
{
 vcs_srcfile_info_p infoa;

 io_printf("Source Info for Module %s:\n",
 acc_fetch_fullname(mod));

 if ((infoa = acc_mod_sfi_fetch(mod)) != NULL) {
 int i;
 for (i = 0; infoa[i].SourceFileName != NULL; i++) {
 io_printf(" Tag %2d, StartLine %2d, ",
 infoa[i].SourceFileTag,
 infoa[i].StartLineNum);
 io_printf("EndLine %2d, SrcFile %s\n",
 infoa[i].EndLineNum,
 infoa[i].SourceFileName);
 }
 acc_free(infoa);
 }
}

E-64

PLI Access Routines

Access Routines for Source Protection

The enclib.o file provides a set of access routines that you can use
to create applications which directly produce encrypted Verilog
source code. Encrypted code can only be decoded by the VCS
compiler. There is no user-accessible decode routine.

Note that both Verilog and SDF code can be protected. VCS knows
how to automatically decrypt both.

VCS provides the following routines to monitor the port activity of a
device:

vcsSpClose
This routine frees the memory allocated by
vcsSpInitialize(). See "vcsSpClose" on page E-68 for
details.

vcsSpEncodeOff
This routine inserts a trailer section containing the
’endprotected compiler directive into the output file. It also
toggles the encryption flag to false so that subsequent calls to
vcsSpWriteString() and vcsSpWriteChar() will NOT
cause their data to be encrypted. See "vcsSpEncodeOff" on page
E-68 for details.

vcsSpEncodeOn
This routine inserts a trailer section containing the ’protected
compiler directive into the output file. It also toggles the encryption
flag to false so that subsequent calls to vcsSpWriteString()
and vcsSpWriteChar() will have their data encrypted. See
"vcsSpEncodeOn" on page E-69 for details.

E-65

PLI Access Routines

vcsSpEncoding
This routine gets the current state of encoding. See
"vcsSpEncoding" on page E-71 for details.

vcsSpGetFilePtr
This routine just returns the value previously passed to the
vcsSpSetFilePtr() routine. See "vcsSpGetFilePtr" on page
E-72 for details.

vcsSpInitialize
Allocates a source protect object. See "vcsSpInitialize" on page
E-73 for details.

vcsSpOvaDecodeLine
Decrypts one line. See "vcsSpOvaDecodeLine" on page E-74 for
details.

vcsSpOvaDisable
Switches to regular encryption. See "vcsSpOvaDisable" on page
E-75 for details.

vcsSpOvaEnable
Enables the OpenVera assertions (OVA) encryption algorithm.
Tells VCS’s encrypter to use the OVA IP algorithm. See
"vcsSpOvaEnable" on page E-76 for details.

vcsSpSetDisplayMsgFlag
Sets the DisplayMsg flag. See "vcsSpSetDisplayMsgFlag" on
page E-78 for details.

vcsSpSetFilePtr
Specifies the output file stream. See "vcsSpSetFilePtr" on page
E-78 for details.

vcsSpSetLibLicenseCode
Sets the OEM license code. See "vcsSpSetLibLicenseCode" on
page E-79 for details.

E-66

PLI Access Routines

vcsSpSetPliProtectionFlag
Sets the PLI protection flag. See "vcsSpSetPliProtectionFlag" on
page E-80 for details.

vcsSpWriteChar
Writes one character to the protected file. See
"vcsSpWriteChar" on page E-81 for details.

vcsSpWriteString
Writes a character string to the protected file. See
"vcsSpWriteString" on page E-83 for details.

Example D-27 outlines the basic use of the source protection
routines.

Example D-27 Using the Source Protection Routines
#include <stdio.h>
#include "enclib.h"
void demo_routine()
{
 char *filename = "protected.vp";
 int write_error = 0;
 vcsSpStateID esp;
 FILE *fp;

 /* Initialization */

 if ((fp = fopen(filename, "w")) == NULL) {
 printf("Error: opening file %s\n", filename);
 exit(1);
 }

 if ((esp = vcsSpInitialize()) == NULL) {
 printf("Error: Initializing src protection routines.\n");
 printf(" Out Of Memory.\n");
 fclose(fp);
 exit(1);
 }

 vcsSpSetFilePtr(esp, fp); /* tell rtns where to write */

 /* Write output */

E-67

PLI Access Routines

 write_error += vcsSpWriteString(esp,
 "This text will *not* be encrypted.\n");

 write_error += vcsSpEncodeOn(esp);
 write_error += vcsSpWriteString(esp,
 "This text *will* be encrypted.");
 write_error += vcsSpWriteChar(esp, ’\n’);

 write_error += vcsSpEncodeOff(esp);
 write_error += vcsSpWriteString(esp,
 "This text will *not* be encrypted.\n");

 /* Clean up */

 write_error += fclose(fp);
 vcsSpClose(esp);

 if (write_error) {
 printf("Error while writing to ’%s’\n", filename);
 }
}

Caution

If you are encrypting SDF or Verilog code that contains include
directives, you must switch off encryption (vcsSpEncodeOff),
output the include directive and then switch encryption back on. This
ensures that when the parser begins reading the included file, it’s in
a known (non-decode) state.

If the file being included has proprietary data it can be encrypted
separately. (Don’t forget to change the ‘include compiler directive
to point to the new encrypted name.)

E-68

PLI Access Routines

vcsSpClose

Syntax
void vcsSpClose(vcsSpStateID esp)

Synopsis

This routine frees the memory allocated by vcsSpInitialize().
Call it when source encryption is finished on the specified stream.

Returns

No return value.

Example D-28 Example of vcsSpClose
vcsSpStateID esp = vcsSpInitialize();
...
vcsSpClose(esp);

vcsSpEncodeOff

Syntax
int vcsSpEncodeOff(vcsSpStateID esp)

Synopsis

This function performs two operations:

1. It inserts a trailer section that contains some closing information
used by the decryption algorithm into the output file. It also inserts
the `endprotected compiler directivein the trailer section.

2. It toggles the encryption flag to false so that subsequent calls to
vcsSpWriteString() and vcsSpWriteChar() will NOT
cause their data to be encrypted.

E-69

PLI Access Routines

Returns

Non-zero if there was an error writing to the output file, 0 if successful.

Example D-29 Example of vcsSpEncodeOff
vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
int write_error = 0; *
if (fp == NULL) exit(1);

vcsSpSetFilePtr(esp, fp);

if (vcsSpWriteString(esp, "This text will *not* be encrypted.

 ++write_error;

if (vcsSpEncodeOn(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text *will* be encrypted.

 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text will *not* be encrypted.

 ++write_error;

fclose(fp);
vcsSpClose(esp);

Caution

You must call vcsSpInitialize() and vcsSpSetFilePtr()
before calling this routine.

vcsSpEncodeOn

Syntax
int vcsSpEncodeOn(vcsSpStateID esp)

E-70

PLI Access Routines

Synopsis

This function performs two operations:

1. It inserts a header section which contains the ‘protected
compiler directive into the output file. It also inserts some initial
header information used by the decryption algorithm.

2. It toggles the encryption flag to true so that subsequent calls to
vcsSpWriteString() and vcsSpWriteChar() will have
their data encrypted.

Returns

Non-zero if there was an error writing to the output file, 0 if successful.

Example D-30 Example of vcsSpEncodeOn
vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
int write_error = 0;

if (fp == NULL) exit(1);

vcsSpSetFilePtr(esp, fp);

if (vcsSpWriteString(esp, "This text will *not* be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOn(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text *will* be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text will *not* be
encrypted.\n"))
 ++write_error;
fclose(fp);
vcsSpClose(esp);

E-71

PLI Access Routines

Caution

You must call vcsSpInitialize() and vcsSpSetFilePtr()
before calling this routine.

vcsSpEncoding

Syntax
int vcsSpEncoding(vcsSpStateID esp)

Synopsis

Calling vcsSpEncodeOn() and vcsSpEncodeOff() turns
encoding on and off. Use this function to get the current state of
encoding.

Returns

1 for on, 0 for off.

Example D-31 Example of vcsSpEncoding
vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");

if (fp == NULL) { printf("ERROR: file ..."); exit(1); }

vcsSpSetFilePtr(esp, fp);
...

if (! vcsSpEncoding(esp))
 vcsSpEncodeOn(esp)
...

if (vcsSpEncoding(esp))
 vcsSpEncodeOff(esp);

fclose(fp);
vcsSpClose(esp);

E-72

PLI Access Routines

vcsSpGetFilePtr

Syntax
FILE *vcsSpGetFilePtr(vcsSpStateID esp)

Synopsis

This routine just returns the value previously passed to the
vcsSpSetFilePtr() routine.

Returns

File pointer or NULL if not set.

Example D-32 Example of vcsSpGetFilePtr
vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
if (fp != NULL)
 vcsSpSetFilePtr(esp, fp);
else
 /* doh! */

...

if ((gfp = vcsSpGetFilePtr(esp)) != NULL) {
 /* Add comment before starting encryption */
 fprintf(gfp, "\n// TechStuff Version 2.2\n");
 vcsSpEncodeOn(esp);
}

Caution

Don't use non-vcsSp* routines (like fprintf) in conjunction with
vcsSp* routines, while encoding is enabled.

E-73

PLI Access Routines

vcsSpInitialize

Syntax
vcsSpStateID vcsSpInitialize(void)

Synopsis

This routine allocates a source protect object.

Returns a handle to a malloc’d object which must be passed to all
the other source protection routines.

This object stores the state of the encryption in progress. When the
encryption is complete, this object should be passed to
vcsSpClose() to free the allocated memory.

If you need to write to multiple streams at the same time (perhaps
you’re creating include or SDF files in parallel with model files), you
can make multiple calls to this routine and assign a different file
pointer to each handle returned.

Each call mallocs less than 100 bytes of memory.

Returns

The vcsSpStateID pointer or NULL if memory could not be
malloc’d.

Example D-33 Example of vcsSpStateID
vcsSpStateID esp = vcsSpInitialize();
if (esp == NULL) {
 fprintf(stderr, "out of memory\n");
 ...
}

E-74

PLI Access Routines

Caution

This routine must be called before any other source protection
routine.

A NULL return value means the call to malloc() failed. Your
program should test for this.

vcsSpOvaDecodeLine

Syntax
vcsSpStateID vcsSpOvaDecodeLine(vcsSpStateID esp, char
*line)

Synopsis

This routine decrypts one line.

Use this routine to decrypt one line of protected IP code such as OVA
code. Pass in a null vcsSpStateID handle with the first line of code
and a non-null handle with subsequent lines.

Returns

Returns NULL when the last line has been decrypted.

Example D-34 Example of vcsSpOvaDecodeLine
#include "enclib.h"

if (strcmp(linebuf, "‘protected_ip synopsys\n")==0) {
 /* start IP decryption */
 vcsSpStateID esp = NULL;
 while (fgets(linebuf, sizeof(linebuf), infile)) {
 /* linebuf contains encrypted source */
 esp = vcsSpOvaDecodeLine(esp, linebuf);
 if (linebuf[0]) {
 /* linebuf contains decrypted source */

E-75

PLI Access Routines

 ...
 }
 if (!esp) break; /* done */
 }
 /* next line should be ‘endprotected_ip */
 fgets(linebuf, sizeof(linebuf), infile);
 if (strcmp(linebuf, "‘endprotected_ip\n")!=0) {
 printf("warning - expected ‘endprotected_ip\n");
 }
}

vcsSpOvaDisable

Syntax
void vcsSpOvaDisable(vcsSpStateID esp)

Synopsis

This routine switches to regular encryption. It tells VCS’s encrypter
to use the standard algorithm. This is the default mode.

Returns

No return value.

Example D-35 Example of vcsSpOvaDisable
#include "enclib.h"
#include "encint.h"

int write_error = 0;
vcsSpStateID esp;

if ((esp = vcsSpInitialize()) printf("Out Of Memory");

vcsSpSetFilePtr(esp, fp); /* previously opened FILE* pointer
*/

/* Configure for OVA IP encryption */
vcsSpOvaEnable(esp, "synopsys");

E-76

PLI Access Routines

if (vcsSpWriteString(esp, "This text will NOT be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOn(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text WILL be encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text will NOT be
encrypted.\n"))
 ++write_error;
/* Switch back to regular encryption */
vcsSpOvaDisable(esp);

if (vcsSpEncodeOn(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text WILL be encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;

vcsSpClose(esp);

vcsSpOvaEnable

Syntax
void vcsSpOvaEnable(vcsSpStateID esp, char *vendor_id)

Synopsis

Enables the OpenVera assertions (OVA) encryption algorithm. Tells
VCS’s encrypter to use the OVA IP algorithm.

Returns

No return value.

E-77

PLI Access Routines

Example D-36 Example of vcsSpOvaEnable
#include "enclib.h"
#include "encint.h"

int write_error = 0;
vcsSpStateID esp;

if ((esp = vcsSpInitialize()) printf("Out Of Memory");

vcsSpSetFilePtr(esp, fp); /* previously opened FILE* pointer
*/

/* Configure for OVA IP encryption */
vcsSpOvaEnable(esp, "synopsys");

if (vcsSpWriteString(esp, "This text will NOT be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOn(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text WILL be encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text will NOT be
encrypted.\n"))
 ++write_error;
/* Switch back to regular encryption */
vcsSpOvaDisable(esp);

if (vcsSpEncodeOn(esp)) ++write_error;

if (vcsSpWriteString(esp, "This text WILL be encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;

vcsSpClose(esp);

E-78

PLI Access Routines

vcsSpSetDisplayMsgFlag

Syntax
void vcsSpSetDisplayMsgFlag(vcsSpStateID esp, int enable)

Synopsis

This routine sets the DisplayMsg flag. By default the VCS compiler
does not display decrypted source code in its error or warning
messages. Use this routine to enable this display.

Returns

No return value.

