
VMM User Guide
Version E-2011.03
March 2011

Comments?
E-mail your comments about this manual to:
vcs_support@synopsys.com.

mailto:vcs_support@synopsys.com

ii

Copyright Notice and Proprietary Information
Copyright © 2011 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AEON, AMPS, Astro, Behavior Extracting Synthesis Technology, Cadabra, CATS, Certify, CHIPit, CoMET,
Confirma, CODE V, Design Compiler, DesignWare, EMBED-IT!, Formality, Galaxy Custom Designer, Global Synthesis,
HAPS, HapsTrak, HDL Analyst, HSIM, HSPICE, Identify, Leda, LightTools, MAST, METeor, ModelTools, NanoSim,
NOVeA, OpenVera, ORA, PathMill, Physical Compiler, PrimeTime, SCOPE, Simply Better Results, SiVL, SNUG,
SolvNet, Sonic Focus, STAR Memory System, Syndicated, Synplicity, the Synplicity logo, Synplify, Synplify Pro,
Synthesis Constraints Optimization Environment, TetraMAX, UMRBus, VCS, Vera, and YIELDirector are registered
trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, ARC, ASAP, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, BEST, Columbia, Columbia-CE, Cosmos,
CosmosLE, CosmosScope, CRITIC, CustomExplorer, CustomSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, Design Vision, DesignerHDL, DesignPower, DFTMAX, Direct Silicon Access, Discovery, Eclypse, Encore,
EPIC, Galaxy, HANEX, HDL Compiler, Hercules, Hierarchical Optimization Technology, High-performance ASIC
Prototyping System, HSIMplus, i-Virtual Stepper, IICE, in-Sync, iN-Tandem, Intelli, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Macro-PLUS, Magellan, Mars, Mars-Rail, Mars-Xtalk,
Milkyway, ModelSource, Module Compiler, MultiPoint, ORAengineering, Physical Analyst, Planet, Planet-PL, Polaris,
Power Compiler, Raphael, RippledMixer, Saturn, Scirocco, Scirocco-i, SiWare, Star-RCXT, Star-SimXT, StarRC,
System Compiler, System Designer, Taurus, TotalRecall, TSUPREM-4, VCSi, VHDL Compiler, VMC, and Worksheet
Buffer are trademarks of Synopsys, Inc.

Service Marks (sm)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

iii

VMM User Guide

Contents

1 Introduction
Overview . 1-2

VMM Benefits: . 1-4
Ease of Use . 1-5
Reuse. 1-6
Effectiveness . 1-7

How to Use This User Guide? . 1-8
Basic Concepts of VMM . 1-9

Building Blocks - Class Library . 1-10
Verification Environments and Execution Control Phases. 1-12
Enhanced Verification Performance and Flexibility 1-14
Debug and Analysis: Message Service Class and Transaction Debug. 1-15

What's New in VMM? . 1-16
UML Diagram . 1-17
Resources . 1-18

2 Architecting Verification Environments
Overview . 2-2
Testbench Architecture . 2-2

Signal Layer . 2-6
Command Layer . 2-15

iv

VMM User Guide

Functional Layer . 2-17
Scenario Layer. 2-20
Test Layer . 2-22
Sub-environments . 2-23

Constructing and Controlling Environments . 2-28
Quick Transaction Modeling Style . 2-30
Understanding Implicit and Explicit Phasing . 2-31
Composing Explicitly Phased Environments . 2-33
Composing Explicitly Phased Sub-Environments 2-41
Composing Implicitly Phased Environments/Sub-Environments 2-48
Reaching Consensus for Terminating Simulation 2-56

Architecting Verification IP (VIP) . 2-63
VIP and Testbench Components . 2-63
Transactions . 2-63
Transactors . 2-65
Communication . 2-71
Environments and Sub-Environments . 2-73
Testing VIPs. 2-73

Advanced Usage . 2-75
Mixed Phasing . 2-75

3 Modeling Transactions
Overview . 3-2
Class Properties/Data Members . 3-5

Quick Transaction Modeling Style . 3-5
Message Service in Transaction . 3-6
Randomizing Transaction Members . 3-7
Context References . 3-8
Inheritance and OOP . 3-9
Handling Transaction Payloads . 3-15

Methods . 3-16
Factory Service for Transactions . 3-20

v

VMM User Guide

Constraints . 3-20
Shorthand Macros . 3-23

User-Defined Implementations . 3-25
Unsupported Data Types . 3-31
rand_mode() copy in Shorthand Macros . 3-34

4 Modeling Transactors and Timelines
Overview . 4-2
Transactor Phasing . 4-6

Explicit Transactor Phasing . 4-7
Implicit Phasing . 4-14

Threads and Processes Versus Phases . 4-18
Physical-Level Interfaces . 4-22
Transactor Callbacks . 4-26
Advanced Usage . 4-31

User-defined vmm_xactor Member Default Implementation 4-31
User-Defined Implicit Phases. 4-32
Skipping an Implicit Phase. 4-35
Disabling an Implicit Component . 4-35
Synchronizing on Implicit Phase Execution . 4-36
Breakpoints on Implicit Phasing. 4-38
Concatenation of Tests . 4-40
Explicitly Phasing Timelines. 4-42

5 Communication
Overview . 5-2
Channel . 5-3

Channel Declaration (vmm_channel_typed) . 5-4
Channel Declaration (vmm_channel). 5-5
Connection of Channels Between Transactors . 5-5
Channel Completion and Response Models . 5-8

vi

VMM User Guide

Typical Channel Execution Model . 5-8
Channel Record/Playback . 5-12

Completion Using Notification (vmm_notify) . 5-14
Notification Service Class . 5-15
Notify Observer . 5-17

Transport Interfaces in OSCI TLM2.0 . 5-18
Blocking Transport . 5-20
Non-Blocking Transport . 5-22
Sockets . 5-24
Connecting Blocking Components to Non-blocking Components 5-26
Generic Payload . 5-29

Broadcasting Using TLM2.0 . 5-32
Analysis Port Usage with Many Observers . 5-32
Analysis Port Multiple Ports Per Observer. 5-34
Shorthand Macro IDs . 5-35
Peer IDs. 5-36

Interoperability Between vmm_channel and TLM2.0 5-38
Connecting vmm_channel and TLM interface . 5-38
TLM2.0 Accessing Generators . 5-40
Forward Path Non-Blocking Connection . 5-41
Bidirectional Non-Blocking Connection . 5-42

Advanced Usage . 5-44
Updating Data in Analysis Ports From vmm_notify 5-44
Connect Utility (vmm_connect) . 5-46
Channel Non-Atomic Transaction Execution . 5-48
Channel Out-of-Order Atomic Execution Model. 5-49
Channel Passive Response. 5-55
Channel Reactive Response . 5-57
vmm_tlm_reactive_if . 5-61

6 Implementing Tests & Scenarios
Overview . 6-1

vii

VMM User Guide

Generating Stimulus . 6-2
Random Stimulus. 6-4
Directed Stimulus. 6-9
Generating Exceptions. 6-13
Embedded Stimulus. 6-18
Controlling Random Generation . 6-20

Modeling Scenarios . 6-24
Architecture of the Generators. 6-25
Scenario Selection. 6-26

Modeling Generators . 6-28
Atomic Generation . 6-28
Multiple-Stream Scenarios. 6-29
Single-Stream Scenarios . 6-45
Parameterized Atomic and Scenario Generators 6-52

Implementing Testcases . 6-54
Creating an Explicitly Phased Test . 6-55
Creating an Implicitly Phased Test . 6-55
Running Tests . 6-56

7 Common Infrastructure and Services
Common Object . 7-2

Overview . 7-2
Setting Object Relationships . 7-2
Finding Objects . 7-6
Printing and Displaying Objects . 7-7
Object Traversing. 7-8
Namespaces . 7-9

Message Service . 7-10
Overview . 7-11
Message Source . 7-12
Message Type . 7-12
Message Severity . 7-13

viii

VMM User Guide

Message Filters . 7-14
Simulation Handling. 7-14
Shorthand Macros . 7-15
Issuing Messages . 7-16
Filtering Messages. 7-17
Redirecting Message to File . 7-19
Promotion and Demotion . 7-20
Message Catcher. 7-20
Message Callbacks . 7-23
Stop Simulation Depending Upon Error Number 7-24

Class Factory Service . 7-26
Overview . 7-26
Modeling a Transaction to be Factory Enabled 7-28
Creating Factories . 7-31
Replacing Factories . 7-32
Factory for Parameterized Classes . 7-34
Factory for Atomic Generators. 7-36
Factory for Scenario Generators . 7-38
Modifying a Testbench Structure Using a Factory 7-41

Options & Configurations Service . 7-43
Overview . 7-43
Hierarchical Options (vmm_opts). 7-43
Specifying Placeholders for Hierarchical Options 7-44
Setting Hierarchical Options . 7-45
Setting Hierarchical Options on Command Line 7-46
Structural Configurations . 7-48
Specifying Structural Configuration Parameters in Transactors 7-50
Setting Structural Configuration Parameters . 7-51
Setting Options on Command Line . 7-52
RTL Configuration . 7-52
Defining RTL Configuration Parameters . 7-54
Using RTL Configuration in vmm_unit Extension 7-55

ix

VMM User Guide

First Pass: Generation of RTL Configuration Files 7-56
Second Pass: Simulation Using RTL Configuration File 7-57

Simple Match Patterns . 7-58
Overview . 7-58
Pattern Matching Rules . 7-59

8 Methodology Guide
Recommendations . 8-1

Transactions . 8-1
Message Service . 8-2
Transactors . 8-3
Callbacks . 8-3
Channels . 8-4
Environments . 8-4
Tests and Generators . 8-5
Channels and TLM Ports . 8-6
Configuration . 8-6

Rules . 8-7
Transactions . 8-7
Message Service . 8-8
Transactors . 8-8
Callbacks . 8-10
Channels . 8-10
Environments . 8-12
Notifications . 8-14
Tests and Generators . 8-15

9 Optimizing, Debugging and Customizing VMM
Optimizing VMM Components . 9-2

Garbage-Collecting vmm_object Instances . 9-2

x

VMM User Guide

Optimizing vmm_log Usage. 9-3
Static vmm_log Instances . 9-4
vmm_log Instances in vmm_channel. 9-6

Transaction and Environment Debugging . 9-7
Usage. 9-7
Built-in Transaction Recording. 9-8
Custom Transaction Recording . 9-12

Customizing VMM . 9-16
Adding to the Standard Library . 9-16
Customizing Base Classes . 9-18
Symbolic Base Class . 9-19
Customizing Utility Classes . 9-22
Symbolic Utility Class. 9-23
Underpinning Classes . 9-24
Base Classes as IP . 9-27

10 Primers
Multi-Stream Scenario Generator Primer . 10-2

Introduction . 10-2
 Step1: Creation of Scenario Class . 10-3
 Step 2: Usage of Logical Channels in MSS . 10-4
 Step 3: Registration of MSS in MSSG . 10-5
Complete Example of a Simple MSSG . 10-6

Class Factory Service Primer . 10-10
Introduction . 10-10
Step 1: Modeling Classes to be Factory Ready. 10-11
Step 2: Instantiating a Factory in Transactor . 10-14
Step 3: Instantiating a MSS Factory in MSSG. 10-15
Step 4: Replacing a Factory. 10-16
Step 4a: Replacing a Factory by a New One. 10-17
Step 4b: Replacing a Factory by a Copy . 10-19
Summary . 10-20

xi

VMM User Guide

Hierarchical Configuration Primer . 10-22
Introduction . 10-22
Step 1: Setting/Getting Global Options . 10-24
Step 2: Setting/Getting Hierarchical Options . 10-25
Step 3: Getting Structural Options . 10-26
Step 4: Setting Options . 10-29
Step 4a: Setting Options with set_* 10-29
Step 4b: Setting Options in Command Line. 10-30
Step 4c: Setting Options With Command File 10-30
Conclusion . 10-31

RTL Configuration Primer . 10-32
Introduction . 10-32
Step 1: Defining RTL Configurations . 10-34
Step 2: Nested RTL Configurations . 10-35
Step 3: Instantiating RTL Configurations . 10-35
Step 4: Generating RTL Configuration File . 10-37
Step 5: Simulation Using RTL Configuration File. 10-38
Conclusion . 10-39

Implicitly Phased Master Transactor Primer . 10-40
Introduction . 10-40
The Protocol. 10-40
The Verification Components. 10-41
Step 2: Instantiating and Connecting the DUT. 10-44
Step 3: Modeling the APB Transaction . 10-45
Step 4: Modeling the Master Transactor . 10-47
Step 5: Implementing an Observer . 10-56
Step 6: Instantiating the Components in the Environment. 10-56
 Step 7: Implementing Sanity Test . 10-58
Step 8: Adding Debug Messages . 10-60
Step 9: Implementing Transaction Generator 10-61
Step 10: Implementing the Top-Level File . 10-61

xii

VMM User Guide

A Standard Library Classes (Part 1)

VMM Standard Library Class List . A-2
factory . A-4
vmm_atomic_gen#(T) . A-13
<class-name>_atomic_gen_callbacks . A-26
vmm_atomic_scenario#(T) . A-29
vmm_broadcast . A-30
vmm_channel . A-44

VMM Channel Relationships . A-45
VMM Channel Record or Replay . A-47

vmm_channel_typed#(type) . A-102
vmm_connect#(T,N,D) . A-110
vmm_consensus . A-117
vmm_data . A-147
vmm_env . A-207
vmm_group . A-245
vmm_group_callbacks . A-247
vmm_log . A-254
vmm_log_msg . A-310
vmm_log_callback . A-320
vmm_log_catcher . A-326
vmm_log_format . A-333
vmm_ms_scenario . A-341
vmm_ms_scenario_gen . A-351
vmm_notification . A-418
vmm_notify . A-423
vmm_notify_callbacks . A-448
vmm_notify_observer#(T,D) . A-451
vmm_object . A-455
vmm_object_iter . A-490
vmm_opts . A-494

xiii

VMM User Guide

B Standard Library Classes (Part 2)

VMM Standard Library Class List . B-2
vmm_phase . B-5
vmm_phase_def . B-18
vmm_rtl_config_DW_format . B-37
vmm_rtl_config . B-38
vmm_rtl_config_file_format . B-49
vmm_scenario . B-61
vmm_scenario_gen#(T, text) . B-95
<class-name>_scenario . B-139
<class-name>_atomic_scenario . B-158
<class-name>_scenario_election . B-161
<class-name>_scenario_gen_callbacks . B-170
vmm_scheduler . B-175
vmm_scheduler_election . B-191
vmm_ss_scenario#(T) . B-204
vmm_simulation . B-205
vmm_subenv . B-214
vmm_test . B-246
vmm_test_registry . B-257
vmm_timeline . B-261
vmm_timeline_callbacks . B-285
vmm_tlm . B-288
vmm_tlm_extension_base . B-290
vmm_tlm_generic_payload . B-291
vmm_tlm_analysis_port#(I,D) . B-300
vmm_tlm_analysis_export#(T,D) . B-302
‘vmm_tlm_analysis_export(SUFFIX) . B-304
vmm_tlm_b_transport_export#(T,D) . B-305
vmm_tlm_b_transport_port #(I,D) . B-310
vmm_tlm_export_base #(D,P) . B-313
vmm_tlm_nb_transport_bw_export#(T,D,P) . B-325
vmm_tlm_nb_transport_bw_port#(I,D,P) . B-330
vmm_tlm_nb_transport_export#(T,D,P) . B-333
vmm_tlm_nb_transport_fw_export#(T,D,P) . B-336

xiv

VMM User Guide

vmm_tlm_nb_transport_fw_port#(I,D,P) . B-341
vmm_tlm_nb_transport_port#(I,D,P) . B-344
vmm_tlm_port_base#(D,P) . B-347
vmm_tlm_initiator_socket#(I,D,P) . B-356
vmm_tlm_target_socket#(T,D,P) . B-359
vmm_tlm_transport_interconnect#(DATA) . B-363
vmm_tlm_transport_interconnect_base#(DATA,PHASE) B-365
vmm_tlm_reactive_if #(DATA, q_size) . B-370
vmm_unit . B-377
vmm_version . B-406
vmm_voter . B-413
vmm_xactor . B-417

Summary . B-417
vmm_xactor_callbacks . B-477
vmm_xactor_iter . B-478

Using the vmm_xactor_iter Class . B-479
Using the Shorthand Macro `foreach_vmm_xactor() B-480

C Command Line Reference

D Release Notes

New Features in VMM User Guide . D-1
New Base Classes. D-1

1-1

VMM User Guide

1
Introduction 1

The Verification Methodology Manual (VMM) describes the
framework for developing re-usable verification components, sub-
environments and environments.

This framework enables higher productivity, reuse and
interoperability. VMM provides a class library and defines industry
best practices with coding guidelines and rules. The set of guidelines
and recommendations paves the path for creating highly efficient
transaction-level, constrained-random verification environments
using SystemVerilog.

This chapter introduces the main concepts of VMM and its usage
models in the following sections:

• Overview

• How to Use This User Guide?

1-2

VMM User Guide

• Basic Concepts of VMM

• What's New in VMM?

• UML Diagram

• Resources

Overview

Winning in competitive electronic systems and computer industries
requires continuous delivery of high quality and feature-rich products
efficiently. To this end, companies constantly seek innovative ways
to improve their product development cycles.

Electronic designs have become so complex that design
development often relies on ready-made foundations of design and
verification blocks. This translates into the requirement of even more
complex verification components and environments. With an ever-
shrinking time-to-market window, verification task has become
crucial within the complex system and chip design flow.

Companies strive to raise productivity and quality of design
verification, streamline and reduce the time it takes to functionally
validate a design before fabrication.

We see that today's chip designs require work at many levels of
abstractions - high-level abstract models, transaction-level models
and gate level netlist.

Design components in many levels of abstractions are frequently
reused and expanded. Complications in their integration - be it
internal design blocks or third party IPs, together with their
verification environments, can unexpectedly delay the development.

1-3

VMM User Guide

A well structured verification environment and its components such
as verification IPs, should smoothen the path for integration,
capability for horizontal and vertical reuse. It should also offer
flexibility to create tests for verifying various design configurations,
all design operating modes and to generate meaningful information
for debugging.

Figure 1-1 is an example for using VIPs for verifying design under
test (DUT).

Figure 1-1 Verification Environment Using Verification IPs With DUT.

A layered verification architecture such as VMM, uses the following
flow to provide flexibility and reusability for development of
testbenches for use from block level to chip and system-level
verification.

1-4

VMM User Guide

Based on a robust verification plan, the test components define
specific configurations and requirements. The test information
provides the means for transactors to create transactions used by a
generator to produce random sequences of transactions. A monitor
gathers information from transactions passed through the Design
Under Test (DUT). A scoreboard is used to compare observed
transactions against expected results. Functional coverage
measures the verification requirements that have been actually met
by the tests.

When verification engineers build a verification environment on top
of a well defined and structured base, the overall development is
faster. The verification task can quickly shift to generation of tests
and scenarios that stimulate the DUT for unearthing hidden bugs.
This is possible only if the actual implementation of a verification
environment follows well defined standard guidelines.

VMM Benefits:

By using VMM, you can take advantage of the following benefits:

- Avoid common implementation mistakes

- Set clear expectations for verification components and features

- Reduce development time, integration time, and engineers’
ramp up time as a result of the known expectations

VMM guidelines help you to develop a well defined and thought-
through verification environment that is,

- Easy to use (modular, flexible, customizable)

- Reusable (from block level to top level; from one project to
another project)

1-5

VMM User Guide

- Effective (help identify design bugs faster, optimized for
superior performances, easy to debug)

Ease of Use

• Modularity: The layered development of a verification
environment lets you create logically partitioned components
which can be connected with minimum effort. Each verification
component serves a specific purpose and performs a specific set
of functions. Components such as verification IPs, form the
building blocks of a verification environment.

• Flexibility: The test stimulus generation using built-in classes and
generators provide complete flexibility for tests that cover the
entire functionality of the DUT. The ability to mix implicit and
explicit phasing promotes complete flexibility and reuse of
verification components. The class factory service provides faster
stimulus configuration and reuse. Configuration options provide
flexibility to control testbench functionality from the runtime
command line.

• Customization: The ability to weave a user-defined class library
into the standard library allows you to provide highly specialized
specific features and capabilities that might be missing in the
standard version.

1-6

VMM User Guide

Reuse

• Horizontal: You can reuse the environment components between
projects. This is made possible by the underlying methodology
and layered-base architecture, which enables reuse of
transactors, verification components and IPs. The compliance
tests and standard protocol scenarios can be reused across
projects and design implementations.

• Vertical: You can reuse the environment components from block-
level to subsystem-level and system-level verification. This is
made possible by the sub-environment architecture, which
enables easy vertical reuse. Transactor phases can be
automatically run or called in the environment. This can be
implicitly or explicitly controlled respectively. Both explicitly and
implicitly phased sub-environments provide this vertical reuse
functionality. Implicitly phased environments simplify
incorporation of user-defined phases, addition, deletion and
reordering of phases in transactors. Multiple timelines, reuse of
verification environments and components achieve fine-grained
controllability over phasing in a sub-system.

• Diagonal: You can reuse the environment components by various
platforms such as, RTL simulation, hardware acceleration and
virtual prototyping. The Register Abstraction Layer (RAL) and
Hardware Abstraction Layer (HAL) packages provide
mechanisms for leveraging testcases and sequences for diagonal
reuse. Based on the VMM methodology, these utilities can
enhance and ease software debug. RAL provides a unified
register-modeling scheme that can be fully reused in various
verification environments. HAL provides reuse of existing
verification environments for hardware and virtual platforms. For
details, see the VMM Application Library user guide.

1-7

VMM User Guide

Effectiveness

• Bug-finding methodology: Increase in design complexity has
made constrained-random test generation and functional
coverage analysis an essential part of a verification environment.
Constrained random stimulus enables the automation of creating
a huge number of test scenarios, which would be impossible to
replicate manually. VMM provides sound guidelines for efficient
modeling of transactors and constraining transactions. Given
tests results, functional coverage analysis provides an indication
for test quality and verification goals completion.

• Optimized for performance: VMM classes have been
architected for peak performance, avoiding run-time
interpretations and expression evaluation. Additionally, for further
improvements in compilation and simulation performance, you
can easily turn off some features that are not used.

• Debug: Because intricacy and complexity of testcases and
scenarios immensely stress the DUT, it is crucial to leverage from
tools and mechanisms for debugging the environment and
stimulus at higher level of abstraction. VMM provides consistent
use of message logging, recording and viewing of transactions
and components states. These facilities help debug of complex
designs and tests.

1-8

VMM User Guide

How to Use This User Guide?

The following sections provide a practical usage overview of the
VMM core functionality:

• Chapter 2, "Architecting Verification Environments", introduces
best practices and usage of base classes to create layered
verification environment and components. An overview of
creating sub-environments, controlling transactors within an
environment is reviewed here.

• Chapter 3, "Modeling Transactions", describes guidelines for
modeling transactions.

• Chapter 4, "Modeling Transactors and Timelines", reviews the
basic transactor modeling techniques with explicit/implicit
phasing. Callback mechanisms and shorthand macros usage are
reviewed here.

• Chapter 5, "Communication", describes, transaction-level
interfaces for transactors and mechanisms for passing
transactions/data between transactors such as drivers/monitors
and scoreboards. Channel, TLM transport and analysis port and
notifications are reviewed here.

• Chapter 6, "Implementing Tests & Scenarios", provides various
scenario generation mechanisms including the multiple-stream
scenario generator (MSSG) classes and features.

• Chapter 7, "Common Infrastructure and Services", introduces
infrastructure and elements of VMM. The vmm_object class,
message services, factory services as well as hierarchical options
usage and configuration setup are discussed here.

1-9

VMM User Guide

• Chapter 8, "Methodology Guide", provides the methodology for
extending the VMM standard library.

• Chapter 9, "Optimizing, Debugging and Customizing VMM",
provides various coding recommendations to optimize
performance and describes embedded system functions in VCS
helping VMM transaction debug.

• Chapter 10, "Primers", provides procedural examples for
understanding MSSG, class factory service, hierarchical options,
RTL configurations and modeling a master transactor.

• Appendix A, "Standard Library Classes (Part 1)" and Appendix C,
"Command Line Reference" include references to standard library
classes and command line switches.

Basic Concepts of VMM

VMM includes a proven industry-standard verification methodology
based on an object-oriented programming model supported by
SystemVerilog.

VMM class library provides common infrastructure and services
which enable a quick start in building an advanced verification
environment. It provides application packages for improving
productivity. Using a well-defined and easily accessible library such
as VMM, guarantees interoperability of verification components and
environments from different sources.

1-10

VMM User Guide

Building Blocks - Class Library

This section provides an overview of the main VMM class library and
utilities used as building blocks for basic verification components.
For a complete list and functionality, see Appendix A, "Standard
Library Classes (Part 1)" and Appendix C, "Command Line
Reference".

vmm_object

The vmm_object virtual base class is used as the common base
class for all VMM classes. Classes derived from vmm_object and
any VMM base class can form a searchable and named object
hierarchy.

For details, see Chapter 7, "Common Infrastructure and Services".

vmm_data [Transactions/Data model]

The vmm_data virtual base class is extended to model transactions.
This class includes a set of properties, methods and macros required
to deal with transactions for different types of designs. For example:
allocate(), copy(), display().

For details on vmm_data and transaction modeling, see Chapter 3,
"Modeling Transactions".

vmm_xactor Transactors, such as Drivers, Monitors]

The vmm_xactor virtual base class is extended to model all kinds
of transactors such as, bus-functional models, monitors and
generators. This class includes properties and methods used to
configure and control different types of transactors.

1-11

VMM User Guide

For details on vmm_xactor class, see Chapter 4, "Modeling
Transactors and Timelines".

`vmm_channel [Communication, Transaction Passing]

The ̀ vmm_channel class defines a transaction-level interface class
that serves as the conduit for transaction exchange between
transactors in the verification environment. The channel class
includes properties and methods used to control the flow of
transactions between transactors. For example: full_level(),
size(), is_full().

For details on channel class, see Chapter 5, "Communication".

vmm_tlm_* [Communication, Transport Interface
Mechanisms]

The vmm_tlm* classes emulate the following OSCI TLM 2.0
transport interfaces: blocking, non-blocking, socket, generic payload
and analysis port.

For details on vmm_tlm_* class, see Chapter 5, "Communication".

vmm_ms_scenario and vmm_ms_scenario_gen

The general purpose MSSG controls, schedules and randomizes
multiple stimulus scenarios. Multi-stream scenarios are able to inject
stimulus or react to response on multiple channels. You can also
create hierarchical scenarios that are composed of other multi-
stream scenarios.

For details, see Chapter 6, "Implementing Tests & Scenarios".

1-12

VMM User Guide

vmm_class_factory [VMM factory service]

The factory service provides a simple set of APIs to replace any kind
of object, transaction, scenario, or transactor with a similar object as
required by a specific test.

For details on the factory services, see Chapter 7, "Common
Infrastructure and Services".

`vmm_callback

Callbacks are used to incorporate new mechanisms and routines
once a verification environment and its components have been
developed. Callback routines are registered in the main routines and
executed (or called back) at certain user-defined simulation points.
The `vmm_callback macro defines a callback class that contains
methods to be executed when registered callbacks are called.

For details on callbacks, see Chapter 4, "Modeling Transactors and
Timelines".

Verification Environments and Execution Control
Phases

Phasing refers to the overall progression of a simulation. Execution
of a simulation is divided into predefined phases. All verification
components within an environment are synchronized to the phases
so that their actions can be coordinated throughout. VMM supports
explicit, implicit, and mixed phasing.

For details, see Chapter 2, "Architecting Verification Environments".

1-13

VMM User Guide

vmm_group

The vmm_group class is extended to create sub-environment and
environments with implicit phasing. All transactors instantiated in this
environment have their phases automatically called at the
appropriate time.

For details, see Chapter 4, "Modeling Transactors and Timelines".

vmm_consensus

The vmm_consensus object offers a well-defined service for
collaboration on deciding test completion and ending simulation.

For details, see Chapter 7, "Common Infrastructure and Services".

vmm_subenv

The vmm_subenv virtual base class is extended to create explicitly-
phased sub-environments. All transactors and sub-environments
instantiated in this environment must have their phase methods
explicitly called at the appropriate time.

For details on vmm_subenv, see Chapter 2, "Architecting Verification
Environments".

vmm_env

The vmm_env virtual base class is extended to create explicitly-
phased environments. This class includes a set of predefined
methods that correspond to specific simulation phases. All
transactors and sub-environments instantiated in this environment
must have their phases methods explicitly called at the appropriate
time.

1-14

VMM User Guide

For details on vmm_env, see Chapter 2, "Architecting Verification
Environments".

Enhanced Verification Performance and Flexibility

VMM provides comprehensive ways of configuring transactors,
components and verification environments which aid improving
flexibility and performance.

vmm_test

The vmm_test class is extended to implement testcases. It is where
tests add scenarios, override factories and modify connections. The
vmm_test class can be used for standalone tests or for
concatenating multiple implicitly-phased tests within a simulation run
to improve overall simulation efficiency.

For details, see Chapter 6, "Implementing Tests & Scenarios".

vmm_opts

The vmm_opts object allows to define and set configuration options.
Options can be set from the simulator command line, file or within the
code itself. These options can be set on a per-instance basis or
globally by using regular expressions.

For details, see Chapter 7, "Common Infrastructure and Services".

1-15

VMM User Guide

Debug and Analysis: Message Service Class and
Transaction Debug

Transactors, scoreboards, assertions, environment and testcases
use messages to report regular, debug, or error information.

vmm_log [message service class]

The vmm_opts object provides rich set of severity handling utilities
and macros for comprehensive reporting, formatting and analysis.

For details, see Chapter 7, "Common Infrastructure and Services".

Transaction and Environment Debug

Transaction and components include built-in recording facility that
enable transaction and environment debugging. The vmm_data
class members which are registered using shorthand macros are
easily viewed on a waveform.

Additional notification status of various components are viewed on
the waveform timeline. Additionally, it is possible to determine the
level of debug information that is required to be shown.

