Department of Electrical and Computer Engineering The University of Texas at Austin

EE 382N, Spring 2006 Y. N. Patt, Instructor Danny Lynch and Chang Joo Lee, TAs Exam 1, March 29, 2006

Nam	e:
ense et e	Problem 1 (14 points):
	Problem 2 (14 points):
***	Problem 3 (14 points):
	Problem 4 (14 points):
	Problem 5 (14 points):
	Problem 6 (14 points):
	Problem 7 (14 points):
8 8 8	Problem 8 (14 points):
e sel	Problem 9 (14 points):
4,	Bonus for legibility on
to see	all anwers (2 points):
8	Total (100 points):

Directions: The first two problems of this exam are required problems. You may answer any 5 of the last 7 problems. Place an "X" in the 2 lines above for the 2 problems that you choose not to answer.

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

GOOD LUCK!

Name:	(6)	12	25	9	20
11amc				 	
		600			

Problem 1 - Required (14 points):

We have a RISC machine (with 32-bit fixed length instructions), and we would like to allow the fetch stage to prefetch future instructions if possible. To allow this we are going to design an 8-byte instruction buffer between the fetch and decode stages that will hold up to 2 instructions. The fetch stage will keep putting instructions into the buffer as long as there is room (even if the decode stage is stalled for instance). The fetch stage will then move on to fetching the next sequential instruction.

We have given the beginning of the verilog code for the instruction buffer below.

} endmodule

Note: Anytime there is valid data in the instruction buffer then the out_to_decode data should always be valid. The icache line size is 4 bytes.

Please finish the definition of the instruction buffer using the following library.

You may answer either in Verilog or with a block diagram, whichever you prefer. In either case, please use modular design principles in your solution. If you use a block diagram to answer, be sure to label all the signal names and the widths. Please make sure your solution is as simple and clear as possible.

> T	4.5	24	2 2	15
Name:			 	

Problem 1 (continued) - Required (14 points):

Additional space for your instruction buffer design.

Name:	10	 W 54	8
Trainc		 	
	0.00		100

Problem 2 - Required (14 points):

Decode the x86 instruction stream shown below into its component instructions.

2E 02 4D 00 66 89 AC 48 66 05 26 00 F3 A5 EA 66 0F FE 6A 67 1F F4

Show each instruction in the following form :

prefix opcode mode r/m SIB disp imm dest src1 src2

Where a field does not apply for a particular instruction, just ignore that field for that instruction. (We have provided room for 6 instructions. Hint: There are not more than six instructions in the above code.)

inst #	prefix	opcode mode	r/m	SIB	disp	imm	dest	src1	src2
1									
2									
3								200 E	
4							16 16		
5	3 10								
6			20 20 20	11 15 11					

	a 8		10				
Name:	B B	77 (100 <u>0</u> 2)	10 95	*	9635 58		
Tomo.	W.	. 1					
Problem 3 (14 points):	8	3			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
You designed a microprocessor the bit a stuck-at-0 fault if the fault if the bit is always 1 (you	e bit is alwa u can not st	ys 0 (i.e. ore a 0 i	, you can n it).	n not sto	ore a 1 11	it). We can	the bit a stuck-at-
Consider each of the four stru- fault. Does the fault affect the For each structure, consider s	e correctnes	s of the	chip? Do	oes the f	ault affe	ucture contai ct performan	ns a stuck at 0 or ce? Explain. (Note
8			**				
A bit in the Register Ali	as Table:	**		3			
	, s e,	10				grading	
	**			10	2 2		Yan day
a a	85			28			
		100 m	iā.	i			e de la comunicación de la comun
21 N	W 8	**		1 25 1	A to F		
34		53		25	100	,	
The dirty bit in one of t	the tag sto	ore enti	ries:		1		
	4			50 50	2 E		
(R) 241		20		2.5			
85		"'8			a ⁸⁶ a		
# #				n ¹⁸			
84			7 * B	E 18			
· · · · · · · · · · · · · · · · · · ·		11		21 E		De u	V
20 - 20	¥	E	16		a a		
W.			10.		1 10		
The LRU bit for one of the	he sets of	a 2-wa	y set a	ssociat	ive cad	che:	
e *	** ** ** ** ** ** ** ** ** ** ** ** **	2) 2)	6 E	EM E			
y ²⁰	200		16	4 8 M	en en		
24	24	2		v ,	e la		

A bit in the Branch History Register:

Name:				-
1101110	 	0.000	36	4800

Problem 4 (14 points):

An engineer designs a piece of logic that, upon discovering that a branch has been mispredicted, cancels all memory requests that were initiated by load instructions along the mispredicted path.

