Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fail 2009

Yale Patt, Instructor .
Aater Suleman, Chang Joo Lee, Ameya Chaudhari, Antonius Keddis, Arvind Chandrababu, Bhargavi Narayanasetty,
Eshar Ben-dor, Faruk Guvenilir, Marc Kellermann, RJ Harden, TAs

Part A:

Problem 1 (10 points):_LC
Problem 2 (10 points):__{¢
Problem 3 (10 points): LY

Problem 4 (10 points): [o

é
Problem 5 (10 points): { Part A (50 points): 5 O

"~ PartB:
Problem 6 (20 points): ro

Problem 7 (20 points): Py

Problem 8 (20 points):_ 2L

Problem 9 (20 points): o Total (130 points): |) 3 o

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided. '

Note: Please be sure your name is recorded on each sheet of the exam.

1 will not cheat on this exam.

ot

Signature

GOOD LUCK!
(HAVE A GREAT SEMESTER BREAK)

Name: ‘S\G ‘ v J‘; YA

Problem 1. (10 points): The following program is written in LC-3 Assembly Langnage. To generate the binary, the LC-3
Assembler must first create a symbol table corresponding to the program,

Youwr job: Create the symbol table. Use as many cntries in the table as you need.

.ORIG x3000
MAIN ©LEA RO, S1
LEA R1, BUF
1D R2, NEGo
AGAIN 3IDR R3, RO, #0
¥ADD R4, R3, R2
7 BRnp SAVE
¢1LD R3, ZERO
SAVE +STR R3, R1, #0
4ADD RO, RO, #1
$200 R1, R1, #1
AADD R3, R3, #0
ABRnp AGAIN
C HALT
NEGo O .FILL x-6F - ¥300EF £3C P 3038
BUF & .BLKW x30 yoo.,yyve +
81 3£ .STRINGZ ‘‘@oed luck'”’
ZERO 4% .FILL x30
.END

Symbol Address

M4 < 3000
FEATN | 43003
Save | A7
NEGo $o6D
UFE % 300E
S x303E
TERV 1 x304g

SLG W ‘;‘fc .

Problem 2. (10 points): Recall programming lab 5 where you wrote a keyboard interrupt service routine which displayed
a typed character ten times on the screen, followed by a line feed. One student who is preoccupied with other things sub-
mitted the following as his keyboard interrupt service routine. Five instructions in his code are incorrect.

—-—

Name:

Your job: For each of the incorrect instructions, enter the correct instruction in the table on the right in the same row as
the corresponding incorrect instruction. For example, STR R0, SaveR0 should be ST R0, SaveR0, as shown.

Complete the table on the right by adding ONLY the four correct instructions that correct the four remaining bugs. Please
do not copy any instruction into the table on the right if they are already correct. T T

Incorrect code Corrected instructions (ONLY)

ORIG x2000

STR RO, SaveRO || ST RO, SaveR0O
ST R1, SaveR1

ST R2, SaveR2

LD RO,KBDR [/DT 20 1k ADA
AND R2,R2, #0 '

ADD R2,R2,#10
DSPRDY LDI R1,DSR
BRn DSPRDY | gp. . Dsp ppy
STI RO, DDR
ADD R2,R2,#1
BRp DSPRDY
ENTER LD RO, LF
DSPRDY1 LDI RI,DSR

BRn DSPRDY1 R 25 DLP_ DY)
STI RO, DDR :

LD RO, SaveR0O
LD R1, SaveR1
LD R2, SaveR2
RET RPTI

SaveRO BLKW #1

SaveR1 BLKW #]

SaveR2 BLKW #1

KBDR JFILL xFEO02

DSR JFILL xFEO4

DDR FILL xFEQ6

LF FILL x000A
END

|

Problem 3. (10 points): Design a digital logic circuit that implements the following truth table.

Name:

LAIB|C]OUT |

0i0]0 0
01011 1
0]110 0
01111 0
11010 1
1101 1
1{11]0 1
P11 1

Piease draw the logic circuit inside the box below, Connect the inputs and the output of your circuit to the wires labeled
A, B, C, and Out. You can use only AND, OR, and NOT gates. You can use as many of them as you need.