Example D-37 Example of vcsSpSetDisplayMsgFlag
vcsSpStateID esp = vcsSpInitialize();
vcsSpSetDisplayMsgFlag(esp, 0);

vcsSpSetFilePtr

Syntax
void vcsSpSetFilePtr(vcsSpStateID esp, FILE *fp)

Synopsis

This routine specifies the output file stream. Before using the
vcsSpWriteChar() or vcsSpWriteString() routines you must specify
the output file stream.

Returns

No return value.

E-79

PLI Access Routines

Example D-38 Example of vcsSpSetFilePtr
vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
if (fp != NULL)
 vcsSpSetFilePtr(esp, fp);
else
 /* abort */

vcsSpSetLibLicenseCode

Syntax
void vcsSpSetLibLicenseCode(vcsSpStateID esp, unsigned int
code)

Synopsis

This routine sets the OEM library license code that will be added to
each protected region started by vcsSpEncodeOn().

This code can be used to protect library models from unauthorized
use.

When the VCS parser decrypts the protected region, it verifies that
the end user has the specified license. If the license does not exist
or has expired, VCS exits.

Returns

No return value.

Example D-39 Example of vcsSpSetLibLicenseCode
unsigned int lic_code = MY_LICENSE_CODE;
vcsSpStateID esp = vcsSpInitialize();
 ...

/* The following text will be encrypted and licensed */
vcsSpSetLibLicenseCode(esp, code); /* set license code */

E-80

PLI Access Routines

vcsSpEncodeOn(esp); /* start protected region */
vcsSpWriteString(esp, "this text will be encrypted and
licensed");
vcsSpEncodeOff(esp); /* end protected region */

/* The following text will be encrypted but unlicensed */
vcsSpSetLibLicenseCode(esp, 0); /* clear license code */
vcsSpEncodeOn(esp); /* start protected region */
vcsSpWriteString(esp, "this text encrypted but not
licensed");
vcsSpEncodeOff(esp); /* end protected region */

Caution

The rules for mixing licensed and unlicensed code is determined by
your OEM licensing agreement with Synopsys.

The code segment in Example D-39 shows how to enable and disable
the addition of the license code to the protected regions. Normally
you would call this routine once, that is, after calling
vcsSpInitialize() and before the first call to
vcsSpEncodeOn().

vcsSpSetPliProtectionFlag

Syntax
void vcsSpSetPliProtectionFlag(vcsSpStateID esp, int
enable)

Synopsis

This routine sets the PLI protection flag. You can use it to disable the
normal PLI protection that is placed on encrypted modules. The
output files will still be encrypted, but CLI and PLI users will not be
prevented from accessing data in the modules.

E-81

PLI Access Routines

This routine only affects encrypted Verilog files. Encrypted SDF files,
for example, are not affected.

Returns

No return value.

Example D-40 Example of vcsSpSetPliProtectionFlag
vcsSpStateID esp = vcsSpInitialize();
vcsSpSetPliProtectionFlag(esp, 0); /* disable PLI protection
*/

Caution

Turning off PLI protection will allow users of your modules to access
object names, values, etc. In essence, the source code for your
module could be substantially reconstructed using the CLI commands
and ACC routines.

vcsSpWriteChar

Syntax
void vcsSpSetPliProtectionFlag(vcsSpStateID esp, int
enable)

Synopsis

This routine writes one character to the protected file.

If encoding is enabled (see "vcsSpEncodeOn" on page E-69) the
specified character is encrypted as it is written to the output file.

If encoding is disabled (see "vcsSpEncodeOff" on page E-68) the
specified character is written as-is to the output file (no encryption.)

E-82

PLI Access Routines

Returns

Non-zero if the file pointer has not been set (see "vcsSpSetFilePtr" on
page E-78) or if there was an error writing to the output file
(out-of-disk-space, etc.)

Returns 0 if the write was successful.

Example D-41 Example of vcsSpWriteChar
vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
int write_error = 0;

if (fp == NULL) exit(1);

vcsSpSetFilePtr(esp, fp);

if (vcsSpWriteChar(esp, ’a’)) /* This char will *not* be
encrypted.*/
 ++write_error;

if (vcsSpEncodeOn(esp))
 ++write_error;

if (vcsSpWriteChar(esp, ’b’)) /* This char *will* be
encrypted. */
 ++write_error;
if (vcsSpEncodeOff(esp))
 ++write_error;

fclose(fp);
vcsSpClose(esp);

Caution

vcsSpInitialize() and vcsSpSetFilePtr() must be called
prior to calling this routine.

E-83

PLI Access Routines

vcsSpWriteString

Syntax
int vcsSpWriteString(vcsSpStateID esp, char *s)

Synopsis

This routine writes a character string to the protected file.

If encoding is enabled (see "vcsSpEncodeOn" on page E-69) the
specified string is encrypted as it is written to the output file.

If encoding is disabled (see "vcsSpEncodeOff" on page E-68) the
specified string will be written as-is to the output file (no encryption.)

Returns

Non-zero if the file pointer has not been set (see "vcsSpSetFilePtr" on
page E-78) or if there was an error writing to the output file
(out-of-disk-space, etc.)

Returns 0 if the write was successful.

Example D-42 Example of vcsSpWriteString
vcsSpStateID esp = vcsSpInitialize();
FILE *fp = fopen("protected.file", "w");
int write_error = 0;

if (fp == NULL) exit(1);

vcsSpSetFilePtr(esp, fp);

if (vcsSpWriteString(esp, "This text will *not* be
encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOn(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text *will* be

E-84

PLI Access Routines

encrypted.\n"))
 ++write_error;

if (vcsSpEncodeOff(esp)) ++write_error;
if (vcsSpWriteString(esp, "This text will *not* be
encrypted.\n"))
 ++write_error;

fclose(fp);
vcsSpClose(esp);

Caution

vcsSpInitialize() and vcsSpSetFilePtr() must be called
prior to calling this routine.

Access Routine for Signal in a Generate Block

There is only one access routine for signals in generate blocks.

acc_object_of_type

Syntax
bool acc_object_of_type(accGenerated, sigHandle)

Synopsis

This routine returns true if the signal is in a generate block.

Returns

1 - If the signal is in a generate block.

0 - if the signal is not in a generate block.

E-85

PLI Access Routines

VCS API Routines

Typically VCS controls the PLI application. If you write your
application so that it controls VCS you need these API routines.

Vcsinit()

When VCS is run in slave mode, you can call this function to elaborate
the design and to initialize various data structures, scheduling
queues, etc. that VCS uses. After this routine executes, all the initial
time 0 events, such as the execution of initial blocks, are scheduled.

Call the vmc_main(int argc, char *argv) routine to pass
runtime flags to VCS before you call VcsInit().

VcsSimUntil()

This routine tells VCS to schedule a stop event at the specified
simulation time and execute all scheduled simulation events until it
executes the stop event. The syntax for this routine is as follows:

VcsSimUntil (unsigned int* t)

Argument t is for specifying the simulation time. It needs two words.
The first [0] is for simulation times from 0 to 232 -1, the second is for
simulation times that follow.

If any events are scheduled to occur after time t, their execution must
wait for another call to VcsSimUntil.

E-86

PLI Access Routines

If t is less than the current simulation time, VCS returns control to
the calling routine.

IN-1

Index

Symbols
-a filename 4-13, C-13
-ams_discipline B-56
-ams_iereport B-56
-as assembler B-50
-ASFLAGS B-50
-assert 20-21, 20-23, 23-36, B-31
-B B-62
-C B-50, B-53
-c B-51
-CC B-51
-cc B-51
-CFLAGS B-51
-cm 23-44
-cm_assert_cov 23-47
-cm_assert_cov_cover 23-47
-cm_assert_grade_instances 23-47
-cm_assert_grade_module 23-47
-cm_assert_hier 23-44
-cm_assert_map 23-48
-cm_assert_merge 23-48
-cm_assert_name 23-44, 23-45, 23-47
-cm_assert_report 23-48
-cm_fsmopt allowTemp B-26
-cm_fsmopt optimist B-27
-cm_fsmopt report2StateFsms B-27
-cm_fsmopt reportvalues B-27

-cm_fsmopt reportWait B-27
-cm_fsmopt reportXassign B-27
-cm_fsmresetfilter B-27
-cm_line contassign B-28
-cm_opfile B-28
-cm_scope B-29
-cpp B-52
-debug B-30
-debug_all B-30
-doc B-9
-e 20-45, 23-46
-e name_for_main 17-34, B-41
-E program runtime option C-22
-F filename B-38
-f filename 1-15, B-38
-file B-39
-gen_asm B-50
-gen_c B-51
-gen_obj B-62
-grw C-18
-gui B-30
-h B-9
-help B-9
-I D-19
-i 9-13, C-15
-i filename B-21, C-9
-ID B-49
-jnumber_of_CPUs B-8, B-52

IN-2

-k 9-13, C-10, C-15
-l C-15
-l filename 1-15, 1-19, 4-13, B-60, C-13
-ld linker B-50
-LDFLAGS B-50
-line 1-15, B-17
-lmc-hm B-61
-lmc-swift 16-16, B-45
-lmc-swift-template 16-4, B-45
-lname B-51
-load 17-33, B-41
-Mdelete B-7
-Mdirectory B-7
-Mfilename B-7
-Minclude B-7
-Mldcmd B-7
-Mloadlist B-8
-Mmakefile B-8
-Mmakeprogram B-8
-Mrelative_path B-8
-Msrclist B-9
-Mupdate B-6
-negdelay B-34, B-36
-noIncComp B-9
-ntb B-11
-ntb_opts B-12
-ntb_sfname B-14
-ntb_vipext B-14
-ntb_vl B-15
-o name B-62
-O number B-53
-O0 B-53
-ova_cov 20-19, 20-24, 23-40, 23-41, B-22,
C-6
-ova_cov_db 20-24, 20-46, 23-41, C-6
-ova_cov_events 20-46
-ova_cov_grade_instances 20-46
-ova_cov_grade_modules 20-46
-ova_cov_hier 20-19, 23-40, B-22
-ova_cov_map 20-46
-ova_cov_merge 20-47

-ova_cov_name 20-24, 23-41, C-6
-ova_cov_report 20-47
-ova_debug 20-19, 23-40, B-22
-ova_debug_vpd B-22
-ova_dir 20-20, 23-40
-ova_enable_diag 20-20, 23-40, B-22
-ova_file 20-20, 23-40, B-22
-ova_filter 20-22, 23-40, C-5
-ova_filter_past 20-20, 23-40, B-22
-ova_inline 20-21, B-23
-ova_max_fail 20-22, 23-40, C-5
-ova_max_success 20-22, 23-40, C-5
-ova_name C-4
-ova_quiet 20-21, 23-40, C-4
-ova_report 20-22, 23-40, C-4
-ova_simend_max_fail 20-23, 23-41, C-6
-ova_success 20-23, 23-41
-ova_verbose 20-22, 23-40, C-4
-ovac 20-19, B-22
-override_timescale B-58
-P pli.tab B-41
-parameters 3-13, B-57
-platform B-62
-PP B-30, D-19
-pvalue 3-13, B-56
-q B-46, C-14
-R 1-16, B-21
-s 1-16, B-21, C-22
-sv_pragma 23-42, B-11
-sysc B-58
-syslibs libs B-51
-u B-61
-ucli B-30, C-15
-V B-46, C-14
-v B-4
-vcd filename C-18
-vera 1-17, B-23
-vera_dbind B-23
-Vt B-47
-Xman 25-12, 25-15, B-54
-Xmangle B-54

IN-3

-Xnoman B-55
-Xnomangle B-55
-y 1-17, B-4
"A" specifier of abstract access 18-7
"C" specifier of direct access 18-7
$ token 23-5
$assert_monitor 23-64, D-25
$assert_monitor_off 23-64, D-26
$assert_monitor_on 23-64, D-26
$assertkill D-11
$assertoff D-11
$asserton D-11
$async$and$array D-36
$bitstoreal D-28
$countdrivers D-40
$countones 23-68
$deposit D-40
$disable_warnings D-33
$display D-28
$display statement 20-75
$dist_exponential D-38
$dist_normal D-38
$dist_poisson D-38
$dist_uniform D-38
$dumpall D-12
$dumpfile D-13
$dumpflush D-13
$dumplimit D-13
$dumpoff D-12
$dumpon D-13
$dumpports D-15
$dumpportsall D-17
$dumpportsflush D-17
$dumpportslimit D-18
$dumpportsoff D-16
$dumpportson D-16
$dumpvars 3-4, D-13
$enable_warnings D-33
$error D-11
$fatal D-11
$fclose D-29

$fdisplay D-29
$fell 23-10
$ferror D-29
$fflush D-14, D-29
$fflushall D-14
$fgetc D-29
$fgets D-30
$finish D-33
$fmonitor D-30
$fopen D-30
$fread D-30
$fscanf D-30
$fseek D-30
$fstobe D-30
$ftell D-30
$fwrite D-30
$getpattern D-40
$gr_waves D-14
$hold D-34
$info D-11
$isunknown 23-68
$itor D-28
$log D-27
$lsi_dumpports 2-34–2-39, D-15
$monitor D-28
$monitoroff D-29
$monitoron D-29
$nolog D-28
$onehot 23-68
$onehot0 23-68
$ova_current_time 20-76
$ova_global_time_unit 20-76
$ova_severity_action 20-76
$ova_start 20-78
$ova_start levels 20-76
$ova_start_time 20-76
$ova_stop 20-79
$ova_stop levels 20-76
$ovadumpoff 20-77
$ovadumpon 20-77
$past 23-22

