Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fail 2011

Yale Patt, Instructor

Faruk Guvenilir, Milad Hashemi, Jennifer Davis, Garrett Galow,
Ben Lin, Taylor Morrow, Stephen Pruett, Jee Ho Ryoo TAs
Final Exam, December 9, 2011

Name: SQ'U'}“:UV\

Problem 2 (10 points);.__{ ©
Problem 3 {10 points): (o

Problem 4 (10 points):_ {0

Problem 5 (10 points):_ {0 Part A ;;gms)z 4y
Part B:

Problem 6 (20 points):_ 26

Problem 7 (20 points): &0

Problem 8 (20 points),_ L&

Problem 9 (20 points); L0 Total (130 points): | | 3 00

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will mot cheat en this exam.

Sl L,

Signature

: GOOD LUCK!
(HAVE A GREAT SEMESTER BREAK)

Selo s

Name: t O

Problem 1. (10 points):

Part a. (5 points): Construct the oniput of the truth table for the PLA shown.

A B C

Q00

slele

Out

o))

Q
= OO DO
— e OO O | = OO T

= O] = | | o] Y
Cl-FOI~Fiv-Q
=1

sfetels

¥ Nele: o Ctux%%:w (TS
Name: jﬁldl’?m oved Port 2 ob e Ecan

Part b. (5 points): In the transistor circuit below, all fransistors in the path to the power supply are shown. None of the

transistors in the path to ground are shown. ‘C‘ X

. % T Ll/ Q [Py /\1.}/ OKDU : ')Z@L’v“)
Your job: .
1. Draw the missing transistor circuit in the box. "I'zs ff (o P o lol £m ot

- e made dorieg Ha erand

® Tl’\br‘& at exeso
tarsske 1A He Bex,
@ Evera. tnpot combiands

‘th

PES‘JH’S Ao lere 07 onk

-
s

| (He eu‘}’ou-} :_SV nevis
l:‘ A 'pkmi&} or oo

< her +' {Tre ufl)‘

I

? OuUT

Name: S‘-ﬂ IV‘ *}w”éi’\.

Problem 2. (10 points): The following program is assembled and stored in the LC-3"s memory. The PC is initially set to
x3000. The program is run untif the computer halts,

Your job: What is contained in lecation B afier the computer stops?

.ORIG %3000
AND RO,RO,#0
NOT R1,RO , 2(& & RF’?EFF

ADD RS,RO,#3
ADD RO,RO.¥1 /9§ 3
ADD RO,RO,RO
ADD RO,RO,RO
ADD RO,R0,R0 ,/ROE «GECS
NOT R3,R0
AND R1,R2,R1
A ADD RO,RO,RO
ADD RO, RO,RO
ADD RO,RO,RO
ADD RO,R0,RO
NOT R3,R0
AND R1,R3,R1
ADD R5,R5,#-1
BRp A
ST R1,B
TRAP x25
B BLKW 1

What is the value in location B? }('} '} '} ’J_

Name:

S{la l?sm

Problem 3. (10 points): This problem involves a new 16-bit floating point data type, specified as follows:

Sign Exponent

Fraction

!

L

To add two Hoating point yalues, we first make sure their binary points lise up (they have the same exponents).

The assembly program shown below, afier the missing instructions have been filled in, compares the cxponents of two
floating point numbers that have been previously loaded into locations A and B. If the exponents are the same, RS is set

Sobrou Jine

to 0 before the RET is taken. If the exponents are different, R5 is set to 1 before the RET is taken.

Your job: Fill in the missing instructions.

LORIG x3000
ST RO, SaveR0

ST R1,SaveR§ ¢ ™ ?Q"’

ST 2, C

LD R2, MASK
AND R5, R5, #0
LD RO,A

LD R1,B

/x b&[> p~0, Q~Oj EL?L—

AND 21,R), R

NOT R1, R1
ADD R1,R1,#1

ADD Ro,RU; RN\

BRz DONE
ADD R5,RG,#1

DONE LD RO, SaveR0
LD R1,SaveRl
LD R2, [
RET
wsk | L FLILL x 3FO0
A BLKW #1
B BLEKW #1
SaveR(0 .BLKW #1
SaveR] .BLKW #1
c |oBLkrw #

.END

Name: S:){ v 7[{' g

Problem 4. (10 points):

LD JR:

1. What opcodes use IR[11:9] as inputs to SR1?

GatePC
3 Ao A 3
z REG
Als
" FILE 1
3
LD.REG—E <+ <—DR 119
3 SR2 SRi 3 -
SR2—4“+ OUT OUT [<—Sk1 o TRIEE
110
4—“"—
ADDRIMUX J
‘ 4
\ SRIMIIX
T % 6 AMe As
6 Ale Ale 7
0 16
7
¥
___b%;;;ug
ppsee- [0
CONTROL
F) f ' W Y
R
¥ ¥
tbcc—=IN][z]p 1% \E A\L/UA
ALUK
-LDGIC 3
\—GateALU