N W
|

N
Name: i {a' o

i

Problem 4. (10 points): One algorithm for dividing a positive (non-zero) even number by 2 is to load the even number
into one register, load a second register with 0, and then continually decrement the first and increment the second, until
you have the same value in both registers. That value is your original even number divided by 2.

Example: Take the value 10: (10,0) — (9,1) — (8,2) — (7,3) — (6,4) — (5,5). Hooray!
The subroutine shown below, with the two missing instructions, performs this algorithm.
Your job: Insert the two missing instructions.

LbdI RO, INPUT

AND R1, R1, #0
AGAIN ADD RO, RO, #-1

ADD R1, R1, #1
NOT R2, RO

AOD bo R2, H

ADD R2, R2, Rl

BLnp A GATN

5TI RO, QUTPUT
RET
INPUT .FILL x3100
OUTPUT .FILL x3101

Name: S“ tu"? %(CGV’\

Problem 3. (10 points): This problem tests your knowledge of the instruction cycle for processing the NOT instruction,
You are asked to show the values of several control signals in every clock cycle of the sequence that is used o process the
NOT instruction. :

The instruction cycle starts with state 18 as shown in the table below,
Your job: Identify each state in the sequence, and show the values of the control signals listed during each state in the
sequence. Use the convention specified below. For a particular state, if the value of a control signal does not matter, fill it

with an X, You may not have to use all the rows.

Note: Assume a memory access takes one clock cycle.

Cycle | State | LD.PC | LD.MAR | LD.MDR | LD.REG | LD.CC | GateALU | GatePC | ALUK | PCMUX
1 18
i | | 9 e [0 1 0] [X]0p
2 : L -
N o 8, | O 0 C |0 £l X
3 1) ‘
%5 | U 0 O 0 | o O X | x
4 . . s
LRI C o [9 O 9; X | X
5 - ‘3 -
¢ (0l o0 |0© [i l ¢ |lo | X
6
7
8
9
10
LD.PC 0: load not enabled GateALU 0: do not pass signal
1: load enabled 1: pass signal
LD.MAR 0: load not enabled GatePC 0: do not pass signal
1: load enabled 1: pass signal
LD.MDR 0: load not enabled ALUK 00: ADD
1: load enabled 01: AWD
10: NOT
LD.REG 0: load not enabled 11: Pass input A
1: load enabled
PCMUX 00: PC+1
LD.CC 0: load not enabled 01: BUS
1: load enabled 10: from adder

O lodzon

Problem 6. (20 points): In the spirit of the IEEE Floating Point standard, we have specified a 16-bit floating point data
type. Bit[15] is the sign, bits[14:10] contains an excess-15 code for the exponent, bits[9:0] contains the fraction.

Name:

a
The subroutine shown below tests the floating point value contained in@ and returns 0 in RS if it is an integer, and returns

1 in RS if it is not an integer. Three instructions in the subroutine havé been omitted. Your job: insert the missing three
instructions.

Note: This subroutine calls another subroutine Right8hift 10 (not shown) which right shifts the contents of R1 by 10
bits, and returns the result in R1.

CHECX AND R5, R5, #0

; left shift the floating point number 6 bits, moving fraction bits into R2[15:6]
ADD R2, RO, #0 '
AND R3, R3, #0 LA LA o
ADD R3, R3, #6 [s1exp] Frac 7
LOOP1 BRz EXP
ADD R2, R2, R2
ADD R3, R3, #-1
BEnzp LOOP1

; move expontent into R1{4:0]}
EXP ID R1, MASK1
AND R1, R1, RO
JSR RightShiftio
ADD R1, R1, #-15

; determine if floating point number is an integer

Pl zp LoopP).