For details, see Chapter 9, "Optimizing, Debugging and Customizing
VMM".

1-16

VMM User Guide

What's New in VMM?

The latest VMM version incorporates new classes and features to
enhance the functionality and flexibility in verification environment
development.

Some highlights of the new features are,

• The class factory service supplements the existing factory usage
and further enables faster stimulus configuration and reuse. It
declares and overrides any kind of objects such as, transactions,
scenarios, transactors and interfaces.

• The concepts of implicit phasing and timelines for enhanced
flexibility and reuse of verification components have been
implemented. This augments the current explicit phasing
capabilities. Implicit phasing enables components to control their
own status.

• Configuration options service including methods to control
testbench functionality from the runtime command line, have been
enhanced. It supports configuration database and configuration
settings from a file. New RTL configuration support ensures
alignment with testbench configuration. It supports randomized
RTL configuration capabilities.

• Multiple name spaces and hierarchical naming are possible
through a new common base class which provides a powerful
search functionality.

• TLM-2.0 is now supported, it is complemented with channel-
based connectivity and communication mechanisms.

• Extended parameterization features support many base classes
in the standard library such as channels and generators.

1-17

VMM User Guide

UML Diagram

The following diagram shows the relationship between the various
VMM classes.

1-18

VMM User Guide

Resources

The following resources are available for VMM users:

VMM Central (www.vmmcentral.org) is an online community for
VMM users to:

- Share information

- Exchange ideas

- Obtain VMM related news and updates

- Receive support on VMM related inquiries

- Learn new tricks and techniques from VMM users and experts

Note: VMM users are strongly encouraged to register as a member.
Usage scenarios and recommendations of various VMM features
are discussed in the following primers:
- Composing Environments

- Writing Command Layer Master Transactors

- Writing Command Layer Slave Transactors

- Writing Command Layer Monitor Transactors

- Using Command Layer Transactors

- Using the Register Abstraction Layer

- Using the Memory Allocation Manager

- Using the Data Stream Scoreboard

http://www.vmmcentral.org

1-19

VMM User Guide

Applications are documented in the following user guides:

- VMM Register Abstraction Layer User Guide

- Verification Planner User Guide

- VMM Hardware Abstraction Layer User Guide

- VMM Scoreboarding User Guide

- VMM Performance Analyzer User Guide

1-20

VMM User Guide

2-1

VMM User Guide

2
Architecting Verification Environments 1

This chapter contains the following sections:

• Overview

• Testbench Architecture

• Constructing and Controlling Environments

• Architecting Verification IP (VIP)

• Advanced Usage

2-2

VMM User Guide

Overview

The challenge in transitioning from a procedural language such as
Verilog or VHDL, to a language like SystemVerilog is in making
effective use of the object-oriented programming model. When
properly used, these features can greatly enhance the reusability of
testbench components.

This section covers the following topics:

• Guidelines to maximize the usage of features that create
verification components and verification environment satisfying
the needs of all the testcases applied to the DUT.

• Guidelines to model transactors with appropriate data sampling
interfaces, verification sub-environments and environment.

• Guidelines to model test stimulus and response checking
mechanisms.

The guidelines in this chapter are based on the VMM Standard
Library specified in Appendix A, "Standard Library Classes (Part 1)".
Though the methodology and approaches here can be implemented
in a different class library, using a well-defined and openly accessible
library guarantees interoperability of the various verification
components.

Testbench Architecture

This section describes recommended testbench architecture. You
implement testcases on top of a verification environment as shown
in Figure 2-1. The verification environment implements the

2-3

VMM User Guide

abstraction and automation functions that help minimize the number
and complexity of testcases written. You can reuse the verification
environment without modifications with as many testcases as
possible to minimize the amount of code required to verify the DUT.

For a given DUT, there might be several verification environments as
you can observe in Figure 2-1. However, you should minimize the
number of environments and build testcases on top of existing
environments as far as possible.

Another important aspect of this methodology is to minimize the
number of lines that are required to implement a testcase. Investing
in a few or one verification environment to save even a single line in
the thousands of potential testcases is worthwhile.

Figure 2-1 Tests on Top of Verification Environment

DUT

Testcase A

Verification Environment

.

Verification environments are not monolithic. As shown in Figure 2-
2, environments are composed of layers. As in Figure 2-3, they
mirror the abstraction layers in the data processed by the design.
You design them to meet the various requirements of testcases
written for it. Each layer provides a set of services to the upper layers
or testcases, while abstracting it from the lower-level details.

2-4

VMM User Guide

Figure 2-2 Layered Verification Environment Architecture

DUT

Properties Monitor

Self-Check Monitor

Generator

Testcase ATest

Scenario

Functional

Command

Signal

Fu
nc

tio
na

l C
ov

er
ag

e

Driver

Driver
Checker Checker

Constraints, Directed Stimulus

High-Level Transactions

Atomic Transactions

1s & 0s

Figure 2-3 Application of Layered Testbench Architecture.

DUT

Properties USB

Scoreboard USB Transfers

Data Generator

Testcase A

Fu
nc

tio
na

l C
ov

er
ag

e
Firmware

AMBA AHB
AMBA AHB USB

Master Transactions
Interface CheckerChecker Interface

Though Figure 2-2 shows testcases interacting only with the upper
layers of the verification environment, they can by-pass various
layers to interact with various components of the environment or the
DUT to accomplish their goals.

2-5

VMM User Guide

Testcases are a combination of additional constraints on generators,
new random scenario definitions, synchronization mechanisms
between transactors, error injection enablers, DUT state monitoring
and directed stimulus.

A verification environment must enable support for all testcases
required to verify the DUT without modification. Therefore, you must
assemble it with carefully designed, reusable components.

You never implement complete verification environments in one
pass. You do not deliver them to the testcase writers as a finished
product that implements a complete set of specifications the
verification architects provide.

Rather, they evolve to meet the increasingly complex requirements
of the testcases being written and responses checked. A trivial
directed testcase with no self-checking layers is added to evolve the
verification environment into a full-fledged, self-checking,
constrained-random one.

The methodology in this chapter allows this evolution to occur in a
backward-compatible fashion to avoid breaking existing testcases. It
describes enabling the vertical and diagonal reuse of test
environments such as block-to-top reuse.

Layered architecture makes no assumption of the DUT model. It can
be an RTL, gate-level model or transaction-level model. You can also
simulate the DUT natively in the same simulator as the verification
environment. Else, co-simulate it on a different simulator or emulate
on a hardware platform.

2-6

VMM User Guide

This top-level module contains the design portion of the simulation.
Various elements of the signal layer or DUT are accessible via cross-
module references through the top-level module. It is unnecessary
to instantiate the top-level module anywhere. For guidelines on
implementing the signal layer, see “Signal Layer” on page 6.

The environment leverages generic functionality from a verification
environment base class. It refers to the signal layer or various DUT
elements via cross-module references into the top-level module.

Each testcase instantiates this environment. For guidelines on
implementing the top-level environment class, see “Constructing
and Controlling Environments” on page 28.

The vmm_test describes the testcase procedure. For guidelines on
implementing testcases, see Chapter 6, "Implementing Tests &
Scenarios".

Signal Layer

This layer provides signal-level connectivity to the DUT. Then the
signal layer provides pin name abstraction enabling verification
components that are used and unmodified with different DUTs or
different implementation models of the same DUT. For example,
consider an RTL description of the DUT using interface
constructs and a gate-level description of the same DUT using
individual bit I/O signals. This layer might abstract synchronization
and timing of synchronous signals with respect to a reference signal.

The signal abstraction this layer provides is accessible. All layers
and testcases above it might use it where signal-level access is
required.

2-7

VMM User Guide

However, you should implement verification environments and
testcases in terms of the highest possible level services that lower
layers provide and avoid accessing signals directly (unless
imperative).

Command-layer transactors have a physical-level interface
composed of individual signals. You bundle all signals pertaining to
a physical protocol in a single interface construct hence allowing
this interface to be virtual and easily bound to the DUT. For details,
see Chapter 4, "Modeling Transactors and Timelines".

Example 2-1 Packaging of Interface Declaration
interface mii_if(...);
 ...
endinterface: mii_if;
...
class mii_phy_layer ...;
 virtual mii_if.phy_layer sigs;
 ...
endclass: phy_layer
...

If an interface declaration already exists for the protocol signals
as in RTL design code and it meets (or can be made to meet) all of
the subsequent requirements outlined in this section, then you
should physically move to the file packaging the transactors that use
them. In most cases, different interface declarations will exist or
you will require them.

To minimize the collisions between interface names and other
identifiers in the global name space, they use a "likely-unique" prefix.
That prefix is the same as various prefixes you use for related
transactors. You use the name of the package that optionally
contains the transactors that use the interface as the prefix to
further document the association.

2-8

VMM User Guide

Verification components use the same interface constructs
regardless of their perspective or role on the interface. Some
components drive signals, others simply monitor their value.

Depending on the functionality of the verification component the
signal being driven or monitored might be different. Example 2-2
shows how to use interface for bundling inouts to represent a
physical interface signal regardless of the direction of the signal.

Example 2-2 Verification Interface Signal Declaration
interface mii_if();
 inout tx_clk;
 inout [3:0] txd;
 inout tx_en;
 inout tx_err;
 inout rx_clk;
 inout [3:0] rxd;
 inout rx_dv;
 inout rx_err;
 inout crs;
 inout col;
 ...
endinterface: mii_if

Example 2-3 shows how to use clocking blocks for modeling
synchronous interfaces. This approach avoids race conditions
between a design and a verification environment and allows the
environment to work with RTL and gate-level models of the DUT
without modifications or timing violations.

You should use parameters to retain default values such as bus
width, setup or hold. These values can be overridden when
instantiating this interface.

Example 2-3 Synchronous Interface Signal Declaration
interface mii_if;
 ...
 parameter setup_time = 5ns;
 parameter hold_time = 3ns;

2-9

VMM User Guide

 clocking mtx @(posedge tx_clk);
 default input #setup_time output #hold_time;
 output txd, tx_en, tx_err;
 endclocking: tx

 clocking mrx @(posedge rx_clk);
 default input #setup_time output #hold_time;
 input rxd, rx_dv, rx_err;
 endclocking: rx
 ...
endinterface: mii_if

This implementation style allows changing the set-up and hold time
on a per instance basis to meet the needs of the DUT without
modifying the interface declaration itself. Modifying the interface
declaration has global effects. However, you can specify parameters
for each interface instance.

Example 2-4 Specifying Set-Up and Hold Times for Synchronous Signals
mii_if #(.setup_time(1),
 .hold_time (0)) mii();

Different transactors might have different perspectives on a set of
signals. One might be a master driver, another a reactive monitor or
a slave driver and yet another a passive monitor. Certain interfaces
have different types of proactive transactors such as arbiters and
agents. You must declare a modport for each of their individual
perspectives to ensure that each transactor uses the interface
signals appropriately.

Example 2-5 Module Port Declarations
interface mii_if;
 ...
 modport mac_layer(clocking mtx,
 clocking mrx,
 input crs,
 input col, ...);
 ...
 modport phy_layer(clocking ptx,
 clocking prx,
 output crs,

2-10

VMM User Guide

 output col, ...);
 ...
 modport passive(clocking ptx,
 clocking mrx,
 input crs,
 input col, ...);
 ...
endinterface: mii_if

You should implement transactors as separate class
definitions.

This is described in Chapter 4, "Modeling Transactors and
Timelines". They interface to the physical signals through virtual
modports.

You should not define transactions and transactors as tasks
inside the interface declaration.

The interface declaration you share with the RTL design might
contain such tasks. However, the verification environment uses
them.

Note: The signals declared in the interface create a bundle of wires.
The direction of information on the individual wires depends on
the role of the agent you connect to those wires. For example,
wires carrying address information are outputs for a bus master.
However, they are inputs for a bus slave or bus monitor.

You should specify the direction of asynchronous signals
directly in the modport, for you do not sample them via
clocking blocks.

You should specify the direction of synchronous signals in the
clocking block and include the entire clocking block in the
modport port list.

2-11

VMM User Guide

Thus, synchronous signals are already visible and their directions
are already enforced.

Transactors must enable delay of the driving or sampling of
synchronous signals by an integer number of cycles. You can specify
the number of cycles by referring to the clocking block that defines
the synchronization of an interface, without knowing the details of the
synchronization event specified in the clocking block declaration.

Because all signals in a clocking block are visible, adding the
synchronous signals to the modport port list is redundant.
Furthermore, referring to synchronous signals through their
respective clocking blocks highlights their synchronous nature,
associated sampling and driving semantics. Example 2-6 shows how
to use clocking block positive edge for writing BFMs.

Example 2-6 Waiting for the Next Cycle on the tx Interface
foreach (bytes[i]) begin
 ...
 @(this.sigs.mtx);
 this.sigs.mtx.txd <= nibble;
 ...
 @(this.sigs.mtx);
 this.sigs.mtx.txd <= nibble;
 ...
end

You might have written verification components and the design using
different interface declarations for the same physical signals. To
connect the verification components to the design, it is necessary to
map two separate interface instances to the same physical
signals. This can be accomplished with continuous assignments for
unidirectional signals and aliasing for bidirectional signals. Example
2-8 shows how to model a top-level module that contains multiple
interfaces.

2-12

VMM User Guide

Example 2-7 Mapping Two Different Interface Instances to the Same
Physical Signals

interface eth_tx_if; // RTL Design Interface
 bit clk;
 wire [3:0] d;
 logic en;
 logic err;
 logic crs;
 logic col;
endinterface: eth_tx_if

module tb_top;

bit tx_clk;
eth_tx_if mii_dut(); // Design Interface Instance
mii_if mii_xct(); // Transactor Interface Instance

assign mii_dut.clk = tx_clk; // Unidirectional
assign mii_xct.tx_clk = tx_clk;
alias mii_xct.txd = mii_dut.d; // Inout
...
endmodule: tb_top

Clock signals must be scheduled in the design regions. Therefore,
you must generate them outside the verification environment in an
always or initial block. You should not generate clock signals
inside verification components or transactors because they need to
be scheduled in the reactive region.

There are race conditions between initial scheduling of the initial
and always blocks implementing the clock generators and those
implementing the design.

Delaying the clock edges to a point in time until you have scheduled
each initial and always block at least once, eliminates those
race conditions.

It is a good practice to wait for the duration of a few periods of the
slowest clock in the system before generating clock edges.

2-13

VMM User Guide

Example 2-8 Clock Generation in Top-Level Module
module tb_top;
bit tx_clk;
...
initial
begin
 ...
 #20; // No clock edge at T=0
 tx_clk = 0;
 ...
 forever begin
 #(T/2) tx_clk = 1;
 #(T/2) tx_clk = 0;
 end
end
endmodule: tb_top

Using a two-state data type ensures that you initialize the clock
signals to a known, valid value.

If a four-state logic type such as logic, is used to implement the
clock signals, the initialization of those signals to 1’b0 might be
considered as an active negative edge by some design components.

The alternative of leaving the clock signals at 1'bx while you delay
the clock edges -- as in the previous rule might cause functional
problems if you propagate these unknown values.

Clock signals can be synchronized with an asynchronous
relationship inherently. This is required to simulate with a fixed initial
phase and a common timing reference such as the internal
simulation time. You should randomize the relationship of such
clocks to ensure that problems related to asynchronous clock
domains can surface during simulation.

Example 2-9 Randomizing Clock Offsets
integer tx_rx_offset; // 0-99% T lag
integer T = 100;
initial

2-14

VMM User Guide

begin
 ...
 tx_rx_offset = {$random} % 100;
 #20; // No clock edge at T=0
 tx_clk = 0;
 rx_clk = 0;
 ...
 fork
 begin
 #(T * (tx_rx_offset % 100) / 100.0);
 forever begin
 #(T/2) rx_clk = 1;
 #(T/2) rx_clk = 0;
 end
 end
 join_none

 forever begin
 #(T/2) tx_clk = 1;
 #(T/2) tx_clk = 0;
 end
end

To enable tests to control the random clock relationship values, you
should randomize random clock relationship values to enable tests
to control these values as part of the testcase configuration
descriptor. You will then assign to the appropriate variable in the
clock generation code, the randomized value in the extension of the
explicit vmm_env::reset_dut() method or the implicit reset
phase.

2-15

VMM User Guide

Note: It is possible to pass these values at run-time in the command
line by using the vmm_opts facility. For details, see Chapter 7,
"Common Infrastructure and Services".

Command Layer

The command layer typically contains bus-functional models,
physical-level drivers, monitors and checkers associated with the
various interfaces and physical-level protocols present in the DUT.

Regardless of how you model the DUT, the command layer provides
a consistent, low-level transaction interface to it. At this level, you
define a transaction as an atomic data transfer or command
operation on an interface such as a register write, transmission of an
Ethernet frame or fetching of an instruction.

You typically define atomic operations using individual timing
diagrams in interface specifications. Reading and writing registers is
an example of an atomic operation. The command layer provides
methods to access registers in the DUT. This layer has a mechanism
that bypasses the physical interface to peek and poke the register
values directly into the DUT model.

Note: The implementation of direct-access, register read/write driver
is dependent upon the implementation of the DUT.

A driver actively supplies stimulus data to the DUT. A proactive driver
is in control of the initiation and type of the transaction.

Whenever the higher layers of the verification environment supply a
new transaction to a proactive driver, the transaction on the physical
interface gets immediately executed. For example, a master bus-
functional model for an AMBA AHB interface is a proactive driver.

2-16

VMM User Guide

A reactive driver is not in control of the initiation or type of the
transaction but might be in control of some aspect of the timing of its
execution such as the introduction of wait states.

The DUT initiates the transaction and the reactive driver supplies the
required data to successfully complete the transaction. For example,
a program memory interface bus-functional model is a reactive
driver. The DUT initiates read cycles to fetch the next instruction and
the bus-functional model supplies new data in the form of an
encoded instruction.

A monitor reports observed high-level transaction timing and data
information. A reactive monitor includes elements to generate the
low-level handshaking signals to terminate an interface and
successfully complete a transaction.

Unlike a reactive driver, a reactive monitor does not generate
transaction-level information. For example, a Utopia Level 1 receiver
is a reactive monitor. It receives ATM cells without generating
additional data. But it generates a cell to enable signal back to the
DUT for flow control.

A passive monitor simply observes all signals involved in the
transaction without any interference. A passive monitor is suitable for
monitoring transactions on an interface between two DUT blocks in
a system-level verification environment.

While interfacing with an RTL or gate-level model, the physical
abstraction layer might translate transactions to or from signal
assertions and transitions.

While interfacing with a transaction-level model, the physical
abstraction layer becomes a pass-through layer.

2-17

VMM User Guide

In both cases, the transaction-level interface that is present in the
higher layers remains the same. Thereby it allows the same
verification environment and testcases to run on different models of
the DUT at different levels of abstraction without any modifications.

The services the command layer provides might not be limited to
atomic operations on external interfaces around the DUT. You can
provide these services on internal interfaces for missing or
temporarily removed design components.

For example, embedded memory acting as an elastic buffer for
routed data packets can be replaced with a testbench component.
This helps track and check packets in and out of the buffer rather
than only at DUT endpoints. Or, an embedded code memory in a
processor can be replaced with a reactive driver that allows on-the-
fly instruction generation instead of using pre-loaded static code.
Alternatively, embedded processor can be replaced with a transactor
allowing the testbench to control the read and write cycles of the
processors, instead of indirectly through code execution.

When replacing DUT components with a transactor, you must take
care that it is configured to an equivalent functionality. For example,
if the transactor implements a superset of the transactions or timing
compared to the DUT component then it should be configured to
restrict its functionality to match that of the DUT component.

Functional Layer

The functional layer provides the necessary abstraction layers to
process application-level transactions and verify the correctness of
the DUT.

2-18

VMM User Guide

Unlike interface-based transactions of the physical layer, the
transactions in the functional layer might not have a one-to-one
correspondence with an interface or physical transaction.

Functional transactions are abstractions of the higher-level
operations performed by a major subset of the DUT or the entire
DUT beyond the physical interface module.

A single functional transaction might require the execution of dozens
of command-layer transactions on different interfaces. It depends on
the completion status of some physical transactions to retry some
transactions or delay others.

Functional layer transactors can be proactive, reactive or passive:

• A proactive transactor controls the initiation and the kind of
transaction. It typically supplies some or all of the data the
transaction requires.

• A reactive transactor neither controls the initiation nor kind of
transaction. It is only responsible for terminating the transaction
appropriately by supplying response data or handshaking.
Reactive transactors report the observed transaction data they
are reacting to.

• Passive transactors monitor transactions on an interface and
simply report the observed transactions.

You should sub-layer the functional layer according to the
protocol structure.

For example, a functional layer for a TCP/IP over Ethernet device
should contain a sub-layer to transmit and if necessary, retry an
Ethernet frame.

2-19

VMM User Guide

You must provide additional sub-layers to encapsulate IP fragments
into Ethernet frames, fragment large IP frames into smaller IP
fragments that fit into a single Ethernet frame and encapsulate a
TCP packet into an IP frame.

Figure 2-4 Functional Sub-Layers

Self-Check MonitorDriver

Self-Check MonitorDriver

Self-Check MonitorDriver

Self-Check MonitorDriver

IP Fragments

IP Fragment

TCP over IP

over Ethernet

& Re-assembly

Ethernet MAC

The functional layer is also responsible for configuring the DUT
according to a configuration descriptor. This layer includes a
functional coverage model for the high-level stimulus and response
transactions. It records the relevant information on all transactions
this layer processes or creates.

Transactors are implemented using vmm_xactor.

Example 2-10 Modeling Transactor
class mii_phy_layer extends vmm_xactor;
 ...
endclass: mii_phy_layer
...
class tb_env extends vmm_env;

2-20

VMM User Guide

 ...
 mii_phy_layer phy;
 ...
 virtual function void build();
 ...
 this.phy = new(...);
 ...
 endfunction: build
 ...
 virtual task start();
 ...
 this.phy.start_xactor();
 ...
 endtask: start
endclass: tb_env

program test;
 tb_env env = new;
 ...
endprogram

Though different labels are used to refer to stimulus transactors
((driver) from response transactors (monitor), they only differ in the
direction of the information flow.

The interfaces on both sets of transactors are transaction-level
interfaces. In all other aspects, drivers and monitors operate in the
same way and you should implement using the same techniques
and offer the same type of capabilities.

Scenario Layer

This layer provides controllable and synchronizable data and
transaction generators. By default, they initiate broad-spectrum
stimulus to the DUT. You can use different generators or managers
to supply data and transactions at the various sub-layers of the
functional layer. This layer also contains a DUT configuration
generator.

2-21

VMM User Guide

VMM comes with a general purpose MSSG that aims at controlling,
scheduling and randomizing multiple scenarios in parallel. MSSG is
a superset of Atomic generators and Scenario Generators. For
details, see “Multiple-Stream Scenarios” on page 6-29.

Atomic generation consists of randomizing individually constrained
transactions. Atomic generators are suitable for generating stimulus
where putting constraints on sequences of transactions is not
necessary. They are suitable for quick randomization bring up and
simulation performance.

For example, the configuration description generator is an atomic
generator. For details, see “Modeling Scenarios” on page 24.

Scenarios are sequences of random transactions with certain
relationships. Each scenario represents an interesting sequence of
individual transactions to hit a particular functional corner case.

For example, a scenario in an Ethernet networking operation is a
sequence of frames with a specified density i.e., a certain portion of
the time the Ethernet line is busy sending/receiving.Otherwise, the
line is idle.

MSSG generates scenarios in random order and sequence. It
produces a stream of transactions that correspond to the generated
scenarios. It initiates scenarios defined by and under the direction of
a particular testcase. It produces a stream of transactions that
correspond to the requested scenarios.

You might bypass this layer partially or completely by the test layer
above it depending on the amount of directedness the testcase
requires. Consequently, you must enable turning off generators
either from the beginning or in the middle of a simulation to allow the
injection of directed stimulus.

2-22

VMM User Guide

You must enable the restarting of the generator to resume the
generation of random stimulus after a directed stimulus
sequence.

Typically, MSGG is a transactor with several transaction-level
interfaces and possibly with input interfaces to create scenarios that
can react to certain DUT conditions.

As in all other aspects, generators behave like transactors. You
should implement them using the same techniques and offer the
same type of capabilities.

Test Layer

Testcases involve a combination of modifying constraints on
generators, definition of new random scenarios, synchronization of
different transactors and creation of random or directed stimulus.

This layer might provide additional testcase-specific self-checking
that is not provided by the functional layer at the transaction level.
For example, it checks where correctness will depend on timing with
respect to a particular synchronization event introduced by the
testcase.

The environment instantiates all necessary transactors and
manages their execution. Therefore, the environment that
encapsulates them should preferably be instantiated in a program
block.

2-23

VMM User Guide

However, instantiation in module is still possible. As an added
benefit, the program block implementing the testcase is able to
access any required element of the verification environment. You
instantiate the environment in a local variable to prevent initialization
race conditions.

You should create test by extending the vmm_test.

Example 2-11 shows a simple way of writing test. For details, see
“Generating Stimulus” on page 2".

Example 2-11 Testcase Accessing Verification Environment Elements
program test;
...
tb_env env = new;
initial
begin
 env.run();
end
endprogram: test

Sub-environments

VMM promotes the design of transactors and self-checking
structures so that you can reuse them in different environments. For
example, you can construct system-level verification environments
of the same basic components used to construct block-level
environments.

When you construct a system-level environment using the same
basic components used to construct block-level environments, VMM
arranges, combines and connects these same basic components
the same way. For example, a block-level self-checking structure
complete with stimulus and response monitors, and scoreboard

2-24

VMM User Guide

might be identical in the system-level environment. This occurs if the
system-level, self-checking mechanism, consists of checking the
behavior of the individual blocks which compose it.

Similarly, different block-level environments might need similar
combinations of basic components. For example, a complete TCP/
IP stimulus stack.

You can minimize the overall effort and maintenance if you construct
block and system-level environments by reusing complex testbench
structures, which already provide a significant portion of the required
functionality.

In this section, a "sub-environment" refers to a subset of a
verification environment that is reusable in another verification
environment. Sub-environments are not individual transactors. They
are composed of two or more interconnected transactors potentially
linked to additional elements such as, scoreboard, file I/O
mechanism or response generator that implement a specific
functionality.

You must identify and architect reusable sub-environments in the
initial stages while designing and architecting a verification
environment. You cannot reuse sub-environments if a verification
environment is not designed to take advantage of it.

The remainder of this section provides some guidelines and hints to
help identify the architect reusable sub-environments.

A sub-environment might span multiple verification environment
layers. VMM defines different abstraction layers in verification
environments. These layers are more logical than structural. Though

2-25

VMM User Guide

a transactor or basic verification component typically sits in a single
layer, a sub-environment can encompass transactors and
components in different layers.
For example, Figure 2-5 shows a layered verification environment.
The self-checking and stimulus protocol stack structures, which you
can make into reusable sub-environments spanning two of those
layers.

Figure 2-5 Layered Verification Environment Architecture

DUT

Driver

Self-Check

Generator

Testcase ATest

Scenario

Functional

Command

Signal

Driver

Driver Monitor Monitor

Monitor

Generator

Reusable
Sub-Env.

Reusable
Sub-Env.

A sub-environment might have transaction-level interfaces.
It is wrong to read too much in Figure 2-5. Though the depicted sub-
environments have physical-level interfaces, a reusable sub-
environment can also have transaction-level input and outputs, as
shown in Figure 2-6.

Physical-level interface are limited to monitoring signal-level activity
on a specific physical bus. Transaction-level interface are fed using
a different monitor, extracting the same transactions transported on

2-26

VMM User Guide

a different physical bus. They can also be fed from a driver transactor
as shown in Figure 2-7, thereby eliminating or delaying the need to
develop a command-layer monitor if none is readily available.

Figure 2-6 Sub-Environment With Transaction-Level Interface

DUT

Driver

Self-Check

Generator

Testcase ATest

Scenario

Functional

Command

Signal

Driver

Driver Monitor Monitor

Monitor

Generator

Reusable
Sub-Env.

2-27

VMM User Guide

Figure 2-7 Sub-Environment Interfaced to Driver Transactor

DUT

Driver

Self-Check

Generator

Testcase ATest

Scenario

Functional

Command

Signal

Driver

Driver Monitor

Monitor

Generator

Reusable
Sub-Env.

The structure of a sub-environment can be configurable.

Instead of creating two sub-environment as shown in Figure 2-7, you
can create a single sub-environment which you can configure with or
without the protocol stimulus stack. In a block-level environment, you
configure the sub-environment with the protocol stimulus stack. In a
system-level environment, another block within the system provides
the stimulus. Therefore, you configure the sub-environment without
the protocol stimulus stack as shown in Figure 2-8.

2-28

VMM User Guide

Figure 2-8 Configurable Sub-Environment in System-Level Environment

Block

Self-CheckDriver

Driver Monitor Monitor

Monitor

Reusable
Structure

BlockBlock

There are different ways in which you can specify the configuration
of a sub-environment. The following section describes the various
techniques.

Constructing and Controlling Environments

The successful simulation of a testcase to completion involves the
execution of the following major functions:

• Generating the testcase configuration. This generation
includes a description of the verification environment
configuration and the DUT configuration. It also includes a
description of the testcase duration. The self-checking feature
uses it to determine the appropriate expected response and the
verification environment to configure the DUT.

2-29

VMM User Guide

• Building the verification environment around the DUT
according to the generated testcase configuration.The used
configuration determines the specific type and number of
transactors that need to be instantiated around the DUT to
exercise it correctly.
For example, you might configure a DUT with an Intel-style or a
Motorola-style processor interface. Each requires a different
command-layer transactor. Similarly, you configure 16 GPIO pins
as 16 1-bit interfaces or one 16-bit interface (or anything in
between). Each configuration requires a different number of
command-layer and functional-layer transactors and scoreboards
in the self-checking structure:

• Disabling all assertions and resetting the DUT.

• Configuring the DUT according to the generated testcase
configuration. This configuration involves writing specific values
to registers in the DUT or setting interface pins to specific levels.
You should not start transactors and generators as soon as you
instantiate them. You must first configure the DUT to be ready to
correctly receive any stimulus. Starting the generators too soon
complicates the response checking because some initial stimulus
sequences must be ignored.