IN-4

$period D-34
$printtimescale D-32
$q_add D-36
$q_exam D-37
$q_full D-37
$q_initialize D-37
$q_remove D-37
$random 2-33, D-38
$readmemb D-31
$readmemh D-31
$realtime D-37
$realtobits D-28
$recovery D-34
$recrem D-35
$removal D-35
$reset D-38
$reset_count D-39
$reset_value D-39
$restart D-41
$root 22-54
$rose 23-9
$rtoi D-28
$save D-41
$sdf_annotate D-39
$setup D-35
$setuphold D-36
$skew D-36
$sreadmemb D-31
$sreadmemh D-31
$stable 23-10
$stime D-37
$stop D-32
$strobe D-29
$sync$nor$plane D-36
$system D-27
$systemf D-27
$test$plusargs D-39
$time D-37
$timeformat D-32
$ungetc D-31
$value$plusargs 4-10

$vcdplusautoflushoff 6-6
$vcdplusautoflushon 6-6
$vcdplusdeltacycleoff 6-23
$vcdplusdeltacycleon 6-22
$vcdplusevent 6-24
$vcdplusflush 6-5
$vcdplusglitchoff 6-24
$vcdplusglitchon 6-23
$vcdplusmemoff 6-7
$vcdplusmemon 6-7
$vcdplusmemorydump 6-7
$vcdplusoff 6-4
$vcdplustraceoff 6-21
$vcdplustraceon 6-21
$warning D-11
$width D-36
$write D-29
$writememb D-32
$writememh D-32
%= 22-31
%CELL 17-15, 17-17

use of 13-13
%TASK 17-15
&= 22-31
**NC 11-8
*= 22-31
+abstract 18-82
+acc+level_number 17-22, B-19
+ad B-56
+allhdrs 18-82
+allmtm 13-38, B-32, B-35
+applylearn 17-25–17-29, B-20
+auto2protect 25-6, B-54
+auto3protect 25-6, B-54
+autoprotect 25-6, B-54
+charge_decay B-32
+cli+level_number B-17
+cliecho C-10
+cliedit B-18
+csdf+precomp+dir 13-8, B-35
+csdf+precomp+ext 13-8, B-35

IN-5

+csdf+precompile 13-7, B-35
+define+macro=value 1-15, B-61
+delay_mode_distributed 12-21, B-33
+delay_mode_path 12-21, B-32
+delay_mode_unit 12-22, B-32
+delay_mode_zero 12-22, B-32
+deleteprotected 25-11, B-54
+enable_solver_trace 21-40
+enable_solver_trace_on_failure 21-41
+error+n 21-30
+incdir 1-15, B-5
+libext B-5
+liborder B-5
+librescan B-5
+libverbose B-5, B-45
+lint B-46
+list 18-82
+maxdelays 13-38, 13-39, 16-16, B-33, B-35,
C-19
+memcbk B-60
+memopt B-58
+mindelays 13-38, 13-39, 16-16, B-33, B-35,
C-19
+multisource_int_delays 12-6, 13-13, B-33,
B-34
+nbaopt B-33
+neg_tchk 14-13, 14-20, B-43
+no_notifier 14-13, B-42, C-12
+no_pulse_msg C-14
+no_tchk_msg 14-13, B-43, C-12
+nocelldefinepli+0 B-48
+nocelldefinepli+1 B-48
+nocelldefinepli+2 B-48
+noerrorIOPCWM B-59
+nolibcell B-48
+nospecify 1-15, 14-13, B-42
+notimingcheck 1-16, 1-20, 4-12, 14-13,
14-14, B-42, C-12
+ntb_cache_dir 21-37, C-2
+ntb_debug_on_error 21-38, C-2
+ntb_enable_solver_trace 21-38, C-3

+ntb_enable_solver_trace_on_failure C-3
+ntb_enable_solver_trace_on_failure=value
21-38, C-3
+ntb_engable_solver_trace C-3
+ntb_exit_on_error 21-38, 21-39, C-3
+ntb_load 21-28, C-3
+ntb_random_seed 21-39, C-3
+ntb_random_seed=value 21-39
+ntb_solver_mode C-4
+ntb_solver_mode=value 21-40, C-4
+ntb_stop_on_error C-4
+NTC2 14-19, B-44
+old_ntc B-43
+oldsdf 13-5, B-36
+optconfigfile 3-35, 3-37, B-16
+overlap 14-23, B-44
+override_model_delays 16-16, C-23
+pathpulse B-42
+pli_unprotected 25-11, B-54
+plusarg_ignore B-39
+plusarg_save B-39
+plus-options C-23
+prof B-37
+protect file_suffix B-54
+pulse_e/number 12-8, 12-9, 12-12, 12-17,
12-18, B-40
+pulse_int_e 12-7, 12-8, 12-10, 12-12, B-40
+pulse_int_r 12-7, 12-8, 12-10, 12-12, B-40
+pulse_on_detect 12-18, B-40
+pulse_on_event 12-17, B-40
+pulse_r/number 12-8, 12-9, 12-12, 12-17,
12-18, B-40
+putprotect+target_dir 25-10, B-54
+race B-20
+race=all 11-13, B-21
+race_maxvecsize 11-5, B-21
+racecd B-21
+rad 3-35, B-16
+sdf_nocheck_celltype 13-16, B-36
+sdfprotect 25-9
+sdfprotect file_suffix B-54

IN-6

+sdfverbose C-14
+spl_read B-59
+systemverilogext B-15
+timopt 13-40
+transport_int_delays 12-7, 12-10, 12-12,
B-34
+transport_path_delays 12-7, 12-9, 12-12,
B-34
+typdelays 13-38, 13-39, 16-16, B-33, B-36,
C-20
+v2k 1-17, B-58
+vc 18-81, B-43
+vcdfile B-31
+vcs+boundscheck 3-20, B-59
+vcs+dumpoff+t+ht C-18
+vcs+dumpon+t+ht C-18
+vcs+finish 4-8, C-13
+vcs+flush+all C-21
+vcs+flush+dump C-21
+vcs+flush+fopen C-21
+vcs+flush+log C-21
+vcs+grwavesoff C-18
+vcs+ignorestop 4-12, C-23
+vcs+initmem B-16
+vcs+initreg B-16
+vcs+learn+pli 1-20, 17-25–17-29, C-22
+vcs+lic+vcsi B-49, C-21
+vcs+lic+wait B-49, C-21
+vcs+mipd+noalias C-23
+vcs+mipdexpand B-36
+vcs+nostdout C-15
+vcs+saif_libcell 15-2
+vcs+stop 4-8, C-13
+vcsi+lic+vcs B-49, C-21
+vcsi+lic+wait B-49
+vera_enable_checker_trace_on_failure
21-40
+vera_load C-10
+vera_mload C-10
+vera_solver_model 21-41
+vera_stop_on_error 21-40, C-4

+verilog1995ext B-15
+verilog2001ext B-15
+vissymbols B-37
+vpdbufsize 6-26
+vpddrivers 6-28
+vpdfile 6-26, B-31
+vpdfilesize 6-26
+vpdfileswitchsize B-31
+vpdignore 6-27
+vpdnocompress 6-28
+vpdnostrengths 6-29
+vpdports 6-28
+vpi B-41
+warn 2-34, B-47
/= 22-31
<<<= 22-31
<<= 22-31
-= 22-31
=+ 22-31
>>= 22-31
>>>= 22-31
^= 22-31
|= 22-31
‘celldefine D-2
‘default_nettype D-3
‘define D-3
‘delay_mode_distributed D-6
‘delay_mode_path D-5
‘delay_mode_unit D-6
‘delay_mode_zero D-6
‘else D-3
‘elseif D-3
‘endcelldefine D-2
‘endif D-4
‘endprotect D-7
‘endprotected D-8
‘endrace D-5
‘ifdef D-4
‘ifndef D-5
‘include D-8
‘line D-10

IN-7

‘noportcoerce 2-15, D-8
‘nounconnected_drive D-10
‘portcoerce D-8
‘protect D-8
‘protected D-8
‘race D-5
‘resetall D-3
‘timescale D-9
‘unconnected_drive D-10
‘undef D-5
‘uselib D-9
‘vcs_mipdexpand D-7
‘vcs_mipdnoexpand D-7

A
-a filename 4-13, C-13
"A" specifier of abstract access 18-7
+abstract 18-82
abstract access for C/C++ functions

access routines for 18-31–18-77
enabling with a compile-time option 18-82
using 18-29–18-77

+acc+level_number 17-22, B-19
ACC capabilities 17-27

cbk 17-13, 17-19
cbka 17-14
frc 17-14, 17-19
gate 17-14
mip 17-14
mipb 17-14
mp 17-14
prx 17-14
r 17-13, 17-18
rw 17-13, 17-18
s 17-14
specifying 17-11–17-20
tchk 17-14

ACC capabilities for SDF back annotation
13-10–13-13
access routines for abstract access of C/C++
functions 18-31–18-77
action blocks 23-28

action_block 20-75
+ad B-56
alias file 8-9
alias file, default 8-9
+allhdrs 18-82
+allmtm 13-38, B-32, B-35
allvariables 9-6
always_comb block 22-35
always_ff block 22-38
always_latch block 22-38
-ams_discipline B-56
-ams_iereport B-56
and operator 23-10
anding sequences 23-10
annotation

overhead 13-13
aop

advice
before/after/around 24-143

dominates 24-134
extends directive 24-130
placement element

after 24-138
around 24-138

+applylearn 17-25–17-29, B-20
arb 21-10
arb.v 21-10
args PLI Specificaction 17-9
array

output and inout argument type 18-22
arrays

indexing and slicing 22-16
-as assembler B-50
-ASFLAGS options B-50
assembly code generation

assembling by hand B-50
passing options to the assembler B-50
specifying B-50
specifying another assembler B-50

-assert 20-21, 20-23, 23-36, B-10, B-31, C-6
assert OVA directive 20-3
assert statements 23-23–23-24

IN-8

$assert_monitor 23-64, D-25
$assert_monitor_off 23-64, D-26
$assert_monitor_on 23-64, D-26
assertion classes 21-63
Assertion failure, displaying message 20-75
assertion files 20-4
assertion pragmas 20-60
assertions 20-4
assertions, monitoring 20-70
$assertkill D-11
$assertoff D-11
$asserton D-11
$async$and$array D-36
+auto2protect 25-6, B-54
+auto3protect 25-6, B-54
+autoprotect 25-6, B-54

B
-B B-62
behavioral drivers 22-20
benefits of OpenVera Assertions 20-2
bit

C/C++ function argument type 18-10
C/C++ function return type 18-9
input argument type 18-21
output and inout argument type 18-22
reg data type in two-state simulation 18-6

bit data type 22-2
$bitstoreal D-28
break 9-5

usage in VSG 24-126
break and continue

break 24-126
break, CLI command 9-7
building OVA post-processor 20-26
byte data type 22-2

C
-C B-50, B-53
-c 21-10, B-51

C code generating
halt before compiling the generated C code

B-53
passing options to the compiler B-51
specifying B-51
specifying another compiler B-51
suppressing optimization for faster

compilation B-53
C compiler, environment variable specifying
the A-3
"C" specifier of direct access 18-7
C/C++ functions

argument direction 18-8, 18-9
argument type 18-8, 18-10
calling 18-12–18-14
declaring 18-6–18-12
extern declaration 18-7
in a Verilog environment 18-5–18-6
return range 18-8
return type 18-7, 18-9
using abstract access 18-29–18-77

access routines for 18-31–18-77
using direct access 18-20–18-29

examples 18-22–18-27
call PLI specification 17-9
calling C/C++ functions in your Verilog code
18-12–18-14
call-stack traversal 9-9
case

usage in VSG 24-125
case statements 24-125
cbk ACC capability 17-13, 17-19
cbka ACC capability 17-14
-CC B-51
-cc B-51
%CELL

use of 13-13
‘celldefine D-2
-CFLAGS B-51
char data type 22-2
char*

direct access for C/C++ functions
formal parameter type 18-20

IN-9

char**
direct access for C/C++ functions

formal parameter type 18-20
+charge_decay B-32
check 21-32
check argument to -ntb_opts B-12
check PLI specification 17-9
class

methods of 24-63
accessing 24-63

properties of 24-62
accessing 24-63

CLI 9-13
summary 9-14

+cli+level_number B-17
CLI commands, OVAPP 20-31
CLI task invocation 20-76
cli_0, OVAPP CLI command 20-31
+cliecho C-10
+cliedit B-18
clock signals 13-40–13-44
clocking block with virtual interfaces 24-211,
24-212
-cm 23-44, B-23, C-9, C-10
-cm_assert_cov 23-47
-cm_assert_cov_cover 23-47
-cm_assert_dir C-9
-cm_assert_grade_instances 23-47
-cm_assert_grade_module 23-47
-cm_assert_hier 23-44, B-24
-cm_assert_map 23-48
-cm_assert_merge 23-48
-cm_assert_name 23-44, 23-45, 23-47
-cm_assert_report 23-48
-cm_cond B-24
-cm_constfile B-26
-cm_dir B-26, C-11
-cm_fsmcfg B-26
-cm_fsmopt B-26
-cm_fsmopt allowTmp B-26
-cm_fsmopt optimist B-27

-cm_fsmopt report2StateFsms B-27
-cm_fsmopt reportvalues B-27
-cm_fsmopt reportWait B-27
-cm_fsmopt reportXassign B-27
-cm_fsmresetfilter B-27
-cm_glitch C-11
-cm_hier B-27
-cm_ignorepragmas B-28
-cm_libs B-28
-cm_line contassign B-28
-cm_log C-11
-cm_name B-28, C-12
-cm_noconst B-28
-cm_opfile B-28
-cm_pp B-28
-cm_scope B-29
-cm_tgl B-30, B-60
-cm_tglfile B-29, C-12
cnt.txp 20-5
command alias file 8-9
command line interface 9-13
commands, list of 8-4
compiler directives D-2–D-10
compiler options