ADD R5, R5, #1
BRnzp END

LOOP2 BRz NEXT

ADD Ay L, RL

ADD R1, Ri, #-1
BRnzp LOCP2

; report the result

NEXT ADD R2, R2, #0

My EwND

ADD R5, R5, #1

END RET
MASKL .FILL =x7C00

Name:

%A

14

I

dhj@%ﬁ.

Problem 7. (20 points); The interrupt service routine shown helow is loaded into the LC-3 memory, and then the user
program shown below is loaded into the LC-3 memory. Then, the run button is pressed.

Interrupt service routine

SaveR0
SaveR1l
Mask

.ORIG
ST
ST
LDR
ADD
S5TR
LDR
LD

ADD
STR
LD

LD
RTI
.BLKW
.BLEKW
FILL

User Program

AGAIN

SET
AGATNZ

SKIP
DONE

S1
82

.ORIG

LEA
TRAP

BRz
BRz
ADD
ADD
BRnz
LEA
TRAP
ADD
BRnzp
BRnzp
HALT

x2000
RO,
R1,
RO,
RO,
RO,
RO,
R1,
RO,
RO,
RO,
RO,
R1,

SaveR0
SaveR1
R&, #0
RO, #1
R&, #0
R6, #1
Mask

R1, RO
RO, #4
R6, #1
SaveR0
SaveR1l

xFFF8

x4000

RO, 91
xX22
R2, R2
SKIP
SET
R2, R2
R2, R2
DONE
RO, S2
xX22
R2, R2
AGAINZ
AGATIN

.8TRIKGZ, "UT "
"Ruleg "

.STRINGZ

. END

. HO

, #-5
. #10

. #-1

Ogﬁ‘fr%\ Shecle

;initialize keyboard interrupt handler as x2000

?\JQ_CAJ S ;z\c,kg

PO el (A2 ‘

o
B2

Interrupt during this instructicn

in the absence of any keyboard input, what does the User Program do (in no more than 10 words)?

pt"';’“‘n "?h

1\

(VA

U

?—

H

"

[

At some point during the execution of the User Program, a key on the keyboard is pressed causing an interrupt, This
happens while the L.C-3 is executing the instruction at location A.

What does this program do after the key is pressed (in no more than 10 words)?

Peah “UT Reles Rodos Roles Blos foles

3

Name:

Y

,} .
JQZ(J ('?hfu

Problem 8. (20 points): The table shows the contents of all the relevant (and some irrelevant) registers at the@‘m;;;ti&on\;
of three SUCCESSIVE instructions (I1, 12, and I3} of a program. Complete the table by filling in the Tissing enfries.

Ignore entries that contain dashes.

Notes:

1. None of the three instructions is an LD, LDR, LDI, or LEA.

2. All interrupts are disabled during the execution.

3. R7 is not modified by any instruction in the program except [3.

I1 12 3
PC .
k5o ¥ {000
MAR N x0022
XS loF
MDR x1000
ALSFE
RO - X389A
56T A Y%A
RI , Y x01B1
_ volB] 5 C(B]
, x1234
(L3¢ w (LYY
R3 : X
KL’Z_’Z"L)(?,LZ'L 2222
R4 K?/S‘-tg_ Kl 3%\, x2345
RS x 0000 w FTFE e
Ré6)(2/@ % ¢ 2_{;7%2’ x2678
R7 x4764 x4764 x5111
N 0 1 1
Z 1 0 0
P 0 0 Q

Identify instructions 12 and 13.

12:

ADD LS ks -2

I3;

T{lf{r{) xl L

9

A

jerf

e

yat]

Name: S; z Y Lﬁé'-""

Problem 9. (20 points): A program running in privilege mode (PSR[15]=0) suddenly stops due to a breakpoint set at
location x2000. The operator immediately pushes the run button.

The table lists in order the next nine memory accesses (MAR and MDR of each).

Your job: Complete the missing entries in the table.

Note: Do not make any assumptions about the values stored in registers or memory locations except what can be deduced

from the trace.