• Enabling assertions and starting all transactors and
generators in the environment.

• Detecting the end-of-test conditions. To determine the end of
a test using a combination of conditions. Depending on the DUT,
testcase terminates after running for a fixed amount of time or
number of clock cycles or number of transactions or until a certain
number of error messages have been issued or when all monitors
are idle.

• Stopping all generators in an orderly fashion

2-30

VMM User Guide

• Draining the DUT and collecting statistics. To determine
success of a simulation, it is necessary to drain the DUT of any
buffered data or download accounting or statistics registers. Any
expected data left in the scoreboard is then assumed to have been
lost. Comparison of statistics registers against their expected
values is done here.

• Reporting on the success or failure of the simulation run. Not
all DUTs require all of those steps. Some steps might be trivial for
some DUTs. Others might be very complex. But every successful
simulation follows this sequence of generic steps. Individual
testcases intervene at various points in the simulation flow to
implement the unique aspect of each testcase.

Quick Transaction Modeling Style

You can easily model transaction with shorthand macros. The only
necessary steps are to define all data members and instrument them
with macros. Data member macros are type-specific. You must use
the macro that corresponds to the type of the data member named
in its argument.

Transaction should be modeled by extending vmm_data and
using shorthand macros

Example 2-12 Transaction Implemented Using Shorthand Macros
class eth_frame extends vmm_data;
 rand bit [47:0] da;
 rand bit [47:0] sa;
 rand bit [15:0] len_typ;
 rand bit [7:0] data [];
 rand bit [31:0] fcs;

 ‘vmm_data_byte_size(1500, this.len_typ + 16)
 ‘vmm_data_member_begin(eth_frame)

2-31

VMM User Guide

 ‘vmm_data_member_scalar(da, DO_ALL)
 ‘vmm_data_member_scalar(sa, DO_ALL)
 ‘vmm_data_member_scalar(len_typ, DO_ALL)
 ‘vmm_data_member_scalar_array(data, DO_ALL)
 ‘vmm_data_member_scalar(fcs,
 DO_ALL-DO_PACK-DO_UNPACK)
 ‘vmm_data_member_end(eth_frame)

 constraint valid_frame {
 fcs == 0;
 }
endclass

For details, see “Shorthand Macros” on page 3-23.

Understanding Implicit and Explicit Phasing

VMM provides two ways of controlling transactor phases from an
environment, either implicit or explicit.

• If you want to explicitly call each transactors phase in your
environment, simply create an environment that extends
vmm_env. You need to call the respective transactor phase in the
right environment phase. For example, construct transactors in
build phase, start transactors in start phase, etc. For details, see
“Composing Explicitly Phased Environments” on page 2-33.

• If you do not want calling each transactor phases at the right time,
another modeling style is to use implicit phasing. You need to
create an environment that extends vmm_group. All transactors
that you instantiate in this environment automatically call their
phases at the right time. Note that yet it is possible to explicitly
call transactor phases herein. For details, see “Composing
Implicitly Phased Environments/Sub-Environments” on page 2-
48.

2-32

VMM User Guide

The same statements apply to building sub-environments. For
explicitly phased sub-environments, you should extend
vmm_subenv. For implicitly phased sub-environments, you should
extend vmm_group.

To decide whether you should use explicitly or implicitly phased, you
should consider the following aspects:

• Reuse

- Implicitly phased sub-environments allow easy vertical reuse
from block to system. You can easily remove/add/customize
phases.

- Explicitly phased sub-environments allow easy reuse but you
invoke their phases at the right place when you instantiate in
environment that extends vmm_env.

• Ease of Use

- Implicitly phased sub-environments are easy to use and you
require limited knowledge upon the transactors.

- Explicitly phased sub-environments phases are well-defined
but you should know when and where to add the transactor
controls.

• Fine grain control

- Implicitly phased sub-environments control transactor phases
automatically. As the time-consuming phases in transactors are
divided, it is difficult to control their call order at times.

- Explicitly phased sub-environments phases are well-defined
but you should know when and where to add the transactor
controls.

2-33

VMM User Guide

Note: It is possible for the environment to deal with implicit and explicit
phase i.e. the mixed phases. For details, see “Mixed Phasing” on
page 2-75.

Composing Explicitly Phased Environments

This section describes how to explicitly call each transactors phase
in your environment by extending vmm_env.

As in Figure 2-9, the vmm_env base class formalizes these
simulation steps into well-defined virtual methods. you extend these
methods for a verification environment to implement its DUT-specific
requirements.

The vmm_env base class supports the development of a verification
environment by extending each virtual method to implement the
individual simulation steps the target DUT requires.

The base class already contains the functionality to manage the
sequencing and execution of the simulation steps. The DUT-specific
environment class extension instantiates and interconnects all
transactors, generators and self-checking structures to create a
complete layered verification environment around the DUT.

2-34

VMM User Guide

Figure 2-9 Execution Sequence in vmm_env Class.

virtual gen_cfg()

virtual build()

virtual reset_dut()

virtual cfg_dut()

virtual start()

virtual wait_for_end()

virtual stop()

virtual cleanup()

virtual report()

virtual gen_cfg()

virtual build()

virtual reset_dut()

virtual cfg_dut()

virtual start()

virtual wait_for_end()

virtual stop()

virtual cleanup()

virtual report()

Base Class DUT-Specific Extension
run()

The simulation sequence does not allow a testcase to invoke the
reset_dut() method in the middle of a simulation, i.e. during the
execution of wait_for_end(). You should make sure to verify if
the design is dynamically reset and reconfigured.

You should implement the body of the vmm_env::reset_dut()
and vmm_env::cfg_dut()in separate tasks. A hardware reset
testcase calls these tasks directly to perform the hardware reset and
reconfiguration. The reset and reconfiguration sequence is
considered part of the wait_for_end step for that particular
testcase, not a separate step in the simulation.

2-35

VMM User Guide

These methods implement each of the generic steps that must be
performed to successfully simulate a testcase.You must overload to
perform each step the DUT requires. Even if you don't need to
extend a method for a particular DUT, you should extend it anyway
and leave it empty to explicitly document that fact.

The implementation of these methods in the base class manages the
sequence in which you invoke these methods. They make it
unnecessary for each testcase to enumerate all intermediate
simulation steps.

Each method extension must call their base implementation first to
ensure the proper automatic ordering of the simulation steps. If you
violate this rule, the execution sequence of the various simulation
steps are broken.

Example 2-13 Extending Simulation Step Methods
class tb_env extends vmm_env;
 ...
 virtual task wait_for_end();
 super.wait_for_end();
 ...
 endtask
 ...
endclass

This method is not virtual because you do not intend to specialize it
for a particular verification environment. It is the method that
executes the virtual methods in the proper sequence. You must not
redefine it to prevent modifying its semantics.

This extension lets tests constrain the testcase configuration
descriptor to ensure generation of a desirable configuration without
requiring modifications to the environment or configuration
descriptor. You can further modify the randomized configuration
value procedurally once this method returns

2-36

VMM User Guide

Example 2-14 Randomization of Testcase Configuration Descriptor
class tb_env extends vmm_env;
 test_cfg cfg;
 ...
 function new();
 super.new();
 this.cfg = test_cfg::create_instance(this,
 "Config");

 ...
 endtask

 virtual function void gen_cfg();
 super.gen_cfg();
 if (!this.cfg.randomize()) ...
 endfunction: gen_cfg
 ...
endclass: tb_env

The testcase configuration descriptor includes all configurable
elements of the DUT and the execution of a testcase. Not only does
it describe the various configurable features of the design, but also it
includes simulation parameters such as asynchronous clock offsets.
It might also include other variable parameters such as, how long to
run the simulation for and how many instances of the DUT in the
system or the MAC addresses of “known” external devices.

Configuration object should be constructed as a factory to
ensure it can be overridden in your testcases.

For details, see “Class Factory Service” on page 7-26.

Some environments do not have any randomizable parameters.
Though rare, these environments have a configuration that you
describe by an empty configuration descriptor, i.e. a descriptor
without any rand class properties or descriptor constrained to a
single solution.

2-37

VMM User Guide

You must instantiate transactors, generators, scoreboards and
functional coverage models according to the testcase configuration.
This is typically done in the vmm_env::build() method.

The only object you instantiate in the environment constructor is the
default testcase configuration descriptor instance that is a
randomized in the vmm_env::gen_cfg() method extension.

Example 2-15 Instantiating Environment Components
class tb_env extends vmm_env;
 ...
 function new();
 super.new();
 this.cfg = test_cfg::create_instance(this,
 "Config");
 ...
 endtask
 ...
 virtual function void build();
 super.build();
 ...
 this.phy_src = phy_vip::create_instance(this,
 "Phy Side", 0);
 ...
 endfunction: build
 ...
endclass: tb_env

A testcase should be able to control transactors and generators
required to implement its objectives. You can control the transactors
and generators directly if they are publicly accessible.

Example 2-16 Transactor Properties in Verification Environment
class tb_env extends vmm_env;
 ...
 eth_frame_atomic_gen host_src;
 eth_frame_atomic_gen phy_src;
 eth_mac mac;
 mii_phy_layer phy;
 ...
endclass: tb_env

2-38

VMM User Guide

Integrating the scoreboard into the environment is part of the building
process. You can pass to the TLM analysis port if required and all
necessary references do exist.

For details, see “Broadcasting Using TLM2.0” on page 5-32.

Example 2-17 Integrating Scoreboard Via TLM Analysis Port
class tb_env extends vmm_env;
 ...
 virtual function void build();
 ...
 begin
 sb_mac_sbc sb = new(...);
 // /Bind the MAC analysis port to scoreboard
 this.mac.tlm_bind(sb);
 end
 ...
 endfunction: build
 ...
endclass: tb_env

You can use additional analysis port binding to sample data into a
functional coverage model or modify the data for error injection. You
should ensure that the self-checking structure is aware of all known
exceptions or errors injected in the stimulus or observed on the
response. This correctly predicts the expected response or assesses
the correctness of the observed response.

Some components need access to the transaction to modify or to
delay it, before you process it by the transactor. For example, error
injection can corrupt a parity byte. You achieve this by registering
callback extensions for these particular components.

You should call the callback before you call the analysis port. This
ensures that the scoreboard views the actual transaction that is
executed.

2-39

VMM User Guide

Because the callback extensions are registered first, these callback
extensions are registered using the
vmm_xactor::prepend_callback() method.

Transactor callbacks should be registered in the environment.

Configuring a DUT often takes a significant amount of simulation
time because you usually use a relatively slow processor or serial
interface to perform the register and memory updates. Once you
verify that interface to ensure that you can have all registers and
memories updated, it is no longer necessary to keep exercising that
logic.

The DUT-specific extension of the vmm_env::cfg_dut() method
should have a “fast-mode” implementation, controlled by a
parameter in the testcase configuration descriptor.This causes the
performance of all register and memory updates via direct or API
accesses, bypassing the normal processor interface.

The environment does not require any additional external
intervention to operate properly. You can start all transactors and
generators in the extension of the vmm_env::start() method. If a
testcase does not require the presence or operation of a particular
transactor, you can stop it soon after.

Example 2-18 Starting Transactors
class tb_env extends vmm_env;
 ...
 virtual task start();
 super.start();
 ...
 this.mac.start_xactor();
 ...
 endtask: start
 ...
endclass: tb_env

2-40

VMM User Guide

Configuring the DUT often requires that the configuration and host
interface transactors be started in the extension of the
vmm_env::cfg_dut() method.

A testcase should be able to control the duration of a simulation. It
might be in terms of number of transactions you execute or absolute
time or all transactors consenting to stop the simulation.

An instance of vmm_consensus must be present in the
environment to terminate test.

You should use vmm_consensus blocking task,
vmm_consensus::wait_for_consensus() in the
vmm_env::wait_for_end() method to control the duration of a
simulation.

All contributing components to this consensus should be registered
using the vmm_consensus::register_*() functions. For
details, see “Reaching Consensus for Terminating Simulation” on
page 2-56.

Example 2-19 Configurable Testcase Duration
class tb_env extends vmm_env;
 vmm_consensus consensus;
 ...
 virtual task wait_for_end();
 super.wait_for_end();
 ...
 concensus.wait_for_consensus();
 ...
 endtask: wait_for_end
 ...
endclass: tb_env

2-41

VMM User Guide

Composing Explicitly Phased Sub-Environments

This section provides guidelines and techniques for implementing
reusable sub-environments that you reuse across different
verification environments, or instantiate multiple times in the same
verification environment.

You should derive sub-environment classes from vmm_subenv.

This base class provides generic functionality required by most sub-
environments. It also provides, through virtual methods, standard
interfaces for the functionality that the sub-environments must
provide.

Furthermore, using a common base class for all sub-environments
makes it easy to identify their nature and boundaries. Also, a
common base class allows the development of generic functionality
to deal with a collection of sub-environments.

For example, an environment can maintain an array of references to
all of the sub-environments it contains to easily start and stop all of
them.

Example 2-20 Sub-Environment Declaration
class mii_eth_frame_sb extends vmm_subenv;
 ...
endclass

By default, VMM defines this pre-processor symbol to vmm_subenv.
You might choose to provide your own sub-environment base class
derived from the vmm_subenv base class. This you do to provide
additional organization-specific functionality associated with the
particular applications or methods the organization uses.

2-42

VMM User Guide

By redefining the value of the macro from the command line, you can
thus derive a sub-environment from an organization-specific base
class, even if it comes from outside the organization.

Example 2-21 Retargetable Sub-Environment Declaration
class mii_eth_frame_sb extends ‘VMM_SUBENV;
 ...
endclass

Example 2-22 Retargeting Sub-Environment Declarations
% vcs +define+VMM_SUBENV=my_subenv ...

All physical-level interfaces is defined as virtual modport
constructor arguments.

This process documents the physical-level connectivity of the sub-
environment. You then directly connect these virtual modports to the
appropriate transactors inside the sub-environment.

The following example shows how to pass physical-level interface to
a transactor constructor:

Example 2-23 Physical-Level Interface Definition
function new(virtual ahb_bus.passive tx_frame,
 virtual mii_phy.passive rx_frame,
 ...);
 ...
endfunction: new

Sub-Environments should have a reference to a configuration
descriptor as a constructor argument

Sub-environments might be configurable in many ways than simply
leaving interfaces unconnected. A sub-environment configuration
descriptor contains class properties for configuring the sub-
environment itself.

2-43

VMM User Guide

Also, the transactors they encapsulate are most likely configurable
themselves. A sub-environment configuration descriptor typically
contains a configuration descriptor class property for each
encapsulated transactor with its own configuration descriptor.

The sub-environment configuration descriptor is typically
randomized in the vmm_env::gen_cfg() method extension for the
environment containing the reusable structure. You then pass the
randomized (or directed) value to the constructor of the sub-
environment in the extension of the vmm_env::build() step.

Example 2-24 Sub-Environment Configuration Descriptor
class mii_eth_frame_sb_cfg;
 rand ahb_cfg ahb;
 rand mii_cfg mii;
endclass: mii_eth_frame_sb_cfg

class mii_eth_frame_sb extends vmm_subenv;
 function new(mii_eth_frame_sb_cfg cfg, ...);
 ...
 endfunction: new
 endclass: mii_eth_frame_sb

This process documents the transaction-level connectivity of the
sub-environment. You then directly connect these channels to the
appropriate transactors inside the sub-environment.

The following examples show how to create a vmm_channel
instance in the vmm_env::build() step using a factory.

Example 2-25 Transaction-Level Interface Definition
class mii_eth_frame_sb extends vmm_subenv;
 eth_frame_channel in_chan;
 function build();
 in_chan = eth_frame_channel::create_instance(this,
 "Chan");
 endfunction

2-44

VMM User Guide

 endclass: mii_eth_frame_sb

Using a task named configure() to configure the sub-
environment and the portion of the DUT associated with the
sub-environment.

You must configure the sub-environment and the portion of the DUT
that corresponds to the functionality it verifies, when the functionality
of the sub-environment is configurable.

If the sub-environment and associated DUT functionality are not
configurable, this method must still exist to document that fact.

Example 2-26 Sub-Environment DUT Configuration Method
class mii_eth_frame_sb extends vmm_subenv;
 ...
 task configure(...);
 ...
 super.configured();
 endtask: configure
endclass: mii_eth_frame_sb

There is no virtual method in the vmm_subenv base class
corresponding to this task because it probably requires different
arguments for different sub-environments.

The configure() method shall call the
vmm_subenv::configured() method upon successful completion.

You use the vmm_subenv::configured() method to confirm to the
base class that its proper configuration and that of the associated
DUT functionality, are done and that it can start.

If you do not invoke this method, the vmm_subenv::do_start()
method will issue an error.

2-45

VMM User Guide

The configure() method shall configure the DUT through a
register abstraction layer.

You might reuse a sub-environment associated with a specific block-
level DUT in a system-level environment where the corresponding
block is no longer directly accessible. The address, physical bus or
hierarchical path you use to program registers in the block-level DUT
might be different than the ones you use to originally develop the
reusable structure.

Registers and memories in a block-level DUT access their current
state through a register abstraction layer. This is done regardless of
their actual physical context. The appropriate register abstraction
interface are then passed as an argument to the configure() task.

Example 2-27 Configuring Through Register Abstraction Layer
class mii_eth_frame_sb extends vmm_subenv;
 ...
 task configure(ral_mac_block blk);
 if (this.cfg.mii.duplex) blk.duplex.set(1);
 else blk.duplex.set(0);
 ...
 if (blk.update() != vmm_rw::IS_OK) begin
 ...
 return;
 end
 super.configured();
 endtask: configure
endclass: mii_eth_frame_sb

Extensions of the vmm_subenv implement the vmm_subenv::start(),
vmm_subenv::stop() and vmm_subenv::cleanup() virtual methods.

These methods implement the corresponding generic steps that you
must perform to successfully simulate a testcase that includes the
sub-environment. You must overload to perform each step the sub-
environment requires.

2-46

VMM User Guide

Even if you don't need to extend a method for a particular sub-
environment, you should extend it anyway and leave it empty to
explicitly document that fact.

You must then call these methods in their corresponding simulation
step method in the extension of the vmm_env base class where you
use a sub-environment.

Extensions of the, vmm_subenv::stop() and
vmm_subenv::cleanup() virtual methods shall call their base
implementation first.

The stop() method shall stop all registered transactors.

The implementation of these methods in the base class manages the
sequence in which you must invoke these methods. They will report
an error if you do not use a sub-environment properly.

Example 2-28 Extending a Simulation Step Method
class mii_eth_frame_sb extends vmm_subenv;
 ...
 virtual task start();
 super.start();
 this.mii.start_xactor();
 ...
 endtask: start
 ...
enclass: mii_eth_frame_sb

Extensions of the vmm_subenv might implement the
vmm_subenv::report() virtual method.

You design this method to implement any status, coverage or
statistical reporting of information the sub-environment collects. The
default implementation is empty

2-47

VMM User Guide

Extensions of the vmm_subenv::report() method shall not
report on the success or failure of the simulation but focus on
its registered transactors status.

You should not use extensions of this method to determine the pass
or fail status of the simulation. You should leave this to the
vmm_env::report() method of the environment instantiating the
sub-environment.

If an error is detected that causes the failure of the simulation, it
should be reported through a vmm_log error message in the
vmm_subenv::cleanup() method. The message service will
record the error message and fail the simulation accordingly.

The sub-environment must be able to participate in the decision of
whether or not to end the simulation. This decision must take into
account other sub-environments, the overall verification
environments and the testcase itself. The vmm_consensus utility
class offers a well-defined service for collaboration upon deciding
when a test is complete and when you can halt the simulation.

A vmm_consensus instance should be available and provided
as a reference through the sub-environment constructor.

How a sub-environment determines if the test can end or not is
specific to the sub-environment itself. It can be implemented in
various ways:

1. Fork threads in the extension of the vmm_subenv::start()
method to watch for conditions, such as a generator being done
and to consent or disagree to end the test.

2. Have the self-checking structure consent to the end of the test
once a pre-determined condition, such as a specific number of
observed transactions has been observed.

2-48

VMM User Guide

3. Register all transactors and channels in the sub-environment with
the vmm_consensus instance to consent to the end of test when
all transactors are idle and all channels are empty.

Composing Implicitly Phased Environments/Sub-
Environments

VMM provides the notion of timelines that you use to coordinate the
simulation execution for a tree of VMM objects. They are the implicit
phasing schedulers.

With implicit phasing, a simulation consists of a series of timelines
composed of predefined and user-defined phases. As in Table 2-1,
a complete simulation run executes a pre-test timeline, then one or
more top-level test timelines and finally a post-test timeline. Each
timeline consists of pre-defined phases, which are methods
encapsulated in the vmm_unit base class.

A timeline controls the phasing of all its children vmm_unit. The root
vmm_unit instances implicitly controls the pre-test, top-level test
and post-test timelines. A vmm_unit hierarchy might contain sub-
timelines at different levels.

Table 2-1 shows the execution order of the predefined phases and
their locations within the predefined timelines.

2-49

VMM User Guide

Note: RTL Config phase is defined for vmm_rtl_config objects and
the others for structural components based on vmm_unit.

Table 2-1 Predefined Phase and Timelines

Timeline Phase Method
Pre-test RTL Config vmm_rtl_config::*

gen_config vmm_group::gen_config_ph()

build vmm_unit::build_ph()

configure vmm_unit::configure_ph()

connect vmm_unit::connect_ph()

Top-test configure_test vmm_unit::configure_test_ph()

start of sim vmm_unit::start_of_sim_ph()

reset vmm_unit::reset_ph()

training vmm_unit::training_ph()

config_dut vmm_unit::config_dut_ph()

start vmm_unit::start_ph()

start of test vmm_unit::start_of_test_ph()

run vmm_unit::run_ph()

shutdown vmm_unit::shutdown_ph()

cleanup vmm_unit::cleanup_ph()

report vmm_unit::report_ph()

Post-test final vmm_unit::final_ph()

The simulation is kick-started by calling
vmm_simulation::run_tests() from the top-level testbench.
The following sequence of phases are called:

• Step 1: Run the pre-test timeline on all vmm_object
hierarchies and selected vmm_test instances. The pre-test
timeline contains the predefined phases “rtl config”, “gen_config”,
“build”, “configure”, and “connect”. This builds, configures and
connects the hierarchical verification environment.

2-50

VMM User Guide

• Step 2: Run the top-level test timeline for each vmm_test
instance that are executed in your simulation. The top-level
timeline contains the predefined phases, "configure_test",
“start_of_sim”, “reset”, “training”, “config_dut”, “start”,
“start_of_test”, “run”, “shutdown”, “cleanup” and “report”. You
should repeat this step sequentially for every test to be run.

• Step 3: Execute the post-test timeline. The post-test timeline
contains the predefined phase “final”.

These are the roles of different predefined phases in an
environment,

• Pre-test timeline

This timeline builds, configures and connects the verification
environment that will be used by all tests. It is only called once,
by the firstly executed test.

- RTL configuration: Create and populate RTL configuration
descriptors that reflect the compile-time RTL configuration
parameters. You can then use these RTL configuration
parameters to affect the structure of the verification
environment. For examples, see “RTL Configuration” on page
7-52.

- gen_config: Perform dynamic configuration of vmm_group
objects. Registered vmm_group::gen_config_ph are
called for root objects.

- Build: Instantiate and allocate environment components. You
might make VMM channel connections between components
optionally here. Registered vmm_unit::build_ph() phases
are called top down.

2-51

VMM User Guide

- Configure: Each component (transactor, generator etc.)
provides default configuration values and generates a
configuration for the environment either randomly from the top-
level in a directed fashion, or using default values in the
components. Registered vmm_unit::configure_ph()
phases are called bottom up.

- Connect: Makes connection of Transactor interfaces such as,
TLM and Channel here.
Registered vmm_unit::connect_ph() phases are called
top down.

• Top-test timeline

This timeline is the main timeline for the execution of a single test.
This is repeated if multiple tests are concatenated in the same
simulation run.

- Configure_test: Perform test-specific actions such as, factory
replacements, option settings, scenario overrides, callback
extensions, etc. When multiple tests are concatenated in the
same simulation, each component in the verification
environment gets rolled back to this phase. Registered
vmm_unit::configure_test_ph() phases are called
bottom up.

- Start_of_sim: The additional phase you call prior to starting
simulation. Registered vmm_unit::start_of_sim_ph()
phases are called top down.

- Reset: Perform DUT reset, which is typically an activity of the
top-level environment. However, in some situations such as,
low-power mode/testcase, there are multiple resets happening
on different interfaces, in which case the lower level
components might implement some functionality in this phase.
Registered vmm_unit::reset_ph() phases are forked off.

2-52

VMM User Guide

- Training: Some interfaces/lower level components require a
training phase, this is typically required for reconfiguring
transactors based upon DUT parameters, such as timing for a
DDR interface, USB low or high speed, etc.
Registered vmm_unit::training_ph() phases are forked
off.

- Config_dut: Configures DUT through RAL and possibly multi-
stream scenarios.
Registered vmm_unit::config_dut_ph() phases are
forked off.

- Start: Start any execution threads, such as generators,
transactors, etc.
Registered vmm_unit::start_ph() phases are forked off.

- Start_of_test: Registered
vmm_unit::start_of_test_ph() phases are called top
down.

- Run: Termination conditions are watched for completion of the
test in this phase.This phase should terminate when all forked
threads are done and all vmm_group hierarchies consent to
the end-of-test.

- Shutdown: Optionally stops execution threads. Usually, you
need to stop only the generators. Let in-progress data drain
from the DUT. Registered vmm_unit::shutdown_ph()
phases are forked off.

- Cleanup: Perform post-tests checking operations, such as,
reading accounting registers and checking for orphaned
expected responses in the scoreboard. Registered
vmm_unit::cleanup_ph() phases are forked off.

- Report: Perform a pass/fail report for the test. Registered
vmm_unit::report_ph() phases are called bottom up.

2-53

VMM User Guide

• Post-test timeline

- Final: Perform a final summary report and any action specific
to the verification environment such as ensuring the scoreboard
is empty, look into coverage bins, etc. Registered
vmm_unit::final_ph() phases are called bottom up

The pre-test timeline phases in vmm_group are implicitly called top
down, and thus the phases for the sub-units of the environment will
be automatically called in the correct order.

Task-based phases are forked off and must all return for the phase
to complete. Execution threads that must survive across phases
should be forked off. For details, see “Threads and Processes
Versus Phases” on page 4-18.

Creating an Implicitly Phased Environment

Implicitly phased environment usually contains the various
testbench components such as transactors, monitors, generators,
coverage model, etc.

You should implement implicitly phased environment by
extending the vmm_group base class, not the vmm_unit as it is
virtual.

Example 2-29 describes an implicitly phased environment containing
one transactor and one generator. It demonstrates how to instantiate
them, connect them using a channel, and implement a few relevant
phases.

Example 2-29 Instantiating VIP in Implicitly Phased Environment
`include “vip_trans.sv”
class my_env extends vmm_group;
 `vmm_typename(my_env)

2-54

VMM User Guide

 vip bfm1;
 gen gen1;

 function new(string inst="", vmm_unit parent = null);
 super.new(“my_env”, inst, parent);
 endfunction

 virtual function void build_ph();
 bfm1 = new(this, "bfm1");
 gen1 = new(this, "gen1");
 endfunction

 function void configure_ph();
 `vmm_note(log, "configure_ph...");
 // override default configuration for the environment
 vmm_opts::set_int("bfm1:param",2);
 endfunction

 function void connect_ph(); //connect components
 `vmm_note(log, "connect_ph...");
 vmm_connect#(vip_trans_chan)::channel(gen1.out_chan,
 bfm1.in_chan);
 endfunction

 task reset_ph(); //Device specific reset
 `vmm_note(log, " reset...");
 endtask

 task config_dut_ph(); //Implement DUT
 // initialization sequences
 `vmm_note(log, " config_dut...");
 // Drive directed sequences, or a specific
 // initialization scenario from MSS generator
 endtask

 task shutdown_ph(); //wait-till-end-of-test consensus
 ̀ vmm_note(log, " All children signal completion...");
 endtask
endclass: my_env

2-55

VMM User Guide

Completing the “run” Phase

The "run" phase is the place where you perform the main part of the
test.

Each vmm_group instance contains a vmm_consensus instance
and provides consent() and oppose() methods. By default, a
unit consents. Furthermore, the vmm_consensus of all children
vmm_groups are registered with their parent consensus, thus
creating a hierarchy of consensus whose consent or opposition
percolates to the top-level unit. For details, see “Reaching
Consensus for Terminating Simulation” on page 2-56

A timeline will remain in the "run" phase until:

• All forked off vmm_group::run_ph() tasks terminate

• All vmm_group instances that reside under the same timeline
consent via their vmm_group::vote vmm_consensus
instance.

Without further actions, all generic voter interfaces consent and test
reaches the overall consensus. You can register additional
participants, transactors, channels and generic voters. For example,
you might register a transactor so it consents only when it is idle.

In Example 2-30, note how the transactor registers with the
consensus of its encapsulating vmm_group::vote and not with its
own vmm_consensus instance. This is to allow the user of a
transactor to decide whether or not the transactor being idle is a
required condition for the end of test.

Example 2-30 Modeling Implicitly Phased Sub-Environment
class my_subenv extends vmm_group;
 `vmm_typename(my_subenv)

2-56

VMM User Guide

 my_vip vip1;
 my_vip vip2;

 function new(string name = "", vmm_object parent = null);
 super.new("vip", name, null);
 super.set_parent_object(parent);
 endfunction

 virtual function void build_ph();
 super.build_ph();
 this.vip1 = new(this, "vip1");
 this.vip2 = new(this, "vip2");

 endfunction
 virtual function void connect_ph();
 super.connect_ph();
 this.vote.register_xactor(this.vip1);
 this.vote.register_xactor(this.vip1);
 endfunction
endclass

Reaching Consensus for Terminating Simulation

It is important that a verification environment should decide when to
end a test. You design the vmm_env::wait_for_end() phase
and the completion of the vmm_simulation::run_tests method
that lets you implement how to detect the end of a test.