-f
syntax 21-30

compile-time options B-1–B-62
+error 21-30
-ntb 21-29
-ntb_cmp 21-26, 21-30
-ntb_define macro 21-30
-ntb_noshell 21-27
-ntb_opts 21-32
-ntb_sfname 21-26
-ntb_shell_only 21-27
-ntb_sname 21-26
-ntb_spath 21-27, 21-31
-ntb_vipext 21-31
-ntb_vl 21-28, 21-32

compiling
incremental compilation 3-3–3-7

shared 3-5–3-7

IN-10

triggering 3-4
verbose messages B-46

compiling, design, design, testbench and
Verilog module 21-27
compiling, design, shell, and Verilog module
21-27
concurrent assertions 23-1
consecutive repetition 23-6
context-dependent pragmas 20-60
continue

syntax 24-127
control constructs 21-4
control tasks, OVA debug 20-77
$countdrivers D-40
cover OVA directive 20-3
cover statements 23-25–23-28
coverag_group

embedded
syntax for defining 21-47

syntax for defining 21-47
Coverage 20-42
coverage

closed-loop analysis 21-46
coverage_load() 21-58, 24-243

single coverage_group 21-58, 24-243
cumulative 24-226
get_coverage() 21-51
get_inst_coverage() 21-51
instance-based 24-227
loading coverage data

coverage_instance() 21-59, 24-244
loading embedded coverage data

coverage_instance() 21-59, 24-244
open-loop analysis 21-46

coverage expressions 20-3
coverage, testing 20-6
coverage_group 21-46

predefined functions 24-230
inst_query() 24-230, 24-232, 24-233

coverage_group_attributes
at_least 21-49

coverage_instance() 21-59, 24-244
coverage_load 21-58, 24-243

-cpp B-52
+csdf+precomp+dir 13-8, B-35
+csdf+precomp+ext 13-8, B-35
+csdf+precompile 13-7, B-35

D
daidir directory 3-7
.daidir extension 3-7
data PLI specification 17-9
Data Type Mapping File

VCS/SystemC cosimulation interface 19-27
-debug B-30
Debug Control Tasks,OVA 20-77
-debug_all B-30
debugging

capability 9-13
debugging with CLI 9-13
debugging, OVA 20-37
declaring C/C++ functions in your Verilog code
18-6–18-12
default alias file 8-9
‘default_nettype D-3
‘define D-3
+define+macro=value 1-15, B-61
delay values

back annotating to your design D-39
+delay_mode_distributed 12-21, B-33
‘delay_mode_distributed D-6
+delay_mode_path 12-21, B-32
‘delay_mode_path D-5
+delay_mode_unit 12-22, B-32
‘delay_mode_unit D-6
+delay_mode_zero 12-22, B-32
‘delay_mode_zero D-6
delete, CLI command 9-8
+deleteprotected 25-11, B-54
Delta Cycle Information

Capturing delta cycle information 6-22
dep_check 21-33, 21-36
dep_check argument to -ntb_opts B-12

IN-11

$deposit D-40
design, compiling 21-27
DEVICE SDF construct 13-28
direct access for C/C++ functions

examples 18-22–18-27
formal parameters

types 18-20
rules for parameter types 18-20–18-22
using 18-20–18-81

Direct Access Interface directory 3-7
direction of a C/C++ function argument 18-9
directive, assert 20-3
directive, cover 20-3
directory

.daidir 3-7
$disable_warnings D-33
Disk space

temporary 3-24
$display statement 20-75
$display D-28
DISPLAY_VCS_HOME A-3
$dist_exponential D-38
$dist_normal D-38
$dist_poisson D-38
$dist_uniform D-38
DKI communication 19-6
do while statement 22-34
-doc B-9
double*

direct access for C/C++ functions
formal parameter type 18-20

downstack, CLI command 9-10
dump files 20-35
$dumpall D-12
$dumpfile D-13
$dumpflush D-13
dumping signals automatically 20-37
$dumplimit D-13
$dumpoff D-12
$dumpon D-13
$dumpports D-15
$dumpportsall D-17

$dumpportsflush D-17
$dumpportslimit D-18
$dumpportsoff D-16
$dumpportson D-16
$dumpvars 3-4, D-13
DVE

starting 5-7

E
-e 20-45, 23-46
-e name_for_main 17-34, B-41
-E program C-22
‘else D-3
‘elseif D-3
$enable_warnings D-33
enabling

only where used in the last simulation 17-27
‘endcelldefine D-2
ended method 23-13
‘endif D-4
‘endprotect D-7
‘endprotected D-8
‘endrace D-5
enum construct 22-5
enumerations 22-5
Environment variables 1-8–1-9, A-2–A-4
environment variables

VCS_CC 18-85
VCS_CPP 18-85
VCS_LD 18-85

$error D-11
error messaages, OVA linter option 20-9
error messaages, OVA MR linter option 20-16
event 9-7
Event Access 9-11
Event coverage, testing 20-6
event expression/structure with virtual
interfaces 24-213
example

temporal assertion file 20-4, 20-5

IN-12

extends directive
advice 24-131
introduction 24-131

extern declaration 18-7
extern declarations 18-27

F
-f

syntax 21-30
-F filename B-38
-f filename 1-15, B-38
facilities, test 20-2
$fatal D-11
$fclose D-29
$fdisplay D-29
$ferror D-29
$fflush D-14, D-29
$fflushall D-14
$fgetc D-29
$fgets D-30
-file B-39
file, report 20-41
Files

tokens.v B-55
vcs.key 9-13

files, temporal assertion 20-4
$finish D-33
flow 20-7
flow control 21-3
flow of OVAPP 20-25
$fmonitor D-30
$fopen D-30
four state Verilog data

stored in vec32 18-15
frc ACC capability 17-14, 17-19
$fread D-30
$fscanf D-30
$fseek D-30
$fstobe D-30
$ftell D-30

full_case 20-59, 20-60
Functional Coverage 20-42
functions

void 22-44
functions and system tasks, OVA 20-68
functions in SystemVerilog 22-41
$fwrite D-30

G
gate ACC capability 17-14
-gen_asm B-50
-gen_c B-51
-gen_obj B-62
get_coverage() 21-51
$getpattern D-40
gmake 1-9, A-2
$gr_waves D-14
-grw C-18
-gui B-30

H
-h B-9
hard 24-92
-help B-9
help 9-2
$hold D-34

I
-I D-19
-i 9-13, C-15
-i filename B-21, C-9
-ID B-49
‘ifdef D-4
if-else

production definition 24-123
usage in VSG 24-123

‘ifndef D-5
-ignore 22-70, B-10

IN-13

Ignoring Calls and License Checking 6-27,
C-17
implications 23-19
implicit .* connections 22-58
implicit .name connections 22-58
+incdir 1-15, B-5
‘include D-8
Incremental Compilation 3-5–3-7, B-6–B-9
$info D-11
info, CLI command 9-2
-ignore 22-70, B-10
inlining

context-dependent pragmas 20-60
inout

C/C++ function argument direction 18-9
inout ports 22-20
input

C/C++ function argument direction 18-9
input ports

valid data types 22-56
inst_query() 24-230, 24-232, 24-233
int

C/C++ function argument type 18-10
C/C++ function return type 18-9
direct access for C/C++ functions

formal parameter type 18-20
input argument type 18-21
output and inout argument type 18-22

int data type 22-2
int*

direct access for C/C++ functions
formal parameter type 18-20

Interactive Debugging
example 9-11

interface, command line 9-13
Interfaces 22-62–22-69
interfaces

functions in 22-68
methods 22-68
modports 22-66

intrinsic timing delay backannotation 13-28
introducing OpenVera Assertions 20-2

invoking DVE 5-7
IOPATH entries in SDF files 13-13
$itor D-28

J
-jnumber_of_CPUs B-8, B-52

K
-k 9-13, C-10, C-15
keywords

after 24-138
around 24-138
before 24-138
extends 24-130
hard 24-92
hide 24-158, 24-160
local 24-62
new 24-41
program 21-7
protected 24-62
randseq 24-118
static 24-45
this 24-64
virtuals 24-157

L
-l C-15
-l filename 1-15, 1-19, 4-13, B-60, C-13
-ld linker B-50
-LDFLAGS options B-50
+libext B-5
+liborder B-5
+librescan B-5
+libverbose B-5, B-45
-line 1-15, B-17
‘line D-10
line, CLI command 9-3
linking B-51

linking a specified library to the executable
B-51

IN-14

linking by hand B-51
passing options to the linker B-50
specifying another linker B-50

+lint B-46
Lint, using 3-10–3-12
linter rules, OVA code checking 20-9
linter rules, OVA MR code checking 20-16
+list 18-82
list, CLI command 9-3
-lmc-hm B-61
-lmc-swift 16-16, B-45
-lmc-swift-template 16-4, B-45
-lname B-51
-load 17-33, B-41
loading the testbench 21-28
loads 9-5
local 24-62, 24-63
$log D-27
log file, environment variable specifying the
A-4
log files

specifying compilation log file 1-15, B-60
specifying with a system task D-27

logic data type 22-2
longint data type 22-2
$lsi_dumpports 2-34–2-39, D-15

M
mailboxes, CLI command 9-7
Main Window

example 5-3
make 1-9, A-2
make program B-8
-Marchive B-6
maxargs PLI specification 17-10
+maxdelays 13-38, 13-39, 16-16, B-33, B-35,
C-19
MDAs, system tasks and functions 6-7
-Mdelete B-7
-Mdir 3-5

-Mdirectory B-7
+memcbk B-60
+memopt B-58
memories

sparse memory models 2-25
memory size limits 2-25
Menu Bar

using 5-7
message, assertion failure 20-75
method

local 24-63
public 24-63

methods 22-68
-Mfilename B-7
minargs PLI specification 17-9
-Minclude B-7
+mindelays 13-38, 13-39, 16-16, B-33, B-35,
C-19
mip ACC capability 17-14
mipb ACC capability 17-14
misc PLI specification 17-9
-Mldcmd B-7
-Mlib 3-5, B-7, B-9
-Mloadlist B-8
-Mmakefile B-8
-Mmakeprogram B-8
modports 22-66
modports in vritual interfaces 24-208, 24-209
module path delays

disabling for an instance 13-39
suppressing 1-15, B-42

in specific module instances 13-40
$monitor D-28
Monitoring assertions 20-70
$monitoroff D-29
$monitoron D-29
mp ACC capability 17-14
-Mrelative_path B-8
-Msrclist B-9
multi-dimensional arrays 22-15
multiple OVAPP post-processing sessions
20-32

IN-15

+multisource_int_delays 12-6, 13-13, B-33,
B-34
-Mupdate B-6

N
native code generating

specifying B-62
Native Testbench

in VCS 9-13
+nbaopt B-33
-nbt_v1 21-32
**NC 11-8
+neg_tchk 14-13, 14-20, B-43
-negdelay B-34, B-36
new() 24-62

user-defined, syntax 24-43
next, CLI command 9-3
no_case 20-60
no_file_by_file_pp 21-10, 21-33
no_file_by_file_pp argument to -ntb_opts B-12
+no_identifier C-12
+no_notifier 14-13, B-42
+no_pulse_msg C-14
+no_tchk_msg 14-13, B-43, C-12
+nocelldefinepli+1 B-48
nocelldefinepli PLI specification 17-10
+nocelldefinepli+0 B-48
+nocelldefinepli+2 B-48
-noIncrComp B-9
+nolibcell B-48
$nolog D-28
‘noportcoerce 2-15, D-8
+nospecify 1-15, 14-13, B-42
-notice B-46
+notimingcheck 1-16, 1-20, 4-12, 14-13,
14-14, B-42, C-12
‘nounconnected_drive D-10
-ntb 21-29, B-11
ntb 21-16
+ntb_cache_dir C-2

-ntb_cmp 21-26, 21-30, B-11
+ntb_debug_on_error C-2
-ntb_define B-11
ntb_define 21-16
-ntb_define macro 21-30
+ntb_enable_solver_trace_on_failure C-3
+ntb_engable_solver_trace C-3
+ntb_exit_on_error C-3
-ntb_filext 21-31, B-12
-ntb_incdir 21-31, B-12
ntb_incdir 21-16
+ntb_load C-3
-ntb_noshell 21-27, B-12
-ntb_opts 21-32, B-12

check 21-32
dep_check 21-33, 21-36
no_file_by_file_pp 21-33
print_deps 21-34, B-13
rvm 21-34
tb_timescale 21-34
use_sigprop 21-34
vera_portname 21-35

-ntb_opts no_file_by_file_pp 21-44
-ntb_opts rvm 21-98
ntb_opts rvm 21-98
+ntb_random_seed C-3
-ntb_sfname 21-26, B-14
-ntb_shell_only 21-27, B-14
-ntb_sname 21-26, B-14
+ntb_solver_mode C-4
-ntb_spath 21-27, 21-31, B-14
+ntb_stop_on_error C-4
-ntb_vipext 21-31, 21-45, B-14
-ntb_vl 21-28, B-15
+NTC2 14-19, B-44
null comparison in virtual interfaces 24-213

O
-o name B-62
-O number B-53
-O0 B-53

IN-16

object data members 9-9
+old_ntc B-43
+oldsdf 13-5, B-36
OpenVera Assertions

benefits 20-2
flow 20-7
introduction 20-2
overview 20-4

operating system commands, executing D-27
OpernVera assertion classes 21-63
+optconfigfile 3-35, 3-37, B-16
or operator 23-11
oring sequences 23-11
output

C/C++ function argument direction 18-9
output ports

valid data types 22-56
OVA cover directive 20-3
OVA debug control tasks 20-77
OVA linter 20-8
OVA post-processing 20-24
OVA post-processor

building 20-26
running 20-26

OVA system tasks and functions 20-68
OVA user action function 20-82
OVA, assert directive 20-3
OVA, see OpenVera Assertions
OVA, Verilog parameters in 20-63
-ova_cov 20-19, 20-24, 23-40, 23-41, B-22,
C-6
-ova_cov_cover 20-46
-ova_cov_db 20-24, 20-46, 23-41, C-6
-ova_cov_events 20-19, 20-46, 23-40, B-22
-ova_cov_grade_instances 20-46
-ova_cov_grade_modules 20-46
-ova_cov_hier 20-19, 23-40, B-22
-ova_cov_map 20-46
-ova_cov_merge 20-47
-ova_cov_name 20-24, 23-41, C-6
-ova_cov_report 20-47
$ova_current_time 20-76