10

MAR MDR
o] " | T
?(2 Co x1050 (e 7
x2co3|| | (oswy
xioso | M | 16 s!i ic¥0 foio 10 > STI L, ¥4g
X (OFF|| #2800
x2800 ﬁ‘f‘f@L,fz@
R u S Ip AT
XIO’SH %) DAL AbD !QG',R[,,#Q "DC?‘COF{\HDI{)UM%:’H(
x1052 x3C4D oDl {“0? olod it0]= ¢ ﬁe)ﬁ\'}D
xloAn] S5 ee
7 \
XSy x 1053
E
SR L 4D
T e

ADD
ADD
AND
AND
BR
JMP
JSR
JSRR
LD
LDI
LDR
LEA
NOT™
RET
RTI
ST
STI
STR
TRAP

reserved

Figure A2

8.3 The Instruction Set

i5 14131211109 8 7 6 5 4 3 2 1 0

T T T T T T T T T T
0001 DR SR1 0| 00 SR2

1 1 1 1 1] 1 1] 1

I I I) I I 1 F T T T
0001 DR SR1 1 imms

L 1 1] 1 1 1 1 1 1 i

T T T i T T T T T T
0101 DR SRi1 0| 00 SR2

1 1] 1 1 1 1 i 1 !

T T T T T T T T T T T
011 DR SR1 1 imm5

1 1 1 1 1 1 1 H 1 | |

T T T T T T T T i T T
0000 z|p PCoffsetd

| | | 1 1 | | 1 i | |

T T T T T T T T T T T T
1100 000 BaseR 000000

1 1 1 L |] 1 1 1 !] 1

T T T T T T T T T T T T T
0100 PCoffset11

i 1 1 1 H L)] | | 1 I 1

L] T T j T T T T T T T
0100 00 BaseR 000000

i 13 i 1 1 i 1 1 1 ! 1

T] H T T 1 T T T T T T T
0010 DR PCoffsetd

1 il i ! 1] { | 1 1 | 1 I}

T T T T T T T ¥ T T T T T
1010 DR I PCoffsetd

1 1 1 1 1] 1 i ! I 1 1 1

T T T T T T T T i T T T
0110 DR BaseR offseté

1 1 1 | | 1 1 ! 1 i 1 L

I I I T T T T T T 1 T T F
1110 DR PCoffsetd

1 1 1 | 1 I 1 I 1 1 1 ! |

T T T T T T T T T T 1 T
1001 DR SR 111111

I I] 1 1 1 L ! 1 1 1 1

T I T T i T T T I I T T
1100 000 111 000000

]] i 1 | 1 H | | | 1 1

T T T T T T T T T T T LI T
1000 000000000000

I 1 1 1 1 1 1 1 1 1 1 1 1 i

T T T T T T T T T T T 1 I
0011 SR PCoffsetd

1 1 1 { | | i 1 1 1 1 1]

T T T T 1 i T T l i T lj
1011 SR PCoffset9

£ 1 1 1 I 1 | | i 1 1 1 1

f 1 T i T T T T T] T
0111 SR BaseR offsetb

| 1 1 1 { 13 1 1 1 i l 1

T T 1 1 1 1 1 k T T T T T
1111 0000 trapvects

1 1 i 1 1 1] 1 1 1], ! 1

T T T T k] T H T T T T T T T
1101

1 I i] 1 1 1 [l 1 1 1 1 1]

Format of the entire LC-3 Instruction set. Note: + indicates instructions that
madify condition codes

525

568 appendix ¢ The Migroarchitecture of the LC-3

MAR «-PC
PC<-PC+1
[INT]

(See Figure C.7)

BEN<—IR[11] & N + IR[10} & Z + [R[9] & P
[IR{15:12})

Tod
(Sec Figure C.7}

p
To 18 5 22
DR<-SR1&0P2* PC«—PC+0f0
setCC
12
To18*
DR<-NOT(SR) PC<-BaseR) 1018
set CC
4