After you have identified the end of test, the verification environment
can be cleanly shut down. You can also carry out the final accounting
of all live stimulus to ensure nothing has been accidentally lost. You
can base the termination upon any combination of elapsed time,
number of clock cycles, transactors in idle mode or the execution of
a pre-defined number of transactions.

2-57

VMM User Guide

When creating a constrained-random verification environment, it is
difficult to exactly predict tests duration. Some trivial tests might need
to run for only a few transactions, some corner case tests might need
to run for several thousand transactions.

Further, in a layered verification environment, it is typically
insufficient to count the number of occurrences of a significant event
at a single location.

For example, counting the number of packets that are injected in the
environment might be erroneous as some transactions might be
dropped. For safely terminating a testcase in a layered verification
environment, it is usually necessary to wait for a combination of
several different conditions:

• All generators have generated the number of required
transactions

• All transactors are idled

• No transactions remain in transaction-level interfaces

• Enough activity has been observed by the scoreboard

• The DUT has flushed out remaining transactions

The vmm_consensus base class helps identifying when you reach
the end of the test for multiple voters. The vmm_consensus
implements a centralized decision-making mechanism that provides
an indication when no participant objects to end this test.

This mechanism is perfectly scalable, allowing verification
environments to grow or to combine them without affecting the
complexity of the end-of-test decision.

2-58

VMM User Guide

Typically, you shall add an instance of the vmm_consensus class to
the vmm_env/vmm_group class in the vmm_env::end_vote
property.

The decision to end the test is made by this object. You can distribute
contributors to that decision over the entire verification environment.
The sum of all contributions helps determine whether to end the test
or not, regardless of how many contributors there are. The
implementation of the vmm_env::wait_for_end step is now only
a matter of waiting to reach the end-of-test consensus.

As shown in Figure 2-10, the vmm_consensus utility class handles
a variety of participants. Each participant can then object or consent
to the final decision independent of all other participants.

The following components can be registered as voters:

• Channel instances, which implicitly consent when they are empty.

• Transactor instances, which implicitly consent while they are
indicating the vmm_xactor::XACTOR_IDLE notification.

• ON/OFF notifications, which implicitly consent while they are
indicated (or not).

• Other vmm_consensus instances, which implicitly consent when
all their own participants consent. This helps creating generic
participant interfaces to provide for user-defined agreement or
objection to the end-of-test decision.

Using vmm_consensus, end-of-test decision process can scale as
the complexity of the system-level verification environment
increases. It is no longer necessary to implement a complex decision
making algorithm with multiple threads watching for different end-of-
test conditions. Furthermore, you can pass vmm_consensus to sub-
environments as you encapsulate it in an object.

2-59

VMM User Guide

Figure 2-10 Determining End-of-Test Using vmm_consensus

vmm_consensus comes with methods that allow dynamically
registering "voters" and blocking until all voters agree to terminate
the test.

After registering, voters do not consent for end of test. For example
a transactor opposes the end-of-test if it is currently indicating the
vmm_xactor::XACTOR_BUSY notification. It consents for end of
test only when it emits vmm_xactor::XACTOR_IDLE notification.

2-60

VMM User Guide

Similarly, a channel opposes until it contains at least one transaction
and consents for the end of test when it becomes empty. If you
register the VMM notification object, voters consent when it becomes
indicated.

vmm_consensus::wait_for_consensus() method usually sits
in vmm_env::wait_for_end() or vmm_group::run_ph()
method. This method waits until all voters explicitly consent.

The following steps are required to use vmm_consensus for
terminating a test in an explicitly-phased environment:

• Add vmm_consensus::wait_for _consensus() to
vmm_env::wait_for_end() method

• Add the voters in the vmm_env::build() using
vmm_consensus::register_* method.

Figure 2-31 shows how to terminate a test when all transactors,
channels and a voter consent.

Example 2-31 Scalable End-of-Test using vmm_vote and vmm_consensus
class tb_env extends vmm_env;
 apb_master mst;
 apb_slave slv;
 apb_trans_atomic_gen gen;
 apb_sb sb;
 vmm_voter vote;

function void build();
 apb_trans_channel gen2mst_chan;
 apb_trans_channel mst2slv_chan;
 super.build();

 gen2mst_chan = new("Gen2Mst", "channel");
 mst2slv_chan = new("Mst2Slv", "channel");
 gen = new("ApbGen", 0, gen2mst_chan);
 mst = new("ApbMst", gen2mst_chan, mst2slv_chan);

2-61

VMM User Guide

 //Add a channel that can participate in this consensus.
 end_vote.register_channel(gen2mst_chan);

 //Add an ON/OFF notification that can
 // participate in this consensus.
 end_vote.register_notification(mst.notify,
 vmm_xactor::XACTOR_IDLE);

 slv = new("ApbSlv", mst2slv_chan);
 gen.stop_after_n_insts = 10;
 sb = new();
 begin
 sb_master_cbk mcbk = new(sb);
 sb_slave_cbk scbk = new(sb);
 mst.append_callback(mcbk);
 slv.append_callback(scbk);
 end

 vote = end_vote.register_voter("SB_DONE");
 //Creates a new general-purpose voter interface that
 //can participate in this consensus.
 vote.oppose("XYZ");
 endfunction

task start();
 super.start();
 mst.start_xactor();
 slv.start_xactor();
 gen.start_xactor();

 //Add a transactor that can participate in
 // this consensus.
 end_vote.register_xactor(gen);

 fork begin
 gen.notify.wait_for(apb_trans_atomic_gen::DONE);
 // Create a new voter interface to participate
 // in this consensus
 vote.consent("Generation is done");
 end
 join_none

2-62

VMM User Guide

 endtask

 task wait_for_end();
 super.wait_for_end();
 end_vote.wait_for_consensus();
 endtask

With the new changes of structural components being derived from
vmm_unit (be it transactors modeled from vmm_xactor or
environments and sub-senvironments modeled with vmm_group),
there is a default consensus instance called vote for all these
components. By default, this consensus instance consents to
simulation completion.

Additionally, two methods are provided: vmm_unit::oppose(string
"why") and vmm_unit::consent(string "why") to explicitly oppose
or consent to test completion.

By default, a child 'consensus' instance is registered on the parent's
consensus instance. Thus the simulation will complete as
wait_for_consensus will not be blocking unless one of the
components in the hierarchy registers its opposition.

Also, the transactors and environments are now default participants
in the 'end of test' detection. This means, you do not necessarily
have to call register_xactor of the different transactor
components. However, a specific invocation of register_xactor
will ensure that the transactor would consent to a test completion
only if the XACTOR_IDLE notification is indicated and therefore this
continues to be recommended.

For more details on the hierarchical propagation of consents/
opposition to 'end-of-test', see vmm_unit::request_consensus(),
vmm_unit::force_thru() and vmm_unit::forced().

2-63

VMM User Guide

Architecting Verification IP (VIP)

VIP and Testbench Components

This section recommends which VMM base class you shall use as
the foundation for implementing various elements of a VIP or
verification components.

You derive all VMM base classes from the vmm_object class. As
a result of this implicit parent-child relationship, you can form a
searchable, named object hierarchy out of base classes. Also, the
constructors of the base classes require a parent and name
argument.

The following table summarizes which base class you shall use for
specific VIP and testbench components:

Table 2-2 Base Class Application Summary

Application Base Class
Transaction vmm_data

Transactor vmm_xactor

Sub-environments Explicitly phased vmm_subenv

Implicitly phased vmm_group

Environments Explicitly phased vmm_env

Implicitly phased vmm_group

Testcase vmm_test

Transactions

Transactions for a specific protocol should extend from
vmm_data.

2-64

VMM User Guide

For instance, operations such as "read" and "write" of AXI or an
ethernet frame of MII could be modeled as transactions. An
enumerated-type class property identifies the transaction type and
other class properties specify the parameters of the transaction. You
declare all such class properties as 'rand'.

You can create default implementations for the allocate(),
compare(), copy(), psdisplay(), byte_pack() and
byte_unpack() methods by using the 'vmm_data_member_*
shorthand macros.

You shall model transactions using shorthand macros.

The following example shows how you model a simple read/write
transaction:

class simple_rw extends vmm_data;
 ‘vmm_typename(simple_rw)

 typedef enum {READ, WRITE} kind_e;
 rand kind_e kind;
 rand bit [31:0] addr;
 rand bit [31:0] data;
 bit is_ok;

 ‘vmm_data_new()
 function new(vmm_object parent = null,
 string name = ““);
 super.new(parent, name);
 endfunction

 ‘vmm_data_member_begin(simple_rw)
 ‘vmm_data_member_enum(kind)
 ‘vmm_data_member_scalar(addr)
 ‘vmm_data_member_scalar(data)
 ‘vmm_data_member_scalar(is_ok)
 ‘vmm_data_member_end(simple_rw)

2-65

VMM User Guide

 ‘vmm_class_factory(simple_rw)
endclass ...

You should always make transaction factory enabled.

This is made possible by simply adding the macro
‘vmm_class_factory in the transaction declaration

For every transaction class, a channel transaction-level interface
class should be declared:

typedef vmm_channel_typed#(simple_rw) simple_rw_channel;

Transactors

Transactors are testbench components that create, execute or
observe transactions. Their transaction processing must be started
implicitly or explicitly. Transactors can stopped or reset, during which
they no longer perform their normal transaction processing.

Transactors have at least one transaction-level input or output
interface (using channels or sockets). They might have a physical-
level interface. They form the basic elements of a testbench.

Example 2-32 show a simple channel-based master transactor for a
simple read/write protocol. The first step is to define transactor
callbacks, which are needed for easily grabbing information and
modifying this transactor without changing it. For instance, this is
useful for injecting errors or add, delay, etc. Here, callback
pre_trans() is defined and is invoked after the transaction is
taken out from the input channel. The other post_trans()
callback is invoked after the transactor has fully executed the
transaction.

2-66

VMM User Guide

Because the callbacks allow to modify the transaction content, they
are typically use for injecting errors through transaction or modifying
their content.

Example 2-32 Defining Transactor Callbacks
class master_rw_callbacks extends vmm_xactor_callbacks;
 virtual task pre_trans (master_rw driver,
 simple_rw tr,
 ref bit drop);
 endtask

 virtual task post_trans (master_rw driver,
 simple_rw tr
);
 endtask
endclass

Transactor should extend the vmm_xactor base class.

In this context, you can instantiate transactor in either an explicitly or
implicitly phased environment.

Transactor should contain the following members:

• A virtual interface to drive the DUT signals. Interface usually
resides in an object that can be replaced in the command line or
anywhere in the environment. Thus making it highly reusable and
easy to bind. This only applies to signal-level transactor (for
example, a BFM).

Interface should be replaced in the command line or anywhere
in the environment.

• An input vmm_channel to be connected in the connect phase.
The transactor does not have to worry about this connection as
you usually do it in the environment where you instantiate this
transactor.

2-67

VMM User Guide

Channels are preferred as input connector vs. TLM interfaces

• One or multiple analysis ports to convey transaction to any
subscriber. These ports can be used by the scoreboard or the
coverage model.

You should prefer analysis port to vmm_notify for conveying
transaction

You should use vmm_notify for data-less synchronization.

callback to convey transaction that might be modified. As the
analysis port does not provide subscribers with the ability to
change transaction. You can invoke the analysis port when using
a combination of callback and analysis port for passing a
transaction to other component or subscribers after the callback,
to ensure it observes the potentially modified transaction.

You should use callback for transactions that need to be
modified

Example 2-33 Transactor Declaration
class mastery extends vmm_xactor;
 ‘vmm_typename(master_rw)

 virtual simple_if.drvprt iport;
 master_rw_port master_rw_port_obj;
 simple_rw_channel in_chan;

 vmm_tlm_analysis_port#(master_rw, simple_rw)
 analysis_port;
 ...
endclass

Transactor should have a handle to its parent in its constructor
arguments.

2-68

VMM User Guide

This is necessary to carry out regular expressions on this particular
transactor.

Example 2-34 Transactor Constructor
 function master_rw::new(string inst, vmm_unit parent);
 super.new(get_typename(), inst, 0, parent);
 endfunction

Transactor should implement the build phase that constructs
the analysis port and TLM interfaces.

You associate this analysis port with this transactor so that
subscribers can trace back to it if necessary. You might need the
TLM interfaces for passing transactions in a blocking/non-blocking
way.

Example 2-35 Transactor Build Phase
function void master_rw::build_ph();
 analysis_port = new(this, {get_object_name(),
"_analysis_port"});
endfunction

Transactor should implement the main thread for implementing
its main daemon.

The typical flow of this thread is to,

- Get a transaction from input channel

- Call the appropriate callback, for instance pre_trans()
callback

- Execute this transaction

- Call the appropriate callback, for instance post_trans()
callback

- Write() this transaction to the analysis port

2-69

VMM User Guide

- Use the appropriate completion model, return status if required

- Possibly stop this flow if the transactor is requested to stop of
if the channel is empty. This is achieved by invoking the
vmm_channel::wait_if_stopped_or_empty() blocking
task

- Go to the next transaction

Example 2-36 Transactor Main Daemon
task master_rw::main();
 bit drop;
 simple_rw tr;
 is_done = 0;
 fork
 while (1) begin : w0
 this.in_chan.peek(tr);
 if (is_done) break;
 `vmm_trace (this.log, $psprintf ("Driver received a
transaction: %s", tr.psdisplay()));
 `vmm_callback(master_rw_callbacks, pre_trans(this,
tr, drop));

 case (tr.kind)
 simple_rw::READ:
 this.read(tr.addr, tr.data, tr.is_ok);
 simple_rw::WRITE:
 this.write(tr.addr, tr.data, tr.is_ok);
 endcase

 `vmm_callback(master_rw_callbacks, post_trans(this,
tr));
 this.analysis_port.write(tr);
 this.in_chan.get(tr);
 wait_if_stopped();
 if (is_done) break;
 end : w0
 join_none
endtask

2-70

VMM User Guide

Transactor should implement the connect phase for assigning
interfaces.

The purpose is to assign the virtual interface with a configuration
which can either be a default one or one specified in the environment
with vmm_opts::set_object_obj() method.

Example 2-37 Transactor Connection
function void master_rw::connect_ph();
 bit is_set;
 if ($cast(master_rw_port_obj,
 vmm_opts::get_object_obj(is_set,this,"cpu_port")))
 begin
 if (master_rw_port_obj != null)
 this.iport = master_rw_port_obj.iport;
 else
 `vmm_fatal(log, "Virtual port wrapper not
initialized");
 end
endfunction

Transactor should implement the start_of_sim phase to
ensure channel and interface are present.

Example 2-38 Transactor Simulation Start
function void master_rw::start_of_sim_ph();
 if (iport == null)
 `vmm_fatal(log, "Virtual port not connected to the
actual interface instance");
endfunction

Transactor might implement control phases to gather
information on currently executed phases.

Example 2-39 shows how the shutdown phase is implemented to
assign a status bit whenever the environment timeline reaches the
shutdown phase.

2-71

VMM User Guide

Example 2-39 Transactor Shutdown
task master_rw::shutdown_ph();
 is_done = 1;
endtask

Transactor should implement operating methods that are
necessary to implement the specified protocol and convert the
transaction to corresponding DUT pin wiggling.

Example 2-40 Transactor Operations
 virtual task read(input bit [31:0] addr,
 output bit [31:0] data,
 output bit is_ok);
 ...
 endtask

 virtual task write(input bit [31:0] addr,
 input bit [31:0] data,
 output bit is_ok);
 ...
 endtask
endclass

For details, see Modeling Transactors and Timelines Chapter.

Communication

VMM provides multiple ways of communicating transactors to each
other. You can achieve this transaction passing either with
vmm_channel, vmm_tlm, analysis_port or callback
interfaces.

2-72

VMM User Guide

Table 2-3 summarizes the interface to use for modeling transactor
that issue or receive transactions from other transactors or
components.

Table 2-3 Preferred Communication Media for modeling
transactors

Base Class Master Slave Monitor
vmm_channel Y

vmm_tlm_b_transport Y

vmm_analysis_port Y Y Y

vmm_callback Y Y

• Use vmm_tlm_b_transport interface for master-like transactor
that needs to issue transactions to the other transactor. You can
connect this TLM interface to any consumer having either
vmm_channel or vmm_tlm_b_transport interface. Also,
vmm_tlm_b_transport interface provides a clear completion
model that is not tied to the transaction.

• Use vmm_channel interface for slave-like transactor that needs
to receive transactions from the other transactor.This provides
more flexibility as you can connect this channel to any producer
like a channel, TLM blocking or non-blocking interface.
Furthermore, the vmm_channel provides a self-synchronization
mechanism that is very handy for slave-like transactor. For
example, you can idle this transactor when there are no
transactions available in the channel using the
vmm_channel::wait_if_stopped_or_empty() blocking
task.

• Use analysis_port for monitor-like transactor that needs to
issue an observed transaction to other components like
scoreboard and coverage models.

2-73

VMM User Guide

Environments and Sub-Environments

Sub-environments are composed of transactors, other sub-
environments and other user-defined classes. Environments are top-
level environments.

Table 2-2 provides a summary of the base class to extend for
implementing environment or sub-environment.

• To implement an implicitly-phased environment or sub-
environment, use vmm_group base class.

• To implement an explicit phased sub-environment, use
vmm_subenv base class.

• To implement an explicitly-phased top-level environment, use the
vmm_env class.

For details, see “Understanding Implicit and Explicit Phasing” on
page 31.

Testing VIPs

This section gives a brief overview of how to verify your VIP. For
details, see Chapter 6, "Implementing Tests & Scenarios".

You implement testcases using the vmm_test base class. For
details, see “Generating Stimulus” on page 6-2.

If you write testcases on top of an implicitly-phased top-level
environment, you implement them by extending the predefined
phasing methods or by defining new phases. For details, see
“Understanding Implicit and Explicit Phasing” on page 31.

2-74

VMM User Guide

Example 2-41 shows how to extend the scenario or transaction, add
the test-specific constraint and add factory-enabled macro.
Extending factory-enabled transaction with test-specific constraints,

Example 2-41 Extending Test Scenarios
class test_scenario extends simple_rw;
 // Macros to define utility methods
 // like copy/allocate for factory
 `vmm_data_member_begin(test_scenario)
 `vmm_data_member_end(test_scenario)

 constraint cst_dly {
 kind == WRITE;
 }

 // Add factory enable house keeping stuff
 `vmm_class_factory(test_scenario)
endclass

As shown in Example 2-42, next action is to extend the vmm_test,
implement build phase to change the number of scenarios to send
and override the default generator factory with the test-specific one.

Example 2-42 Extending vmm_test and Filling in Phases
class test extends vmm_test;
 ‘vmm_typename(test)

 function new();
 super.new("Test");
 endfunction

 virtual function void build_ph();
 vmm_opts::set_int("%*:num_scenarios", 50);
 endfunction

 virtual function void configure_test_ph();
 simple_rw::override_with_new("@%*",
 test_scenario::this_type(),

2-75

VMM User Guide

 log, `__FILE__, `__LINE__);
 endfunction
endclass

If you write testcases on top of an explicitly-phased top-level
environment, you implement them by extending the
vmm_test::run() method and explicitly calling the phase
methods in the environment.

`vmm_test_begin(test, my_env, "Test")
 env.start();
 `vmm_note(log, "Started...");
 env.run();
 `vmm_note(log, "Stopped...");
`vmm_test_end(test)

Advanced Usage

Mixed Phasing

It is possible to construct an environment with components using
different phasing models.

Instantiating implicitly phased components in explicitly
phased environment

To instantiate one or more implicitly phased components-
vmm_group or phase-dependent vmm_xactor - into an explicitly
phased testbench such as vmm_env or vmm_subenv, they must first
be encapsulated under a vmm_timeline instance. This timeline
can then be explicitly phased by calling the
vmm_timeline::run_phase() method with the appropriate
phase name.

2-76

VMM User Guide

The following examples explain how to use vmm_timeline for
instantiating implicitly phased sub-environment in explicitly phased
environment:

• Example 2-43 shows how to model an implicitly phased sub-
environment

• Example 2-44 shows how to instantiate this sub-environment in
a timeline

• Example 2-45 shows how to instantiate this timeline in an explicitly
phased environment.

Example 2-43 Implicitly Phased Sub-Environment
class my_subenv extends vmm_group;
 `vmm_typename(my_subenv)

 my_vip vip1;
 my_vip vip2;

 function new(string name = "", vmm_object parent = null);
 super.new("vip", name, null);
 super.set_parent_object(parent);
 endfunction

 virtual function void build_ph();
 super.build_ph();
 this.vip1 = new("vip1", this);
 this.vip2 = new("vip2", this);
 endfunction

 virtual task start_ph();
 super.start_ph();
 `vmm_note(log, "Started...");
 endtask

2-77

VMM User Guide

Example 2-44 Instantiation of Implicitly Phased Sub-Environment in
Timeline

class my_tl extends vmm_timeline;
 `vmm_typename(my_tl)

 my_subenv subenv1;

 function new(string name = "", vmm_object parent = null);
 super.new("my_tl", name, parent);
 endfunction

 virtual function void build_ph();
 super.build_ph();
 this.subenv1 = new("subenv1", this);
 endfunction
endclass

Example 2-45 Explicitly Phased Environment With Embedded Timeline
class my_env extends vmm_env;
 `vmm_typename(my_env)

 my_tl tl;

 function new();
 super.new("env");
 endfunction

 virtual function void build();
 super.build();
 this.tl = new("tl", this);
 endfunction

 virtual task start();
 super.start();
 tl.run_phase("start");
 `vmm_note(log, "Started...");
 endtask

 virtual task wait_for_end();
 super.wait_for_end();

2-78

VMM User Guide

 fork
 tl.run_phase("run");
 begin
 `vmm_note(log, "Running...");
 #100;
 end
 join
 endtask

 virtual task stop();
 super.stop();
 tl.run_phase("shutdown");
 `vmm_note(log, "Stopped...");
 endtask
endclass

Instantiating explicitly phased components in implicitly
phased environment

Explicitly phased components such as vmm_subenv and
vmm_xactor can be instantiated directly in implicitly phased
components based on vmm_group. Their explicit phase control
methods, such as vmm_subenv::start(), must then be called in
an extension of the appropriate phase method in the parent
component.

The following examples explain how to instantiate explicitly phased
sub-environment in implicitly phased environment:

• Example 2-46 shows how to model an explicitly phased
transactor.

• Example 2-47 shows how to model an explicitly phased sub-
environment.

• Example 2-48 shows how to instantiate this explicitly phased sub-
environment in an implicitly phased environment.

2-79

VMM User Guide

Example 2-46 Explicitly Phase Transactor
`include "vmm.sv"

class my_vip extends vmm_xactor;
 `vmm_typename(my_vip)

 function new(vmm_object parent = null, string name = "");
 super.new("vip", name);
 super.set_parent_object(parent);
 endfunction

 virtual function void start_xactor();
 super.start_xactor();
 `vmm_note(log, "Starting...");
 endfunction

 virtual function void stop_xactor();
 super.stop_xactor();
 `vmm_note(log, "Stopping...");
 endfunction
endclass

Example 2-47 Explicitly Phased Sub-Environment
class my_subenv extends vmm_subenv;
 `vmm_typename(my_subenv)

 my_vip vip1;
 my_vip vip2;

 function new(vmm_object parent = null, string name = "");
 super.new("vip", name, null);
 super.set_parent_object(parent);

 this.vip1 = new(this, "vip1");
 this.vip2 = new(this, "vip2");
 endfunction

 virtual task start();
 super.configured();
 super.start();

2-80

VMM User Guide

 this.vip1.start_xactor();
 this.vip2.start_xactor();
 `vmm_note(log, "Started...");
 endtask

 virtual task stop();
 super.stop();
 this.vip1.stop_xactor();
 this.vip2.stop_xactor();
 `vmm_note(log, "Stopped...");
 endtask
endclass

Example 2-48 Explicitly Phased Sub-Environment in an Implicitly Phased
Testbench

class my_env extends vmm_group;
 `vmm_typename(my_env)

 my_subenv subenv1;

 function new();
 super.new("env");
 endfunction

 virtual function void build_ph();
 super.build_ph();
 this.subenv1 = new(this, "subenv1");
 endfunction

 virtual task start_ph();
 super.start_ph();
 `vmm_note(log, "Started...");
 endtask

 virtual task run_ph();
 super.run_ph();
 `vmm_note(log, "Running...");
 #100;
 endtask

2-81

VMM User Guide

 virtual task shutdown_ph();
 super.shutdown_ph();
 `vmm_note(log, "Stopped...");
 endtask
endclass

2-82

VMM User Guide

3-1

VMM User Guide

3
Modeling Transactions 1

This chapter contains the following sections:

• Overview

• Class Properties/Data Members

• Methods

• Factory Service for Transactions

• Constraints

• Shorthand Macros

3-2

VMM User Guide

Overview

The challenge in transitioning from a procedural language such as
Verilog or VHDL, to an object-oriented language such as
SystemVerilog, is in making effective use of the object-oriented
programming model. This section provides guidelines and directives
that help modeling transactions by extending vmm_data.

Transactions should be modeled by using a class, not a struct or
a union. The common tendency is to model transactions as
procedure calls such as, read() and write(). This approach
complicates generating random streams of transactions,
constraining transactions and registering transactions with a
scoreboard.

As shown in Example 3-1, you can model the transactions better by
using a transaction descriptor.

Example 3-1 Transaction Descriptor Object
class wb_cycle extends vmm_data;
 ...
 typedef enum {READ, WRITE, ...} cycle_kinds_e;
 rand cycle_kinds_e kind;
 ...
 rand bit [63:0] addr;
 rand bit [63:0] data;
 rand bit [7:0] sel;
 ...
 typedef enum {UNKNOWN, ACK, RTY, ERR,
 TIMEOUT} status_e;
 status_e status;
 ...
endclass: wb_cycle

3-3

VMM User Guide

A transaction is any atomic amount of data eventually or directly
processed by the DUT. The packets, instructions, pixels, picture
frames, SDH frames and ATM cells are all data items. A data item
can be composed of smaller data items by composing a class from
smaller classes.

For example, class modeling a picture frame is composed of
thousands of instances of a class modeling individual pixels. You can
also define all ethernet frame properties in a transaction as shown in
Example 3-2.

Example 3-2 Ethernet MAC Frame Data Model
class eth_frame extends vmm_data;
 ...
 rand bit [47:0] dst;
 rand bit [47:0] src;
 rand bit [15:0] len_typ;
 rand bit [7:0] data[];
 rand bit [31:0] fcs;
 ...
endclass: eth_frame

The class construct has advantages over struct or union
constructs. The latter can model the values contained in the data
item only. However, classes can also model operations and
transformations such as calculating a CRC value or comparing two
instances on these data items using methods.

As you assign or copy a reference to the instance, the class
instances are more efficient to process and move around. The
struct and union instances are scalar variables and you assign
and copy their entire content always.

3-4

VMM User Guide

A class can also contain constraint definitions to control the
randomization of data item values. But struct and union do not.
You can modify the default behavior and constraints of a class
through inheritance without modifying the original base model.
Struct and union do not support inheritance.

Tests never call the procedure that implements the transaction, the
transactor performs the calling. Instead, tests submit a transaction
descriptor to a transactor for execution.

This approach has the following advantages:

• It is easy to create a series of random transactions. Generating
random transactions becomes identical to generating random
data. You can observe all properties in Example 3-1 having the
rand attribute.

• You can constrain random transactions. Constraints are applied
to object properties only. Constraining transactions that are
modeled using procedures requires additional procedural code.
You cannot modify procedural constraints such as weights in a
randcase statement without modifying the source code.
Therefore, randcase statements prevent reusability.

• You can add new properties to a transaction without modifying its
interface. Add them by simply creating a new variant of the
transaction object.

• It simplifies integration with the scoreboard. As a transaction is
fully described as an object, a simple reference to that object
instance passed to the scoreboard, is enough to completely define
the stimulus and derive the expected response.

The Chapter 6, "Implementing Tests & Scenarios" shows how you
create stimulus using this approach.

3-5

VMM User Guide

Class Properties/Data Members

This section gives directives for properties and methods used to
model, transform or operate on data and transactions.

You must use a static class instance to avoid creating and destroying
too many instances of the message service interface as there are
thousands of object instances created and destroyed throughout a
simulation.

Quick Transaction Modeling Style

You can easily model transactions with shorthand macros. The only
steps required are defining all data members and getting them
instrumented with macros. The data member macros are type-
specific. You must use the macro that corresponds to the type of the
data member named in its argument.

Example 3-3 Transaction Implemented Using Shorthand Macros
class eth_frame extends vmm_data;
 rand bit [47:0] da;
 rand bit [47:0] sa;
 rand bit [15:0] len_typ;
 rand bit [7:0] data [];
 rand bit [31:0] fcs;

 ‘vmm_data_byte_size(1500, this.len_typ + 16)
 ‘vmm_data_member_begin(eth_frame)
 ‘vmm_data_member_scalar(da, DO_ALL)
 ‘vmm_data_member_scalar(sa, DO_ALL)
 ‘vmm_data_member_scalar(len_typ, DO_ALL)
 ‘vmm_data_member_scalar_array(data, DO_ALL)
 ‘vmm_data_member_scalar(fcs,
 DO_ALL-DO_PACK-DO_UNPACK)
 ‘vmm_data_member_end(eth_frame)

3-6

VMM User Guide

 constraint valid_frame {
 fcs == 0;
 }
endclass

For details, see “Shorthand Macros” on page 23.

The rest of this section explains how to model transactions and
customize data members, methods, etc.

Message Service in Transaction

Another important aspect of transaction is the ability to issue
messages. This is simply done by using Shorthand Macros or
explicitly adding a static vmm_log instance to the transaction.

Example 3-4 Declaring and Initializing a Message Service Interface
class eth_frame extends vmm_data;
 static vmm_log log = new("eth_frame", "class");
 ...
 function new();
 super.new(this.log);
 endfunction: new
 ...
endclass: eth_frame

Data and transaction descriptors flow through various transactors in
the verification environment. Messages related to a particular data
object instance are issued through the message service interface in
the transactor where there is a need to issue the message.