-ova_debug 20-19, 23-40, B-22
-ova_debug_vpd B-22
-ova_dir 20-20, 23-40
-ova_enable_diag 20-20, 23-40, B-22
-ova_file 20-20, 23-40, B-22
-ova_filter 20-22, 23-40, C-5
-ova_filter_past 20-20, 23-40, B-22
$ova_global_time_unit 20-76
-ova_inline 20-21, B-23
-ova_lint 20-8, B-23
-ova_lint_magellan 20-16, B-23
-ova_max_fail 20-22, 23-40, C-5
-ova_max_success 20-22, 23-40, C-5
-ova_name C-4
-ova_quiet 20-21, 23-40, C-4
-ova_report 20-22, 23-40, C-4
$ova_severity_action 20-76
-ova_simend_max_fail 20-23, 23-41, C-6
$ova_start 20-78
$ova_start levels 20-76
$ova_start_time 20-76
$ova_stop 20-79
$ova_stop levels 20-76
-ova_success 20-23, 23-41, C-6
ova_trace_off assertion_hierarchical_name,
OVAPP CLI command 20-31
ova_trace_off instance_hierarchical_name
assertion_name time time, OVAPP CLI
command 20-31
ova_trace_on assertion_hierarchical_name,
OVAPP CLI command 20-32
ova_trace_on instance_hierarchical_name
assertion_name time, OVAPP CLI command
20-31
-ova_verbose 20-22, 23-40, C-4
-ovac 20-19, B-22
$ovadumpoff 20-77
$ovadumpon 20-77
OVAPP CLI commands 20-31
OVAPP Flow 20-25
+overlap 14-23, B-44
+override_model_delays 16-16, C-23

IN-17

-override_timescale B-58

P
-P pli.tab 17-20, B-41
packed arrays 22-14
packed keyword 22-11
packed structure 22-11
parallel compilation B-8, B-52
parallel_case 20-60
parameter expansion, Verilog with OVA 20-64
-parameters 3-13, B-57
path 23-47
+pathpulse B-42
PATHPULSE$ specparam, enabling B-42
$period D-34
persistent PLI specification 17-10
placement element

after 24-138
around 24-138

-platform B-62
PLI specifications

args 17-9
call 17-9
check 17-9
data 17-9
maxargs 17-10
minargs 17-9
misc 17-9
nocelldefinepli 17-10
persistent 17-10
size 17-9

PLI table file 17-6–17-21, B-37
+pli_unprotected 25-11, B-54
pli.tab file 17-6–17-21
+plusarg_ignore B-39
+plusarg_save B-39
plusargs, checking for on the simv command
line D-39
+plus-options C-23
pointer

C/C++ function argument type 18-10

C/C++ function return type 18-9
input argument type 18-21
output and inout argument type 18-22

port coercion 2-14
Port Mapping File

VCS/SystemC cosimulation interface 19-26
‘portcoerce D-8
post_randomize() 24-100
post-processing OVA 20-24
post-processing sessions, multiple OVAPP
20-32
-PP B-30, D-19
pp_fastforward time, OVAPP CLI command
20-31
pp_rewind time, OVAPP CLI command 20-31
pragmas 20-60

for SystemVerilog assertions 23-42
pre_randomize() 24-100
print CLI command 9-3
print this, CLI command 9-9
print variable, CLI command 9-9
print_deps 21-34
print_deps argument to -ntb_opts B-13
printing values 9-9
$printtimescale D-32
priority case statements 22-34
priority if statements 22-32
procedure_prototype

example 24-155, 24-156
production definitions 24-119

production items 24-119
weights 24-119

production weights 24-122
+prof B-37
properties 23-17–23-22

formal arguments 23-18
implications 23-19
inverting 23-21
past value 23-22

+protect file_suffix B-54
‘protect D-8
‘protected D-8

IN-18

prx ACC capability 17-14
public 24-63
+pulse_e/number 12-8, 12-9, 12-12, 12-17,
12-18, B-40
+pulse_int_e 12-7, 12-8, 12-10, 12-12, B-40
+pulse_int_r 12-7, 12-8, 12-10, 12-12, B-40
+pulse_on_detect 12-18, B-40
+pulse_on_event 12-17, B-40
+pulse_r/number 12-8, 12-9, 12-12, 12-17,
12-18, B-40
pulses

filtering out narrow pulses B-40
and flag as error B-40

+putprotect+target_dir 25-10, B-54
-pvalue 3-13, B-56

Q
-q B-46, C-14
$q_add D-36
$q_exam D-37
$q_full D-37
$q_initialize D-37
$q_remove D-37

R
-R 1-16, B-21
r ACC capability 17-13, 17-18
+race B-20
‘race D-5
race conditions

avoiding 2-2–2-7
continuous assignment evaluations 2-5
in counting events 2-6
in flip-flops 2-4
setting a value twice at the same time 2-3
time zero 2-7
using and setting a value at the same time

2-2
+race=all 11-13, B-21
+race_maxvecsize 11-5, B-21

+racecd B-21
+rad 3-35, B-16
$random 2-33, D-38
random() 24-126
randomize() 24-100
randomize() with 24-108
randseq 24-118, 24-127

syntax to define block 24-118
$readmemb D-31
$readmemh D-31
real

C/C++ function argument type 18-10
input argument type 18-21
output and inout argument type 18-22

$realtime D-37
$realtobits D-28
recommendation messages, OVA linter option
20-9
recommendation messages, OVA MR linter
option 20-16
$recovery D-34
$recrem D-35
Reference Verification Methodology, using
21-98
reg

C/C++ function argument type 18-10
C/C++ function return type 18-9
input argument type 18-21
output and inout argument type 18-22

repeat
usage in VSG 24-126

repeat loops 24-126
random() 24-126

repetition
consecutive 23-6

report file 20-41
$reset D-38
$reset_count D-39
$reset_value D-39
‘resetall D-3
resetting

keeping track of the number of resets D-39

IN-19

passing a value from before to after a reset
D-39

resetting VCS to simulation time 0 D-38
$restart D-41
results 20-41, 20-42
return range of a C/C++ function 18-8
return type of a C/C++ function 18-7, 18-9
reverse()

example 24-165, 24-166, 24-168, 24-169,
24-170, 24-171, 24-172, 24-173, 24-174,
24-175, 24-176

syntax 24-165, 24-166, 24-167, 24-168,
24-169, 24-170, 24-171, 24-172, 24-173,
24-174, 24-175, 24-176

$rtoi D-28
rules, OVA linter option 20-9, 20-16
running OVA post-processor 20-26
runtime libraries, environment variable
specifying the A-4
runtime option

+ntb_load 21-28
runtime options

+ntb_cache_dir 21-37
+ntb_debug_on_error 21-38
+ntb_enable_solver_trace_on_failure 21-38
+ntb_engable_solver_trace 21-38
+ntb_exit_on_error 21-39
+ntb_load 21-39
+ntb_random_seed 21-39
+ntb_solver_mode 21-40
+ntb_stop_on_error 21-40
enable_solver_trace 21-40
enable_solver_trace_on_failure 21-41
vera_enable_checker_trace 21-40
vera_enable_checker_trace_on_failure

21-40
vera_solver_mode 21-41

rvm 21-34, 21-98
rw ACC capability 17-13, 17-18

S
-s 1-16, B-21, C-22
s ACC capability 17-14

$save D-41
scalar

direct access for C/C++ functions
formal parameter type 18-20

scalar*
direct access for C/C++ functions

formal parameter type 18-20
scopes 9-5
$sdf_annotate D-39
+sdf_nocheck_celltype 13-16, B-36
SDFPOLICY setup variable 13-32
+sdfprotect 25-9
+sdfprotect file_suffix B-54
+sdfverbose C-14
semaphores, CLI command 9-7
sequences 23-3–23-14

anding 23-10
conditions for 23-12
end point 23-13
formal arguments 23-5
oring 23-11
repetition 23-6
specifying a clock 23-9
specifying a range of clock ticks 23-5
unconditionally extending 23-6

sequential devices
inferring 2-18–2-21, 13-40–13-44

set variable, CLI command 9-9
$setup D-35
$setuphold D-36
shell, compiling, Verilog module, compiling
21-27
shortint data type 22-2
show break, CLI command 9-8
show thread, CLI command 9-10
show, CLI command 9-4, 9-6
signals, dumping automatically 20-37
simulation state

saving D-41
simulation time

setting
example 5-9

simulator graphical user interface 4-2

IN-20

simv executable file 1-13
size PLI specification 17-9
$skew D-36
slicing arrays 22-16
SmartQ

reverse() 24-165, 24-166
solve-before

hard 24-92
Source Pane

Toolbar icon 5-5, 5-6
sparse memory models 2-25
specify blocks

disabling for an instance 13-39
suppressing 1-15, B-42

in specific module instances 13-40
specifying libraries on the link line B-51
$sreadmemb D-31
$sreadmemh D-31
stack, CLI command 9-9
starting DVE 5-7
static 24-45
step, CLI command 9-3
$stimen D-37
$stop D-32
stream generation

production definitions 24-118
stream generator

randseq 24-118
string

C/C++ function argument type 18-10
C/C++ function return type 18-9
input argument type 18-21
output and inout argument type 18-22

$strobe D-29
struct construct 22-10
structural drivers 22-20
structures 22-10
suspend_thread 21-4
-sv_pragma 23-42, B-11
-sverilog 22-69, B-9
SWIFT SmartModels

generating a template B-45

$sync$nor$plane D-36
-sysc 19-14, B-58
syscan utility 19-8–19-10
-syslib libs B-51
$system D-27
system tasks D-10–D-42

IEEE standard system tasks not
implemented D-42

System tasks and functions, OVA 20-68
SystemC

cosimulating with Verilog 19-1
$systemf D-27
SystemVerilog assertions 23-1–23-35
SystemVerilog functions 22-41
SystemVerilog tasks 22-40
+systemverilogext B-15

T
-t 21-10
task invocation from CLI 20-76
tasks in SystemVerilog 22-40
tb_timescale 21-34
tb_timescale argument to -ntb_opts B-13
tbreak CLI command 9-8
tchk ACC capability 17-14
temporal assertion files 20-4
temporal assertions 20-4
terminate, CLI command 9-10
test facilities 20-2
$test$plusargs D-39
testbench, compiling 21-27
testbench, loading 21-28
testing event coverage 20-6
this 24-64
thread, CLI command 9-7, 9-10
Threads 9-10
throughout operator 23-12
$time D-37
time

simulation

IN-21

setting 5-9
$timeformat D-32
-timescale B-57
‘timescale D-9
timing check system tasks

disabling
in specific module instances 13-40

timing check system tasks, disabling 1-16,
B-42
timing checks

disabling for an instance 13-39
Timopt

the timing optimizer 13-40–13-44
+timopt 13-40
TMPDIR A-3
tokens.v file 23-71, B-55
Toolbar

using 5-7
+transport_int_delays 12-7, 12-10, 12-12,
B-34
+transport_path_delays 12-7, 12-9, 12-12,
B-34
trigger, CLI command 9-11
+typdelays 13-38, 13-39, 16-16, B-33, B-36,
C-20
typedef construct 22-5, 22-11

U
U

direct access for C/C++ functions
formal parameter type 18-20

-u B-61
U*

direct access for C/C++ functions
formal parameter type 18-20

UB*
direct access for C/C++ functions

formal parameter type 18-20
UCLI 8-1
-ucli B-30, C-15
UCLI commands, list 8-4

unaccelerated
definitions and declarations 2-16–2-17
structural instance declarations 2-17

‘unconnected_drive D-10
‘undef D-5
$ungetc D-31
unions 22-10
unique case statements 22-33
Unique Events

$vcdplusevent 6-24
$vcdplusglitchoff 6-24
$vcdplusglitchon 6-23

unique if statements 22-32
uniquifying identifier codes in VCD files 7-3
unpacked arrays 22-14
unpacked structure 22-11
up, CLI command 9-4
upper case characters, changing all identifiers
to B-61
upstack, CLI command 9-10
use_sigprop 21-34, B-13
use_sigprop argument to -ntb_opts B-13
-use_vpiobj 17-32, B-41
‘uselib D-9
User Action Function, OVA 20-82
user defined data types 22-5
utility, vcsplit 7-26

V
-V B-46, C-14
-v B-4
+v2k 1-17, B-58
$value$plusargs 4-10
variables 9-5

writing to 22-19
+vc 18-81, B-43
vc_2stVectorRef() 18-51
vc_4stVectorRef() 18-50
vc_argInfo() 18-74
vc_arraySize() 18-40

IN-22

vc_FillWithScalar() 18-72
vc_get2stMemoryVector() 18-67
vc_get2stVector() 18-55
vc_get4stMemoryVector() 18-64
vc_get4stVector() 18-54
vc_getInteger() 18-49
vc_getMemoryInteger() 18-62
vc_getMemoryScalar() 18-61
vc_getPointer() 18-47
vc_getReal() 18-45
vc_getScalar() 18-40
vc_handle

definition 18-29
using 18-30–18-31

vc_hdrs.h file 18-27–18-28
vc_Index() 18-75
vc_Index2() 18-76
vc_Index3() 18-76
vc_is2state() 18-36
vc_is2stVector() 18-38
vc_is4state() 18-35
vc_is4stVector() 18-37
vc_isMemory() 18-34
vc_isScalar() 18-32
vc_isVector() 18-33, 18-77
vc_mdaSize() 18-76
vc_MemoryElemRef) 18-58
vc_MemoryRef() 18-56
vc_MemoryString() 18-69
vc_MemoryStringF() 18-70
vc_put2stMemoryVector() 18-67
vc_put2stVector() 18-55
vc_put4stMemoryVector() 18-66
vc_put4stVector() 18-54
vc_putInteger() 18-49
vc_putMemoryInteger() 18-64
vc_putMemoryScalar() 18-62
vc_putMemoryValue() 18-68
vc_putMemoryValueF() 18-68
vc_putPointer() 18-47
vc_putReal() 18-44

vc_putScalar() 18-40
vc_putValue() 18-45
vc_putValueF() 18-46
vc_StringToVector() 18-48
vc_toChar() 18-40
vc_toInteger() 18-41
vc_toString() 18-42
vc_toStringF() 18-43
vc_VectorToString() 18-49
vc_width() 18-39
vcat utility 7-12
-vcd filename C-18
VCD+ 6-2

