
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall, 2006
Yale Patt, Instructor
TAs: Aseem Bathla, Cameron Davison, Lisa de la Fuente, Phillip Duran, Jose Joao,
Jasveen Kaur, Rustam Miftakhutdinov, Veynu Narasiman, Nady Obeid, Poorna Samanta.
Final Exam, December 13, 2006

Name:

Problem 1 (15 points):

Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (10 points):

Problem 5 (10 points):

Problem 6 (10 points):

Problem 7 (10 points):

Problem 8 (10 points):

Problem 9 (15 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are
contained in the space provided.

Note: Please be sure your name is written legibly on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!



Name:

Problem 1 (15 points)

Part a (5 points): Here is a list of the 16 opcodes. Circle the ones that write to a general purpose register
(R0 to R7) at some point during the instruction cycle.

ADD AND BR JMP JSR LD LEA LDI

LDR NOT RTI ST STI STR TRAP reserved

Part b (5 points): Program A running at priority level 0 starts running on the LC-3 at the start of time unit
1. Program A requires 8 time units to complete. The table below shows information for three interrupting
events (x, y, z): when each occurs, the priority level of each, and the number of time units needed by the
corresponding interrupt service routine (X, Y, Z) to complete its task.

x: interrupt occurs at end of time unit 6. Priority 4. X needs 3 time units.

y: interrupt occurs at end of time unit 8. Priority 8. Y needs 5 time units.

z: interrupt occurs at end of time unit 9. Priority 5. Z needs 2 time units.

In the boxes below, write the letter (A, X, Y, or Z) of the program or service routine running during that
time unit.

Note: We have inserted the answer for time units 1,2, and 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1817

A A A

Part c (5 points): Label the gate inputs to each of the 8 transistors in the figure below so that the operation
of the transistor circuit behaves as specified in the truth table below. You can label each gate input as A,
Ā, B, or B̄.

A OUT

0

0 0

0

1

1

1 1

B

0

1

0

1 ?

? ?

?

?

?

?

?

A

A

B

B

A

B

OUT

2



Name:

Problem 2 (10 points)

A subroutine TEST FOR NEG can be used to examine a value and return a 1 in R5 if it is negative, and a 2 if
it is positive or zero. The routine is shown below:

TEST_FOR_NEG BRn SKIP

AND R5, R5, #0

ADD R5, R5, #2

BRnzp DONE

SKIP AND R5, R5, #0

ADD R5, R5, #1

DONE RET

Suppose we are writing a program that needs this subroutine. For example, we need to test the value
contained at location A. We did the following and everything worked fine.

LD R0, A

JSR TEST FOR NEG

An A&M student decided that the JSR opcode is unnecessary, and replaced it in our main program with two
instructions, as follows:

LD R0, A

LEA R7, #1

BRnzp TEST FOR NEG

Part a (5 points): After making this change, the program would not assemble. What was the assemble-time
error? Answer in the box provided below in fewer than 20 words. Note: More than 20 words will get a 0.

Answer:

Part b (5 points): With the help of an OU student, they fixed the assembly-time error. When they
tried to execute the program, they got a run-time error. What was the run-time error? Answer in the box
provided below in fewer than 20 words. Note: More than 20 words will get a 0.

Answer:

3



Name:

Problem 3 (10 points)

The 8 general purpose registers of the LC-3 (R0 to R7) make up the Register File. To write a value to a
register, the LC-3 control unit must supply 16 bits of data (BUS[15:0]), a destination register (DR[2:0]),
and a write enable signal (LD.REG) to load a register. The Combinational Logic Block below shows in-
puts BUS[15:0], DR[2:0], and LD.REG and outputs DinR0[15:0], DinR1[15:0], DinR2[15:0], ... DinR7[15:0],
LD.R0, LD.R1, LD.R2, ... LD.R7.

Your job: Add wires, logic gates, and standard logic blocks as necessary to complete the Combinational Logic
Block. Note: If you use a standard logic block, it is not necessary to show the individual gates. However, it
is necessary to identify the logic block specifically (e.g., “16-to-1 mux”), along with labels for each relevant
input or output, according to its function.

