Floating Point Arithmetic

(The IEEE Standard)

Floating Point Arithmetic (and The IEEE Standard)

* Floating Point Arithmetic

- Representations
- Issues
- Normalized, Unnormalized, Subnormal
- Precision
- Wobble

* The IEEE Standard

- Why
- What it contains, what it doesn't contain
- Formats
- Rounding
- Operations
- Infinities, NANs
- Exceptions
- Traps

Several Issues Come Up:

- * How many bits for range, how many bits for precision?
- * What to do with numbers too small to represent with this scheme?
- What to do with numbers that do not correspond to exact representations?
- What to do with numbers too large to be represented?
- * Shall we distinguish numbers too large with true infinities?
- * What about nonsense numbers? (Examples:

Arcsin 2,
$$\frac{0}{0}$$
, ∞ - ∞)

First, An Example

We Simplify: S EXP FRA

In DEC format: (-1)^s * 0.1 fra * 2^{EXP-4}

First, Some General Stuff:

A number can be represented as

$$\pm d_0 \cdot d_1 d_2 \dots \beta^e$$

These numbers correspond to points on the real line. If we insist that all representations be normalized, then the points are shown (normalized can mean: $d_0 = 0$, $d_1 = 1$)

(We can, incidentally, store the number in signed-magnitude format:)

Normalized, Unnormalized, Subnormal

Again, we are looking at $\pm d_0.d_1d_2...*\beta^e$

1. If it is normalized, it is:

$$\pm 0.1 \, d_2 \, d_3 \, \cdots * \beta^e$$

2. Unnormalized (after a subtract of like signs, for example)

$$\pm$$
 0.0001 d₂ d₃ ... * β ^{e+3}

- 3. Subnormal means it can't be represented in the machine in normalized format
 - Recall the format + e+BIAS d2 d3 ...

Corresponds to \pm 0.1 d₂d₃... * β ^e

Suppose we successively divide by β. We can do this <u>until</u> e+BIAS = 1. Below that we can't represent numbers (except 0). Why? Suppose we let e+BIAS=0. How do we now represent 0?

Precision

★ Uncertainty is at Most:

- ½ ULP
- ★ Precision deals with worst unavoidable error
- * Precision is a function of representation Accuracy is a function of your algorithm
- * Relative uncertainty (the issue of wobble)

One ULP just above a power of β is β times as large as one ULP just below.

The IEEE Standard

Reasons:

1. Direct Support for:

- Execution-time diagnosis of anomalies
- Smoother handling of exceptions
- Interval arithmetic at reasonable cost

2. Provide for development of:

- Standard elementary functions
- Very high precision arithmetic
- Coupling of numeric & symbolic computation

The IEEE Standard (Continued)

What does it contain:

- Formats: single, double, extended
- Operations: +,-, *, ÷, √-, REM, CMP
- Rounding modes
- Conversion: Int/FI., Dec/FI., FI/FI
- Exceptions: Underflow, Overflow, Div Ø, Inexact, Invalid

What it does not contain:

- Requirements for implementation in HDWR or SFWR
- Interpretation of NaNs
- Formats for Integers, BCD
- Conversions other than above

The Formats

There are four; we start with one as an example.

Single

Representable Numbers:

* Normalized

$$1.d_1d_2d_3...d_{23} * 2^e$$

where
$$-126 \le e \le +127$$

Note: The range of exponents

$$-126 \le e \le +127$$

Coupled with the BIAS (127) which is added to the exponent yields an 8 bit string from 00000001

Two strings remain: 00000000, 111111111

* Subnormal numbers (Exp field = 00000000)

$$0.d_1d_2...d_{23}$$
 2^{-126}

* Infinities (Exp field = 11111111)

s 11111111 000 ... 0

Formats (Continued)

That still leaves those strings characterized:

These are defined as NaNs.