By this, the location of the message source can be easily identified
and controlled. You can include the information on the data or
transaction that caused the message in the text of the message or
by using the vmm_data::psdisplay() method.

3-7

VMM User Guide

Randomizing Transaction Members

A class must be able to model all possible types of transactions for
a particular protocol. You should not use inheritance to describe
each individual transaction. Instead, use a class property to identify
the type of transaction described by the instance of the transaction
descriptor.

If you leave the size of a randomized array unconstrained, it might
be randomized to an average length of 230. To avoid this situation,
you should always constrain the size of a randomized array to a
reasonable value. A good practice consists in providing default
constraint and constraints that can be externally defined. This
practice allows constraints to be turned off or overridden. In Example
3-5, the ethernet frame data payload is constrained to contain less
than 1500 elements or 2048 elements is the valid_len_typ
constraint is turned off.

Example 3-5 Declaring a class With a Randomized Array
class eth_frame extends vmm_data;
 ...
 rand bit [15:0] len_typ;
 rand bit [7:0] data[];
 ...
 constraint valid_len_typ {
 data.size() <= 1500 && len_typ == data.size();
 }
 constraint limit_data_size {
 data.size() < 2048;
 }
 ...
endclass: eth_frame

This approach enables turning off the array's rand attributes and
constraining them in a derived class, higher-level classes or via the
randomize-with statement. If the properties are local, none of
this is possible.

3-8

VMM User Guide

Context References

Some transactions are layer-based and depend upon lower-level
transactions. For instance, the USB protocol comes with high level
usb_transfer that consists of a list of usb_packets, which in turn
consists of a list of usb_packets. Transaction descriptors for higher-
level transactions should have a list of references to the lower-level
transactions used to implement them.

You can add lower-level transactors in the verification environment
to this list as they implement the higher-layer transaction. The
completed list is only valid when the transaction's processing has
ended. A scoreboard can then use the list of sub-transactions to
determine its status and the expected response.

Conversely, the descriptor for a low-level transaction should have a
reference to the higher-level transaction descriptor it implements.
This reference helps the scoreboard or other verification
environment components to make sense of the transaction and
determine the expected response.

In Example 3-6, the higher-layer transaction usb_packet is modeled
as a list of usb_transactions, which are modeled as a list of
usb_packets.

Example 3-6 Transaction Context References
class usb_packet extends vmm_data;
 ...
 usb_transaction context_data;
 ...
endclass: usb_packet

class usb_transaction extends vmm_data;
 ...
 usb_packet packets[];
 usb_transfer context_data;

3-9

VMM User Guide

 ...
endclass: usb_transaction

class usb_transfer extends vmm_data;
 ...
 usb_transaction transactions[];
 vmm_data context_data;
 ...
endclass: usb_transfer

A transaction might be implemented using different lower-level
protocols, the implementation references should be of type
vmm_data to enable reference to any transaction descriptor
regardless of the protocol.

Similarly, the context reference of a low-level transaction should be
of type vmm_data if it should implement or carry information from
different higher-level protocols. As shown in Example 3-7, an
Ethernet frame can transport any protocol information and should
have a generic context reference.

Example 3-7 Protocol-Generic Context Reference
class eth_frame extends vmm_data;
 ...
 vmm_data context_data;
 ...
endclass: eth_frame

Inheritance and OOP

In traditional object-oriented design practices, inheritance appears to
be an obvious implementation. Use a base class for the common
properties, then extend it to the various differences in format.

3-10

VMM User Guide

This approach seems the natural choice as the SystemVerilog
equivalent to e’s when inheritance. Using inheritance to model data
formats creates three problems though, two of which are related to
randomization and constraints. These are concerns that do not exist
in traditional object-oriented languages.

The first problem is the difficulty of generating a stream containing a
random mix of different data and transactions formats. This is a
requirement for many applications, for example an Ethernet device
must be able to accept any mix of various Ethernet frame types on a
given port - such as a processor - and must be able to execute any
mix of instructions.

Using a common base class gets around the type-checking problem.
However, in SystemVerilog, objects must first be instantiated before
they can be randomized. Because you must create instances based
on their ultimate type, not their base type, the particular format of a
data item or transaction is determined before randomizing its
content.

Thus, it is impossible to use constraints to control the distribution of
the various data and transaction formats or to express constraints on
a format as a function of the content of some other class property.
For example, if the destination address is equal to this, then the
Ethernet frame must have VLAN but no control information.

The second challenge is the difficulty in adding constraints to be
applied to all formats of a data item or a transaction descriptor. In
adding constraints to a data model, the most flexible mechanism is
to create a derived class. Adding a constraint that must apply to all
formats of a data model can't be done by simply extending the base
class common to all formats. This creates yet another class that is
unrelated to the other derivatives. It requires extending each
extension of the ultimate class.

3-11

VMM User Guide

The final challenge is that it is not possible to recombine different and
orthogonal format variations. For example, the optional VLAN, LLC
and control format variations on an Ethernet frame are orthogonal.
Hence, there are eight possible variations of the Ethernet frame.

As SystemVerilog does not support multiple inheritance, using
inheritance to model this simple case requires eight different
classes, i.e. one for each combination of the presence or absence of
the optional information. You should solve this problem using proper
modeling methodology rather than a new language capability.

Composition is the use of class instances inside another class to
form a more complex data or transaction descriptor. Optional
information from different formats are modeled by instantiating or
excluding a class containing this optional information in the data
model. If the information is not present, the reference is set to null.
Otherwise, the reference would point to an instance containing that
information.

This technique has four limitations with randomization:

• Randomization in SystemVerilog does not allocate sub-instances
even if the reference class property has the rand attribute.
Randomization either randomizes a pre-existing instance or does
nothing if the reference is null.

• It complicates the expression of constraints that might involve a
null reference. Use constraint guards to detect the absence of
optional properties where a null reference causes a runtime
error.

• It is impossible to express constraints to determine the presence
or absence-or their respective ratio-of the sub-instance, it is also
impossible to define the data format based on some other
(possibly random) properties.

3-12

VMM User Guide

• It brings needless introduction of hierarchies of references to
access properties that belong to the same data or transaction
descriptor. One must remember whether a class property is
optional or not and under which optional instance it is located to
access it.

However, a runtime error while attempting to access non-existent
information in the current data format is available as a type-checking
side effect. But it does not outweigh the other disadvantages.

Unions allow multiple data formats to coexist within the same bits.
Tagged unions enforce strong typing in the interpretation of
multiple orthogonal data formats. Unfortunately, tags cannot be
randomized. It is impossible to have a tagged union randomly
select one of the tags or constrain the tag based on other class
properties. It is also not possible to constrain fields in randomly-
tagged unions because the value of the tag is not defined until
solved.

Instead of using inheritance, composition or tagged unions to
model different data and transaction formats, use the value of a
discriminant class property. It is necessary for methods that deal with
the ultimate format of the data or transaction such as, byte_pack()
and compare().These methods will then procedurally check the
value of these discriminant properties to determine the format of the
data or transaction and decide on a proper course of action.

Example 3-8 Using a Discriminant Class Property to Model Data Format
class eth_frame extends vmm_data;
 ...
 typedef enum {UNTAGGED, TAGGED, CONTROL}
 frame_formats_e;
 rand frame_formats_e format;
 ...
 rand bit [47:0] dst;
 rand bit [47:0] src;

3-13

VMM User Guide

 rand bit [2:0] user_priority;
 rand bit cfi;
 rand bit [11:0] vlan_id;
 ...
 virtual function string
 psdisplay(string prefix = "");
 $sformat(psdisplay,
 "%sdst=48'h%h, src=48'h%h, len/typ=16'h%h\n",
 prefix, da, sa, len_typ);
 case (this.format)
 TAGGED: begin
 $sformat(psdisplay,
 "%s%s(tagged) cfi=%b pri=%0d, id=12'h%h\n",
 psdisplay, prefix,
 cfi, user_priority, vlan_id);
 end
 ...
 endcase
 ...
 $sformat(psdisplay, "%s%sFCS = %0s",
 psdisplay, prefix,
 (fcs) ? "BAD" : "good"));
 endfunction: psdisplay
 ...
endclass: eth_frame

As you use a single class to model all formats, constraints can be
specified to apply to all variants of a data type. Use constraints to
express relationships between the format of the data and the content
of other properties because the format is determined by an explicit
class property.

Use constraints to express relationships between the format of the
data and the content of other properties. Model orthogonal variations
using different discriminant properties, allowing all combinations of
variations to occur within a single model.

Inheritance provides for better localization of the various differences
in formats but does not reduce the amount of code. It might even
increase it. Discriminants might appear verbose but do not require
any more lines of code or statements to fully implement.

3-14

VMM User Guide

Furthermore, this technique does not require modeling of optional
properties in specific locations amongst other properties to enable
some built-in functionality. You implement data and transaction
models to facilitate usage, not match some obscure language or
simulator requirement.

However, this approach has an apparent disadvantage. There is no
type checking to prevent the access of a class property that is not
currently valid given the current value of a discriminant class
property.

If a strong type checking is required, you can combine this approach
with composition to create the data or transaction descriptor. A
reference to a subclass that is either null or not does not indicate
the absence or presence of optional class properties. Instead, the
discriminant property indicates that fact.

The descriptor can be fully populated before randomization, then
pruned to eliminate the unused class properties. However, it might
be difficult to ensure the correct construction of a manually-specified
descriptor.

Example 3-9 Combining a Discriminant Class Property and Composition
class eth_vlan_data;
 rand bit [2:0] user_priority;
 rand bit cfi;
 rand bit [11:0] id;
endclass: eth_vlan_data

class eth_frame extends vmm_data;
 ...
 typedef enum {UNTAGGED, TAGGED, CONTROL}
 frame_formats_e;
 rand frame_formats_e format; // Discrimant
 ...
 rand bit [47:0] dst;
 rand bit [47:0] src;
 rand eth_vlan_data vlan;

3-15

VMM User Guide

 ...
 function void pre_randomize(); // Composition
 if (this.vlan == null) this.vlan = new;
 endfunction

 function void post_randomize();
 if (format != TAGGED) this.vlan = null;
 endfunction
 ...
endclass: eth_frame

Handling Transaction Payloads

Some protocols define fixed fields and data in user-defined payload
for certain data types. For example, fixed-format 802.2 link-layer
information might be present at the front of the user data payload in
an Ethernet frame. Another example is the management-type frame
in 802.11 wherein you replace the content of the user-payload with
protocol management information.

You should model the fixed payload data using explicit properties as
if they were located in non-user-defined fields. You should reduce
the length of the remaining user-defined portion of the payload by the
number of bytes used by the fixed payload data, not modeled in
explicit properties.

Example 3-10 Fixed Payload Format Class Property
class eth_frame extends vmm_data;
 ...
 typedef enum {UNTAGGED, TAGGED, CONTROL}
 frame_formats_e;
 rand frame_formats_e format;
 ...
 rand bit [15:0] opcode;
 rand bit [15:0] pause_time;
 ...
 typedef enum [15:0] {PAUSE = 16'h0001} opcodes_e;
 ...
 constraint valid_pause_frame {

3-16

VMM User Guide

 if (format == CONTROL && opcode == PAUSE) begin
 dst == 48'h0180C2000001;
 max_len == 42;
 end
 }
 ...
 virtual function int unsigned byte_pack(...);
 ...
 case (format)
 ...
 CONTROL: begin
 ... = 16'h8808;
 ... = this.opcode;
 case (this.opcode)
 PAUSE: begin
 ... = this.pause_time;
 end
 endcase
 end
 ...
 endfunction: byte_pack
...
endclass: eth_frame

Data units and transactions often contain information that is optional
or unique to a particular type of data or transaction. For example,
Ethernet frames might or might not have virtual LAN (VLAN), link-
layer control (LLC), sub-network access protocol (SNAP) or control
information in any combination. Another example is the instruction
set of a processor where different types of instructions use different
numbers and modes of operands.

Methods

This section contains guidelines for using methods in data and
transaction models. As explained in previous section, definition and
implementation of transaction methods is unnecessary when using
shorthand macros. For details, see “Shorthand Macros” on page 23.

3-17

VMM User Guide

You should relate methods in data and transaction descriptors only
with their immediate state, i.e. these methods should be non-
blocking. There should be no need for advancing the simulation time
or suspending the execution thread within these methods. Data and
transaction processing requiring advancing time or suspending the
execution thread should be located in transactors.

For details, see vmm_data base class specification.

These methods provide the basic functionality required to implement
a verification environment. They have no built-in equivalent in the
SystemVerilog language.

The vmm_data::allocate() method is a simple call to new and
appears redundant. However, it enables the creation of factories and
the use of polymorphism in transactors. This is not possible with the
direct use of the constructor.

The vmm_data::copy() method creates a suitable copy of the
data or transaction instance. Whether it is shallow or deep, you
should always copy a shallow context references in a descriptor.
This method hides the details of the class implementation from you.

It might be necessary to implement these methods if you need to
transmit a data model across a physical interface or between
different simulations. For example, from SystemVerilog to SystemC.

SystemVerilog does not define packed classes. Yet in many
instances you must transmit a data item over a certain number of
byte lanes across a physical interface. You map back the same
stream of data received over the physical interface into higher-level
structure and information.

3-18

VMM User Guide

This is automatically handled by packed struct and unions, but
not in classes. The advantages and flexibility of classes are
unworthy of sacrificing for this simple built-in operation in other data
structures. You encapsulate the same functionality in those
predefined methods.

The implementation of the byte_pack() method shall only pack
the relevant properties based on the value of discriminant properties.

Not all properties are valid or relevant under all possible data or
transaction formats. The packing methods must check the value of
discriminant properties to determine which class property to include
in the packed data in addition to their format and ordering. Refer the
following example.

Often, discriminant properties are logical properties not directly
packed into bit-level data or directly unpacked from it. However, the
information necessary to identify a particular variance of a data
object is usually present in the packed data. For example, the value
16’h8100 in bytes 12 and 13 of an Ethernet MAC frame stream
indicate that the VLAN identification fields are present in the next two
bytes. If the information about the data format is unavailable in the
bytes to be unpacked, you might use the optional kind argument to
specify a particular expected format.

The unpacking method must interpret the packed data and set the
value of the discriminant properties accordingly. Similarly, it must set
all relevant properties to their mapped values based on the
interpretation of the packed data. Properties not present in the data
stream should be set to unknown or undefined values.

Example 3-11 Unpacking an Ethernet Frame
class eth_frame extends vmm_data;
 ...

3-19

VMM User Guide

 typedef enum {UNTAGGED, TAGGED, CONTROL}
 frame_formats_e;
 rand frame_formats_e format;
 ...
 rand bit [47:0] dst;
 rand bit [47:0] src;
 rand bit cfi;
 rand bit [2:0] user_priority;
 rand bit [11:0] vlan_id;
 ...
 virtual function int unsigned byte_unpack(
 const ref logic [7:0] array[],
 input int unsigned offset = 0,
 input int len = -1,
 input int kind = -1);
 integer i;

 i = offset;
 this.format = UNTAGGED;
 ...
 if ({array[i], array[i+1]} === 16’h8100) begin
 this.format = TAGGED;
 i += 2;
 ...
 {this.user_priority, this.cfi, this.vlan_id} =
 {array[i], array[i+2]};
 i += 2;
 ...
 end
 ...
 endfunction: byte_unpack
 ...
endclass: eth_frame

You encode the data protection class property simply as being valid
or not. Therefore, it must be possible to derive its actual value by
other means when necessary.

The method must be virtual to allow the introduction of a different
protection value computation algorithm if necessary. When it is
modeled as invalid, the packing method is responsible for corrupting
the value of a data protection class property, not the computation
method. For details, see Example 3-9.

3-20

VMM User Guide

Factory Service for Transactions

For information, see “Modeling a Transaction to be Factory Enabled”
on page 28.

Constraints

You might model some properties using a type that can yield invalid
values. For example, a length class property might need to be
equal to the number of bytes in a payload array. This constraint
ensures that the value of the class property and the size of the array
are consistent. Note that "valid" is not the same thing as "error-free."
Validity is a requirement of the descriptor implementation not the
data or transaction being described.

Example 3-12 Basic Frame Validity Constraint Block
class eth_frame extends vmm_data;
 ...
 rand int unsigned min_len;
 rand int unsigned max_len;
 ...
 constraint eth_frame_valid {
 min_len <= max_len;
 }
 ...
endclass: eth_frame

Size and duration properties do not have equally interesting values.
For example, short or back-to-back and long or drawn-out
transactions are more interesting than average transactions.

Randomized class properties modeling size, length, duration or
intervals should have a constraint block that distributes their value
equally between limit and average values.

3-21

VMM User Guide

Example 3-13 Constraint Block to Improve Distribution
class eth_frame extends vmm_data;
 ...
 constraint interesting_data_size {
 data.size() dist {min_len :/ 1,
 [min_len+1:max_len-1] :/ 1,
 max_len :/ 1};
 }
 ...
endclass: eth_frame

You should provide a similar specification of value distributions to
raise the chances that corner cases are generated.

However, the definition of a corner case is usually DUT-specific. You
implement any constraint designed to hit DUT-specific corner cases
in a class extension of the data or transaction descriptor, not in the
descriptor class itself. This implementation avoids locking in a
reusable data or transaction model with DUT-specific information.

Example 3-14 Adding DUT-Specific Corner-Case Constraints
class long_eth_frame extends eth_frame;
 constraint long_frames {
 data.size() == max_len;
 }
 ...
endclass: long_eth_frame

Use one constraint block per class property to make it easy to turn
off or override without affecting the distribution of other properties.
For details, see Example 3-13.

A conditional constraint block does not imply that the properties used
in the expression are solved before the properties in the body of the
condition.

3-22

VMM User Guide

If you solve a class property in the body of the condition with a value
that implies that the condition cannot be true, this result constrains
the value of the properties in the condition. If there is a greater
probability of falsifying the condition, it is unlikely to get an even
distribution over all discriminant values.

In Example 3-15, if you solve the length class property before the
kind class property, it is unlikely to produce CONTROL packets
because there is a low probability of you solving the length class
property as 1.

Example 3-15 Poor Distribution With Conditional Constraints
class some_packet;
 typedef enum {DATA, CONTROL} kind_typ;
 rand kind_typ kind;

 rand int unsigned length;
 ...
 constraint valid_length {
 if (kind == CONTROL) length == 1;
 }
endclass: some_packet

You can avoid this problem and obtain a better distribution of
discriminant properties by forcing the solving of the discriminant
class property before any dependent class property using the solve
before constraint.

Example 3-16 Improved Distribution With Conditional Constraints
class some_packet;
 typedef enum {DATA, CONTROL} kind_typ;
 rand kind_typ kind;

 rand int unsigned length;
 ...
 constraint valid_length {
 if (kind == CONTROL) length == 1;
 solve kind before length;
 }
endclass: some_packet

3-23

VMM User Guide

You can randomly inject error by selecting an invalid value for error
protection properties. A constraint block should keep the value of
such properties valid by default. For details, see Example 3-16.

You use one constraint block per error injection class property to
make it easy to turn off or override without affecting the correctness
of other properties.

You define external constraint blocks outside the class that
declares them. If you leave them undefined, you consider them
empty and do not add constraints to the class instances. You can
define these constraint blocks later by individual tests to add
constraints to all instances of the class.

Example 3-17 Declaring Undefined External Constraint Blocks
class eth_frame extends vmm_data;
 ...
 extern constraint test_constraints1;
 extern constraint test_constraints2;
 extern constraint test_constraints3;
 ...
endclass: eth_frame

Shorthand Macros

The implementation of an extension of the vmm_data class requires
the implementation of many methods. For example,
vmm_data::compare(), vmm_data::copy(), packing,
vmm_env::start(), etc...). Although you only need to implement
these methods once, they might be cumbersome to maintain and to
implement for trivial class extensions.

3-24

VMM User Guide

However, a set of shorthand macros exist to help reduce the amount
of code required to implement or use VMM-compliant data descriptor
VMM class extensions. These shorthand macros provide a default
implementation of all methods for specified data members.

You specify the shorthand macros inside the class specification after
the declaration of the data members. It starts with the
‘vmm_data_member_begin()macro and ends with the
corresponding ‘vmm_data_member_end() macro. In between,
you should add corresponding vmm_*_member_*() macros for
each data member as declared in your transaction.

Data member macros are type-specific. You must use the macro that
corresponds to the type of the data member named in its argument.

The order in which you invoke the shorthand data member macros
determines the order of printed, compared, copied, packed, and
unpacked data members.

Example 3-18 Transaction Implemented Using Shorthand Macros
class eth_frame extends vmm_data;
 rand bit [47:0] da;
 rand bit [47:0] sa;
 rand bit [15:0] len_typ;
 rand bit [7:0] data [];
 rand bit [31:0] fcs;

 ‘vmm_data_byte_size(1500, this.len_typ + 16)
 ‘vmm_data_member_begin(eth_frame)
 ‘vmm_data_member_scalar(da, DO_ALL)
 ‘vmm_data_member_scalar(sa, DO_ALL)
 ‘vmm_data_member_scalar(len_typ, DO_ALL)
 ‘vmm_data_member_scalar_array(data, DO_ALL)
 ‘vmm_data_member_scalar(fcs,
 DO_ALL-DO_PACK-DO_UNPACK)
 ‘vmm_data_member_end(eth_frame)

 constraint valid_frame {
 fcs == 0;

3-25

VMM User Guide

 }
endclass

Shorthand macros are fully backward compatible with classes
implemented using explicitly specified methods. You might choose to
implement one class using the shorthand macros and another by
explicitly implementing all of the methods.

User-Defined Implementations

When you use shorthand macros, you provide all vmm_data virtual
methods with a default implementation. If it is necessary to provide
a different, explicitly-coded implementation for one of these methods
or data member, you can implement it using one of two approaches.

User-Defined Method Implementation

If you need a specific implementation for one or two methods, it is
recommended to model transactions with shorthand macros and to
override these specific methods with your own implementation.

The following methods can be overridden:

vmm_data::do_psdisplay()
vmm_data::do_is_valid()
vmm_data::do_allocate()
vmm_data::do_copy()
vmm_data::do_compare()
vmm_data::do_byte_size()
vmm_data::do_max_byte_size()
vmm_data::do_byte_pack()
vmm_data::do_byte_unpack()

3-26

VMM User Guide

Example 3-19 shows how to replace the default implementation of
the vmm_data::is_valid() method by implementing the
vmm_data::do_is_valid() method. All other methods uses the
default implementation provided by shorthand macros.

Example 3-19 Overloading Default Method Implementation
class eth_frame extends vmm_data;
 rand bit [47:0] da;
 rand bit [47:0] sa;
 rand bit [15:0] len_typ;
 rand bit [7:0] data [];
 rand bit [31:0] fcs;

 ‘vmm_data_byte_size(1500, this.len_typ+16)
 ‘vmm_data_member_begin(eth_frame)
 ‘vmm_data_member_scalar(da, DO_ALL)
 ‘vmm_data_member_scalar(sa, DO_ALL)
 ‘vmm_data_member_scalar(len_typ, DO_ALL)
 ‘vmm_data_member_scalar_array(data, DO_ALL)
 ‘vmm_data_member_scalar(fcs,
 DO_ALL-DO_PACK-DO_UNPACK)
 ‘vmm_data_member_end(eth_frame)

 virtual bit function do_is_valid(bit silent = 1,
 int kind = -1);
 if (len_typ < 48)
 return 0;
 if (len_typ < 1500 && len_typ != data.size())
 return 0;
 if (len_typ > 1500 && len_typ < ’h0600)
 return 0;

 return 1;
 endfunction

 constraint valid_frame {
 fcs == 0;
 }
endclass

3-27

VMM User Guide

To effectively implement these methods, you must use shorthand
macros. However, if you don't use them (for example, you explicitly
implement all of the class methods) you must implement the normal,
psdisplay(), is_valid(), allocate(), copy(), compare(),
byte_size(), max_byte_size(), byte_pack() and
byte_unpack()and not their do_* counterparts.

User-Defined Member Default Implementation

If the unsuitable implementation in the default method pertains to a
specific data member it is possible to provide a user-defined default
implementation for that member.

The user-defined implementation is woven with the other default
implementations to create the overall default implementation for all
virtual methods.

User-Defined vmm_data Member Default
Implementation

You can provide your own implementation for specific data
members. This is possible in conjunction to pre-defined shorthand
macros.

You accomplish this for the vmm_data class by using the
‘vmm_data_member_user_defined()macro and implementing
a function named do_<membername>(). For instance, Example 3-
20 provides a specific implementation for da member and
implements the method called do_da.

You must implement this method by using the following pattern:

function bit do_membername(
input vmm_data::do_what_e do_what,

3-28

VMM User Guide

input string prefix,
ref string image,
input classname rhs,
input int kind,
ref int offset,
ref logic [7:0] pack1[],
const ref logic [7:0] unpack1());

 do_name = 1; // Success, abort by returning 0

 case (do_what)
 DO_PRINT: begin
 // Add to the ’image’ variable, using ’prefix’
 end
 DO_COPY: begin
 // Copy from ’this’ to ’rhs’
 end
 DO_COMPARE: begin
 // Compare ’this’ to ’rhs’
 // Put mismatch description in ’image’
 // Returns 0 on mismatch
 end
 DO_PACK: begin
 // Pack into ’pack’ starting at ’offset’
 // Update ’offset’ to end of ’pack’
 end
 DO_UNPACK: begin
 // Unpack from ’unpack’ starting at ’offset’
 // Update ’offset’ to start of next unpacked data
 end
 endcase

endfunction

Example 3-20 shows how the default method implementation for the
da member can be user-specified to display an IP address using the
separated hexadecimal value instead of the decimal value provided
by the default implementation.

Example 3-20 User-defined Member Default Implementation
class eth_frame extends vmm_data;
 rand bit [47:0] da;
 rand bit [47:0] sa;
 rand bit [15:0] len_typ;

3-29

VMM User Guide

 rand bit [7:0] data [];
 rand bit [31:0] fcs;

 ‘vmm_data_byte_size(1500, this.len+16)
 ‘vmm_data_member_begin(eth_frame)
 ‘vmm_data_member_user_defined(da)
 ‘vmm_data_member_scalar(sa, DO_ALL)
 ‘vmm_data_member_scalar(len_typ, DO_ALL)
 ‘vmm_data_member_scalar_array(data, DO_ALL)
 ‘vmm_data_member_scalar(fcs,
 DO_ALL-DO_PACK-DO_UNPACK)
 ‘vmm_data_member_end(eth_frame)

function bit do_da(
 input vmm_data::do_what_e do_what,
 input string prefix,
 ref string image,
 input eth_frame rhs,
 input int kind,
 ref int offset,
 ref logic [7:0] pack1[],
 const ref logic [7:0]unpack1());

 do_da = 1; // Success, abort by returning 0

 case (do_what)
 DO_PRINT: begin
 $sformat(image, "DA = %h.%h.%h.%h.%h.%h",
 this.da[47.40], this.da[39.32],
 this.da[31:24], this.da[23:16],
 this.da[15: 8], this.da[7: 0]);
 end
 DO_COPY: begin
 rhs.da = this.da;
 end
 DO_COMPARE: begin
 if (this.da != rhs.da) begin
 $sformat(image, "this.da (%h.%h.%h.%h.%h.%h)
!= to.da (%h.%h.%h.%h.%h.%h)",
 this.da[47.40], this.da[39.32],
 this.da[31:24], this.da[23:16],
 this.da[15: 8], this.da[7: 0],
 rhs.da[47.40], rhs.da[39.32],
 rhs.da[31:24], rhs.da[23:16],
 rhs.da[15: 8], rhs.da[7: 0]);
 return 0;

3-30

VMM User Guide

 end
 end
 DO_PACK: begin
 if (pack.size() < offset + 6)
 pack = new [offset + 6] (pack);
 {pack[offset], pack[offset+1], pack[offset+2],
 pack[offset+3], pack[offset+4], pack[offset+5]} =
 this.da;
 offset += 6;
 end
 DO_UNPACK: begin
 if (unpack.size() < offset + 6) return 0;
 this.da = {unpack[offset], unpack[offset+1],
 unpack[offset+2], unpack[offset+3],
 unpack[offset+4], unpack[offset+5]};
 offset += 6;
 end
 endcase

endfunction

 constraint valid_frame {
 fcs == 0;
 }
endclass

Note: You must provide a default implementation for all possible
operations (print, compare, copy, pack and unpack).
It is impossible to execute the default implementation that would
have otherwise been provided by the other type-specific
shorthand macros.

However, it is acceptable to leave the implementation for an
operation empty if it is neither going to be used nor has a functional
effect.

3-31

VMM User Guide

Unsupported Data Types

For non-scalar data members, you can provide your own
implementation for data members that do not have a pre-defined
shorthand macro. For example, a member that is an instance of a
user-defined class that is not primarily extended from the vmm_data
class.

It is necessary that you use the user-defined default member
implementation to perform the correct display, copy, and compare
operations for that class.

Example 3-21 shows how you can implement display, copy, and
compare methods for a user-defined data member called vlan.