Advantages 6-2
Capturing data 6-3
Command line options

Buffer size 6-26
Bypass data compression 6-28
Control maximum file size 6-26
Do not store strength information 6-29
Ignore $vcdplus calls in code 6-27
Set output file name 6-26
Store driver information 6-28
Store port information 6-28

Managing simulation 6-29
System Tasks

$vcdplusautoflushoff 6-6
$vcdplusautoflushon 6-6
$vcdplusdeltacycleoff 6-23
$vcdplusdeltacycleon 6-22
$vcdplusevent 6-24
$vcdplusflush 6-5
$vcdplusglitchoff 6-24
$vcdplusglitchon 6-23
$vcdplusmemoff 6-7
$vcdplusmemon 6-7
$vcdplusmemorydump 6-7
$vcdplusoff 6-4
$vcdpluson

-vcd2vpd B-31
+vcdfile B-31
vcdiff utility 7-5

syntax 7-6

IN-23

vcdpost utility 7-2
syntax 7-4

VCS
predefined text macro D-4
using Native Testbench 9-13

-vcs 21-10
vcs command line 1-13
+vcs+boundscheck 3-20, B-59
+vcs+dumpoff+t+ht C-18
+vcs+dumpon+t+ht C-18
+vcs+finish 4-8, C-13
+vcs+flush+all C-21
+vcs+flush+dump C-21
+vcs+flush+fopen C-21
+vcs+flush+log C-21
+vcs+grwavesoff C-18
+vcs+ignorestop 4-12, C-23
+vcs+initmem B-16
+vcs+initreg B-16
+vcs+learn+pli 1-20, 17-25–17-29, C-22
+vcs+lic+vcsi C-21
+vcs+lic+wait B-49, C-21
+vcs+mipd+noalias C-23
+vcs+mipdexpand B-36
+vcs+nostdout C-15
+vcs+saif_libcell 15-2
+vcs+stop 4-8, C-13
VCS/SystemC cosimulation interface

compiling for using 19-14, 19-20
supported port data types 19-8

VCS_CC A-3
VCS_CC environment variable 18-85
VCS_COM A-3
VCS_CPP environment variable 18-85
VCS_LD environment variable 18-85
VCS_LIC_EXPIRE_WARNING A-4
VCS_LOG A-4
‘vcs_mipdexpand D-7
‘vcs_mipdnoexpand D-7
VCS_NO_RT_STACK_TRACE A-4
VCS_RUNTIME A-4

VCS_SWIFT_NOTES A-4
+vcsi+lic+vcs C-21
+vcsi+lic+wait B-49
vcs.key file 9-13
vcsplit utility 7-26
vec32

storing four state Verilog data 18-15
vec32*

direct access for C/C++ functions
formal parameter type 18-20

-vera 1-17, B-23
Vera runtime options

vera_solver_mode 21-61
-vera_dbind B-23
vera_defines.vrh 21-7
+vera_load C-10
+vera_mload C-10
vera_portname 21-35
vera_portname argument to -ntb_opts B-13
verify 20-41, 20-42
Verilog

System Tasks
$vcdplustraceoff 6-21
$vcdplustraceon 6-21

Verilog module, compiling 21-27
Verilog parameter expansion 20-64
Verilog parameters in OVA 20-63
+verilog1995ext B-15
+verilog2001ext B-15
violation windows

using multiple non-overlapping 14-23–14-27
Virtual Interface Modports 24-208, 24-209
Virtual Interfaces 24-202
+vissymbols B-37
vlogan utility 19-17–19-19
VMC 1-22
void

C/C++ function return type 18-9
void functions 22-44
void()

example 24-88
semantics 24-89

IN-24

syntax 24-88
void*

direct access for C/C++ functions
formal parameter type 18-20

void**
direct access for C/C++ functions

formal parameter type 18-20
VPD

Command line options
Ignore $vcdplus calls in code C-17

VPD files D-18
-vpd2vcd B-31
+vpdfile B-31
+vpdfileswitchsize B-31
+vpi B-41
VSG

if-else usage 24-123
overview 24-118
production definitions 24-119
production weights 24-122
randseq 24-118
usage of case 24-125
usage of repeat 24-126
use of break 24-126

-Vt B-47

W
wait_child 21-4

wait_var 21-4
+warn 2-34, B-47
$warning D-11
warning messages, OVA linter option 20-9
warning messages, OVA MR linter option
20-16
waveform dump files 20-35
weights 24-122
$width D-36
wn ACC capability 17-13
wrapper for VCS/SystemC cosimulation

instantiating in SystemC 19-19
SystemC in Verilog 19-8
Verilog in SystemC 19-17

$write D-29
$writememb D-32
$writememh D-32

X
-Xman 25-12, 25-15, B-54
-Xmangle B-54
-Xnoman B-55
-Xnomangle B-55

Y
-y 1-17, B-4

	Document Navigator
	Contents
	Getting Started
	What VCS Supports
	Main Components of VCS
	VCSi
	Preparing to Run VCS
	Obtaining a License
	Setting Up Your Environment
	Setting Up Your C Compiler

	VCS Workflow
	Compiling the Simulation Executable
	Basic Compile-Time Options

	Running a Simulation
	Basic Runtime Options

	Accessing the Discovery AMS Documentation
	Making a Verilog Model Protected and Portable

	Modeling Your Design
	Avoiding Race Conditions
	Using and Setting a Value at the Same Time
	Setting a Value Twice at the Same Time
	Flip-Flop Race Condition
	Continuous Assignment Evaluation
	Counting Events
	Time Zero Race Conditions

	Optimizing Testbenches for Debugging
	Conditional Compilation
	Enabling Debugging Features At Runtime
	Combining the Techniques

	Avoiding the Debugging Problems From Port Coercion
	Creating Models That Simulate Faster
	Unaccelerated Data Types, Primitives, and Statements
	Inferring Faster Simulating Sequential Devices
	Modeling Faster always Blocks
	Using the +v2k Compile-Time Option

	Case Statement Behavior
	Memory Size Limits in VCS
	Using Sparse Memory Models
	Obtaining Scope Information
	Scope Format Specifications
	Returning Information About the Scope

	Avoiding Circular Dependency
	Designing With $lsi_dumpports for Simulation and Test
	Dealing With Unassigned Nets
	Code Values at Time 0
	Cross Module Forces and No Instance Instantiation
	Signal Value/Strength Codes

	Compiling Your Design
	Using the vcs Command
	Incremental Compilation
	Triggering Recompilation
	Using Shared Incremental Compilation
	The Direct Access Interface Directory
	Initializing Memories and Regs
	Allowing Inout Port Connection Width Mismatches
	Using Lint
	Changing Parameter Values From the Command Line
	Checking for X and Z Values in Conditional Expressions
	Enabling the Checking
	Filtering Out False Negatives

	HSOPT Technology
	Making Accessing an Out of Range Bit an Error Condition
	Compiling Runtime Options Into the simv Executable
	Performance Considerations
	Using Local Disks
	Managing Temporary Disk Space on UNIX
	Compile-Time Options That Impede or Accelerate VCS
	Compiling for Debugging or Performance

	64-32-Bit Cross-Compilation and Full 64-Bit Compilation
	Identifying the Source of Memory Consumption
	Minimizing Memory Consumption
	Running a 64-32-Bit Cross-Compilation
	Setting up the Compiler and Linker
	Memory Setup
	Specifying the Compiler, Linker, and -comp64 Option

	Running a 64-Bit Compilation and Simulation

	Using Radiant Technology
	Compiling With Radiant Technology
	Known Limitations
	Potential Differences in Coverage Metrics
	Compilation Performance With Radiant Technology
	Applying Radiant Technology to Parts of the Design
	The Configuration File Syntax
	Configuration File Statement Examples

	Library Mapping Files and Configurations
	Library Mapping Files
	Overriding the Search Order in the Library Mapping File
	Specifying Multiple Library Mapping Files
	Displaying Library Matching
	Resolving ‘include Compiler Directives

	Configurations
	Configuration Syntax
	Hierarchical Configurations
	The -top Compile-Time Option
	Limitations of Configurations

	Simulating Your Design
	Running and Controlling a Simulation
	Invoking a Simulation at the Command Line
	Invoking a Simulation From DVE

	Save and Restart
	Save and Restart Example
	Save and Restart File I/O
	Save and Restart With Runtime Options
	Restarting at the CLI Prompt

	Specifying a Very Long Time Before Stopping Simulation
	Passing Values From the Runtime Command Line
	How VCS Prevents Time 0 Race Conditions
	Improving Performance
	Profiling the Simulation
	CPU Time Views
	Memory Usage Views

	Using the Discovery Visual Environment
	Overview of DVE Window Configuration
	DVE Panes
	Managing DVE Windows
	Managing Target Panes
	Docking and Undocking Windows and Panes
	Dragging and Dropping Docked windows

	Using the Menu Bar and Toolbar
	Setting Display Preferences

	VPD and EVCD File Generation
	Advantages of VPD
	System Tasks and Functions
	System Tasks to Generate a VPD File
	System Tasks and Functions for Multi-Dimensional Arrays
	Syntax for Specifying MDAs
	Using $vcdplusmemon and $vcdplusmemoff
	Using $vcdplusmemorydump

	System Tasks for Capturing Source Statement Execution Data
	Capturing Source Statement Execution
	Source Statement System Tasks

	System Tasks for Capturing Delta Cycle Information
	System Tasks for Capturing Unique Event Information

	Runtime Options
	+vpdbufsize to Control RAM Buffer Size
	+vpdfile to Set the Output File Name
	+vpdfilesize to Control Maximum File Size
	+vpdignore to Ignore $vcdplus Calls in Code
	+vpddrivers to Store Driver Information
	+vpdnoports to Eliminate Storing Port Information
	+vpdnocompress to Bypass Data Compression
	+vpdnostrengths to Not Store Strength Information

	VPD Methodology
	Advantages of Separating Simulation From Analysis
	Conceptual Example of Using VPD System Tasks
	VPD On/Off PLI Rules
	Performance Tips

	EVCD File Generation
	Using the runtime option -dump_evcd
	Using System Tasks

	VCD and VPD File Utilities
	The vcdpost Utility
	Scalarizing the Vector Signals
	Uniquifying the Identifier Codes
	The vcdpost Utility Syntax

	The vcdiff Utility
	The vcdiff Utility Syntax

	The vcat Utility
	The vcat Utility Syntax
	Generating Source Files From VCD Files
	Writing the Configuration File

	The vcsplit Utility
	The vcsplit Utility Syntax

	The vcd2vpd Utility
	The vcd2vpd Utility Syntax
	Options for specifying EVCD options

	The vpd2vcd Utility
	The vcd2vpd Utility Syntax
	The Command file Syntax
	Limitations

	The vpdmerge Utility
	Restrictions
	Limitations
	Value Conflicts

	Unified Command-Line Interface (UCLI)
	Compilation and Simulation Options for UCLI
	Using UCLI
	UCLI Interactive Commands
	UCLI Command-Alias File
	Operating System Commands

	Using the Old Command Line Interface (CLI)
	CLI Commands
	Navigating the Design and Displaying Design Information
	Showing and Retrieving Simulation Information
	Setting, Displaying and Deleting Breakpoints
	Displaying Object Data Members
	Setting and Printing Values of Variables
	Traversing Call-stacks
	Showing and Terminating Threads
	Accessing Events

	Command Files
	Key Files
	Debugging a Testbench Using the CLI
	Non-Graphical Debugging With the CLI

	Post-Processing
	VPD
	eVCD
	Line Tracing
	Delta Cycle

	Race Detection
	The Dynamic Race Detection Tool
	Enabling Race Detection
	Specifying the Maximum Size of Signals in Race Conditions
	The Race Detection Report
	Post Processing the Report
	Debugging Simulation Mismatches

	The Static Race Detection Tool

	Delays and Timing
	Transport and Inertial Delays
	Different Inertial Delay Implementations
	Enabling Transport Delays

	Pulse Control
	Pulse Control with Transport Delays
	Pulse Control with Inertial Delays
	Specifying Pulse on Event or Pulse on Detect Behavior

	Specifying the Delay Mode

	SDF Backannotation
	Using SDF Files
	Compiling the ASCII SDF File at Compile-Time
	The $sdf_annotate System Task
	Limitations on Compiling the SDF File
	Precompiling an SDF File
	Creating the Precompiled Version of the SDF file
	Specifying an Alternative Name and Location

	Reading the ASCII SDF File During Runtime
	Performance Considerations
	Replacing Negative Module Path Delays in SDF Files
	Using the Shorter Delay in IOPATH Entries
	Disabling CELLTYPE Checking in SDF Files
	The SDF Configuration File
	Delay Objects and Constructs
	SDF Configuration File Commands
	SDF Example with Configuration File

	Understanding the DEVICE Construct
	Handling Backannotation to I/O Ports
	Using the INTERCONNECT Construct
	Multiple Backannotations to Same Delay Site
	INTERCONNECT Delays
	Multisource INTERCONNECT Delays
	Omitting the +multisource_int_delays Option
	Simultaneous Multiple Source Transitions

	Single Source INTERCONNECT Delays

	Min:Typ:Max Delays
	Specifying Min:Typ:Max Delays at Runtime

	Using the Configuration File to Disable Timing
	Using the timopt Timing Optimizer
	Editing the timopt.cfg File
	Editing Potential Sequential Device Entries
	Editing Clock Signal Entries

