Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2013

Y. N. Patt, Instructor

Faruk Guvenilir, Sumedha Bhangale, Stephen Pruett, TAs
Exam 2

April 17,2013

Name;

Problem 1 (20 points):
Problem 2 (20 points):
Problem 3 (20 points):
Problem 4 (20 points):
Problem 5 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (besub@orting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheetexfaime

Please sign the following. | have not given nor received arguthorized help on this exam.

Signature:

GOOD LUCK!

Name;

Problem 1 (20 points)

Part a (5 points): A processor that supports 8 interrupt priority levels (Odaést priority, 7 is highest priority) is
executing a process at priority level 3 when a page faulteccihe page fault service routine would normally execute
at priority level

Explain your choice of priority level in 20 words or fewer.

Part b (5 points): VLIW instructions have two characteristics that hinderfpenance. DAE got rid of one of them.
Describe the characeristic DAE got rid of in fewer than temdgo

Give an example of a very small snippet of code that illusgditow DAE improves performance if the VLIW charac-
teristic is not present.

Name;

Problem 1 continued

Part c (5 points): Two structures are added to the data path to support out @ @xkcution and one structure is
added to support in order retirement. Identify them.

To support out-of-order executioh: ,

—F

To support in-order retiremen

Part d (5 points): Computers that implement virtual memory generally incladgructure wherein each entry in the
structure has two parts, a page number and a descriptor. ¥/theg structure called?

Answer:

The processor uses the descriptor to perform several fumgtsome more important than others. Describe in 20 words
or fewer two essential functions that the processor usesigscriptor to perform.

Name;

Problem 2 (20 points)

Part a (10 points): We wish to represent the number 33/128 exactly in a radix-&tifig point format that has all
major characteristics consistent with the IEEE FloatingiPstandard. The format must use an excess-17 code. What
is the fewest number of bits we can use for this format to regmethe number 33/128 exactly? Show your work.

Answer:

How is the number 33/128 represented in this format?

Answer:

Part b (10 points): A physically indexed, physically tagged 64 KB write throuzfithe has been designed to support
a 4 MB physical memory. The cache has the following chargsties: 16 byte line size, 2-way set associative, LRU
replacement. How many bits of storage are required to impterthe tag store of this cache? Please show your work.

Answer:

Name;

Problem 3 (20 points)
We have talked about vector processing and we have talkad pbedication. It turns out that what we learned about
predication can make our vector processor even more polyagshown in this problem.

Recall that predication lets us remove a conditional brdnmm a program by first evaluating the condition (which
we call a predicate — it has a Boolean value, either 0 or 1) tlael storing the results of the instructions either along
the true path or along the false path of the branch, deperatintje value of that predicate. In a vector processor,
executing a single instruction stream (a “for loop,” for exae) SIMD on multiple data sets (all the iterations of the
loop body), is accomplished by each iteration operatingh@saimeath component of all the one dimensional arrays.
If the loop body contains a conditional branch, we first use@ar instruction to evaluate that condition (predicate) f
all iterations, and then conditionally execute the corpath depending on the value of the predicate for each iterati
of the loop body.

We accomplish this with two mechanisms:

1. A Vector Mask Register, called VMASK which has the same benof components as the other vector registers,
which is specified by VLENGTH. For example, we can executecoranstruction

VMASK = VO > V1
by writing the Boolean value VMASK(]i] = 1 or 0, depending on&ther or not VO[i]> V1[i].

2. Then we execute a predicated version of the normal veesbructions, for example VADDp instead of VADD,
where

VADD V0,V1,V2 becomes VADDp V0,V1,V2. That is, store the swhV1[i] + V2[i] into VOI[i] if VMASK]i] = 1.
If VMASK(]i] =0, do not write the result.

Our machine has the following vector registers and scalzisters:

Vector Registers (VR : VO to V7, VMASK
Scal ar Registers (SR): RO to R7, VLENGTH, VSTRI DE

Our machine also has the following instructions, with masmvector length of 64

I nstructions: Cycl es | Description:

LDl MM SRz, #C 1 SRr = #C

NOT SRz, SRy 2 SRr = ~SRy

ADD SRz, SRy, SRz 4 SRr = SRy + SRz

VLD VRz, A 11 while (i < VLENGTH) { VRz[i] = M A+(i «VSTRIDE)]; i=i+1;}
VST VRz, A 11 while (i < VLENGTH) { M A+(i *VSTRIDE)] = VRz[i]; i=i+1;}
VMOV VRz, VRy 1 while (i < VLENGTH) { VRz[i] = VRy[i]; i=i+1;}

VNOT VRz, VRy 2 while (i < VLENGTH) { VRz[i] = ~VRy[i]; i=i+1;}

VADD VRz, VRy, VRz 4 while (i < VLENGTH) { VRz[i] = VRy[i] + VRz[i]; i=i+1;}
VCWPEQ VRz, VRy 3 while (i < VLENGTH) { VMASK[i] = VRz[i] == VRy[i]; i=i+1;}
VCMPGT VRz, VRy 3 while (i < VLENGTH) { VMASK[i] = VRz[i] > VRy[i]; i=i+1;}
VCWMPLT VRz, VRy 3 while (i < VLENGTH) { VMASK[i] = VRz[i] < VRy[i]; i=i+1;}

In addition, every NON-MEMORY vector instruction has a paded counterpart, designated by appending p to the
non-predicated opcode. For example, as explained abovePVan be predicated on the basis of the VMASK reg-
ister by using the opcode VADDp.