Example 3-21 Class Member Default Implementation
class vlan_tag; // no vmm_data extension
 rand bit [2:0] pri;
 rand bit cfi;
 rand bit [11:0] tag;
endclass

class eth_frame extends vmm_data;
 rand bit [47:0] da;
 rand bit [47:0] sa;
 rand bit [15:0] len_typ;
 rand vlan_tag vlan;
 rand bit [7:0] data [];
 rand bit [31:0] fcs;

 ‘vmm_data_byte_size(1500, this.len+16)
 ‘vmm_data_member_begin(eth_frame)
 ‘vmm_data_member_scalar(da, DO_ALL)
 ‘vmm_data_member_scalar(sa, DO_ALL)
 ‘vmm_data_member_scalar(len_typ, DO_ALL)
 ‘vmm_data_member_user_defined(vlan)
 ‘vmm_data_member_scalar_array(data, DO_ALL)
 ‘vmm_data_member_scalar(fcs,

3-32

VMM User Guide

 DO_ALL-DO_PACK-DO_UNPACK)
 ‘vmm_data_member_end(eth_frame)

function bit do_vlan(

input vmm_data::do_what_e do_what,
input string prefix,
ref string image,
input eth_frame rhs,
input int kind,
ref int offset,
ref logic [7:0] pack1[],
const ref logic [7:0] unpack1());

 do_da = 1; // Success, abort by returning 0

 case (do_what)
 DO_PRINT: begin
 if (this.vlan == null) return 1;
 $sformat(image, "%s\n%s VLAN: %0d/%b (%h)",
 this.pri, this.cfi, this.tag);
 end
 DO_COPY: begin
 rhs.vlan = (this.vlan == null) ? null
 : new this.vlan;
 end
 DO_COMPARE: begin
 if (this.vlan == null && rhs.vlan == null)
 return 1;
 if (this.vlan == null) begin
 image = "No VLAN on this but found on to";
 return 0;
 end
 if (this.rhs == null) begin
 image = "VLAN on this but not on to";
 return 0;
 end
 if (this.vlan.pri != rhs.vlan.pri) begin
 $sformat(image, "this.vlan.pri (%0d) != to.vlan.pri
(%0d)",
 this.vlan.pri, rhs.vlan.pri);
 return 0;
 end
 if (this.vlan.cfi != rhs.vlan.cfi) begin
 $sformat(image, "this.vlan.cfi (%b) != to.vlan.cfi
(%b)",
 this.vlan.cfi, rhs.vlan.cfi);

3-33

VMM User Guide

 return 0;
 end
 if (this.vlan.tag != rhs.vlan.tag) begin
 $sformat(image, "this.vlan.tag (%h) != to.vlan.tag
(%h)",
 this.vlan.tag, rhs.vlan.tag);
 return 0;
 end
 end
 DO_PACK: begin
 if (this.vlan == null) return 1;
 if (pack.size() < offset + 4)
 pack = new [offset + 4 (pack);
 {pack[offset], pack[offset+1] = ’h8100};
 {pack[offset+2], pack[offset+3] =}
 {this.vlan.pri, this.vlan.cfi, this.vlan.tag};
 offset += 4;
 end
 DO_UNPACK: begin
 if (unpack.size() < offset + 4) return 1;
 if ({unpack[offset], unpack[offset+1]}
 != ’h8100) return 1;
 this.vlan = new;
 {this.vlan.pri, this.vlan.cfi, this.vlan.tag} =
 {unpack[offset+2], pack[unoffset+3]};
 offset += 4;
 end
 endcase

endfunction
constraint valid_frame {
 fcs == 0;
}
endclass

3-34

VMM User Guide

rand_mode() copy in Shorthand Macros

The implementation of the vmm_data::copy() method provided
by the vmm_data shorthand macros does not copy the state of the
rand_mode() for rand or randc variables.

Therefore, the following new vmm_data shorthand macros are
defined to copy the rand_state() (and only the rand_state())
for rand or randc properties:

• `vmm_data_member_rand_scalar(_name, _do)

• `vmm_data_member_rand_scalar_array(_name, _do)

• `vmm_data_member_rand_scalar_da(_name, _do)

• `vmm_data_member_rand_scalar_aa_scalar(_name,
_do)

• `vmm_data_member_rand_scalar_aa_string(_name,
_do)

• `vmm_data_member_rand_enum(_name, _do)

• `vmm_data_member_rand_enum_array(_name, _do)

• `vmm_data_member_rand_enum_da(_name, _do)

• `vmm_data_member_rand_enum_aa_scalar(_name,
_do)

• `vmm_data_member_rand_enum_aa_string(_name,
_do)

• `vmm_data_member_rand_handle(_name, _do)

• `vmm_data_member_rand_handle_array(_name, _do)

3-35

VMM User Guide

• `vmm_data_member_rand_handle_da(_name, _do)

• `vmm_data_member_rand_handle_aa_scalar(_name,
_do)

• `vmm_data_member_rand_handle_aa_string(_name,
_do)

• `vmm_data_member_rand_vmm_data(_name, _do, _how)

• `vmm_data_member_rand_vmm_data_array(_name,
_do, _how)

• `vmm_data_member_rand_vmm_data_da(_name, _do,
_how)

• `vmm_data_member_rand_vmm_data_aa_scalar(_name,
_do, _how)

• `vmm_data_member_rand_vmm_data_aa_string(_name,
_do, _how)

Note: You should use these macros only on rand or randc
properties, else, a syntax error is generated.

The only purpose of these new macros is to copy the rand_mode()
state. To minimize the run-time performance impact of copying the
rand_mode() state on large arrays (which must be done on each
array element) and on classes with large number of members, the
recommendation is to not use it by default and, if needed, add it in a
derived class. It must thus be specified in addition to the non-rand
macro to complete the default implementation of the copy method.

class vip_tr extends vmm_data;
 rand int huge[65535];

 `vmm_data_member_begin(vip_tr)
 `vmm_data_member_scalar_array(huge, DO_ALL)
 `vmm_data_member_end(vip_tr)

3-36

VMM User Guide

endclass
class directed_tr extends vip_tr;
 function new();
 this.huge.rand_mode(0);
 endfunction

 `vmm_data_new(directed_tr)
 `vmm_data_member_begin(directed_tr)
 `vmm_data_member_rand_scalar_array(huge, DO_ALL)
 `vmm_data_member_end(directed_tr)
endclass

4-1

VMM User Guide

4
Modeling Transactors and Timelines 1

This chapter contains the following sections:

• Overview

• Transactor Phasing

• Threads and Processes Versus Phases

• Physical-Level Interfaces

• Transactor Callbacks

• Advanced Usage

4-2

VMM User Guide

Overview

The term transactor is used to identify components of the verification
environment that interface between two levels of abstractions for a
particular protocol or to generate protocol transactions.

In Figure 2-2, the boxes labeled Driver, Monitor, Checker and
Generator are all transactors. The lifetime of transactors is static to
the verification environment. They are created at the beginning of the
simulation and stay in existence for the entire duration.

They are structural components of the verification components and
they are similar to modules in the DUT. Only a handful of transactors
get created. In comparison, transactions have a dynamic lifetime.
Thousands get created by generators, flow through transactors, get
recorded and compared in scoreboards and then freed.

Traditional bus-functional models (BFM) are called command-layer
transactors. Command-layer transactors have a transaction-level
interface on one side and a physical-level interface on the other.
Functional-layer and scenario-layer transactors only have
transaction interfaces and do not directly interface to physical
signals.

This section specifies guidelines designed to implement transactors
that are reusable, controllable and extendable. Note that reusability,
controllability and extensibility are not goals in themselves.

These features enable reusability of transactors by different
testcases and different verification environments. They enable
control of transactors to meet the specific needs of the testcases.

4-3

VMM User Guide

You can extend transactors to include the features particular
environments require. You must accomplish this control and
extension without modifying the transactors themselves to avoid
compromising the correctness of known-good transactors and
modifying the behavior or functionality of existing testcases.

You may need to use transactors by different verification
environments that require different combinations of transactors.
Using a unique prefix for all global name-space declarations
prevents collisions with other transactors.

Example 4-1 MII Transactors
class mii_cfg;
 ...
endclass: mii_cfg
...
class mii_mac_layer extends vmm_xactor;
 ...
endclass: mii_mac_layer
...
class mii_phy_layer extends vmm_xactor;
 ...
endclass: mii_phy

All declarations a transactor requires must be packaged together.
Using a single file to package all these related declarations simplifies
the task of bringing all necessary declarations you require to use a
transactor in a simulation.

Example 4-2 Transactors Declarations
class mii_mac_layer extends vmm_xactor;
 ...
endclass: mii_mac

Using package-to-package all related declarations might offer the
opportunity for separate compilation in some tools. Though a
package appears to eliminate the need for a unique prefix, the

4-4

VMM User Guide

potential to use the "import pkgname::*" statement still
necessitates the clear differentiation of names that might potentially
clash in the global name space.

Example 4-3 MII Transactor Package
package mii;

class mii_cfg extends vmm_data;
 ...
endclass: mii_cfg
...
class mii_mac_layer extends vmm_xactor;
 ...
endclass: mii_mac_layer
...
class mii_phy_layer extends vmm_xactor;
 ...
endclass: mii_phy_layer
...
endpackage: mii

Both transactors and data are implemented using the class
construct. The difference between a transactor class and a data
class is their lifetime. Limited number of transactor instances are
created at the beginning of the simulation and they remain in
existence throughout. This creates a very large number of data and
transaction descriptors instances throughout the simulation and they
have a short life span.

Therefore, you can use transactor classes like modules. Modules
instances too, are static throughout the simulation. The current state
of each transactor is maintained in local properties and implement
the execution threads in local methods. You should use classes
instead of modules because there you perform their instantiation
run time. Therefore, the structure of the verification environment you
can be dynamically configured according to the generated testcase
configuration descriptor.

4-5

VMM User Guide

Modules, being instantiated during the elaboration phase, define a
structure before the simulator has had the chance to randomize the
testcase configuration descriptor.You also prefer classes because
they offer an implementation protection mechanism. It is possible to
limit the access to various properties and methods in the class by
declaring them as protected or local. No such protection
mechanism exists in modules.

The implementation control of the interface that is exposed to you
occurs due to protecting the implementation of a class. And this
protection allows the modification of the implementation in a
backward-compatible fashion.

With their unrestricted access to all of their internal constructs,
modules might put the implementer in a straitjacket if you use
internal state information and procedures.

Classes also offer the opportunity to provide basic shared
functionality to all transactors through a shared base class. Because
you do not build modules on the object-oriented framework, they
are not used to offer such shared functionality.

The vmm_xactor base class contains standard properties and
methods to configure and control transactors. To ensure that all
transactors have a consistent usage model, you must derive them
from a common base class.

4-6

VMM User Guide

Transactor Phasing

Transactors progress through a series of phases throughout
simulation. All transactors are synchronized so that they execute
their phases synchronously with other transactors during simulation
execution.

VMM supports two transactor phasing usage: implicit and explicit. In
explicit phasing, the transactors are under the control of a master
controller such as, vmm_env to call the transactor phases. In implicit
phasing, the transactors execute their phases automatically and
synchronously.

VMM predefines several simulation phases. The following table
summarizes these phases and their intended purpose:

Table 4-1 Predefined VMM Simulation Phases

Explicit
Phase

Implicit
Phase

Intended Purpose

gen_cfg rtl_config
gen_config

Determine configuration of the testbench

build build Create the testbench

configure Configure options

connect Connect TLM interfaces, channels

configure_test_ph Test specific changes

start_of_sim Logical start of simulation

reset reset Reset DUT

training Physical interface training

cfg_dut config_dut Configuration of the DUT

start start Logical start of test

start_of_test Physical start of test

wait_for_end run Body of test, end of test detection to be
done here

stop shutdown Stop flow of stimulus

4-7

VMM User Guide

Explicit Transactor Phasing

In explicit phasing, transactors begin to execute when the
environment explicitly calls vmm_xactor::start_xactor to start
the transactor. This then starts the vmm_xactor::main thread.

For these functions to work properly, you must fork all threads that
implement autonomous behavior for a transactor in the body of the
vmm_xactor::main() task.

This rule is a corollary of the previous guideline. You cannot control
threads started in the constructor by the
vmm_xactor::start_xactor() and
vmm_xactor::reset_xactor() methods.

It is important that threads are not started as soon as transactors are
instantiated. When the verification environment is initially built and
the transactor is instantiated, the DUT might not yet be ready to
receive stimulus. Transactors and generators need to be suspended
until the environment has properly configured the DUT.

cleanup cleanup Let DUT drain and read final DUT state

report report Pass/fail report (executed by each test)

final Final checks and actions before
simulation termination (executed by last
test only when multiple tests are
concatenated)

Table 4-1 Predefined VMM Simulation Phases

Explicit
Phase

Implicit
Phase

Intended Purpose

4-8

VMM User Guide

Further, if a testcase needs to inject directed stimulus, it must be able
to suspend a transactor or generator for the entire duration of the
simulation. If that transactor or generator has already had the
opportunity to generate stimulus, it might be impossible to write the
required directed testcase.

You might implement transactors as successive derived classes all
based on the vmm_xactor class. Each inheritance layer might
include relevant autonomous threads started in their extension of
their respective vmm_xactor::main() task.

The execution of the implementation of this task in all intermediate
extensions of the vmm_xactor base class is necessary for the
proper operation of the transactor and control methods.

Example 4-4 Extension of the vmm_xactor::main() Task
task mii_mac_layer::main();
 fork
 super.main();
 join_none
 ...
endtask: main

These methods are virtual to enable the addition of functionality
specific to the implementation of a transactor or for you to execute a
protocol when you start, stop or reset a transactor.

Note: You should implement transactor methods and invoke its
underlying super method.

The implementation of a virtual method in a base class is overloaded
in a derived class is only invoked when implicitly called using the
super prefix. When a transactor extends these methods to perform
transactor or protocol-specific operations, they must invoke the
implementation of these virtual methods in the base class for proper
operation.

4-9

VMM User Guide

Example 4-5 Extension of Control Method
function void
 mii_mac_layer::reset_xactor(reset_e typ = SOFT_RST);
 super.reset_xactor(typ);
 ...
endfunction: reset_xactor

You should specify protocols using a layering concept, each with
different levels of abstraction. The transactors implementing these
protocols should follow a similar division. You can build the functional
layer of the verification environment using sub-layers of relevant
transactors. For example, a USB functional layer is composed of
USB transaction (host or endpoint) and USB transfer (host controller
or device) sub-layers.

Master transactors initiate transactions. Slave transactors respond
to transactions. A monitor transactor simply observes the interface in
master/slave directions, reports observed data as it flows by and any
protocol violation it observes. The verification environment shall be
able to control the timing of transactions master transactors initiate.

When modeling slave and monitor transactors, you shall take care
so that no data is lost if the transactor is executing user-defined
callbacks while a significant event occurs on the upstream interface.

This guideline does not imply that a transactor is dynamically
reconfigurable, for example, from master to monitor. Due to the
significant differences in behavior between modes, it is acceptable to
provide this optional configurability using the vmm_opts facility. For
details, see “Options & Configurations Service” on page 7-43.

Master and slave transactors should be used when direct interaction
with an interface is required to complete or initiate a transaction.
When embedding the DUT into a system, that interface might no
longer be controllable. Instead, another block controls it in the
system.

4-10

VMM User Guide

A monitor transactor should be available to monitor the transactions
that are under the control of the block-level environment. This is
required to reuse the block-level functional coverage model or its
self-checking structure.

You can use notifications by the verification environment to
synchronize with the occurrence of a significant event in a transactor
or a protocol interface.

In case transaction should be conveyed along with a notification,
transactors should post it to a TLM analysis port. For details, see
Chapter 5, "Communication".

Even though you implement designs using the same interface
protocols, there might be differences in how the protocol is physically
implemented by different designs.

Optional elements of the protocol such as bus width, the number of
outstanding transactions, clock frequency or the presence of
optional side-band signals shall be configurable.

You can specify the configuration of a transactor using a
configuration descriptor. All the properties in the configuration
descriptor should have the rand attribute, however, to allow the
generation of random configurations, both to verify the transactor
itself under different conditions and to make it usable as a
component of the testcase configuration descriptor.

Example 4-6 MII Transactor Configuration Descriptor
class mii_cfg;
 rand bit is_100Mb;
 rand bit full_duplex;
endclass: mii_cfg

4-11

VMM User Guide

Your environment must configure a transactor before using it. The
best way to ensure that it configures the transactor is to provide the
configuration descriptor as a factory. The transactor might choose to
keep a reference to the original configuration descriptor instance or
make a copy of it.

In the explicit phasing execution model, the transactors are entirely
controlled by explicit method calls from the environment that
instantiates it. You should implement this environment by extending
vmm_env.

The following examples demonstrate how the explicit phase
methods are user-extended and called:

Example 4-7 Modeling Transactor
class my_vip extends vmm_xactor;
 `vmm_typename(my_vip)

 function new(string name = "", vmm_object parent = null);
 super.new("vip", name);
 super.set_parent_object(parent);
 endfunction

 virtual function void start_xactor();
 super.start_xactor();
 `vmm_note(log, "Starting...");
 endfunction

 virtual function void stop_xactor();
 super.stop_xactor();
 `vmm_note(log, "Stopping...");
 endfunction

 ‘vmm_class_factory(my_vip)
endclass

4-12

VMM User Guide

Example 4-8 Creation of Explicitly Phased Sub-Environment
class my_subenv extends vmm_subenv;
 `vmm_typename(my_subenv)

 my_vip vip1;
 my_vip vip2;

 function new(string name = "", vmm_object parent = null);
 super.new("vip", name, null);
 super.set_parent_object(parent);
 this.vip1 = new(this, "vip1");
 this.vip2 = new(this, "vip2");
 endfunction

 virtual task start();
 super.configured();
 super.start();
 this.vip1.start_xactor();
 this.vip2.start_xactor();
 `vmm_note(log, "Started...");
 endtask

 virtual task stop();
 super.stop();
 this.vip1.stop_xactor();
 this.vip2.stop_xactor();
 `vmm_note(log, "Stopped...");
 endtask
endclass

Example 4-9 Creation of Explicitly Phased Environment
class my_env extends vmm_env;
 `vmm_typename(my_env)

 my_subenv subenv1;
 my_subenv subenv2;

 function new();
 super.new("env");
 endfunction

4-13

VMM User Guide

 virtual function void build();
 super.build();
 this.subenv1 = new("subenv1", this);
 this.subenv2 = new("subenv2", this);
 endfunction

 virtual task start();
 super.start();
 `vmm_note(log, "Started...");
 this.subenv1.start();
 this.subenv2.start();
 endtask

 virtual task wait_for_end();
 super.wait_for_end();
 `vmm_note(log, "Running...");
 #100;
 endtask

 virtual task stop();
 super.stop();
 `vmm_note(log, "Stopped...");
 this.subenv1.stop();
 this.subenv2.stop();
 endtask
endclass

Example 4-10 Creation of Explicitly Phased Test
`vmm_test_begin(test, my_env, "Test")
 env.run();
`vmm_test_end(test)

Example 4-11 Top Program
program top;

initial
begin
 my_env env = new;

4-14

VMM User Guide

 vmm_test_registry::run(env);
end
endprogram

Implicit Phasing

In the implicit phasing execution model, transactors are self-
controlled through built-in phasing mechanism. The environment
automatically calls the phase specific methods in a top down, bottom
up and forked fashion.

Implicit phasing works only with transactors that you base on the
vmm_group or vmm_xactor class. The two use models are,

• If you want to call your transactor phases from the environment,
you should instantiate your vmm_xactor(s) in vmm_env or
vmm_subenv.

• If you want to have the environment implicitly calling transactor
phases, you should instantiate your vmm_xactor(s) in
vmm_group.

Implicit phasing works only with classes that you base on the
vmm_group class.

4-15

VMM User Guide

Note: The recommended way of modeling transactor is to extend
vmm_xactor as it provides a general purpose phasing control.
The vmm_group class defines several virtual methods that are
implicitly invoked during different simulation phases.

Table 4-2 Predefined Phase and vmm_group Methods

Phase Method Invocation Order
RTL config function rtl_config_ph() Top down

gen_config function gen_config_ph() Root objects only

build function build_ph() Top down

configure function configure_ph() Bottom up

connect function connect_ph() Top down

configure_test configure_test_ph Bottom up

start of sim function start_of_sim_ph() Top down

reset task reset_ph() Forked

training task training_ph() Forked

config_dut task config_dut_ph() Forked

start task start_ph() Forked

start of test function start_of_test_ph() Top down

run task run_ph() Forked

shutdown task shutdown_ph() Forked

cleanup task cleanup_ph() Forked

report function report_ph() Top down

final function final_ph() Top down

You can override any of these methods to implement the required
functionality for a particular testbench component for corresponding
simulation phase. When overriding a phase method, it is usually
recommended that the implementation of the phase method in the
base class be executed by calling it through the super base class
reference.

4-16

VMM User Guide

The following example demonstrates how the implicit phase
methods are user-extended then automatically called by the implicit
phasing mechanism:

Example 4-12 Creation of Implicitly Phased Sub-Environment
class my_subenv extends vmm_group;
 `vmm_typename(my_subenv)

 my_vip vip1;
 my_vip vip2;

 function new(string name = "", vmm_object parent = null);
 super.new("vip", name, null);
 super.set_parent_object(parent);
 endfunction

 virtual function void build_ph();
 super.build_ph();
 this.vip1 = new("vip1", this);
 this.vip2 = new("vip2", this);
 endfunction

 virtual task start_ph();
 super.start_ph();
 `vmm_note(log, "Started...");
 endtask
 endclass

Example 4-13 Creation of Implicitly Phased Environment
class my_env extends vmm_group;
 `vmm_typename(my_env)

 my_subenv subenv1;
 my_subenv subenv2;

 function new();
 super.new("env");
 endfunction

4-17

VMM User Guide

 virtual function void build_ph();
 super.build_ph();
 this.subenv1 = new("subenv1", this);
 this.subenv2 = new("subenv2", this);
 endfunction

 virtual task start_ph();
 super.start_ph();
 `vmm_note(log, "Started...");
 endtask

 virtual task run_ph();
 super.run_ph();
 `vmm_note(log, "Running...");
 #100;
 endtask

 virtual task shutdown_ph();
 super.shutdown_ph();
 `vmm_note(log, "Stopped...");
 endtask
endclass

Example 4-14 Creation of Implicitly Phased Test
class test extends vmm_test;
 function new();
 super.new("Test");
 endfunction

 virtual task start_ph();
 super.start_ph();
 `vmm_note(log, "Started...");
 endtask

 virtual task shutdown_ph();
 super.shutdown_ph();
 `vmm_note(log, "Stopped...");
 endtask
endclass

4-18

VMM User Guide

Function phases are invoked in a bottom-up or top-down fashion.
However, the order in which functions are executed between two
sibling units is not specified.

Tasks phases are forked off to execute concurrently. The order in
which the various phase tasks are executed is not specified.

When implementing a transactor or environment, you should avoid
relying on a specific order with other components that could be found
in the same parent environment. However, such dependencies might
not always be avoidable.

Threads and Processes Versus Phases

It is important to differentiate between execution threads and
simulation phases. An execution thread is usually a daemon (For
example, a forever loop) that waits for some condition to occur and
then performs some task.

For example, a simple master transactor has a thread that waits for
a transaction description to arrive on its input transaction-level
interface and then executes the transaction you describe.

A phase executes in a finite slice of simulation time to perform a
specific functionality, for example, to configure the DUT.

Think of simulation phases as months in a calendar and an
execution thread as the behavior of an organism. An organism is
born during a specific month, exhibits a specific behavior throughout
a certain number of months, goes to sleep, awakens and then dies.

4-19

VMM User Guide

Different organisms are born at different times, exhibit different
behaviors, go to sleep and awaken at different times, and might or
might not die.

Similarly, transactors are started during specific phases (not
necessarily the start phase), run during a certain number of phases.
Your environment can suspend their execution thread and resume it,
and might stop it during another phase (not necessarily the stop or
shutdown phase).

The vmm_xactor class is the base class for transactors. It provides
thread management utilities (start, stop, reset_xactor,
wait_if_stopped) that are not present in the other base classes.
The vmm_xactor offers both thread management and phase
methods. It is important to understand to properly model transactors
and how you model different behaviors at different phases.

The simplest form for a transactor is one whose behavior does not
change between simulation phases. If you instantiate this transactor
in an implicitly phased environment, then it gets started by default,
for example, you call its vmm_xactor::start_ph() method.

class vip extends vmm_xactor;
 `vmm_typename(vip)

 virtual task main();
 super.main();
 forever begin
 // Transactor logic meant to run until stopped…
 this.wait_if_stopped();
 ...
 end
 endtask
endclass

4-20

VMM User Guide

In the above example, the thread management mechanism
vmm_xactor base class provides calls the main() task. The task
is forked off and it continues execution even after the run or
shutdown phases complete. You can forcibly abort the execution
thread using the vmm_xactor::reset_xactor() method.

You should use this method with care as forcibly terminating the
execution thread of a transactor might cause an error in the protocol
it is executing.

You might stop the execution thread by calling the
vmm_xactor::stop_xactor() method.

The execution thread will stop at execution points you define by
calling the vmm_xactor::wait_if_stopped() or
vmm_xactor::wait_if_stopped_or_empty() methods.

This allows the transaction to stop only when (and if) it is possible;
where the protocol is run without causing protocol-level errors.

If a transactor must exhibit different behaviors during different
simulation phases, the execution thread might query the current
phase you are executing.

class my_vip extends vmm_xactor;
 `vmm_typename(my_vip)

 function new(vmm_object parent = null, string name = "");
 super.new("vip", name);
 super.set_parent_object(parent);
 endfunction

 virtual task main();
 vmm_timeline tl = this.get_timeline();
 super.main();
 forever begin
 if (tl.get_current_phase_name() == "config_dut")

4-21

VMM User Guide

 begin
 `vmm_trace(log, "Config transaction...");
 ...
 end
 else begin
 `vmm_trace(log, "Normal transactions...");
 ...
 end
 end
 endtask
endclass

The various phase methods in the transactor might set state
variables to different values that affects the execution thread running
independently.

class my_vip extends vmm_xactor;
 `vmm_typename(my_vip)

 function new(vmm_object parent = null, string name = "");
 super.new("vip", name);
 super.set_parent_object(parent);
 endfunction

 local bit in_config = 0;

 virtual task main();
 super.main();
 forever begin
 if (this.in_config) begin
 `vmm_trace(log, "Config transaction...");
 ...
 end
 else begin
 `vmm_trace(log, "Normal transactions...");
 ...
 end
 end
 endtask

4-22

VMM User Guide

 virtual task config_dut_ph();
 super.config_dut_ph();
 this.in_config = 1;
 endtask

 virtual task start_ph();
 super.start_ph();
 this.in_config = 0;
 endtask
endclass

Though it is possible to modify the behavior of a transactor based on
the current simulation phase, it is preferable to avoid it. You define
the purpose of simulation phase by the testbench, based on the DUT
and test requirements.

To be reusable, a transactor should not enforce specific behaviors at
specific phases. In both examples above, it is only possible to
execute configuration transactions during the "config_dut" phase.

However, what if you require the execution of such a transaction at
another time (for example, to test dynamic reconfiguration or that
whether they are properly ignored during normal operations)? It is
best to let you decide what behavior you require of a transactor
during a particular phase.

Physical-Level Interfaces

Command-level transactors and bus-functional models are
components of the command layer. They translate transaction
requests from the higher layers of the verification environment to
physical-level signals of the DUT.

4-23

VMM User Guide

In the opposite direction, they monitor the physical signals from the
DUT or between two DUT modules. They also notify the higher
layers of the verification environment of various transactions the
DUT initiates.

The physical-level interface of command-layer transactors must
interact with the signal-layer construct. As such, they must follow the
guidelines outlined in section “Signal Layer” on page 2-6.

This specification lets each instance of a transactor to connect to a
specific interface instance without hard-coding a signal naming or
interfacing mechanism.

The signal layer creates the necessary interface instances in the
top-level module. You can specify the appropriate interface
instance when constructing a transactor, to connect that transactor
to that interface instance.

Example 4-15 Virtual Interface Connection in Connect Phase Through
Encapsulation (Recommended)

// Create interface with appropriate signals and
// connect them to the DUT signals
// at the top module which instantiates DUT.
interface cpu_if (input bit clk);
 wire busRdWr_N;
 wire adxStrb;
 wire [31:0] busAddr;
 wire [7:0] busData;

 clocking cb @(posedge clk);
 output busAddr;
 inout busData;
 output adxStrb;
 output busRdWr_N;
 endclocking

 modport drvprt(clocking cb);

4-24

VMM User Guide

endinterface

//Instantiate interface in top level module
// and connect to DUT signals
module test_top();

 //Interface instantiation
 cpu_if cpuif(clk);

 //DUT instantiation
 cntrlr dut(.clk(clk),
 .reset(reset),
 .busAddr(cpuif.busAddr),
 .busData(cpuif.busData),
 .busRdWr_N(cpuif.busRdWr_N),
 .adxStrb(cpuif.adxStrb));
endmodule

// Create a vmm_object wrapper which gets virtual
// interface handle through the constructor.
// Instantiate the object with the actual interface
// instantiation and allocate the vmm_object
// instance to appropriate transactor through
vmm_opts::set_object() method.

class cpuport extends vmm_object;
 virtual cpu_if.drvprt iport;

 function new(string name,virtual cpu_if.drvprt iport);
 super.new(null, name);
 this.iport = iport;
 endfunction

endclass

program cntrlr_tb;
 cpuport cpu_port; //Interface wrapper
 cntrlr_env env;
 initial begin
 env = new(“env”);
 //Instantiating with the actual interface
 // instance path

4-25

VMM User Guide

 cpu_port = new("cpu_port",test_top.cpuif);

vmm_opts::set_object("CPU:CPUDrv:cpu_port",cpu_port,
env); //Sending the wrapper to driver
 end
endprogram

// use vmm_opts::get_object_obj() method
// (or `vmm_unit_configure_obj macro)
// to get the object wrapper instance and hence the
// virtual interface handle
// in the vmm_xactor::connect_ph(). Since it is a dynamic
// allocation, it is recommended
// to have a null object check on the virtual interface
// instance before using it.
class cpu_driver extends vmm_xactor;

 virtual cpu_if.drvprt iport;
 cpuport cpu_port_obj;

 virtual function void connect_ph();
 bit is_set;
 if ($cast(cpu_port_obj,
vmm_opts::get_object_obj(is_set,this,"cpu_port")))
 begin
 if (cpu_port_obj != null)
 this.iport = cpu_port_obj.iport;
 else
 `vmm_fatal(log, "Virtual port wrapper not
initialized");
 end
 endfunction

endclass

The clocking block separates timing and synchronization of
synchronous signals from the reference signal. It defines the timing
and sampling relationships between synchronous data and clock
signals.

4-26

VMM User Guide

If a transactor waits for the next edge of the clock by using an
@(posedge...) statement, it might wait for the wrong active edge
or the wrong clock signal compared to the one specified in the
clocking block. It might sample the wrong value of the
synchronous signals. To wait for the next cycle of synchronous
signals, use the @ operator with a clocking block reference.