N

]
¥
C

>T, STE, S71

2. Where does the control signal of this mux come from? Be specific!

—
Frroea

LRIU5]

3. What opcodes use this input to the MARMUX?

“T

RAP

s . ,
}F 3\}6 IQ'Q:. j, i TQ'L?. C{:c:c] { e 6—.\'(3@\;4'“ (.('}rf’fgf)émfii L‘

queste .

ey

t (i 2
74 (e f’a‘cgijfi}ﬂ &5

i 11
\ B £o et Fom 0[5

L

o oestiva T

"}'e: ,,7 s ";ﬂé—m z / C-Lmt(i

5;[:0 ')"("?Jm

Problem 5. (10 poinis): The modulo operator (A mod B) is the remainder one gets when dividing A by B. For example,
10mod 5is 0, 12 mod 7 is 5.

The program below is supposed to perform A mod B, where A is in x3100 and B is in x3101. The result should be stored
at location x3200. However, the programmer made a serious mistake, so the program does not work. You can assume that
A and B are both positive integers.

Name:;

e
e
[n}
®
'_I

-ORIG x3000 :
LD R3, L2 i
LDR RO, R3, #0 ;
LDR R1, R3, #1 H
NOT R2, Rl ;
ADD R2, R2, #1 ;
Ll ADD RO, RGO, R2 ;
BRzp L1 H
ADD} RO, RO, R1 ;
ST RO, L3 ; 10
HALT ;11
L2 LFILL x3100 ;12
L3 LFILL x3200 ; 13
-END ;14

w10 n e ww

Part A. After the instruction at line 6 has executed, what are the contents of RO,R1,and R2? NOTE: the correct answer in
each case is one of the following: A, -A, B, -B, 0, 1, -1.

RO: A | R 5 R2: v,_B

Part B. There is a bug in the program, The instruction at line I (O [shouldbe S 'T I 2 & p L g

Name; 5@ Z \)-;;:10?\

Preblem 6. (20 points): A free list is a collection of blocks of consecutive memory locations of various sizes that are
not being used by currently executing programs. A free list is normally organized as a linked list, where each element in
the linked list is associated with a single block of memory. Each element consists of three words: the address of the next
element in the linked list, the number of consecutive memory locations in this block, and the starting address of the block.
R1 contains the address of a memory location that points to the first node in the free list.

R1: xC000 xC000: x8000 xB8000: xA000 xA000: x0000
x8001: x0100 xA001: %0010
%8002: x6000 xA002: x7050

The free list above consists of two nodes, one of size x100 comprising M[x6000] to M{x60FF] and onc of size x10 com-
prising locations M[x7050] to M[x705F].

A procedure MALLOC is used to provide blocks of storage to programs that request them.

If Program A needs n words of memory, it loads n into R2 and does a ISR to MALLOC. MALLOC finds the first block
in the free list that can satisfy the request, loads the starting address of the block into R0, updates the free list to reflect the
fact that those n words are no longer available, and does a JIMP R7. If MALLOC can’t find a block that can satisfy the
request, x0000 is returned in RO. If the block that supplied the n-words consisted of exactly n-words (a perfect fit), then
no words from that block are still available and so the node is removed from the free list.

On the next page is the procedure MALLOC. Your job: Add the missing instructions.

Name: S\Slulfﬁh

MALLOC

NEXT _NODE

ST R1, SAVE_R1
ST R3, SAVE R3
ST R4, SAVE R4
ST R5, SAVE RS

AND RO, RO, #0
NOT R3, R2
ADD R3, R3, #1

LDR R4, R1, #0
BRz RETURN

LDR RE, R4, #1
ADD R5, R3, RE
BRz PERFECT FIT
BRp FRAGMENT

LDE R, L1, H#C

PERFECT_FIT

BRnzp NEXT NODE
LDR RO, R4, #2

LOR R pq %0

FRAGMENT

STR R4, R1, #0
BRnzp RETURN
LDR RO, R4, #2
STR R5, R4, #1

ADD k1, RZ, RO

RETURN

SAVE_R1
SAVE_R3
SAVE_R4
SAVE_RS5

STR R1, R4, #2

LD R5, SAVE R5
LD R4, SAVE R4
LD R3, SAVE R3
LD R1, SAVE Rl
RET

.BLKW 1

.BLKW 1

_BLKW 1

.BLKW 1

I S
Lask " Ist: [X3000

v

4ih: x3001

R i

a2 oo

Problem 7. (20 points}: During the processing of an LC-3 program by the data path we have been using in class, the
computer stops due to a breakpoint set at x3000. The contents of certain registers and memory locations at that time are
as follows:

R2 through R7: x0000
M[x30001: x1263
M([x3003}: x0000

The LC-3 is restarted and executes exactly four instructions. To accomplish this, a number of clock cycles are required.
In 15 of those clock cycles, the bus must be utilized. The table below lists those 15 clock cycles in sequential order, along
with the values that are gated onfo the LC-3 bus in each.