R0

R1

R2

R3

R4

R5

R6

R7

16

DR[1]

DR[2]

DR[0]

LD.REG

Combinational Logic

BUS[15:0]

LD.R0

LD.R1

LD.R2

LD.R3

LD.R4

LD.R5

LD.R6

LD.R7

DinR7 16

16DinR6

16DinR5

16DinR4

16DinR3

16DinR2

16DinR1

16DinR0

4



Name:

Problem 4 (10 points)

The table below shows part of the state of the LC-3 (the contents of the eight registers, the PC, the condi-
tion codes, and memory locations x2000 through x2007) at a particular instant in time (the column labeled
Before). Then the LC-3 was single-stepped twice (i.e., two LC-3 instructions were executed), producing the
state of the machine indicated by the column labeled After.

Your job: Fill in the five missing entries in the table indicated by question marks (?). Note: We have supplied
the high order hex digit for the contents of memory location x2006.

Before After

R0 x0505 x0505

R1 x1FFF x1FFF

R2 x3006 x3006

R3 x2100 x2101

R4 x4567 x4567

R5 xFFFF xFFFF

R6 x2002 x2004

R7 x3010 x3010

PC x2006 x3007

N 0 ?

Z 0 ?

P 1 ?

M[x2000] x20A0

M[x2001] x0702

M[x2002] x3007

M[x2003] x8004

M[x2004] x601A

M[x2005] x0501

M[x2006] ? x1

M[x2007] ? x

5



Name:

Problem 5 (10 points)

Part a (3 points): Generate the symbol table for the program below. You may not need all of the spaces
provided. Note: One of the symbols, PUSH, is global and has already been done for you.

.EXTERNAL PUSH

.ORIG x3000

LEA R6, BOTTOM

LEA R1, MESSAGE

AND R0, R0, #0

JSR PUSH

AGAIN LDR R0, R1, #0

BRz DONE

JSR PUSH

ADD R1, R1, #1

BRnzp AGAIN

DONE ADD R0, R6, #0

PUTS

HALT

MESSAGE .STRINGZ "STACKS ARE COOL"

.BLKW #20

BOTTOM .BLKW #1

.END

Symbol Address

PUSH GLOBAL

Part b (7 points): What does this program output to the console? Assume that the PUSH and POP subrou-
tines are already written for you and work EXACTLY as described in class. Answer in the box provided,
please.

6



Name:

Problem 6 (10 points)

A program (part of which is shown below) uses a stack to store values that the program operates on. The
stack is implemented in memory locations x5FF8 (MAX) to x5FFF (BASE). At the time the instruction
stored at the label AGAIN is executed, the Stack Pointer (R6) contains x5FF8.

Your job is to show the contents of the stack after the program has executed. Also, show the final contents
of the Stack Pointer.

You can assume that the PUSH and POP routines have been written for you and that they behave EXACTLY
as described in class. Recall that success (0) and failure (1) information is passed back to the calling program
through R5, and if the stack operation failed, R0 and R6 remained unchanged.

AGAIN AND R0, R0, #0

JSR POP

ADD R1, R0, #0

AND R0, R0, #0

JSR POP

ADD R2, R0, #0

AND R0, R0, #0

JSR POP

ADD R0, R0, R1

ADD R0, R0, R2

ADD R5, R5, #0

BRp DONE

JSR PUSH

BRnzp AGAIN

DONE JSR PUSH

HALT

R6 −→

BEFORE
1
2
3
3
1
5
4
2

R6: x5FF8

x5FF8
x5FF9
x5FFA
x5FFB
x5FFC
x5FFD
x5FFE
x5FFF

AFTER

R6:

7



Name:

Problem 7 (10 points)

The statement of this problem is identical to problem 9 on Problem Set 6; only the values and
the instruction you have to work out are different.

The figure below shows the part of the LC-3 data path that deals with memory and I/O. Note the signals
labeled A through F. A is the memory enable signal; if it is 1, memory is enabled, if it is 0, memory is
disabled. B, C, and D are the load enable signals for the Device Registers that can be written to. If the load
enable signal is 1, the corresponding register is loaded with a value, otherwise it is not. E[15:0] is the 16-bit
output of INMUX. F[1:0] are the two select lines for INMUX.