Example 4-16 Using @ Operator to Synchronize BFMs
task mii_mac_layer::tx_driver();
 ...
 @this.sigs.mtx;
 this.sigs.mtx.txd <= nibble;
 ...
endtask: tx_driver

task mii_mac_layer::rx_monitor();
 ...
 @(this.sigs.mrx);
 if (this.sigs.mrx.rx_dv !== 1’b1) break;
 a_byte[7:4] = this.sigs.mrx.rxd;
 ...
endtask: rx_monitor

Transactor Callbacks

The behavior of a transactor shall be controllable as the verification
environment and individual testcases require without modifications
of the transactor itself.

These requirements are often unpredictable when you first write the
transactor. By allowing the execution of arbitrary user-defined code
in callback methods, you can adapt the transactors to the needs of
an environment or a testcase. For example, you can use callback
methods to monitor the data flowing through a transactor to check for
correctness, inject errors or collect functional coverage metrics.

4-27

VMM User Guide

The actual set of callback methods that you must provide by a
transactor is protocol-dependent. Subsequent guidelines will help
design a suitable set in most cases. You should provide additional
callback methods required by the protocol or the transactor
implementation.

Whether it is a transaction descriptor or sampling a byte on a
physical interface, the new input data should be reported to you
through a post-reception callback method. It should be recorded in
or checked against a scoreboard and modified to inject an error or
collect functional coverage metrics.

Whether it is a transaction descriptor or driving a byte on a physical
interface, the new output data should be reported to you through a
pre-transmission callback method. It should be recorded in or
checked against a scoreboard and modified to inject an error or
collect functional coverage metrics.

Whenever a transaction requires locally generated additional
information, the additional information should be reported to you
through a post-generation callback method. It should be recorded in
or checked against a scoreboard and modified to inject an error or
collect functional coverage. You should provide a reference to the
original transaction to convey context information.

For example, a transactor prepending a packet with a preamble
should call a callback method with the generated preamble data
before starting the transmission process.

Whenever a transactor makes a choice among several alternatives,
the choice and available alternatives should be reported to you
through a post-decision callback method. It should be recorded in or
checked against a scoreboard and modified to select another
alternative or collect functional coverage.

4-28

VMM User Guide

All information relevant to the context of the decision-candidates,
rules and alternatives-should be provided to you along with the
default decision via the callback method.

For example, a transactor selecting traffic from different priority
queues should call a callback method after selecting a queue based
on the current priority selection algorithm; however before pulling the
next item from the selected queue. You can then modify the
selection.

This declaration creates a façade for all available callback methods
for a particular transactor. You require the common base class to be
able to register the callback extension instances using the
predefined methods and properties in the vmm_xactor class.

If the transactor implementation or protocol can support delays in the
execution of a callback, you should declare it as a task. You should
declare callbacks that must be non-blocking as a function.

Restricting callback functions to void functions avoids difficulties
with handling a return value from a function when you register
multiple callback extensions and cascade in a transactor. It should
return by modifying an instance referred to by an argument or a
scalar argument passed by reference to various status informations
returned from a callback method (such as a flag to indicate whether
to drop the transaction).

You cannot modify callback arguments as it would break the
implementation of the transactor. You should not modify others to
avoid creating inconsistencies within the transaction being executed
or observed.

You can modify arguments without the const attribute, however to
inject errors.

4-29

VMM User Guide

This inclusion allows registration of one extension of the callback
methods with more than one transactor instance and identifies which
transactor has invoked the callback method.

Callback should be registered in the vmm_xactor base class.
However, calling the registered callback extensions is the
responsibility of the transactor extended from the base class.

To remove the transactor implementation from the details of callback
registrations and to ensure that you call them in the proper
registration sequence, you use this macro to invoke the callbacks.

Example 4-17 Transactor Callback Usage
// Create a callback class with empty virtual methods
// Each virtual method represents an important stage
// of transactor.
// The arguments of the virtual methods should contain
// necessary information that can be
// shared with the subscribers.

class cpu_driver_callbacks extends vmm_xactor_callbacks;
 virtual task pre_trans (cpu_driver driver, cpu_trans
tr, ref bit drop);
 endtask
 virtual task post_trans (cpu_driver driver, cpu_trans
tr);
 endtask
endclass

// At every important stage in the transactor,
// call the corresponding method
// through `vmm_callback macro.

class cpu_driver extends vmm_xactor;

 virtual protected task main();
 super.main();
 ……
 ̀ vmm_callback(cpu_driver_callbacks, pre_trans(this,

4-30

VMM User Guide

tr, drop));
 if (tr.kind == cpu_trans::WRITE) begin
 write_op(tr);
 end
 if (tr.kind == cpu_trans::READ) begin
 read_op(tr);
 end
 `vmm_callback(cpu_driver_callbacks,
post_trans(this, tr));
 endtask

endclass

// A subscriber extend the callback class, fill
// the necessary empty virtual methods.

class cpu_sb_callback extends cpu_driver_callbacks;
 cntrlr_scoreboard sb;

 function new(cntrlr_scoreboard sb);
 this.sb = sb;
 endfunction

 virtual task pre_trans(cpu_driver drv, cpu_trans tr,ref
bit drop);
 sb.cpu_trans_started(tr);
 endtask

 virtual task post_trans(cpu_driver drv, cpu_trans tr);
 sb.cpu_trans_ended(tr);
 endtask

endclass

// Register the subscriber callback class using method
// vmm_xactor::append_callback.
// Then every time transactor hits the defined important
// stages, subscriber methods
// will be called. Note that any number of subscribers
// with their own definition of virtual
// methods can get registered to a transactor.

4-31

VMM User Guide

class cntrlr_env extends vmm_group;
 cpu_driver drv;

 virtual function void connect_ph();
 cpu_sb_callback cpu_sb_cbk = new(sb);
 cpu_cov_callback cpu_cov_cbk = new(cov);
 drv.append_callback(cpu_sb_cbk);
 drv.append_callback(cpu_cov_cbk);
 endfunction

endclass

Advanced Usage

User-defined vmm_xactor Member Default
Implementation

For the vmm_xactor class, you accomplish this by using the
'vmm_xactor_member_user_defined() macro and
implementing a function named "do_membername().

You implement this function using the following pattern:

function bit do_name(vmm_xactor::do_what_e do_what,
 vmm_xactor::reset_e rst_typ);
 do_name = 1; // Success, abort by returning 0

 case (do_what)
 DO_PRINT: begin
 // Add to the ’this.__vmm_image’ variable,
 // using ’this.__vmm_prefix’
 end
 DO_START: begin
 // vmm_xactor::start_xactor() operations.
 end
 DO_START: begin
 // vmm_xactor::stop_xactor() operations.
 end

4-32

VMM User Guide

 DO_RESET: begin
 // vmm_xactor::reset_xactor() operations.
 end
 endcase
endfunction

Note: You must provide a default implementation for all possible
operations (print, consensus registration, start and stop). It is not
possible to execute the default implementation that you would
otherwise provide by the other type-specific shorthand macros.
However, it is acceptable to leave the implementation for an
operation empty if you are not going to use it or it has no functional
effect.

User-Defined Implicit Phases

Adding user-defined phases in an implicitly phased environment is a
simple task of adding additional virtual methods that you must call in
the appropriate sequence.

In an implicitly phased environment, user-defined phases you might
insert between the pre-defined phases by any component in the
environment. You might insert a new phase in a timeline or aliased
to an existing phase to execute concurrently.

It is important to note that any phase that executes before the
"build" phase executes on the root objects only, because the
object hierarchy has not been built yet.

You should add user-defined phases to the parent timeline of the
component that creates it. This way, should the component be
encapsulated in a sub-timeline, its user-defined phase will be added

4-33

VMM User Guide

to the encapsulating sub-timeline. By this you allow potentially
conflicting user-defined phase definitions to be kept in separate
timelines.

A user-defined phase executes a void function or a task in various
user-defined class extension of the vmm_object base class. For
example, you could add a phase to call the vip::delay_ph() in
all instances of the vip class.

class vip extends vmm_xactor;
 `vmm_typename(vip)
 ...
 task delay_ph();
 #(this.delay);
 endtask
endclass

First, you need to implement a user defined phase wrapper
extending from vmm_fork_task_phase_def. This base class is
chosen because the phase method is a task. If the phase method
were a function, the wrapper would have implemented using an
extension of vmm_topdown_function_phase_def or
vmm_bottomup_function_phase_def.

class vip_delay_ph_def extends vmm_fork_task_phase_def
#(vip);
 `vmm_typename(vip_delay_ph_def)

 virtual task do_task_phase(vip obj);
 if(obj.is_unit_enabled()) obj.delay_ph();
 endtask
endclass

You then add the new user defined phase definition to the parent
timeline at an appropriate point. You do this in the build phase as
shown in the following example:

4-34

VMM User Guide

class vip extends vmm_xactor;
 ...
 virtual function void build_ph();
 vmm_timeline tl = this.get_timeline();
 vip_delay_ph_def ph = new;

 //schedule vip_delay phase execution before reset
 tl.insert_phase("vip_delay", "reset", ph);
 endfunction
 ...
endclass: vip

Inserting phases in the environment is done in exactly the same way,
since an environment is also a vmm_group.

Inserting phases in a test is identical, however, with a small
difference. The vmm_test class derives from vmm_timeline,
therefore, you can insert user-defined phase directly by calling
this.insert_phase directly.

The following example shows the insertion of delay_ph() in a test,
before the reset phase.

class test1 extends vmm_test;
 `vmm_typename(test1)
 ...
 virtual task delay_ph();
 #(env_cfg.test_delay);
 endtask

 virtual function void build();
 test_delay_ph_def ph = new;

 //schedule test_delay phase execution before reset
 this.insert_phase("test_delay", "reset", ph);
 endfunction
endclass

4-35

VMM User Guide

During implicit phasing, when you encounter a vmm_timeline
object, you execute its phases up to the currently executing phase
(with the same name, if present) in the higher-level timeline. This
allows sub-timelines to create phases that do not exist in the top-
level phase.

Skipping an Implicit Phase

You can use the vmm_null_phase_def class used to override a
predefined or existing phase to skip its implementation for a specific
vmm_group instance.

The following example shows how you can skip the pre-defined
"start" phase in the vip1 transactor present in the environment in
a testcase, to prevent it from starting automatically.

class test1 extends vmm_test;
 `vmm_typename(test1)
 my_env env;

 virtual function void build();
 vmm_null_phase_def nullph = new;

 env.vip1.override_phase("start", nullph);
 endfunction
endclass

Disabling an Implicit Component

For a test specific objective or to debug part of the code, you might
want to disable one or more unit instances. Similarly, when
composing system-level environments from block-level

4-36

VMM User Guide

environments, you might find it necessary to disable some block-
level testbench components because their function is no longer
relevant within the system-level context.

A disabled unit instance (and all of its children objects) is no longer
considered by the timeline to which it belongs. It is no longer part of
the implicit phasing mechanism. You can disable a unit instance as
follows:

class top extends vmm_group;
 `vmm_typename(top_unit)
 ahb_driver drv0,drv1;
 virtual function void build_ph();
 drv0 = new(”drv0”, this);
 drv1 = new(”drv1”, this);
 endfunction
endclass

//single driver test
class my_test1 extends vmm_test;
 `vmm_typename(my_test1)

 virtual function void configure_ph();
 // Disable drv1
 top env = vmm_object::find_object_by_name("top");
 env.drv1.disable_unit();
 endfunction
endclass

Synchronizing on Implicit Phase Execution

Each phase has associated events and status flags which are
available to synchronize with the execution of a particular phase
during simulation.

4-37

VMM User Guide

you might use the vmm_phase::is_done()method to check the
execution status of any phase. For a particular timeline, calling
is_done() on that phase will return the number of times the phase
has executed completely.

begin
 vmm_timeline top = vmm_simulation::get_top_timeline();
 vmm_phase ph = top.get_phase("connect");
 wait(ph.is_done() == 1);
end

The vmm_phase::is_running() method checks the status for
any task phase. This is not meaningful for any function phase, since
the phase executes in zero time and the result of the
vmm_phase::is_running() method will always be 0, unless
vmm_phase::is_running() is called within that function phase.

The vmm_phase::completed and vmm_phase::started
events get triggered when the execution of a phase completes and
starts, respectively.

begin
 vmm_timeline top = vmm_simulation::get_top_timeline();
 vmm_phase ph = top.get_phase("reset");
 fork
 begin
 @(ph.started);
 `vmm_note(log, “ reset phase is running”);
 end
 begin
 @(ph.completed);
 `vmm_note(log, “ reset phase is completed”);
 end
 join
 end

4-38

VMM User Guide

Breakpoints on Implicit Phasing

The +vmm_break_on_* command-line options are available to
interrupt the execution flow at specific phases, either globally or for
a specific timeline. For example, the
+vmm_break_on_phase+reset command-line option causes the
phasing to be interrupted at the start of the reset phase. These
options may also be specified from within the code using:

vmm_opts::set_string("break_on_phase", "reset");

By default, $stop is called when the phasing is interrupted.
However, if callbacks are registered with the timeline, the registered
vmm_timeline_callback::break_on_phase() method(s) will
be called instead.

If you do not specify the instance name with the command-line
option, root timeline is interrupted before the specified phase (if
present in root timeline).

To interrupt specific timeline instances, specify the hierarchical name
of the timeline to be interrupted using:

vmm_opts::set_string("break_on_timeline", timeline_name);

Here are additional details on the different options available to you
for debugging phases and timelines.

+vmm_break_on_phase

Specifies "+" separated list of phases on which to break. If you
have provided this, and either haven't passed
+vmm_break_on_timeline or have provided invalid name for
timeline, you break out on root level timelines (pre/top/post).

+vmm_break_on_timeline

4-39

VMM User Guide

Specifies "+" separated list of timelines on which to break. If you
have specified this option and, either haven't passed
+vmm_break_on_phase or have provided invalid name for
phase, it is ignored.

Note:
Instead of specifying the timeline name, you can also specify
the pattern of name.

+vmm_list_phases

Lists down available phases in simulation at the end of the pre-
test timeline. This comes into effect when
vmm_simulation::run_tests() is used to run the
simulation.

+vmm_list_timeline

Lists down available timelines in simulation at the end of the pre-
test timeline. This comes into effect when
vmm_simulation::run_tests() is used to run the
simulation.

Note:
• If you have specified to break on a particular phase with a

particular timeline and that timeline is created in build phase (or
later), then we will break twice, once on pre_test and then on the
actual timeline.

• If you have specified a valid phase name and a valid timeline
name, however the specified timeline doesn't contains that
particular phase, we don't break on anything.

Examples

To list all timelines in simulation:

4-40

VMM User Guide

./simv +vmm_list_timeline

To list all phases in each of the timelines in simulation:

./simv +vmm_list_phases

To break on root timeline in phase X:

./simv +vmm_break_on_phase=X

To break on timeline A in phase X:

./simv +vmm_break_on_phase=X +vmm_break_on_timeline=A

To break on timeline A & B in phase X:

./simv +vmm_break_on_phase=X +vmm_break_on_timeline=A+B

To break on root timeline in phase X and Y:

./simv +vmm_break_on_phase=X+Y

To break on timeline A & B in phases X&Y:

./simv +vmm_break_on_phase=X+Y +vmm_break_on_timeline=A+B

Concatenation of Tests

In case of multiple tests top_test timeline is reset to the phase
identified as start phase for the test you need to execute. The test
can specify itself concatenable and specify the starting phase by
using vmm_test_concatenate() macro.

class test_concatenate1 extends vmm_test;
 //Macro to indicate the rollback phase in

4-41

VMM User Guide

 //case of test concatenation
 `vmm_test_concatenate(configure_test)

 function new(string name);
 super.new(name);
 endfunction

 virtual function void configure_test_ph();
 vmm_opts::set_int("%*:num_scenarios", 20);
 cpu_rand_scenario::override_with_new(
 "@%*:CPU:rand_scn",
 cpu_write_read_same_addr_scenario::this_type(),
 log, `__FILE__, `__LINE__);
 endfunction

endclass

class test_concatenate2 extends vmm_test;
 //Macro to indicate the rollback phase in case of test
 //concatenation
 `vmm_test_concatenate(configure_test)

 function new(string name);
 super.new(name);
 endfunction

 virtual function void configure_test_ph();
 vmm_opts::set_int("%*:num_scenarios", 20);
 cpu_rand_scenario::override_with_new(
 "@%*:CPU:rand_scn",
 cpu_write_scenario::this_type(),
 log, `__FILE__, `__LINE__);
 endfunction

endclass

//Command line arguments to run the example
./simv +vmm_test=test_concatenate1+test_concatenate2

4-42

VMM User Guide

Explicitly Phasing Timelines

You have several options to explicitly control the step-by-step
progress of implicit phase execution in a timeline object.

You might use the vmm_timeline::run_phase() and
vmm_timeline::run_function_phase()methods to run the
timeline up to and including the specified phase.

Note: All phases to be executed must be function phases.
class my_subenv extends vmm_timeline;
 my_vip vip;

 virtual function void build();
 super.build();
 this.vip = new(this,“vip”);
 endfunction
 ...
endclass

class my_env extends vmm_env;
 vmm_timeline tl;

 virtual function void build();
 super.build();
 this.tl = new(“tl”, this);
 this.tl.run_function_phase(“build”);
 endfunction

 virtual task reset_dut();
 super.reset();
 this.tl.run_phase(“reset”);
 endtask

 virtual task config_dut();
 super.config_dut();
 this.tl.run_phase(“config_dut”);
 endtask
 ...

4-43

VMM User Guide

endclass

The vmm_timeline::reset_to_phase() method may be used
to rollback the timeline to the specified phase.

4-44

VMM User Guide

5-1

VMM User Guide

5
Communication 1

This chapter contains the following sections:

• Overview

• Channel

• Completion Using Notification (vmm_notify)

• Transport Interfaces in OSCI TLM2.0

• Broadcasting Using TLM2.0

• Interoperability Between vmm_channel and TLM2.0

• Advanced Usage

5-2

VMM User Guide

Overview

This section applies to the transaction-level interfaces connecting
independent transactors.

Transaction-level interfaces are mechanisms to exchange
transactions between two independent blocks such as between two
transactors or a directed testcase and a transactor.

In command-layer transactors such as drivers and monitors, the
transaction-level interface allows the higher layers of the verification
environment to stimulate the DUT by specifying which transactions
should be executed. Also, the higher layers can be notified of
transactions that have been observed on a DUT interface.

VMM supports multiple ways of passing transactions between
transactors. The supported interfaces are:

- Channel

- TLM Blocking transport

- TLM Non-Blocking transport

- TLM Analysis port

- Callback

5-3

VMM User Guide

Channel

A connection can be established between two transactors or a
testcase and a transactor by having each endpoint, the producer and
the consumer, refer to the same conduit. This is shown in Figure 5-
1. You can make the connection by instantiating the endpoints in any
order to allow the bottom-up or top-down building of verification
environments.

The conduit allows a transactor, whether upstream or downstream to
connect to any other transactor with a compatible conduit. This
occurs without any source code modification requirement or
knowledge of the other endpoint.

Figure 5-1 Transaction Interface Channel

TransactorTransactor

Channel

Producer
(upstream)

Consumer
(downstream)

or Test

Traditionally, transaction-level interfaces are implemented using
procedure calls in the transactors themselves. However, invoking a
procedure in a transactor instance requires a reference to that
transactor in the first place. This limitation requires that verification
environments are built bottom-up, with the higher layers having a
reference to the lower-level transactor instances methods in them.

This structure creates some difficulties. You cannot build a
verification environment on top of the physical layer that you can
then retarget, without modifications to a different physical-layer
implementation.

5-4

VMM User Guide

By encapsulating the transaction exchange mechanism into a
conduit, you consider the transactors as endpoints to the conduit that
you can replace easily, for knowledge by or of the other endpoint is
no longer required.

VMM uses the channel class as the conduit between the endpoints.
Each connection between two endpoints requires a transport-
interface instance.

Channel Declaration (vmm_channel_typed)

It is also possible to define a channel by using the parameterized
class vmm_channel_typed. This can be very useful when
embedding the channel in another parameterized class. Here, the
transaction is passed from the parent class to the channel.

Alternatively, macros can be used in the same way. However, using
a parameterized class is easier to debug than macros.

Note: vmm_channel_typed is not tied to vmm_channel and can
transport any kind of object.

Example 5-1 shows how to declare the eth_frame_channel
using vmm_channel_typed class.

Example 5-1 Defining a Transaction Channel Using vmm_channel_typed
class eth_frame extends vmm_data;
 rand bit [47:0] da;
 rand bit [47:0] sa;
 rand bit [15:0] len_typ;
 rand bit [7:0] data [];
 rand bit [31:0] fcs;

 ‘vmm_data_member_begin(eth_frame)
 ‘vmm_data_member_scalar(da, DO_ALL)
 ‘vmm_data_member_scalar(sa, DO_ALL)

5-5

VMM User Guide

 ‘vmm_data_member_scalar(len_typ, DO_ALL)
 ‘vmm_data_member_scalar_array(data, DO_ALL)
 ‘vmm_data_member_scalar(fcs, DO_ALL)
 ‘vmm_data_member_end(eth_frame)
endclass

typedef vmm_channel_typed #(eth_frame)
eth_frame_channel;

Channel Declaration (vmm_channel)

The vmm_channel is a template class that is defined specifically for
the data or transaction descriptor it carries. A channel class is easily
defined for each vmm_data derivative as the data or transaction
descriptor class name with the "_channel" suffix.

In Example 5-2, the class eth_frame_channel is defined to carry
instances of the eth_frame transaction.

Example 5-2 Defining a Transaction Channel Using ‘vmm_channel
‘vmm_channel(eth_frame)

Connection of Channels Between Transactors

You cannot use an interface as a transaction-level interface
because, like a module, it is a static construct. It is not possible to
create dynamically reconfigurable verification environments using
interfaces.

Furthermore, you do not build interfaces on top of the object-oriented
framework and cannot derive from one another. It is therefore not
possible to provide common functionality through a base
interface like it is possible through a channel base class.

5-6

VMM User Guide

As described in “Implicit Phasing” on page 4-14, it is possible to
model transactors so they are implicitly controlled. Here, you do not
have to worry about transactor channel connection in the transactor
itself as in the environment or sub-environment phases.

Example 5-3 Declaring and Connecting Channel Instances in Implicitly
Phased Environment

class eth_subenv extends vmm_group;
 eth_frame_channel tx_chan;
 eth_frame_channel rx_chan;
 eth_mac mac;
 mii_mac mii;
 ...

 function build_ph();
 tx_chan = new("TxChan", "TxChan0");
 rx_chan = new("RxChan", "RxChan0");
 mac = new(this, "Mac");
 mii = new(this, "Mii");
 endfunction

 function connect_ph();
 mac.pls_tx_chan = tx_chan;
 mac.pls_rx_chan = rx_chan;
 mii.tx_chan = tx_chan;
 mii.rx_chan = rx_chan;
 endfunction
 ...
endclass

5-7

VMM User Guide

Note: The channel connection is done differently if you instantiate the
transactor in an explicitly phased environment or sub-
environment. As the connect phase is not available in vmm_env
or vmm_subenv, it is recommended to connect channels in the
build() explicit method.

Example 5-4 Declaring and Connecting Channel Instances in Explicitly
Phased Environment

class eth_subenv extends vmm_subenv;
 eth_frame_channel tx_chan;
 eth_frame_channel rx_chan;
 eth_mac mac;
 mii_mac mii;
 ...

 function build();
 tx_chan = new("TxChan", "TxChan0");
 rx_chan = new("RxChan", "RxChan0");
 mac = new(this, "Mac");
 mii = new(this, "Mii");
 mac.pls_tx_chan = tx_chan;
 mac.pls_rx_chan = rx_chan;
 mii.tx_chan = tx_chan;
 mii.rx_chan = rx_chan;
 endfunction
 ...

 endclass

It is recommended not to connect channels using the transactor
constructor. This approach is not reusable and it is impossible to
replace the channel by a factory.

5-8

VMM User Guide

Channel Completion and Response Models

You can provide transaction descriptors to transactors through a
channel instance. It is usually important for the higher-layer
transactors to know when you complete a transaction by a lower-
layer transactor. It is also important for them to know how to respond
to a reactive transactor.

Furthermore, it must be possible for a transactor to output status
information about the execution of the transaction.

A completion model is used by transactors to indicate the end of a
transaction execution. A response model is used by a reactive
transactor to request additional data or information required to
complete a suitable response to the transaction being reacted to,
from the higher layers of a verification environment.

The completion and response models can be modeled using a
producer transactor and a consumer transactor. The consumer
transactor executes transactions requested by the producer
transactor and indicates completion and response information back
to the producer transactor.

Typical Channel Execution Model

Usually transactors execute transactions in the same order as they
are submitted. Each transaction is executed only once and it
completes in a single execution attempt.

5-9

VMM User Guide

Such transactors use a blocking completion model. As shown in
Figure 5-2, the execution thread is blocked from the producer
transactor (depicted as a dotted line) while the transaction flows
through the channel and the consumer transactor executes it. It
remains blocked until the execution of the transaction is completed.

Figure 5-2 In-Order Atomic Completion Model

TransactorTransactor

Channel

Producer
(upstream)

Consumer
(downstream)

From the producer transactor's perspective,
vmm_channel::put() method embodies the blocking completion
model. When this method returns, the transaction completes. You
might add additional completion status information to the transaction
descriptor by using the consumer transactor.

Example 5-5 Upstream of a Blocking Completion Model
class producer extends vmm_xactor;
 ...
 virtual task main();
 ...
 ... begin
 transaction tr;
 ...
 do
 out_chan.put(tr);
 while (tr.status == RETRY);
 ...
 end
 ...
 endtask: main
endclass: producer

5-10

VMM User Guide

Note: This channel becomes blocking if the channel can only retain
one transaction and the attached transactor has not carried out a
vmm_channel::get() method access. Any other configuration
creates a non-blocking interface.

To ensure that input channels are "full", and therefore blocking when
there is one transaction in the channel, consumer transactors must
explicitly reconfigure the input channel instances.

Example 5-6 Reconfiguring an Input Channel Instance
class consumer extends vmm_xactor;
 transaction_channel in_chan;
 ...
 function void start_of_sim_ph();
 this.in_chan.reconfigure(1);
 endfunction: start_of_sim_ph
 ...
endclass: consumer

To ensure the producer does not push a new transaction right after
the vmm_channel::put() and that this transaction remains
unchanged while it’s being processed, you should use the
vmm_channel::peek() or vmm_channel::activate()
method to obtain the next transaction you execute from the input
channel.

Example 5-7 Peeking Transaction Descriptors
class consumer extends vmm_xactor;
 ...
 virtual task main();
 ...
 forever begin
 transaction tr;
 this.in_chan.peek(tr);
 ...
 this.in_chan.get(tr);
 end
 endtask: main
 ...
endclass: consumer

5-11

VMM User Guide

A transaction is removed from a channel by using the
vmm_channel::get() or vmm_channel::remove() method.

If the transaction descriptor has properties that can be used to
specify completion status information, these properties may be
modified by the consumer transactor to provide status information
back to the producer transactor.

Example 5-8 Providing Status Information in a Transaction Descriptor
class consumer extends vmm_xactor;
 ...
 virtual task main();
 ...
 forever begin
 transaction tr
 ...
 this.in_chan.start(tr);
 ...
 tr.status = ...;
 ...
 tr.in_chan.complete();
 ...
 end
 endtask: main
endclass: consumer

If the transaction descriptor does not have properties that can be
used to specify completion status information, the consumer
transactor can provide status information back to the producer.

There are many other operating modes that can be supported by
vmm_channel. For details, see “Advanced Usage” on page 44.

5-12

VMM User Guide

Channel Record/Playback

VMM channel provides a facility to record the transactions going
through and save them into a file. You can then playback these
transactions from the same file. As playback avoids randomization
of the transaction/corresponding scenarios, you can improve
performance in case of complex transaction/scenario constraints.

Also, generation is not scheduling-dependent and will work with
different versions of the simulator and with different simulators. You
can use this record/replay mechanism to go through known states at
one interface while stressing another interface with random
scenarios within the same simulation itself. This guarantees you
random stability.

The use model is as follows:

• Model your transaction using shorthand macros so that it records/
replays and stores its information in a consistent way

• Record incoming transactions through
vmm_channel::record() method

• Replay recorded transactions through
vmm_channel::playback() method

Example 5-9 Using vmm_channel::record() and vmm_channel::playback()
class my_subenv extends vmm_group;
 typedef enum { NORMAL , RECORD , PLAYBACK } rp_mode;
 string md;
 my_mode mode;
 string filename = "tx_chan.dat";

 eth_frame_channel tx_chan;
 eth_mac mac;
 mii_mac mii;

5-13

VMM User Guide

 eth_frame fr;
 ...

 function build_ph();
 tx_chan = eth_frame_channel::create_instance(
 this,"TxChan");
 mac = new(this, "Mac");
 mii = new(this, "Mii");
 endfunction

 function configure_ph();
 // Enable run time option to specify the
 // record/playback mode
 // Available with _vmm_opts_mode=MODE
 md = vmm_opts::get_string("MODE", // Switch name
 "NORMAL" , // Default
 "Specifies the mode"); // Doc
 case(md)
 "NORMAL" : mode = NORMAL;
 "RECORD" : mode = RECORD;
 "PLAYBACK" : mode = PLAYBACK;
 endcase
 endfunction

 function connect_ph();
 mii.tx_chan = tx_chan;
 case(mode)
 NORMAL: begin
 mac.pls_tx_chan = tx_chan;
 end;
 RECORD: begin
 // record all eth_frame to tx_chan.dat
 mac.pls_tx_chan = tx_chan;
 tx_chan.record(filename);
 end;
 PLAYBACK: begin
 // playback eth_frame from tx_chan.dat
 // Don’t connect the mac xactor
 tx_chan.playback(success, filename, fr);
 if(!success)
 `vmm_error(log,
 "Playback mode failed for channel");

5-14

VMM User Guide

 end;
 endcase
 endfunction
 ...

endclass

Completion Using Notification (vmm_notify)

Though the channel offers a rich set of completion models, it can
only provide transaction information after-the-fact. A channel
transfers a data or transaction descriptor only once a consumer
completely receives it.