They result from invalid operations

(Like,:
$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $\infty - \infty$)

Generalizing to the other formats

	<u>Single</u>	<u>Single-X</u>	<u>Double</u>	Double-X
Precision	24 bits	≥32	53	≥64
Exponent	8 bits	≥11	11	≥15
Word Length	32 bits	≥ 4.3	64	≥79
Exp BIAS	+127		+1023	
e _{max}	+127	≥1023	+1023	≥16382
e _{min}	-126	≤-1022	-1022	≤-16382

Rounding

- 1 st We perform the <u>operation</u> & produce the infinitely precise result
- 2nd We round to fit it into the destination format

Four Rounding Modes

- Default: To nearest. If equally near, then to the one having A Ø in LSB
- 2. Directed roundings
 - Toward + ∞
 - Toward ∞
 - Toward Ø (Chop)

Operations

* Arithmetic: +, -, *, ÷, REM

When $y \neq \emptyset$, r = x REM y, is defined:

r = x-y*n, where n is the integer nearest $\frac{x}{y}$

whenever
$$\left| n - \frac{x}{y} \right| = \frac{1}{2}$$
, then n is EVEN

- ∴ Remainder is always exact
- * Square root: Result defined if ARG $\geq \emptyset$.
- ★ Conversion from one format to another
 - To fewer bits: rounded
 - To more bits: exact

Operations (Continued)

- * Conversion Fl. Pt. <---> Integers Binary <---> Decimal
- * Comparison
 - Always exact
 - Never underflow, overflow
 - Four relations are possible{>, =, <, unordered}

Note: Invalid is signaled if unordered operands are compared and unordered is not the basis but > or < is the basis.

Examples:

Infinities, NaNs, ± Ø

 ∞ :

- \star ∞ < (finite) < + ∞
- **★** Arithmetic on ∞ is exact
- \star ∞ is created by
 - Overflow
 - "Divide by zero"

NaN:

* Signaling & Quiet

Signaling - Reserved operand that signals the invalid Op. Exception for all operations in the standard. If no trap occurs, a quiet NaN is delivered

Quiet - Operations on quiet NaNs produce quiet NaNs. They provide hooks to retrospective diagnostic information.

Exceptions

When detected: Take Trap, or Set Flag, or Both

Flag can be reset <u>only</u> under program control

* Invalid

- Operation on a signaling NaN.
- ∞ ∞ 0/0
- 0 * ∞ ∞/ ∞
- x REM y, where y=0 or x= ∞
- √NEG
- Conversion from FI. to int. or decimal, when overflow, infinity, or NaN prevents the conversion
- Comparison via predicates involving > or <, and Not?, when the operands are unordered

Exceptions (Continued)

* Divide by zero

When f(finite) --> Infinite and exact

* Overflow

When the destinations largest finite number is exceeded by what would have been the <u>rounded</u> floating point result if the exponent range were unbounded

Exceptions(Continued)

* Overflow (Continued)

Trapped overflows! [Except for conversions]

1<u>st</u>, Divide infinitely precise Result by 2^a

$$a = \frac{\text{Single}}{192} \quad \frac{\text{Double}}{1536} \quad \frac{\text{Extended}}{3 * 2^{\frac{n-2}{4}}}$$

$$n = 1 \text{ exponent bits } 1$$

- * Underflow
 - Tiny value (which could cause subsequent overflow)
 - Loss of precision

Delivered result may be zero, subnormal No., or ± 2 min-exp

Exceptions (Continued)

* Underflow (continued)

Trapped underflows!
[All operations except conversions]

1st, Multiply infinitely precise Result by 2^a

* Inexact

When the result of an operation is not exact, or on non-trapped overflow.

Traps

For any of the five exceptions, a user should be able to:

- ★ Specify a handler
- * Request that an existing handler be disabled, saved, restored.

When a system traps, the trap handler should be able to determine:

- Which exception occurred on this operation
- The kind of operation being performed
- * The destination format
- * In overflow, underflow, & inexact, the correctly rounded result
- In invalid & divide by zero, the operand values