Name;

Problem 3 continued
Now (finally!) we are ready to use our new knowledge.
Part a (12 points): Compile the following C code fragment into its correspompirector assemly language code,

using the instructions from the list above. Optimize youdeco that it completes in as few cycles as possible. You
may not need all the space provided for your answer.

for (int i =0; i < 60; i=i+3) {
if (A[i] > B[i]) {
ail = Alil;
} else {
di]l = Bgli];
}
}

LDl MM VLENGTH,

LDI MM VSTRI DE,

Part b (8 points): How many cycles does it take to execute this code. Assumettg@oremory, memory is 16 way
interleaved, vector chaining is supported, there is oneljipd functional unit for each type of operate instruction
Note that the time it takes to execute a predicated vecttmictson is independent of the number of Os in VMASK.
That is the predicated vector instruction has to still exe@ach component, even though some results do not get
stored.

Cycles.

Name;

Problem 4 (20 points)

Consider the asynchronous bus discussed in class, witretartitration, as shown below. The bus has a PAU with a
processor, a memory, and a disk that can all request the lthgheir respective device controllers. Data and Address
lines are multiplexed. The processor and memory are at gtdgreel 1 (highest priority), and the disk at request level
0. The disk controller supports data transfers directly tomory (i.e., Direct Memory Access, or DMA), which may

require transmitting several bus widths worth of data to rmgnn a single bus transaction.

PAU

BG1

Disk DMA
Controller

BGO

Processor Memory
Controller Controller
BG1
Processor Memory

Note: not all bus signals are shown.

Disk

BUS
BR1
BRO

Name;

Problem 4 continued

Part a (10 points): The diagram below shows part of the transaction requiredhiferdisk to send 4 chunks of data
(DATAO, DATA1, DATA2, DATA3) uninterrupted to memory. We ka added two additional bus control signals to
make life easier: DMA1 for the disk controller and M1 for themory controller.

Your job is to complete the diagram, completing the send ishast a time as possible. Only the starting address
(ADDR) of the first data chunk needs to be sent to the memoriralber.

DMA
Controller

BBSY

» MSYN, ADDR, TYPE=SEND

Memory

Time

Name;

Problem 4 continued
Part b (10 points): Sometimes, the DMA controller may want to send much more thdata chunks to memory.

Because this may take a significant amount of time, the diskARdd@ntroller will relinquish control of the bus if a
device at a higher level requests the bus, and completeghsatction in a subsequent bus cycle. Your job: Complete
the transaction part of the disk DMA controller state maehinith support for sending any number of data chunks to
memory and support for interrupting the transaction. Oeecontroller detects BR1, the DMA controller can finish
at most its current send plus 1 more data chunk before raihaqg control of the bus.

To help facilitate DMA transactions, we can assume the DMAtmler has auxiliary hardware to take care of certain
internal bookkeeping information for you. Your state maghdoes not have to control this hardware. The DMA
controller will maintain an internal register, ADDR, to ketrack of the address of the next data chunk that needs to be
sent to memory. An internal register, DATA, will contain therrent data chunk that needs to be sent to memory. An
internal counter register will keep track of how many datardks remain to be sent. An internal signal, FINAL, will
be asserted as soon as exactly one data chunk remains tat be semory. You may not need all the states provided.

5 BBSY,
D&BG,, BGy n

IN

IDLE b Ro BGo,, SACK

ar

ORORORO:
O O O

Name;

Problem 5 (20 points)

A cache for a microprocessor has been partially specifiethlsvs: write-back, LRU replacement, 4-way set asso-
ciative, no virtual memory, byte addressable. Your job isgecify the line size, number of sets, and cache size, such
that the execution of the following silly piece of code willsult in a cache hit ratio of exactly 31/32, and the size of
the cache will be as small as possible.

for (]

=0] <4 j=j+1)
for (i

=0; i <1024; i =i +1)
dqi] =di] + Ali] = B[i];

A, B, and C are non-overlapping arrays of bytes. Assume therifoop requires four accesses to memory in the
following sequence: a load from the C array, a load from theriaya a load from the B array, and a store to the C

array. Assume A[0], B[0], and C[0] are all stored in the firgtd of their respective cache lines, and that the three
lines all map to the same set of the n-way set associativeec@dhother data values produced by this code are stored
in registers.

You can assume that prior to execution of the above ctiteecache contains all of the C array andnone of the
elements of A or B.

Part a (15 points): Specify the parameters named below for the smallest cactenili give a cache hit ratio of
exactly 31/32 on the above code.

Cache size (Data only, not tag storg):

Number of sets

Cache block sizd:

Part b (5 points): Why is the above code silly? What simple change can be madetodade above to improve its
performance, while guaranteeing the same final values aredstn C, regardless of the initial values stored in C?
Assume the cache’s initial state is still as described in @ar

What will the hit ratio be with this changg?

10