To 18

LDl Epl
10 1A

@AH<-PC+of@ @AH<—PC+0‘H9
* 24

‘ 29

MDF!-:—M[MAR) @DH<—M[MA@O

L IR
0

4 21
(PC<—-PC+off11)
R7<-PC

20

R R R R PC<—Basen
R7«-PC
MAR<-B+off6 MAR<-B+ofi6
4 26 \ 31 To 18

2
@AHGvPC-H)HE) CMAH<—M DH) (MAH-:—M DH)

NOTES

B+off6 : Base + SEXT]offsets]
PC+off® : PC + SEXT{offset9)
PC+off11 : PC + SEXT|offset11]

*OP2 may be SR2 or SEXT[imm5]

To 12 To 18

Figure C.2 A state machine for the LC-3

“app-c” — 2003/6/30 — page 568 — #4

Vector<—x00
MDR<-PSR
PSR[15)<—0

PC<-MDR) To4s
4

33

SP<-8P+1
[PSR[15]

Nothiny Saved SSP<-SP
Y SP<-Saved_USP

l !

Te 38 To 18

C.6 Interrupt and Exception Control 577

MAR<—PG
PC<-PC+1
[INT]

49

Vectore-INTY
PSR[10:8]<—Priarity
MDR<-PSR
PSR{15]«—
[PSR[15[

BEN<—-IR<11=-N+1R<10>-Z+IR<9>-P

[IR[15:12] 5

Saa Fgur C2

Vector<—xM
MDR<-PSR
PSR[15]<—0
(PSR[15]]

4 M
Write

43

Al

MDR<—FGC-1
To37 To4s
4 47
MAR, SP<-5P-1

s]
PEREID -
Y
&

PC<-MDR }

To 18

Figure C.7 LC-3 stale machine showing interrupl control

of one of the two exceptions specified by the ISA. The two exceptions are & priv-
ilege mode violation and an illegal opcode. Figure C.7 shows the state machine
that carries these out. Figure C.8 shows the data path, after adding the addi-
tional struciures to Figure C.3 that are needed to make interrupt and exception

processing work.

“app-¢ — 2003/6/30 - page 577 — #13

570 appendix ¢ The Microarchitecture of the LC-3
GateMARMUX —/\ GatePC
16
> MARMUX
4 4
3 REG
18 18 DHj‘/—D‘
FILE
LD REG —
3 SR2 SR1 3
EEI SR2 4t auT QUuT [FF<SR1
A
[7:0] 16 18
ADDR2MUX ADDRIMUX
: N
I] T 16
16 A6 A6 Iﬁs i6
[10:0] 0 g
1 SEXT SEXT
[4:0] %
[8:0]
4 SEXT [—o SHEMUX;
[5:0] O 15
1 SEXT Y ¥
CONTROL. 2 N8B V. A
? ? A 4 ALUK ALU
R
R +-LD.R NF‘ <1 D.CC 16
16 LOGIC
\ /- GateALU
16
/Y~ GateMPR
| MDR |<—LDMDR] [MAR |a—LD.MAR
< MIO.EN RW MIC.EN
y Y q—l—%
A\
ADDR. CTL.
R < MEMORY LOGIC
nl
MEM.EN
|NMU>R-:1
Figure C.3 The LC-3 data path

“app-c” — 2003/6/30 — page 570 — #6

A4 Interrupt and Exception Processing 543

ervice Routines

e

Trap Vector Assembler Name Description

x20 GETC Read a sing'e character from the keyboard. The character is not echoed onto the
console, Its ASCII code is copied into RO, The high eight bits of RO are cleared.

x21 ouT Write a character in ROL7:0] to the console display.

x22 PUTS Write a string of ASCII characters to the console dispiay, The characters are contained

In consecutive memory locations, one character per memory location, starting with
the address specified in RO. Writing terminates with the occurrence of x0000 in a
memory location.

x23 [N Print a prompt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitar, and 1ts ASCII code is copied into RO.
The high eight bits of RO are cleared.

x24 PUTSP Write a string of ASCII characters to the consele. The characters are contained in
consecutive memary locations, two characters per memory tocation, starting with the
address specified in RO, The ASCII code contained in bits £7:07 of a memary location
is written to the console first. Then the ASCII code contained in bits [15:8] of that
memory location is written to the console. (A character string consisting of an odd
number of characters to be written will have x00 in bits [15:8] of the memory
location contalning the last character to be written.) Writing terminates with the
accurrence of xQ000 in a memory location.

x25 HALT Halt execution and print a message on the console.