BUS
i . e
! ‘| - j 3
2nd: | x1263 ,g;-m{ai:-i? e 0% ADd ﬁi,ﬂ’;#3
3nd: | %009A o

5th: xAB00 " {) Eg:} QQD,‘EDCU{}C“CJC‘&(? L@ 1,. EL‘ ® o

t
i ¥

5002 | @By

7ih: x 4060 M [x30027

x12 6% QG&M[MC)@T%Dﬁlﬁ
x30062 |
10th: XZ)OOO ol gxsc-}scmow oeee ST LG, rhe
Hih: | 3003

8th:

Oth:

121 12 6%
13th: | x3003
14th: 1263 - P -
* AP i, 2, #4
@ 15th: | x009D

Part a: Fill in the missing entries above.

Part b: What are the four instructions that were executed?
ADD 21,2, #3
LDT RO,#(
ST Ro,apo

ADD RLRULET

Part ¢: What are the contents of R0 and R1 after the four instructions execute?

RO: xll(o% Rl: XOO‘::{D
10

Name: —gﬁ i Y FZ{G “

Problem 8. (20 points): Let’s use the unused opeode to implement a new instruction, as shown below:

15 i2 11 9 8 6 5 3.2 0

T T T T T T T T T T T

1101 Regl | Reg? 000 | Reg3

] 1] 1 H 1 i 1 i 1 1

A6

REG y
FILE 2’s Complement
s
SR2 SRl 116
OouT OouT

TEMP |<— LD.TEMP
SEXT(R[4:0D) 7z ¢ 1% —~—

From Control —';\SRZMUX/ \ALUMUXA‘—ALUMUX

GateALU

The following five additional states are needed to control the data path to carry out the work of this instruction,

32
BEN <~IR{11} & N+IR[10] & Z + IR[9] & P State C.
15:12
L l BUS <— TEMP + Reg3
RN
1101
¢ State D
State 13
[] [¥4
MAR <— Reg? _
] 1z=0 jz=1
State A
- C[] To State 18 To State 23
R MDR < M[MAR]
State B

[TEMP <— —(MDR)]—

Note: State B loads the nepative of the contents of MDR into TEMP.

i1

Name: ,S; (u’l:CVN

Part a: Complete the table below by identifying the values of the control signals needed to carry out the work of each state.

Note: For a particular state, if the value of a control signal does not matter, i1l it with an X.

=Y
~ | o = 2ol 2% 8
EIS|ZI8IE 5|25 2 |2 ¥ |5
alalalalal5i8l8] = 12313 /g5
Sl S A0 00w 2] 2 S| e
Statel?»Ol(‘}OGC?OfC’fOllox
SweA | O] Q1 |00 0] 010 XXX |X|x] IO
SaeB | Q10 |00 (0] 1] o[XX[X [X|x]0]|X
saeC Q10O 1]|0]Q0 |1 |xiX|1 lolo|0|X
sweD | 0|00 100 0]0 10 x|x|x [xIx|0]X
LD.EC 0: load not enabled " SR1MUX 00: Source IR[11:9]
1: load enabled 01l: Source IR[8:8]
10: Source R&
LD.MAR 0: load not enabled
1: load enabled ALUMUX 0: Choose SR1
1: Choose TEMP
LD .MDR 0: load not enabled
1: iload enabled ALURK 00: ADD
01: AND
ID. CC G: load not enabled i0: NOT
1: load enabled 11i: Pass input A
LD, TEMP 0: load net enabled MIO.EN 0: MIO not enabled
1: load enabled 1: MIO enabled
GatePC 0: do not pass signal R.W J: Read
1: pass signal 1l: Write
GateMDR 0: do not pass signal
1l: pass signal
GateAlU 0: do not pass signal

1: pass signal

Part b: What does the new instruction do?
T fir confrgs of iﬁ)ﬁ equnl v/\[ﬁfigl] fe CCar it ko
Fww a.d M (keg2 gubs Ha conleks of Fesy 1. O flesise,

f:}eme-% 3 U"”Lw‘gird;, Grah 4"‘& CC ae set+

-

12

Name; S:‘ lu }‘{1: A

Problem 9. (20 points): Consider a two player game where the players must think quickly each time it is their turn to
make a move. Each player has a total allotted amount of time to make ali his'her moves. Two clocks display the rermaining
time for each player. While a player is thinking of his/her move, his clock connts down. If time runs out, the other player
wins. As soon as a player makes histher move, he hits a button, which serves to stop counting down his clock and start
counting down the other player’s clock.

