
The Standard Performance Equation

Cycles Per Instruction

ISA Organization

- Pipelining
- Issue Rate
- Branch Handling

Means

* Arithmetic Mean

$$A = \frac{1}{n} \sum_{i=1}^{n} P_i$$

* Geometric Mean

$$G = \sqrt[n]{\prod_{i=1}^{n} P_i}$$

* Harmonic Mean

$$H = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{P_i}}$$

How Do We Measure

Degree of Santizing

Real Hardware

Simulation .

Analytic Model

Real Hardware

- "Gotchas" Have a chance to get in the way
- Least Flexible
- Fast for doing thorough job

Simulation

- Some effects are missing
- Most Flexible
- Slowest

Analytic Model

- Good for gross effects
- Must be validated

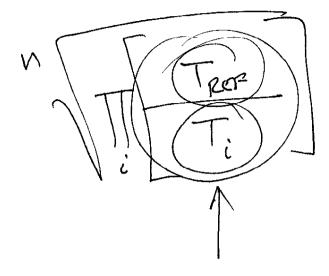
How Do We Measure (Continued)

Invasiveness

Hardware Instrumentation

Microcode Instrumentation Software Monitoring

Hardware Instrumentation


- Most Expensive
- Non-Invasive
- Least Flexible

Microcoded Instrumentation

- Best of Both Worlds
- SPAM

Software Monitoring

- Cheap
- Very Invasive
- Most Flexible

VAXII-26

GEDMETHIC MEAN

SPEC mark

Benchmarks

Rationale:

Find a set of programs or program fragments representative of the workload you will be requiring of the machine

Types:

- 1. The ADD instruction very old
- 2. Instruction MIX Old (Gibson MIX, 1959)
- 3. Kernels
 - e.g., Livermore Loops
- 4. Synthetic Benchmarks
 - Parameterized
 - Careful: RRW is not RWR
- 5. Toy Benchmarks
 - Easy to hand-compile
 - Pretty much in disrepute today e.g., Towers of Hanoi
- 6. SPEC Suite (Systems Performance Evaluation Co-operative)
 - At least common agreement, I Guess!!
- 7. Real Workload

Bad Ways to Measure Performance (... and each has been used and reported in the Open Literature)

* Apples & Oranges

 A Lightly Loaded VAX vs. Counting Simulated Cycles

★ Who Gets the Credit

- The Architecture or the Compiler
- Example: Berkeley Pascal vs VMS
 Pascal
- Algorithm Optimizations
- Instruction set or register windows (Colwell)

* Choice on Benchmarks

- Selective
 - Overstates significance of one feature
 - e.g. Regularity (Fl. Pt.)
 - e.g. Procedure Call Intensive
 - e.g. No Floating Point

- Small

- * 100% Cache, TB Hits
- * No I/O, Context Switch

* Play with Statistics

Program A Program B

Machine 1:

1 unit

2 units

Machine 2:

2 units

1 unit

Machine 1 is $\frac{2}{1}$ on A, $\frac{1}{2}$ on B

Speed Up is
$$\frac{1}{2}$$
 (2 + $\frac{1}{2}$) = 1.25

* Too Focused on Frequency

	Frequency	Execution Time
Calls	2.5%	21.6%
MOVL	12.4%	6.8%