4

kI Register Assionments
Address I/0 Register Name 1/0 Register Function

xFEDD Keyboard status register Also known as KBSR. The ready bit (bit [15]) indicates if
the keyboard has received a new character.

xFEQ2 Keyboard data register Also known as KBDR, Rits [7:03 contain the last
character typed on the keyboard.
xFEQ4 Display status register Alse known as DSR. The ready bit (hit [153) indicates If

the display device is ready to receive anather character
to print on Lhe screen.

xFE0& Display data register Also knewn as DDR, A character written in the low byte
of this register will be displayed on the screen,

xFFFE Machine control register Also known as MCR, Bit [151 is the ¢lock enabie bit.
When cleared, instruction processing stops.

A4 Interrupt and Exception Processing

Events external to the program that is running can interrupt the processor. A
common example of an external event is interrupt-driven I/O. It is also the case
that the processor can be interrupled by exceptional events that occur while the
program is running that are caused by the program itself. An example of such an
“internal” event is the presence of an unused opcode in the computer program
that is running.

Associated with each event that can interrupt the processor is an 8-bit vector
that provides an entry point into a 256-entry interrupt vector table. The starting
address of the interrupt vector table is x0100. That is, the interrupt vector table

616

appendixz e Useful Tables

E2 Standard 85CH codes

LB nbels

andard ASCII Tahle

A3CII ASCII ASCII ASCII
Character Dec Hex | Character Dec Hex | Character Dec Hex | Character Degc Hex
nul 0 00 sp 32 20 @ 64 40 96 60
soh 1 01 1 33 21 3 65 41 a 97 61
sLX 2z 0z " 34 22 B 66 42 b 98 62
etx 3 03 # 35 23 C 67 43 ¢ 99 63
a0t 4 04 s 36 24 hnl 68 44 5] 100 &4
eng 5 05 % 37 25 E 69 45 e 101 &5
ack [o133 & 38 26 B 70 46 £ 10z 66
bel 7 07 ' 39 27 el 71 47 g 103 &7
ba 8 133 (40 28 H 72 48 h 104 68
ht 9 09) 41 29 I 73 49 i 105 69
1f 10 DA * 4z 2A | g 74 4A | 5 106 6A
VT 11 0B + 43 2B 1 K 75 4B | k 107 6B
ff 1z oC ! 44 2C L 76 ac i 108 6C
cr 13 0D - 45 2D M 77 4D m 199 6D
80 14 413 . 46 2E N 78 4E n 110 &E
ai 15 QF / 47 2F | © 79 4F o 111 &F
dle 16 10 0 48 30 p 80 50 o) 112 70
del 17 11 1 49 31 4] 81 51 q 1132 71
de2 18 12 3 50 32 R 82 52 r 114 72
dc3 19 13 3 51 33 & 83 53 8 115 73
dod 20 14 4 52 34 T 84 54 o 116 74
nak 21 15 5 53 35 U 85 55 u 117 75
a8y 22 16 6 54 36 v 86 56 v 118 74
ath 23 17 i 55 37 W BY 57 w 119 77
can 24 18 4 56 38 X 88 58 b4 120 78
am 25 19 9 57 39 ¥ 89 59 v 121 79
gub 26 1A : 58 3A Z 90 5A =4 122 TA
cso 27 1B ; 59 3B [91 5B { 123 7B
fa 28 1C < 60 3C \ 92 50 | 124 7C
us 29 1D = 61 3D 1 93 5D } 125 7D
rs 30 1E > 62 3E - 94 5E ~ 126 7E
ug 31 1F 7 63 3F — 95 5F del 127 7F