The program on the next page implements this mechanism. The main program keeps track of the time remaining for
cach player by decrementing the proper counter once per second while the plaver is thinking, When a player’s counter
reaches zero, a message is printed on the screen declaring the winner. When a player hits the button, an interrupt is taken.
The interrupt service routine takes such action as to enable the main program (afier returning from the interrupt} to start
decrementing the other counter.

The interrupt vector for the button is X35. The priority level of the button is #2. Assume that the operating system has set
the Interrupt Enable bit of the bution to enable it to interrupt. Assume the main program runs af priority #1 and executes
in user mode,

Part a: In order for the interrupt service routine to be exccuted when the button is pushed, what memory location must
contain what value?

Address: X C} l 3 S’ Value: X) jg—o

Part b: Assume a player hits the button while the instruction at line 16 is being executed. What two values (in hex) will

be pushed on the stack?
PC PSR

X 3010 X810}

Part c: Fill in the missing instructions in the user program.

Part d: This program has a bug that will only ocour if an interrupt is taken at an inappropriate time. Write down the line
number of an instruction such that if the button is pressed while that instruction is executing, unintended behavior will
result.

Line Number: q/IO/ ig;“” Y- An} c.v-{f 7’-',«0;5@, r‘E_CCiVﬁcp L{i Cff.jf("!'

How could we fix this bug?

U s A A : li‘!iféa"’e*\'!’ r'Qf-J s i’{l‘ { ia - Q,MMPR) g \'i) ;‘“‘S R“ﬁ{ 5£
}20 ‘L) k««t:f? fi?’vack c:z?fi }T/L “['v'rn, ,

13

Name: SO /Uﬂl!@ ”‘

L

; Interrupt Service Routine
LORIG x1550
NOT RO, RO
RTI
.END

; User Program

.ORIG %3000

AND RO, RO, #0 ; Line 1
b R1, TIME ; Line 2
LD R2, TIME ; Line 3

e | ISR CouRT

APD Ro; Lo, HO

BRn P2 DEC ; Line 6
ADD R1, R1, #-1 : Line 7
i

BRp NEXT

LEA RO, P2WINS ; Line 9

BRnzp END ; Line 10
P2 DEC ADD R2, R2, #-1 ; Line 11

BLp NEXT

LEA RO, PIWINS ; Line 13
END PUTS ; Line 14

HALT ; Line 15
COUNT LD B3, SECOND ; Line 16
LOOP ADD R3, R3, #-1 ; Line 17

BRp LOoop ; Line 18

LET

TIME LFILL #300
SECOND .FILL #25000 ; 1 second
PIWINS .STRINGZ "Player 1 Wins."
P2WINS .STRINGZ "Player 2 Wins."

-END

14

T Tod9
(See figure C.7)}

BEN<-TR[11] & N + IR[10] & Z + IR[9] & P
[IR{15:12]]

To8
{See figure C.7)

DR<-8R1+0OP2*
set CC

To 18

To 18

DR<NOT(SR) To 18

set CC

To 18

R7<~PC
PC<PC+ofill

* 24 * 29
C:@DR<—M[MA@ GADRGM[MARBD
R R R

R R

Ri<—PC
PC<—BaseR

NOTES

B+offt : Base + SEXT[offset6]
PCHoff9 : PC + SEXT {offsctd]
PC+offl1 : PC + SEXT[offset1 1]

*OP2 may be SR2 or SEXTfimm5]

15

GateMARMUX —/\ GatePGC
16
>/ MARMUX LDPC—+{ PC | v
ry
A A
1
/46 /18 2 * DR734|> REG
S/ POMUX '\ FILE
y I 1 1 , LD.REG —>
7116 /16 18 SR2 S
3 3
[ZExT] SR2—“= oyt OUT |7 SR
'
-
A 17:0] + /16 /46
/ /\ \
5 Y
ADDRZMUX ADDRIMUX
2 \ / \ .
A A A f Ale
16 Mis A6 A8 Als
[10:0] 0 >
+ Sext ;
[4:0] ¥
[8:0]
e ET] %SWJ_“
15:0] I R il B Afe
CONTROL 2\ B A\L/U A
? ? A F O Y ALUK
R
{ IR Jetomr N|Z|P<—iD.CC 16
i
P
16 LOGIC
W GateALU
16
/- GateMDR
m< LD.MDR| | MAR LD.MAR
A" MIQ.EN RW MIO.EN —:
T i \ A | d—l—% v 47 :
ADDR. CTL. i
R < MEMORY LOGIC :
1

MEM.EN

L e |
;

YY)

INMU)X

16

DR

IR[11:9] ———a-\
110

111 —=

DRMUX
(a)

IR[11:0]

IR[11:9] —
IR[8:6]

110 —=

/

SR1MUX

Logic

(c}

17

BEN

(b)

SR