We evaluate this new feature on application A, and notice a performance improvement. On application B, we notice a performance degradation. There is nothing wrong with the measurement methodology. Explain how both results are possible.

Name:	98	100	H425 - 112 115 12			
	 1022				92	
		- 1				
			16	500		

Problem 5 (14 points):

We are designing compilers for both a 3-wide VLIW processor and a Pentium Pro 3-wide issue machine. Assume the VLIW processor also uses the x86 instruction encodings for each of three instructions that make up its VLIW word. Both compilers' job is to produce code that optimizes the fetch and decode bandwidth of the corresponding front ends of the two machines. When will the VLIW code be better? When will the Pentium Pro code be better?

Name:			
TTOILIC.	 	1000	

Problem 6 (14 points):

A perceptron branch predictor has been designed for use on the front end of a new microprocessor. The branch history register consists of two bits: x1, the direction of the most recent branch, and x2, the direction of the second most recent branch. At the time we examine the chip, w1=1, w2=4, and the Threshold (T)=2. For each possible state of the branch history register, what will the perceptron predictor predict?

Name:		35	18			
Name		, -		* 25		18 20
Problem 7 (14 points):	8	2 8	2			
We have a 16 wide issue n perfect caches (100% hit ra	nicroprocessor an te). Everything i	d (magically s working co) a perfe rrectly o	ct branch pr n the chip (i	redictor (100% e. no bugs).	accuracy) and
a. We measure the IPC on	one application a	and it is less	than 16.	How is this	possible? Exp	olain.
*	50	92	s .			
Ti de la companya de			**			
	is .	35	¥1	3 a 3 5		
Þ		8	10	20 15 15		
		10		77 K		18 18 18 18 18 18
¥		簽	ri .			i a a
28						
5		ii.				
b. Can the IPC be less that that will produce this. If n	n 1. Explain. If y to, why not?	es, give an e	xample p	iece of code	(in pseudo-ass	embly language)
er er	8		25 38	8 3 8 8		
8		30 M	8	The seal		
		e v	98.67			N N NN
	50	91	e e			
		e.		25		a A
•	5 4	7 8	8	w 12"		
		v e		W		
					# # W	
8.	*					
	22					
					11	
c. The pipeline consists of	10 stages If you	could redesig	n the ch	ip, would vo	ı change the n	umber of stages?
Explain.	10 stages. If you	Joura Tought	5-1 JIIO 011			
#5	20		¥	w 18		W 18 17
	85 25	30	3 3		8 * E	8 8 S

Name:		 	
35 45			

Problem 8 (14 points):

A 382N graduate working in industry looks at the design of a microprocessor which has an IPC of 2.75. She notices that 20% of the transistors on the chip are unused. Using the extra transistors she designs a more accurate branch predictor which yields 2.90 IPC. The catch is that using the new branch predictor requires increasing the cycle time by 5%. Should the chip be redesigned with this new and improved branch predictor? Explain. Discuss all factors that could influence your decision. (Hint: there are at least three issues to consider.)

Name:	 	1_2	 	
				2

Problem 9 (14 points):

We have discussed the various base designs of the two-level branch predictor. Consider the classical GAs predictor, first reported in ASPLOS in 1992. Further study uncovered problems with GAs. They are listed below. Explain how you would solve each.

a. Interference. Interference is defined as the information introduced into a pattern history table entry by one branch, and later used as a basis of prediction by another branch having nothing to do with the first branch. How can we reduce negative interference? Explain how your suggestion works. (Hint: there are at least two ways. You get to choose which one you discuss.)

b. Suppose the branch history register contains three bits. The following code has PC=X, with the branch history register = 001. If the instruction flow came through a, the branch at X is always taken. If the instruction flow came through d, the branch at X is always not taken. About half the time the flow comes through a, about half the time the flow comes through d. How can we improve this branch predictor?

a: BrZ A

b: BrN B

c: BrG X

d: BrZ W

u. DIZ W

e: BrN Y

f: BrL X

X: BrN Z

c. One of the problems with the two-level predictor is its warmup time, the time required to store enough history information so that the predictor can make an intelligent prediction. How can this problem be fixed?