
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall, 2008
Yale Patt, Instructor
TAs: Jeffrey Allan, Arvind Chandrababu, Eiman Ebrahimi, Aravind Jakkani, Khubaib,
Allison Korczynski, Pratyusha Nidamaluri, Zrinka Puljiz, Che-Chun Su, Christopher Wiley.
Final Exam, December 10, 2008

Name:

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (10 points):

Problem 4 (15 points):

Problem 5 (15 points):

Problem 6 (20 points):

Problem 7 (20 points):

Total (115 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are
contained in the space provided.

Note: Please be sure your name is written legibly on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!



Name:

Problem 1 (20 points)

Part a (5 points): A main program puts a value in R0, and then calls SUB. What does the subroutine SUB
do? Please answer in ten words or fewer.

SUB ST R1, SaveR1

ADD R1,R0,R0

ADD R1,R1,R1

ADD R1,R1,R1

ADD R0,R0,R0

ADD R0,R0,R1

LD R1, SaveR1

RET

SaveR1 .FILL x0

Put answer here:

Part b (5 points): The MUX select line labeled ADDR1MUX in the LC-3 Data Path is controlled by the
output of the OR-gate shown below. Complete the wiring of the inputs to the OR-gate and the second input
to the AND gate, to achieve the correct signal for ADDR1MUX.

����������������

ADDR1MUX

0000
0001
0010
0011
0100

0101
0110
0111
1000

1011
1010
1001

1100
1101
1110
1111

4−to−16 decoder

IR Register:

2



Name:

Part c (5 points): All instructions load the MDR during the fetch phase of the instruction cycle to fetch
the instruction from memory on its way to the IR. After decode has completed, some instructions load the
MDR again, using the source 0 input to the mux labeled A on the data path. Other instructions load the
MDR, using the source 1 input to mux A. Only one of the 15 LC-3 instructions loads the MDR after decode,
using both source 0 and source 1 at different times during the processing of that instruction. What is the
opcode of that instruction?

Part d (5 points): You all know that with 5 bits, we can represent 32 different values. If the data type
is unsigned integer, those values are the integers from 0 to +31. “Integer” is a special case of “fixed point
number” where the binary point is “fixed” to be implicitly to the right of the least significant bit. For
example, 11001 really means

11001.

which is equal to 25 (decimal).

We can design a computer where we get to choose where the fixed point data type places the binary point.
There are six choices. If b4b3b2b1b0 represents a binary string, those six choices are:

0.b4b3b2b1b0 b4.b3b2b1b0 b4b3.b2b1b0 b4b3b2.b1b0 b4b3b2b1.b0 b4b3b2b1b0.

Suppose we wanted the difference (subtraction) between adjacent values to be 1/4. Where would we place
the binary point (Circle the correct representation above). What is the largest value that can be represented
using this representation. Express as a decimal value.

3



Name:

Problem 2 (15 points):

Part a (7 points): In the circuit below, the two master-slave flip flops (MS0 and MS1) each initially contain
the value 0. That is, Q1=0, Q0=0. Please fill in the values of Q1 and Q0 after the end of each clock cycle
in the table below.

01 10

�
�
�
�

CLK

00 01 10 11

11 00

MS1

MS0

S[1]
S[0]

Q1

Q0

Z[1:0]

Z[1]

Z[0]

2 2 2 2

2

After the end of clock cycle Q1 Q0

1

2

3

4

5

6

7

4



Name:

Part b (8 points):
The following program starts execution at x3000 and stops after executing the HALT instruction.

.ORIG x3000

LD R0, Addr1

LEA R1, Addr1

LDI R2, Addr2

ADD R1,R1,#-4

STR R1,R0,#-3

STI R2,Addr4

HALT

Addr1 .FILL x3008

Addr2 .FILL x3009

Addr3 .FILL x000A

Addr4 .FILL x300A

.END

Show the contents of R0 through R2 immediately after the ADD instruction in location x3003 executes.

Register Value

R0

R1

R2

Show the contents of memory locations Addr1 through Addr4 after the LC-3 halts.

Memory Address Label Value

Addr1

Addr2

Addr3

Addr4

5



Name:

Problem 3 (10 points)
The TRAP instruction requires seven states to carry out its instruction cycle, where each state takes one clock
cycle. The seven states are shown as rows of the table below. Several control signals determine the processing
in the data path during each of the seven clock cycles. Each control signal is shown as a column in the table.
Note that the column labeled DR[2:0] is actually a three bit control signal identifying the destination register.

We have provided the control signals for the first four clock cycles of processing the TRAP instruction, which
corresponds to the FETCH and DECODE phases of the instruction cycle.
Your job: complete the table by filling in the values of the control signals for clock cycles 5, 6, and 7. Note
that if it does not matter whether a particular control signal is 1 or 0, we represent that fact with an X.