The initial values of some of the processor registers and the I/O registers, and some memory locations are
as follows:

R0 = xFE00 KBSR = x8000 M[x3009] = xFE00
R1 = x0039 KBDR = x0061 M[x300A] = xFE02
PC = x3000 DSR = x8000 M[x300B] = xFE04

DDR = x0031 M[x300C] = xFE06

As you know, during one complete instruction cycle, memory-I/O is accessed either one, two, or three times.
Your job in this problem is to specify all the memory-I/O accesses associated with processing the instruction
STI R1,#11.

Complete the table with the values of each control signal and register at the end of each cycle in which a
memory-I/O access occurs. If the value of a signal does not matter in a cycle, put an X in the corresponding
entry in that row. If the instruction does not require three memory-I/O accesses, draw a line through each
unnecessary row in the table.

PC Instruction Access MAR A B C D E[15:0] F[1] F[0] MDR

x3000 STI R1,#11 1

2

3

8



Name:

Problem 8 (10 points)

The program below inputs a single digit from the keyboard (1-9) and then echoes it to the console. Let’s
call the number the user typed N. The program displays to the console every Nth letter of the alphabet,
starting with the letter A. Some of the instructions are missing. Fill in the blanks to make the program
work as specified. Note: Each blank corressponds to one instruction. Some example output is provided below:

Example 1:

1ABCDEFGHIJKLMNOPQRSTUVWXYZ

Example 2:

2ACEGIKMOQSUWY

Example 3:

5AFKPUZ

.ORIG x3000

TRAP x20

TRAP x21

; R1 = N, converted from ascii

LEA R2, ALPHA

LOOP

BRz END

TRAP x21

BRnzp LOOP

END HALT

ALPHA .STRINGZ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

.FILL #0

.FILL #0

.FILL #0

.FILL #0

.FILL #0

.FILL #0

.FILL #0

.FILL #0

.FILL #0

.END

9



Name:

Problem 9 (15 points)

A program encounters a breakpoint and halts. The computer operator does not change the state of the
computer in any way, but immediately presses the run button to resume execution.

The table below shows the contents of MAR and MDR for the first nine memory accesses that the LC-3
performs after resuming execution.

Your job: Fill in the missing entries.

1st:

2nd:

3rd:

4th:

5th:

6th:

7th:

8th:

9th:

MAR MDR

x5020

xF0F0

x2000 x020A

x040A

x61FE

xC1C0

x4002 xF025

10



Some information you might find useful...

The Stack Protocol

01 ; Subroutine for carrying out the PUSH and POP functions. This

02 ; program works with a stack consisting of memory locations BASE

03 ; through MAX. R6 is the stack pointer. R0 contains the data.

04 ;

05 PUSH ST R1,SaveR1 ; R1 is needed by PUSH routine

06 LD R1,FULL ; FULL contains -(MAX)

07 ADD R1,R1,R6

08 BRz Fail_exit ; SP=MAX (no room on the stack)

09 ;

0A ADD R6,R6,#-1

0B STR R0,R6,#0 ; R0 gets PUSHed onto the stack

0C BR Success_exit

0D ;

0E POP ST R1,SaveR1 ; R1 is needed by POP routine

0F LD R1,EMPTY ; EMPTY contains -(BASE+1)

10 ADD R1,R1,R6

11 BRz Fail_exit ; SP=(BASE+1) (nothing on the stack)

12 ;

13 LDR R0,R6,#0 ; Top of stack gets POPped to R0

14 ADD R6,R6,#1

15 ;

16 Success_exit AND R5,R5,#0 ; Success code: R5=0

17 LD R1,SaveR1

18 RET

19 Fail_exit AND R5,R5,#0

1A ADD R5,R5,#1 ; Fail code: R5=1

1B LD R1,SaveR1

1C RET

1D FULL .FILL -MAX

1E EMPTY .FILL -(BASE+1)

1F SaveR1 .BLKW 1

The PSR register

015 10 8 2

Privilege
0: Supervisor
1: User

N Z P

Priority
(0 − 7)

11