	Negative Timing Checks
	The Need for Negative Value Timing Checks
	Negative Timing Checks for XYZ
	The $setuphold Timing Check Extended Syntax
	Negative Timing Checks for Asynchronous Controls
	The $recrem Timing Check Syntax

	Enabling Negative Timing Checks
	Other Timing Checks Using the Delayed Signals
	Checking Conditions
	Toggling the Notifier Register
	SDF Backannotation to Negative Timing Checks
	How VCS Calculates Delays
	Using Multiple Non-Overlapping Violation Windows

	SAIF Support
	Using SAIF Files
	SAIF System Tasks
	Typical Flow to Dump the Backward SAIF File using System Tasks
	Criteria for Choosing Signals for SAIF Dumping

	SWIFT VMC Models and SmartModels
	SWIFT Environment Variables
	Generating Verilog Templates
	Modifying the Verilog Template File

	Monitoring Signals in the Model Window
	Using LMTV SmartModel Window Commands
	Entering Commands Using the SWIFT Command Channel
	Using the CLI to Access the Command Channel

	Loading Memories at the Start of Runtime
	Compiling and Simulating a Model
	Changing the Timing of a Model

	Using the PLI
	Writing a PLI Application
	Functions in a PLI Application
	Header Files for PLI Applications
	The PLI Table File
	PLI Specifications
	ACC Capabilities
	Specifying ACC Capabilities for PLI Functions
	Specifying ACC Capabilities for VCS Debugging Features

	Using the PLI Table File

	Enabling ACC Capabilities
	Globally Enabling ACC Capabilities
	Enabling ACC Write Capabilities Using the Configuration File
	Using Only the ACC Capabilities that You Need
	Learning What ACC Capabilities are Used
	Compiling to Enable Only the ACC Capabilities You Need
	Limitations

	Using VPI Routines
	Support for the vpi_register_systf Routine
	PLI Table File for VPI Routines
	Integrating a VPI Application With VCS

	Writing Your Own main() Routine

	DirectC Interface
	Using Direct C/C++ Function Calls
	How C/C++ Functions Work in a Verilog Environment
	Declaring the C/C++ Function
	Calling the C/C++ Function
	Storing Vector Values in Machine Memory
	Converting Strings
	Avoiding a Naming Problem

	Using Direct Access
	Using the vc_hdrs.h File
	Access Routines for Multi-Dimensional Arrays
	UB *vc_arrayElemRef(UB*, U, ...)
	U vc_getSize(UB*,U)

	Using Abstract Access
	Using vc_handle
	Using Access Routines
	int vc_isScalar(vc_handle)
	int vc_isVector(vc_handle)
	int vc_isMemory(vc_handle)
	int vc_is4state(vc_handle)
	int vc_is2state(vc_handle)
	int vc_is4stVector(vc_handle)
	int vc_is2stVector(vc_handle)
	int vc_width(vc_handle)
	int vc_arraySize(vc_handle)
	scalar vc_getScalar(vc_handle)
	void vc_putScalar(vc_handle, scalar)
	char vc_toChar(vc_handle)
	int vc_toInteger(vc_handle)
	char *vc_toString(vc_handle)
	char *vc_toStringF(vc_handle, char)
	void vc_putReal(vc_handle, double)
	double vc_getReal(vc_handle)
	void vc_putValue(vc_handle, char *)
	void vc_putValueF(vc_handle, char *, char)
	void vc_putPointer(vc_handle, void*) void *vc_getPointer(vc_handle)
	void vc_StringToVector(char *, vc_handle)
	void vc_VectorToString(vc_handle, char *)
	int vc_getInteger(vc_handle)
	void vc_putInteger(vc_handle, int)
	vec32 *vc_4stVectorRef(vc_handle)
	U *vc_2stVectorRef(vc_handle)
	void vc_get4stVector(vc_handle, vec32 *) void vc_put4stVector(vc_handle, vec32 *)
	void vc_get2stVector(vc_handle, U *) void vc_put2stVector(vc_handle, U *)
	UB *vc_MemoryRef(vc_handle)
	UB *vc_MemoryElemRef(vc_handle, U indx)
	scalar vc_getMemoryScalar(vc_handle, U indx)
	void vc_putMemoryScalar(vc_handle, U indx, scalar)
	int vc_getMemoryInteger(vc_handle, U indx)
	void vc_putMemoryInteger(vc_handle, U indx, int)
	void vc_get4stMemoryVector(vc_handle, U indx, vec32 *)
	void vc_put4stMemoryVector(vc_handle, U indx, vec32 *)
	void vc_get2stMemoryVector(vc_handle, U indx, U *)
	void vc_put2stMemoryVector(vc_handle, U indx, U *)
	void vc_putMemoryValue(vc_handle, U indx, char *)
	void vc_putMemoryValueF(vc_handle, U indx, char, char *)
	char *vc_MemoryString(vc_handle, U indx)
	char *vc_MemoryStringF(vc_handle, U indx, char)
	void vc_FillWithScalar(vc_handle, scalar)
	char *vc_argInfo(vc_handle)
	int vc_Index(vc_handle, U, ...)
	U vc_mdaSize(vc_handle, U)

	Summary of Access Routines

	Enabling C/C++ Functions
	Mixing Direct And Abstract Access
	Specifying the DirectC.h File
	Useful Compile-Time Options

	Environment Variables
	Extended BNF for External Function Declarations

	Using the VCS / SystemC Cosimulation Interface
	Usage Scenario Overview
	Supported Port Data Types

	Verilog Design Containing SystemC Leaf Modules
	Input Files Required
	Generating the Wrapper for SystemC Modules
	Instantiating the Wrapper and Coding Style
	Controlling Time Scale and Resolution in a SystemC Module Contained in a Verilog Design
	Compiling a Verilog Design Containing SystemC Modules
	Using GNU Compilers on Sun Solaris
	Using GNU Compilers on Linux

	SystemC Designs Containing Verilog Modules
	Input Files Required
	Generating the Wrapper
	Instantiating the Wrapper
	Compiling a SystemC Design Containing Verilog Modules
	Elaborating the Design
	Considerations for Export DPI Tasks
	Use syscan -export_DPI <function-name>
	Use a Stubs File

	Specifying Runtime Options to the SystemC Simulation
	Using GNU Compilers on SUN Solaris
	Using GNU Compilers on Linux

	Using a Port Mapping File
	Using a Data Type Mapping File
	Debugging the SystemC Portion of a Design
	Debugging the Verilog Code
	Debugging Both the Verilog and SystemC Portions of a Design
	Transaction Level Interface
	Interface Definition File
	Generation of the TLI Adapters
	Transaction Debug Output
	Instantiation and Binding
	Supported Data Types of Formal Arguments
	Miscellaneous

	Using the Built-in SystemC Simulator
	Using a Customized SystemC Installation

	Using OpenVera Assertions
	Introducing OVA
	Built-in Test Facilities and Functions
	Using OVA Directives
	How Sequences Are Tested Using the assert Directive
	How Event Coverage Is Tested Using the cover Directive

	OVA Flow
	Checking OVA Code With the Linter Option
	Applying General Rules with VCS
	Linter General Rule Messages

	Applying Magellan Rules for Formal Verification
	Linter General Rule Messages:

	Compiling Temporal Assertions Files
	OVA Runtime Options
	Functional Code Coverage Options

	OpenVera Assertions Post-Processing
	OVAPP Flow
	Building and Running a Post-Processor
	OVA Post-Processing CLI Commands
	Using Multiple Post-Processing Sessions
	Multiple OVA Post-Processing Sessions in One Directory

	Viewing Output Results
	Viewing Results in a Report File
	Viewing Results with Functional Coverage
	Using the Default Report
	Assertion and Event Summary Report
	Command Line Options
	Customizing the Report with Tcl Commands

	Using OVA with Third Party Simulators
	Inlining OVA in Verilog
	Specifying Pragmas in Verilog
	Methods for Inlining OVA
	Unit Instantiation Using the Unit-Based Checker Library
	Instantiating Context-Independent Full Custom OVA
	Template Instantiation Using the Template-Based Checker Library
	Inlining Context-Dependent Full Custom OVA

	Case Checking
	Context-Dependent Assertion Pragmas

	General Inlined OVA Coding Guidelines

	Using Verilog Parameters in OVA Bind Statements
	Use Model
	Enabling Verilog Parameter Expansion
	Limitations on the Input
	Recommended Methodology
	Caveats

	Post-processing Flow
	Use Model

	OVA System Tasks and Functions
	Setting and Retrieving Category and Severity Attributes
	Starting and Stopping the Monitoring of Assertions
	Global Monitoring
	Category and Severity-Based Monitoring
	Name-Based Monitoring

	Controlling the Response To an Assertion Failure
	Display Custom Message For an Assertion Failure
	Task Invocation From the CLI
	Debug Control Tasks
	Calls From Within Code
	Developing a User Action Function

	OpenVera Native Testbench
	Major Features Supported in Native Testbench OpenVera
	High-level Data Types
	Flow Control
	Other Features

	Getting Started With Native Testbench OpenVera
	Basics of an OpenVera Testbench
	Preprocessor Directives
	Top Level Constructs
	Program Block
	"Hello World!"

	The Template Generator

	Multiple Program Support
	Configuration File Model
	Configuration File
	Use Model for Multiple Programs
	Compiling Multiple Programs
	NTB Options and the Configuration File

	Summary
	Example Configuration File

	Compiling and Running the OpenVera Testbench
	Compiling the Testbench with the OpenVera Design
	Compiling the Testbench Separate From the OpenVera Design
	Separate Compilation of Testbench Files for VCS
	Compiling the Design, the Testbench Shell And the Top-level Verilog Module
	Loading the Compiled Testbench On simv
	Limitations

	Compile-time Options
	Runtime Options
	Class Dependency Based OpenVera Source File Reordering
	Circular Dependencies
	Dependency-based Ordering in the Presence of Encryption

	Using Encrypted Files

	Testbench Functional Coverage
	Coverage Models Using Coverage Groups
	Measuring Coverage
	Controlling Coverage Collection Globally
	Unified Coverage Reporting
	Coverage Reporting Flow

	Persistent Storage of Coverage Data and Post-Processing Tools
	Unified Coverage Directory and Database Control

	Loading Coverage Data
	Solver Choice
	Automatic Solver Orchestration

	Temporal Assertions
	Temporal Assertion Flow
	Adding Assertion Objects to a Testbench
	Including the Header Files
	Setting Up the AssertEngine Object
	Controlling Assertion Reporting
	Resetting Assertion
	Instantiating Assertion Objects
	Controlling Evaluation Attempts
	Counting Successes and Failures
	Setting Up the AssertEvent Objects
	Instantiating AssertEvent Objects
	Suspending Threads
	Eliminating AssertEvent Objects
	Terminating the AssertEngine
	Example Testbench

	Running OpenVera Testbench with OVA
	Running OpenVera Testbench with SVA
	Running OpenVera Testbench with SVA and OVA Together

	OpenVera-SystemVerilog Testbench Interoperability
	Scope of Interoperability
	Importing OpenVera types into SystemVerilog
	Data Type Mapping
	Mailboxes and Semaphores
	Events
	Strings
	Enumerated Types
	Integers and Bit-Vectors
	Arrays
	Structs and Unions

	Connecting to the Design
	Mapping Modports to Virtual Ports
	Semantic Issues with Samples, Drives, and Expects

	Miscellaneous Issues
	Blocking Functions in OpenVera
	The terminate, wait_child, disable fork, and wait fork Constructs
	Constraints and Randomization
	Functional Coverage

	Use Model

	Using Reference Verification Methodology with OpenVera
	Limitations

	Testbench Optimization
	NTB Performance Profiler
	Enabling the NTB Profiler
	Performance Profiler Example

	VCS Memory Profiler
	Use Model
	UCLI Interface
	CLI Interface

	Incremental Profiling
	Only Active Memory Reported
	VCS Dynamic Memory Profile Report

	SystemVerilog Design Constructs
	SystemVerilog Data Types
	Variable Data Types for Storing Integers
	The chandle Data Type
	User-Defined Data Types
	Enumerations
	Methods for Enumerations

	The $typeof System Function
	Structures and Unions
	Structure Expressions

	SystemVerilog Arrays
	Multiple Dimensions
	Indexing and Slicing Arrays

	SystemVerilog Testbench Constructs Outside Programs

	Writing To Variables
	Force and Release on SystemVerilog Variables
	Automatic Variables
	Multiple Drivers
	Release Behavior
	Integer Data Types
	Unpacked Arrays
	Structures
	Using the VPI

	SystemVerilog Operators
	New Procedural Statements
	The unique and priority Keywords in if and case Statements
	The do while Statement

	SystemVerilog Processes
	The always_comb Block
	The always_latch Block
	The always_ff Block
	The final Block

	Tasks and Functions
	Tasks
	Functions
	Passing Arguments by Setting Defaults

	SystemVerilog Packages
	Exporting Time Consuming User-Defined Tasks with the SystemVerilog DPI
	Hierarchy
	The $root Top-Level Global Declaration Space
	New Data Types for Ports
	Instantiation Using Implicit .name Connections
	Instantiation Using Implicit .* Connections
	New Port Connection Rules for Variables

	Ref Ports on Modules
	Interfaces
	Using Modports
	Functions In Interfaces

	Enabling SystemVerilog
	Disabling unique And priority Warning Messages

	SystemVerilog Assertion Constructs
	Immediate Assertions
	Concurrent Assertions Overview
	Sequences
	Using Formal Arguments In A Sequence
	Specifying a Range of Clock Ticks
	Unconditionally Extending a Sequence
	Using Repetition
	Specifying a Clock
	Value Change Functions
	Anding Sequences
	Intersecting Sequences (And With Length Restriction)
	Oring Sequences
	Only Looking For the First Match Of a Sequence
	Conditions for Sequences
	Specifying That Sequence Match Within Another Sequence
	Using the End Point of a Sequence
	Level Sensitive Sequence Controls