Assume a memory access takes one clock cycle.

clock cycle LD.MAR LD.MDR LD.IR LD.PC LD.REG DR[2:0] MARMUX PCMUX[1:0]

1 1 0 0 1 0 XXX X 00

2 0 1 0 0 0 XXX X XX

3 0 0 1 0 0 XXX X XX

4 0 0 0 0 0 XXX X XX

5

6

7

6



Name:

Problem 4 (15 points):
As you know, the LC-3 ADD instruction adds 16-bit 2’s complement integers. If we wanted to add 32-bit
2’s complement integers, we could do that with the program shown below. Note that the program requires
calling subroutine X which stores into R0 the carry that results from adding R1 and R2.

Your job: Fill in the missing pieces of both the program and the subroutine X, as identified by the empty
boxes. Each empty box corresponds to one instruction or the operands of one instruction.
Note that a 32-bit operand requires two 16-bit memory locations. A 32-bit operand Y has Y[15:0] stored in
address A, and Y[31:16] stored in address A+1.

.ORIG x3000

LEA R3, NUM1

LEA R4, NUM2

LEA R5, RESULT

LDR R1, R3, #0

LDR R2, R4, #0

ADD R0, R1, R2

STR R0, R5, #0

LDR

LDR

ADD R0, R1, R2

TRAP x25

X ST R4, SAVER4

AND R0, R0, #0

AND R4, R1, R2

BRn

ADD R1, R1, #0

BRn

ADD

BRn ADDING

BRnzp EXIT

ADDING ADD R4, R1, R2

BRn EXIT

LABEL ADD R0, R0, #1

EXIT LD R4, SAVER4

RET

NUM1 .BLKW 2

NUM2 .BLKW 2

RESULT .BLKW 2

SAVER4 .BLKW 1

.END

7



Name:

Problem 5 (15 points):
An Aggie was asked to write a program that will do the following operation ten times: Wait for keyboard
input until someone types a character. Then, write that character to the screen. His solution is shown below.

Note that his main program calls the subroutine INPUT ten times. The subroutine INPUT waits for key-
board input. After obtaining keyboard input, it calls the subroutine OUTPUT to output that character to
the screen.

There are no assembly time errors in the program. However, there are three serious logical errors (the
program does not work as intended). Describe them in the three boxes below. Please, no more than twenty
words in each box.

.ORIG x3000

LD R1, SAVER1

LOOP ADD R1, R1, #-1

JSR INPUT

BRp LOOP

HALT

INPUT ST R7, SAVER7

ST R1, SAVER1

BWAIT LDI R1, KBSR

BRzp BWAIT

LDI R1, KBDR

JSR OUTPUT

LD R1, SAVER1

LD R7, SAVER7

RET

OUTPUT ST R7, SAVER7

ADD R7, R1, #0

STI R7, DDR

LD R7, SAVER7

RET

SAVER1 .FILL x000A

SAVER7 .FILL x0000

KBSR .FILL xFE00

KBDR .FILL xFE02

DDR .FILL xFE06

.END

8



Name:

Problem 6 (20 points):
In this problem, you may assume memory initially contains the following values at the following addresses:

Address Value

x0180 x1000

x1000 xA802

x1001 x7180

x1002 x8000

x1003 xFE02

x3000 xE000

x3001 xEDFE

x3002 x0FFF

x3003 x3000

Your job here is to determine the values in the PC, R0, and R6 at the end of each of six successive instruction
cycles. A single instruction executes in one instruction cycle. The values in PC, R0, R6, and xFE00 are
initially as shown in the table below (i.e., before the start of the first instruction cycle). The contents of
xFE00 are also shown at the end of each instruction cycle. Please fill in the missing values in the table.

Instruction Cycle PC R0 R6 xFE00

0 x3000 xFEED x3004 x4000

1 x4000

2 xC000

3 x4000

4 x4000

5 x4000

6 x4000

9



Name:

Problem 7 (20 points):
An LC-3 program starts execution at x3000. During the execution of the program, a snapshot of all 8
registers were taken at six different times as shown below: before the program executes, after execution of
instruction 1, after execution of instruction 2, after execution of instruction 3, after execution of instruction
4, after execution of instruction 5, and after execution of instruction 6.

Registers Initial After 1st After 2nd After 3rd After 4th After 5th After 6th

Value Instruction Instruction Instruction Instruction Instruction Instruction

R0 x4006 x4050 x4050 x4050 x4050 x4050 x4050

R1 x5009 x5009 x5009 x5009 x5009 x5009 x5009

R2 x4008 x4008 x4008 x4008 x4008 x4008 xC055

R3 x4002 x8005 x8005 x8005 x8005

R4 x4003 x4003 x4003 x4003 x4003

R5 x400D x400D x400D x400D x400D

R6 x400C x400C x400C x400C x400C x400C x400C

R7 x6001 x6001 x6001 x6001 x400E

Also, during the execution of the program, the PC trace, the MAR trace, and the MDR trace were also
recorded as shown below. Note that a PC trace records the addresses of the instructions executed in sequence
by the program.

PC Trace

x400D

x400E

MAR Trace MDR Trace

xA009

x3025

x1703

x4040

x400E x1403

Your job: Fill in the missing entries in the 3 tables above.

10