	Properties
	Using Formal Arguments in a Property
	Implications
	Inverting a Property
	Past Value Function
	The disable iff Construct

	assert Statements
	assume Statements
	cover Statements
	Action Blocks
	Binding An SVA Module To A Design Module
	Parameter Passing In A bind Directive

	The VPI For SVA
	SystemVerilog Assertion Local Variable Debugging
	Controlling How VCS Uses SystemVerilog Assertions
	Compile-Time And Runtime Options
	Ending Simulation at a Number of Assertion Failures
	Disabling SystemVerilog Assertions at Compile-Time
	Entering SystemVerilog Assertions as Pragmas
	Options for SystemVerilog Assertion Coverage
	Reporting On Assertions Coverage
	Tcl Commands For SVA And OVA Functional Coverage Reports

	The assertCovReport Report Files
	The report.index.html File
	The tests.html File
	The category.html File
	The hier.html File

	Assertion Monitoring System Tasks
	Assertion System Functions
	Using Assertion Categories
	Using OpenVera Assertion System Tasks
	Using Attributes
	Stopping And Restarting Assertions By Category

	SystemVerilog Testbench Constructs
	Enabling Use of SystemVerilog Testbench Constructs
	VCS Flow for SVTB
	Options For Compiling and Simulating SystemVerilog Testbench Constructs
	Compile-Time Options
	Runtime Options
	Compile Time or Runtime Options

	The string Data Type
	String Manipulation Methods
	String Conversion Methods
	Predefined String Methods

	Program Blocks
	Arrays
	Dynamic Arrays
	The new[] Built-In Function
	The size() Method
	The delete() Method
	Assignments to and from Dynamic Arrays

	Associative Arrays
	Wildcard Indexes
	String Indexes
	Associative Array Assignments and Arguments
	Associative Array Methods

	Queues
	Queue Methods

	The foreach Loop
	Array Aggregates (Reduction/Manipulation) Methods in Constraints

	Classes
	Creating an Instance (object) of a Class
	Constructors

	Assignment, Re-naming and Copying
	Static Properties
	Global Constant Class Properties
	Method Declarations: Out of Class Body Declarations

	Class Extensions
	Subclasses and Inheritance
	Abstract classes
	Polymorphism
	Scope Resolution Operator ::
	super keyword

	Casting
	Chaining Constructors

	Accessing Class Members
	Properties
	Methods
	“this” keyword

	Class Packet Example
	Unpacked Structures in Classes

	Random Constraints
	Random Variables
	Constraint Blocks
	External Declaration
	Inheritance
	Set Membership
	Weighted Distribution
	Implications
	if else Constraints
	Global Constraints
	Default Constraints
	Variable Ordering
	Unidirectional Constraints
	Static Constraint Blocks

	Randomize Methods
	randomize()
	pre_randomize() and post_randomize()

	Controlling Constraints
	Disabling Random Variables
	In-line Constraints
	In-line Constraint Checker
	Random Number Generation
	Seeding for Randomization
	randcase Statements

	Random Sequence Generation
	RSG Overview
	Production Declaration
	Production Controls
	Weights for Randomization
	if-else Statements
	case Statements
	repeat Loops
	break Statement
	return Statement

	Aspect Oriented Extensions
	Aspect-Oriented Extensions in SV
	Processing of AOE as a Precompilation Expansion
	Weaving advice into the target method

	Pre-compilation Expansion details
	Precedence

	Array manipulation methods
	Array ordering methods
	reverse()
	sort()
	rsort()

	Array locator methods
	find()
	find_index()
	find_first()
	find_first_index()
	find_last()
	find_last_index()
	min()
	max()
	unique()
	unique_index()

	Array reduction methods
	sum()
	product()
	and()
	or()
	xor()

	Interprocess Synchronization and Communication
	Semaphores
	Semaphore Methods

	Mailboxes
	Mailbox Methods

	Events
	Waiting for an Event
	Persistent Trigger
	Merging Events
	Reclaiming Named Events
	Event Comparison

	Clocking Blocks
	Clocking Block Declaration
	Input and Output Skews
	Hierarchical Expressions
	Signals in Multiple Clocking Blocks
	Clocking Block Scope and Lifetime
	Clocking Block Events
	Default Clocking Blocks
	Cycle Delays
	Input Sampling
	Synchronous Events
	Synchronous Drives
	Drive Value Resolution
	Clocking Blocks in SystemVerilog Assertions
	Sequences and Properties in Clocking Blocks

	SystemVerilog Assertions Expect Statements
	Virtual Interfaces
	Scope of Support
	Virtual Interface Modports
	Driving a Net Using a Virtual Interface
	Virtual Interface Modports and Clocking Blocks
	Array of Virtual Interface
	Clocking Block
	Event Expression/Structure
	Null Comparison
	Not Yet Implemented

	Coverage
	The covergroup Construct
	Defining a Coverage Point
	Bins for Value Ranges
	Bins for Value Transitions
	Specifying Illegal Coverage Point Values

	Defining Cross Coverage
	Defining Cross Coverage Bins

	Cumulative and Instance-based Coverage
	Cumulative Coverage
	Instance-based Coverage

	Coverage Options
	Predefined Coverage Methods
	Predefined Coverage Group Functions

	Unified Coverage Reporting
	The Coverage Report
	The ASCII Text File
	The HTML File

	Persistent Storage of Coverage Data and Post-Processing Tools
	Unified Coverage Directory and Database Control

	Loading Coverage Data

	VCS NTB (SV) Memory Profiler
	Use Model
	UCLI Interface
	CLI Interface
	Incremental Profiling
	Only Active Memory Reported

	VCS NTB (SV) Dynamic Memory Profile Report

	The Direct Programming Interface (DPI)
	Limitations
	Include Files
	Time Consuming Blocking Tasks

	Source Protection
	Encrypting Source Files
	Encrypt Using Compiler Directives
	Encrypting Specified Regions
	Encrypting The Entire Source Description
	Encrypting SDF Files
	Specifying Encrypted Filename Extensions
	Specifying Encrypted File Locations
	Multiple Runs and Error Handling
	Permitting CLI/PLI Access to Encrypted Modules

	Simulating Encrypted Models
	Using the CLI
	Using System Tasks
	Writing PLI Applications

	Mangling Source Files
	Creating A Test Case
	Preventing Mangling of Top-Level Modules

	VCS Environment Variables
	Simulation Environment Variables
	Optional Environment Variables

	Compile-Time Options
	Options for Accessing Verilog Libraries
	Options for Incremental Compilation
	Options for Help and Documentation
	Options for SystemVerilog
	Options for OpenVera Native Testbench
	Options for Different Versions of Verilog
	Options for Initializing Memories and Regs
	Options for Using Radiant Technology
	Options for 64-bit Compilation
	Options for Debugging
	Options for Finding Race Conditions
	Options for Starting Simulation Right After Compilation
	Options for Compiling OpenVera Assertions (OVA)
	Options for Compiling For Simulation With Vera
	Options for Compiling For Coverage Metrics
	Options for Discovery Visual Environment and UCLI
	Options for Converting VCD and VPD Files
	Options for Specifying Delays
	Options for Compiling an SDF File
	Options for Profiling Your Design
	Options for File Containing Source File Names and Options
	Options for Compiling Runtime Options into the simv Executable
	Options for Pulse Filtering
	Options for PLI Applications
	Options to Enable and Disable Specify Blocks and Timing Checks
	Options to Enable the VCS DirectC Interface
	Options for Negative Timing Checks
	Options for Flushing Certain Output Text File Buffers
	Options for Simulating SWIFT VMC Models and SmartModels
	Options for Controlling Messages
	Options for Cell Definition
	Options for Licensing
	Options for Controlling the Assembler
	Options for Controlling the Linker
	Options for Controlling the C Compiler
	Options for Source Protection
	Options for Mixed Analog/Digital Simulation
	Options for Changing Parameter Values
	Checking for X and Z Values in Conditional Expressions
	Options to Specify the Time Scale
	General Options
	Enable Verilog 2001 Features
	Enable the VCS/SystemC Cosimulation Interface
	Reduce Memory Consumption
	TetraMAX
	Make Accessing an Undeclared Bit an Error Condition
	Treat Output Ports As Inout Ports
	Allow Inout Port Connection Width Mismatches
	Specifying a VCD File
	Memories and Multi-Dimensional Arrays (MDAs)
	Specifying a Log File
	Hardware Modeling
	Changing Source File Identifiers to Upper Case
	Defining a Text Macro
	Specifying the Name of the Executable File
	Returning The Platform Directory Name
	Specifying Native Code Generation
	For Long Calls

	Simulation Options
	Options for Simulating OpenVera Testbenches
	Options for Simulating OpenVera Assertions
	Options for SystemVerilog Assertions
	Options for a CLI Command File
	Options for Specifying VERA Object Files
	Options for Coverage Metrics
	Options for Enabling and Disabling Specify Blocks
	Options for Specifying When Simulation Stops
	Options for Recording Output
	Options for Controlling Messages
	Options for Discovery Visual Environment and UCLI
	Options for VPD Files
	Options for Controlling $gr_waves System Task Operations
	Options for VCD Files
	Options for Specifying Min:Typ:Max Delays
	Options for Flushing Certain Output Text File Buffers
	Options for Licensing
	General Options
	Viewing the Compile-Time Options Used to Create the Executable
	Stopping Simulation When the Executable Starts
	Recording Where ACC Capabilities are Used
	Suppressing the $stop System Task
	Enabling User-Defined Plusarg Options
	Enabling Overriding the Timing of a SWIFT SmartModel
	Specifying acc_handle_simulated_net PLI Routine and MIPD Annotation

	Compiler Directives and System Tasks
	Compiler Directives
	Compiler Directives for Cell Definition
	Compiler Directives for Setting Defaults
	Compiler Directives for Macros
	Compiler Directives for Detecting Race Conditions
	Compiler Directives for Delays
	Compiler Directives for Backannotating SDF Delay Values
	Compiler Directives for Source Protection
	Compiler Directives for Controlling Port Coercion
	General Compiler Directives
	Compiler Directive for Including a Source File
	Compiler Directive for Setting the Time Scale
	Compiler Directive for Specifying a Library
	Compiler Directive for Maintaining The File Name and Line Numbers

	Unimplemented Compiler Directives

	System Tasks and Functions
	System Tasks for SystemVerilog Assertions Severity
	System Tasks for SystemVerilog Assertions Control
	System Tasks for SystemVerilog Assertions
	System Tasks for VCD Files
	System Tasks for LSI Certification VCD and EVCD Files
	System Tasks for VPD Files
	System Tasks for SystemVerilog Assertions
	System Tasks for Executing Operating System Commands
	System Tasks for Log Files
	System Tasks for Data Type Conversions
	System Tasks for Displaying Information
	System Tasks for File I/O
	System Tasks for Loading Memories
	System Tasks for Time Scale
	System Tasks for Simulation Control
	System Tasks for Timing Checks
	System Tasks for PLA Modeling
	System Tasks for Stochastic Analysis
	System Tasks for Simulation Time
	System Tasks for Probabilistic Distribution
	System Tasks for Resetting VCS
	General System Tasks and Functions
	Checks for a Plusarg
	SDF Files
	Counting the Drivers on a Net
	Depositing Values
	Fast Processing Stimulus Patterns
	Saving and Restarting The Simulation State
	Checking for X and Z Values in Conditional Expressions

	IEEE Standard System Tasks Not Yet Implemented in VCS

	PLI Access Routines
	Access Routines for Reading and Writing to Memories
	acc_setmem_int
	acc_getmem_int
	acc_clearmem_int
	Examples

	acc_setmem_hexstr
	Examples

	acc_getmem_hexstr
	acc_setmem_bitstr
	acc_getmem_bitstr
	acc_handle_mem_by_fullname
	acc_readmem
	Examples

	acc_getmem_range
	acc_getmem_size
	acc_getmem_word_int
	acc_getmem_word_range

	Access Routines for Multidimensional Arrays
	tf_mdanodeinfo and tf_imdanodeinfo
	acc_get_mda_range
	acc_get_mda_word_range()
	acc_getmda_bitstr()
	acc_setmda_bitstr()

	Access Routines for Probabilistic Distribution
	vcs_random
	vcs_random_const_seed
	vcs_random_seed
	vcs_dist_uniform
	vcs_dist_normal
	vcs_dist_exponential
	vcs_dist_poisson

	Access Routines for Returning a String Pointer to a Parameter Value
	acc_fetch_paramval_str

	Access Routines for Extended VCD Files
	acc_lsi_dumpports_all
	acc_lsi_dumpports_call
	acc_lsi_dumpports_close
	acc_lsi_dumpports_flush
	acc_lsi_dumpports_limit
	acc_lsi_dumpports_misc
	acc_lsi_dumpports_off
	acc_lsi_dumpports_on
	acc_lsi_dumpports_setformat
	acc_lsi_dumpports_vhdl_enable

	Access Routines for Line Callbacks
	acc_mod_lcb_add
	acc_mod_lcb_del
	acc_mod_lcb_enabled
	acc_mod_lcb_fetch
	acc_mod_lcb_fetch2
	acc_mod_sfi_fetch

	Access Routines for Source Protection
	vcsSpClose
	vcsSpEncodeOff
	vcsSpEncodeOn
	vcsSpEncoding
	vcsSpGetFilePtr
	vcsSpInitialize
	vcsSpOvaDecodeLine
	vcsSpOvaDisable
	vcsSpOvaEnable
	vcsSpSetDisplayMsgFlag
	vcsSpSetFilePtr
	vcsSpSetLibLicenseCode
	vcsSpSetPliProtectionFlag
	vcsSpWriteChar
	vcsSpWriteString

	Access Routine for Signal in a Generate Block
	acc_object_of_type

	VCS API Routines
	Vcsinit()
	VcsSimUntil()

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