In some protocols or circumstances, higher-layer transactors require
timing-related information as soon as that information is available
asynchronously from any transaction completion it is associated
with. For example, a MAC layer Ethernet transactor needs to know
when the medium is busy so it can defer the transmission of various
frames it might have. If the MAC layer Ethernet transactor delays the
information until you receive the frame occupying the medium
completely, then it becomes stale.

5-15

VMM User Guide

Figure 5-3 Notification Interface

TransactorTransactor
Channel

Producer
(upstream)

Consumer
(downstream)

Notifications

Notification Service Class

Transaction-asynchronous timing information can be exchanged
between two transactors via an instance of a notification service
interface. One transactor produces notification indications while the
other waits for the relevant indications. A parallel channel can be
used to transfer any transaction information once it is complete.

The extension of the vmm_notify class defines all notifications that
can be exchanged between the two transactors.

Example 5-10 Notification Service Class
class eth_pls_indications extends vmm_notify;
 typedef enum {CARRIER, COLLISION} indications_e;

 function new(vmm_log log);
 super.new(log);
 super.configure(CARRIER, ON_OFF);
 super.configure(COLLISION, ON_OFF);
 endfunction: new
endclass: eth_pls_indications

This structure allows the connection between two transactors in an
arbitrary order. The first one creates the notification service instance;
the second uses the reference to the instance in the first one.

Example 5-11 Notification Service Class Property
class eth_mac extends vmm_xactor;
 ...

5-16

VMM User Guide

 eth_pls_indications indications;
 ...
endclass: eth_mac

For example, when channels connecting two transactors require that
they share a reference to the same notification service instance, it
should be possible to specify notification service instances to
connect as optional constructor arguments. If none is specified, new
instances are internally allocated.

In Example 5-12, the notification service instances are allocated if
none is specified via the constructor argument list.

Example 5-12 Optional Notification Service Instances in Constructor
class eth_mac extends vmm_xactor;
 eth_pls_indications indications;
 ...
 function new(...
 eth_pls_indications indications = null);
 ...
 if (indications == null) indications = new(...);
 this.indications = indications;
 ...
 endfunction: new
 ...
endclass: eth_mac

If a transactor holds a copy of the reference to a notification service
instance in an internal variable, the notification service instance
cannot be substituted with another to modify the output or input of a
transactor and dynamically reconfigure the structure of a verification
environment.

While it is unavoidable during normal operations, a reset or stopped
transactor should release all such internal references to allow the
replacement of the notification service instance.

5-17

VMM User Guide

Notify Observer

VMM Notify Observer simplifies subscription to a notify callback
class. It is a parameterized extension of vmm_notify_callbacks.
Any subscriber (such as, a scoreboard, coverage model, etc.) can
get the transaction status whenever you indicate a notification event.
Call the `vmm_notify_observer macro, specifying the observer
and its method name.

class vmm_notify_observer #(type T, type D = vmm_data)
 extends vmm_notification_callbacks

Consider a subscriber such as a scoreboard having a method
named observe_trans(). Define a `vmm_notify_observer
macro specifying the subscriber name (scoreboard) and the
method name(observe_trans).

class scoreboard;
 virtual function void observe_trans(ahb_trans tr);
 ...
 endfunction
endclass
`vmm_notify_observer(scoreboard, observe_trans)

You can instantiate the parameterized vmm_notify_observer by
passing its subscriber handle, the vmm_notify handle and its
notification identifier.

scoreboard sb = new();
vmm_notify_observer#(scoreboard, ahb_trans)
 observe_start = new(sb, mon.notify, mon.TRANS_START);

 Whenever the notification event is indicated, the subscriber method
(observe_trans()) is called.

5-18

VMM User Guide

Transport Interfaces in OSCI TLM2.0

TLM-2.0 provides the following two transport interfaces:

• Blocking (b_transport): completes the entire transaction
within a single method call

• Non-blocking (nb_transport): describes the progress of a
transaction using multiple nb_transport method calls going
back-and-forth between initiator and target

In general,any component might modify a transaction object during
its lifetime (subject to the rules of the protocol). Significant timing
points during the lifetime of a transaction (for example: start-of-
response-phase) are indicated by calling nb_transport in either
forward or backward direction, the specific timing point being given
by the phase argument.

Protocol-specific rules for reading or writing the attributes of a
transaction can be expressed relative to the phase. The phase can
be used for flow control, and for that reason might have a different
value at each hop taken by a transaction; the phase is not an
attribute of the transaction object.

A call to nb_transport always represents a phase transition.
However, the return from nb_transport might or might not do so,
the choice being indicated by the value returned from the function
(TLM_ACCEPTED versus TLM_UPDATED).

Generally, you indicate the completion of a transaction over a
particular hop using the value of the phase argument. As a shortcut,
a target might indicate the completion of the transaction by returning
a special value of TLM_COMPLETED. However, this is an option,
not a necessity.

5-19

VMM User Guide

The transaction object itself does not contain any timing information
by design. Or even events and status information concerning the
API. You can pass the delays as arguments to b_transport /
nb_transport and push the actual realization of any delay in the
simulator kernel downstream and defer (for simulation speed).

In summary:

• Call to b_transport = start-of-life of transaction

• Return from b_transport = end-of-life of transaction

• Phase argument to nb_transport = timing point within lifetime
of transaction

• Return value of nb_transport = whether return path is being
used (also shortcut to final phase)

• Response status within transaction object = protocol-specific
status, success/failure of transaction

On top of this, TLM-2.0 defines a generic payload and base protocol
to enhance interoperability for models with a memory-mapped bus
interface.

It is possible to use the interfaces described above with user-defined
transaction types and protocols for the sake of interoperability.
However, TLM-2.0 strongly recommends either using the base
protocol off-the-shelf or creating models of specific protocols on top
of the base protocol.

5-20

VMM User Guide

Blocking Transport

As given in the OSCI-TLM2.0 user manual,

“The new TLM-2 blocking transport interface is intended to
support the loosely-timed coding style. The blocking transport
interface is appropriate where an initiator wishes to complete a
transaction with a target during the course of a single function call,
the only timing points of interest being those that mark the start
and the end of the transaction. The blocking transport interface
only uses the forward path from initiator to target.”

Due to its loosely timed application with single socket, the blocking
transport interface is simpler than non-blocking transports. It only
implements the forward path port called
vmm_tlm_b_transport_port for issuing transactions and
vmm_tlm_b_transport_export for receiving transactions

Example 5-13 shows how to build up the parent-child association
during construction. It instantiates the port in the initiator and call the
b_transport() method from within the port.

Example 5-13 TLM Blocking Port Instantiation and Usage in Initiator
class initiator extends vmm_xactor;
 vmm_tlm_b_transport_port#(initiator, my_trans)
 b_port = new(this,”initiator_port”);
 ...
 virtual task run_ph();
 int delay;
 vmm_tlm::phase_e ph;
 ...
 // send transaction using b_transport task
 b_port.b_transport(trans, delay);
 endtask: run_ph
endclass: initiator

5-21

VMM User Guide

Example 5-14 shows how to instantiate the export in the target and
implement the b_transport() functionality locally.

Example 5-14 TLM Blocking Export Instantiation and Usage in Target
class target extends vmm_xactor;
 vmm_tlm_b_transport_export#(target,my_trans)
 b_export = new(this,”target_export”);
 ...
 task b_transport(int id = -1, my_trans trans,
 ref int delay);
 trans.display(“From Target”); //execute transaction
 endtask: b_transport
endclass: target

Example 5-15 shows how to instantiate the initiator/target and bind
the export with the port.

Example 5-15 Binding TLM Blocking Interface in Initiator and Target
class my_env extends vmm_group;
 initiator initiator0; target target0;
 virtual function void connect_ph();
 //bind port -> export
 initiator0.b_port.tlm_bind(target0.b_export);
 ...

5-22

VMM User Guide

Non-Blocking Transport

As given in the OSCI-TLM2.0 user manual,

“The non-blocking transport interface is intended to support the
approximately-timed coding style. The non-blocking transport
interface is appropriate where it is desired to model the detailed
sequence of interactions between initiator and target during the
course of each transaction. In other words, to break down a
transaction into multiple phases, where each phase transition
marks an explicit timing point.”

Both forward and backward directions are available in the non-
blocking transports called vmm_tlm_nb_transport_fw_port
and vmm_tlm_nb_transport_fw_export respectively. These
classes are virtual and are used as a foundation for other TLM
transport interfaces as described in this chapter.

Example 5-16 shows how to use a non-blocking forward port for non-
blocking transportation, instantiate the port in the initiator and call the
nb_transport_fw() API from within the port.

Example 5-16 TLM Non-Blocking Port Instantiation and Usage in Initiator
class initiator extends vmm_xactor;
 vmm_tlm_nb_transport_port#(initiator, my_trans)
 nb_port = new(this,”initiator_port”);
 ...
 virtual task run_ph();
 int delay;
 vmm_tlm::phase_e ph;
 ...
 nb_port.nb_transport_fw(trans, ph, delay);
 endtask: run_ph
endclass: initiator

5-23

VMM User Guide

Example 5-17 shows how to instantiate the export in the target and
implement the nb_transport_fw() functionality locally:

Example 5-17 TLM Non-Blocking Export Instantiation and Usage in Target
class target extends vmm_xactor;
 vmm_tlm_nb_transport_export#(target,my_trans,
 vmm_tlm::phase_e)
 nb_export = new(this,”target_export”);
 ...
 function vmm_tlm::sync_e nb_transport_fw(
 int id=-1,
 my_trans trans,
 ref vmm_tlm ph,
 ref int delay);
 trans.display(“From Target”); //execute transaction
 return vmm_tlm::TLM_ACCEPTED; //finish completion
 //model
 endfunction: nb_transport
endclass: target

Example 5-18 shows how to instantiate the initiator and target and bind
the nb_export with the nb_port.

Example 5-18 Binding TLM Non-Blocking Interface in Initiator and Target
class my_env extends vmm_group;
 initiator initiator0;
 target target0;
 ...
 virtual function void connect_ph();
 ...
 initiator.nb_port.tlm_bind(target0.nb_export);
 //connectivity
 endfunction: connect_ph
endclass: my_env

5-24

VMM User Guide

Sockets

OSCI-TLM 2.0 uses sockets to communicate between transaction
level elements. A similar set of methods is in VMM, which helps
lowering the learning curve for SystemC engineers. This section
describes how you can connect VMM objects to fulfill necessary
communication completion models.

Sockets group together all the necessary core interfaces for
transportation and binding, allowing more generic usage models
than just TLM core interfaces.

OSCI-TLM 2.0 does not recommend the usage of TLM core-
interfaces without sockets. However, the socket infrastructure
restricts the binding model and in SystemVerilog. You need to
implement all functions even if you do not use them. You can
consider this to be unnecessary as the flexibility of the core-
interfaces is more suitable for verification connection models.

The vmm_tlm_initiator_socket and
vmm_tlm_target_socket are generic convenience sockets
ready for you to use. You can use these sockets as blocking or non-
blocking transportation mechanisms.

Example 5-19 shows how to instantiate an initiator socket in the
initiator and call the nb_transport_fw method. You must
implement the backward path function nb_transport_bw even if it
is not used, because other sockets might call this function.

Example 5-19 Using TLM Socket for Initiator
class initiator extends vmm_xactor;
 vmm_tlm_initiator_socket#(initiator, my_trans,
 vmm_tlm::phase_e)
 socket = new(this, "initiator_put");

5-25

VMM User Guide

 ...
 virtual function vmm_tlm::sync_e nb_transport_bw(
 int id=-1, my_trans trans,
 vmm_tlm::phase_e ph,ref int delay);
 // Implement incoming backward path function
 return vmm_tlm::TLM_COMPLETED;//finish transaction
 endfunction: nb_transport_bw

 virtual task run_ph();
 ...
 socket.nb_transport_fw(trans, ph, delay); // Forward
path
 endtask: run_ph
endclass: initiator

Example 5-20 shows how to instantiate a target socket in the target
and implement the nb_transport_fw() functionality locally. You
must implement the b_transport() task even if it is not used
because other sockets might call this task.

Example 5-20 Using TLM Socket for Target
class target extends vmm_xactor;
 vmm_tlm_target_socket#(target, my_trans,
 vmm_tlm::phase_e)
 socket = new(this, "target_put");

 virtual function vmm_tlm::sync_e nb_transport_fw(
 int id = -1, my_trans trans,
 ref vmm_tlm::phase_e ph, ref int delay);
 // Implement incoming forward path function
 trans.display(“From Target”); //execute transaction
 return vmm_tlm::TLM_UPDATED; //finish completion
 //model
 endfunction: nb_transport_fw

 virtual task b_transport(int id = -1, my_trans trans,
 ref int delay);
 ...
 endtask : b_transport
endclass: target

5-26

VMM User Guide

Example 5-21 shows how to instantiate the initiator and target and
bind the sockets together.

Example 5-21 Bind TLM Socket to Initiator and Target
class env extends vmm_group;
 initiator initiator0;
 target target0;
 virtual function void connect_ph();
 initiator0.socket.tlm_bind(target0.socket);
 ...
 endfunction
 ...
endclass

Connecting Blocking Components to Non-blocking
Components

VMM provides a transport interconnect class to connect a blocking
initiator to a non-blocking target or to connect a non-blocking initiator
to a blocking target using the
vmm_tlm_transport_interconnect class. This interconnect is
based upon the OSCI-TLM2.0 simple socket but unlike the OSCI-
TLM2.0 simple socket it does not allow blocking to blocking to
blocking transport connection or non-blocking to non-blocking
transport connection.

The vmm_tlm_transport_interconnect class uses
vmm_tlm::phase_e as the phase type for the blocking and non-
blocking TLM ports. If other user-defined phase type is required then
the transport interconnect base class
vmm_tlm_transport_interconnect_base can be used to
extend the user-defined transport interconnect. You are required to
implement the b_transport, nb_transport_fw and
nb_transport_bw methods using the custom phases. If your

5-27

VMM User Guide

phase type is different from vmm_tlm::phase_e, but the phase
information not used in transport communication, then instantiating
the vmm_tlm_transport_interconnect_base parameterized
on the phase type, using the default implementation of
b_transport, nb_transport_fw and nb_transport_bw is
sufficient.

The connection between the transport port and export is done using
the tlm_bind method of the interconnect class. For the
vmm_tlm_transport_interconnect a vmm_connect utility
method vmm_transport_interconnect is provided.

Example 5-22 shows a initiator with a TLM blocking port
instantiation.

Example 5-22 TLM Blocking Port in Initiator.

class initiator extends vmm_xactor;
vmm_tlm_b_transport_port#(initiator, my_trans)
b_port = new(this,"initiator_port");
...
virtual task run_ph();
int delay;
vmm_tlm::phase_e ph;
...
// send transaction using b_transport task
b_port.b_transport(trans, delay);
endtask: run_ph

endclass: initiator

Example 5-23 shows a consumer with a TLM non-blocking export
instantiation.

Example 5-23 TLM Non-blocking Export in Consumer
class target extends vmm_xactor;

vmm_tlm_nb_transport_export#(target,my_trans,

5-28

VMM User Guide

vmm_tlm::phase_e)
nb_export = new(this,"target_export");
...
function vmm_tlm::sync_e nb_transport_fw(
int id=-1,
my_trans trans,
ref vmm_tlm ph,
ref int delay);
trans.display("From Target"); //execute transaction
return vmm_tlm::TLM_ACCEPTED; //finish completion

//model
endfunction: nb_transport

endclass: target

Example 5-24 shows how to connect the initiator's blocking transport
port to the target's non-blocking transport export using the
vmm_connect#(.D(d))::tlm_transport_interconnect
utility class method.

Example 5-24 Connecting Blocking Port to Non-blocking Export
class subenv extends vmm_group;

initiator i0;
target t0;
...
virtual function void connect_ph();
vmm_connect
#(.D(my_trans))::tlm_transport_interconnect(
t0.b_port,
i0.nb_export,
vmm_tlm::TLM_NONBLOCKING_EXPORT);
endfunction: connect_ph
...

endclass: subenv

5-29

VMM User Guide

Generic Payload

Generic payload is a class that has been introduced in OSCI TLM
2.0. It is primarily aimed at bus-oriented protocols, such as, AHB,
OCP, etc. Generic payload contains data members such as,
address, payload, command, etc. It can support other protocols with
this base class by using the extension member.

You should derive a transaction from vmm_data to have complete
control over the data object and an abstract implementation that you
can reuse throughout the environment. You can use this vmm_data
with all objects including generators and channels.

You derive the vmm_tlm_generic_payload from
vmm_rw_access and use it to mainly simplify the task of bringing
existing TLM SystemC generic payload objects into a VMM
environment.

Example 5-25 shows the use of a generic payload, where the initiator
class has a bi-directional non-blocking port parameterized on
vmm_tlm_generic_payload.

The following initiator class has a bi-directional non-blocking port
parameterized on vmm_tlm_generic_payload.

Example 5-25 Using Generic Payload in Initiator
class initiator extends vmm_xactor;
 vmm_tlm_nb_transport_port#(initiator,
 vmm_tlm_generic_payload,
 vmm_tlm::phase_e)
 nb_port = new(this,”initiator_port”);
 ...
 virtual task run_ph();
 vmm_tlm_generic_payload trans;
 int delay;

5-30

VMM User Guide

 vmm_tlm::phase_e ph;
 vmm_tlm::sync_e status;
 ...
 ph = vmm_tlm::BEGIN_REQ;
 status = nb_port.nb_transport_fw(trans, ph, delay);
 endtask: run_ph

 function vmm_tlm::sync_e nb_transport_bw(int id=-1,
 vmm_tlm_generic_payload trans,
 ref vmm_tlm::phase_e ph,
 ref int delay);
 ...
 ph = vmm_tlm::END_RESP;
 return vmm_tlm::TLM_COMPLETED;
 endfunction: nb_transport_bw
endclass: initiator

Example 5-18 shows how to model a target class that connects to
the port of the initiator and that uses the
vmm_tlm_generic_payload.

Example 5-26 Using Generic Payload in Target
class target extends vmm_xactor;
 vmm_tlm_nb_transport_export#(target,
 vmm_tlm_generic_payload,
 vmm_tlm::phase_e)
 nb_export = new(this,”target_export”);
 …
 function vmm_tlm::sync_e nb_transport_fw(int id= -1,
 vmm_tlm_generic_payload trans,
 ref vmm_tlm::phase_e ph, ref int delay);
 trans.display(“From Target”); //execute transaction
 ph = vmm_tlm::END_REQ;
 return vmm_tlm::TLM_UPDATED; //finish completion
 //model
 endfunction: nb_transport

 virtual task run_ph();
 ...
 nb_export.nb_transport_bw(trans, ph, delay);

5-31

VMM User Guide

 endtask: run_ph
endclass: target

5-32

VMM User Guide

Broadcasting Using TLM2.0

Analysis ports are useful to broadcast transactions to multiple
observers like scoreboards and functional coverage models. You
can bind analysis ports to multiple observers and analysis exports to
multiple producers.

As given in the OSCI-TLM2.0 manual,

“Analysis ports are intended to support the distribution of
transactions to multiple components for analysis, meaning tasks
such as checking for functional correctness or collecting
functional coverage statistics. The key feature of analysis ports is
that a single port can be bound to multiple channels or subscribers
such that the port itself replicates each call to the interface method
write with each subscriber. An analysis port can be bound to zero
or more subscribers or other analysis ports, and can be unbound.
Each subscriber implements the write method of the
tlm_analysis_if.”

Analysis Port Usage with Many Observers

Example 5-27 shows the usage of an analysis port connected to
many observers. It instantiate the analysis_port within the
transmitter and call write() function.

Example 5-27 Declaration of Analysis Port and Usage in Broadcaster
class monitor extends vmm_xactor;
 vmm_tlm_analysis_port#(monitor,my_trans)
 analysis_port=new(this,”target_analysis_port”);
 ...
 virtual task run_ph();
 analysis_port.write(trans); // Transmit trans to

5-33

VMM User Guide

 //observers
 endtask: run_ph
endclass: monitor

Example 5-28 shows how to instantiate the analysis_export
within the observer and implement the write() functionality.

Example 5-28 Declaration of Analysis Port and Usage in Listener
class observer extends vmm_object;
 vmm_tlm_analysis_export#(observer,my_trans)
 scb_aport= new(this,”observing_analysis”);
 ...
 virtual function void write(int id= -1, my_trans trans);
 trans.display(“”);//operation on transaction received
 endfunction: write
endclass: observer

Example 5-29 shows how to optionally instantiate the
analysis_export within different observers and implement the
write() functionality.

Example 5-29 Multiple Analysis Port Listeners
class cov_model extends vmm_object;
 ...
 vmm_tlm_analysis_export#(cov_model,my_trans)
 cov_aport= new(this,”coverage_analysis”);

 covergroup covg with function sample(my_trans incoming);
 coverpoint incoming.rw;
 endgroup

 covg cg=new();
 ...
 virtual function void write(int id= -1, my_trans trans);
 this.cg.sample(trans);
 endfunction : write
endclass: cov_model

5-34

VMM User Guide

Example 5-30 shows how to instantiate the objects and connect the
ports.

Example 5-30 Binding Analysis Port
class my_env extends vmm_group;
 ...
 monitor mon;
 observer observe;
 cov_model cov;
 virtual function void connect_ph();
 ...
 mon.analysis_port.tlm_bind(observe.scb_aport);
 mon.analysis_port.tlm_bind(cov.cov_aport;
 endfunction : build
endclass: my_env

Analysis Port Multiple Ports Per Observer

There is no restriction in OSCI-TLM2.0 to limit the number of
observer hooks using analysis_export per observation class.
However, in SystemVerilog there can only have one implementation
of a function present in a class. Therefore, if you have two
analysis_exports, these use the same write()
implementation.

The observer might require a unique implementation of a write
method for each port. Then you can instantiate multiple analysis
exports in the observer with a unique implementation of write, for
each binding using the shorthand macro. Alternatively, you can
connect multiple ports to the same export instance using peer IDs.

5-35

VMM User Guide

Shorthand Macro IDs

Example 5-31 shows how to use multiple analysis_exports
within a single observer. It instantiates the analysis_port within
the transmitter and call the write() function.

Example 5-31 Declaration of Analysis Port and Usage in Broadcaster
class monitor extends vmm_xactor;
 ...
 vmm_tlm_analysis_port#(monitor,my_trans)
 analysis_port = new(this,”monitors_analysis_port”);
 task perform_update()
 analysis_port.write(trans);
 endtask
 ...
endclass: monitor

Example 5-32 shows how to instantiate two analysis_exports
within the observer and implement the write<ID>() functionality.

Example 5-32 Declaration of Multiple Analysis Ports
class scoreboard extends vmm_object;
 `vmm_tlm_analysis_export(_1) //uniquifier ID
 `vmm_tlm_analysis_export(_2) //uniquifier ID

 vmm_tlm_analysis_export_1#(scoreboard,my_trans)
 scb_analysis_1=new(this,”scoreboard_analysis_1”);
 vmm_tlm_analysis_export_2#(scoreboard,my_trans)
 scb_analysis_2=new(this,”scoreboard_analysis_2”);
 ...
 virtual function void write_1(int id= -1, my_trans trans);
 `vmm_note(log,”From scoreboard write_1”);
 endfunction: write_1

 virtual function void write_2(int id= -1, my_trans trans);
 `vmm_note(log,”From scoreboard write_2”);
 endfunction: write_2
endclass: scoreboard

5-36

VMM User Guide

Example 5-33 shows how to instantiate the objects and bind the
ports to respective places.

Example 5-33 Binding Multiple Analysis Ports
class my_env extends vmm_group;
 monitor mon[2];
 scoreboard scb;
 ...
 virtual function void connect_ph();
 mon[0].analysis_port.tlm_bind(scb.scb_analysis_1);
 mon[1].analysis_port.tlm_bind(scb.scb_analysis_2);
 endfunction: build
endclass: my_env

Peer IDs

When you use peer IDs, you need only one write()
implementation. Within it you can identify which port is performing
the access and execute the appropriate functionality.

Example 5-34 shows how to use single_export with peer_id. It
instantiates the analysis_port within the transmitter and call the
write() function.

Example 5-34 Declaration of Analysis Port and Usage in Broadcaster
class monitor extends vmm_xactor;
 vmm_tlm_analysis_port#(monitor, my_trans)
 analysis_port=new(this,”monitor_analysis_port”);
 ...
 virtual task run_ph()
 analysis_port.write(trans);
 endtask
endclass: monitor

5-37

VMM User Guide

Example 5-35 shows how to instantiate one analysis_export
within the observer and implement the write() functionality. You
must specify maximum binding in the analysis_export
constructor.

Example 5-35 Using Analysis Port Peer IDs for Identifying Broadcaster
class scoreboard extends vmm_object;
 vmm_tlm_analysis_export#(scoreboard,my_trans)
 scb_analysis=new(this,”scoreboard_analysis”, 2, 0);
 ...
 virtual function write(int id= -1, my_trans trans);
 case(id)
 0: do_compare_from_port0(trans);
 1: do_compare_from_port1(trans);
 endcase
 endfunction
endclass: scoreboard

Example 5-36 shows how to instantiate the objects and bind the
ports to respective places using peer IDs.

Example 5-36 Binding Multiple Peers
class my_env extends vmm_group;
 monitor mon[2]; scoreboard scb;
 ...
 virtual function void connect_ph();
 ...
 mon[0].analysis_port.tlm_bind(scb.scb_analysis, 0);
 mon[1].analysis_port.tlm_bind(scb.scb_analysis, 1);
 endfunction : build
endclass: my_env

5-38

VMM User Guide

Interoperability Between vmm_channel and TLM2.0

VMM provides a methodology for connecting vmm_xactors with
vmm_xactors using a channel interface to vmm_xactors.

Conversely, it is possible to connect TLM2.0 interfaces directly to
vmm_channel. You can connect vmm_channel to the blocking
transport interface, non-blocking forward interface, non-blocking
bidirectional interface or the analysis interface.

vmm_channel can act as a producer by binding the channel's TLM
port to an external TLM export or a consumer by binding the
channel's TLM export to an external TLM port.

Connecting vmm_channel and TLM interface

Example 5-37 shows how to connect a consumer with a
vmm_channel to a producer with a TLM blocking port. It connects
the producer with a blocking transport port calling the b_transport
method of the blocking port.

Example 5-37 Initiator With TLM Blocking Interface
class initiator extends vmm_xactor;
 vmm_tlm_b_transport_port#(initiator,my_trans)
 b_port=new(this,”initiator_port”);

 virtual task run_ph();
 ...
 b_port.b_transport(tr,delay);
 endtask: run_ph
endclass: initiator

5-39

VMM User Guide

Example 5-38 shows how to model target that includes a
vmm_channel instantiated using the vmm_channel_typed class.

Example 5-38 Target With Channel
class target extends vmm_xactor;
 vmm_channel_typed#(my_trans) in_chan =
 new(“target”,”in_chan”);

 virtual task run_ph();
 in_chan.get(tr);
 ...
 endtask: run_ph
endclass: target

Example 5-39 shows how to bind the channel’s blocking transport
export to the blocking transport port of the initiator using the
vmm_connect#(.D(d))::tlm_bind utility class method.

Example 5-39 Binding Channel and TLM Blocking Interface
class subenv extends vmm_group;
 initiator i0;
 target t0;
 ...
 virtual function void connect_ph();
 vmm_connect #(.D(my_trans))::tlm_bind(

t0.in_chan,
i0.b_port,
vmm_tlm::TLM_BLOCKING_EXPORT);

 endfunction: connect_ph
 ...
endclass: subenv

5-40

VMM User Guide

TLM2.0 Accessing Generators

VMM atomic and scenario generators have a built-in vmm_channel
called out_chan. You can connect the output channel’s blocking or
non-blocking forward transport port to a consumer’s blocking or non-
blocking forward export.

Example 5-40 shows how to use an atomic generator with a
consumer class that is based on a TLM blocking transport export.

Example 5-40 Modeling a Driver With TLM Blocking Interface
class driver extends vmm_xactor;
 vmm_tlm_b_transport_export#(driver,my_trans)
 b_export=new(this,”driver_export”);

 task b_transport(int id=-1, my_trans trans,
 ref int delay);
 ...
 //process the transactions received from the generator
 endtask: b_transport
endclass: driver

Example 5-41 shows how to instantiate the driver and atomic
generator and then bind the generators blocking transport port to the
driver’s blocking transport export using the
vmm_connect#(.D(d))::tlm_bind utility class method.

Example 5-41 Binding Atomic Generator and TLM Blocking Interface
class my_env extends vmm_group;
 vmm_atomic_gen #(my_trans) gen;
 driver d0;
 virtual function void connect_ph();
 vmm_connect #(.D(my_trans))::tlm_bind(

gen.out_chan,
d0.b_export,
vmm_tlm::TLM_BLOCKING_PORT);

5-41

VMM User Guide

 endfunction: connect_ph

endclass: env

Forward Path Non-Blocking Connection

Example 5-42 shows how to use the vmm_channel with a non-
blocking transport connection on the forward path. The transactor
with the vmm_channel is the producer that is connected to the non-
blocking forward export of the consumer. It creates a producer class
with a vmm_channel. The shorthand macro `vmm_channel or
vmm_channel_typed class can be used.

Example 5-42 Transactor With Channel
class initiator extends vmm_xactor;
 vmm_channel_typed#(my_trans)
 out_chan=new(“target”,”out_chan”);

 virtual task run_ph();
 out_chan.put(tr);
 ...
 endtask: run_ph
endclass: initiator

Example 5-43 shows how to create a consumer class with a non-
blocking forward transport export.

Example 5-43 Target With TLM Non-Blocking Interface
class target extends vmm_xactor;
 vmm_tlm_nb_transport_fw_export#(target,my_trans)
 nb_export=new(this,”target_export”);

 function vmm_tlm::sync_e nb_transport_fw(int id=-1,
 my_trans trans,
 ref vmm_tlm::phase_e ph,
 ref int delay);

5-42

VMM User Guide

 ...
 //process the transactions received from the initiator
 endfunction: nb_transport_fw
endclass: target

Example 5-44 shows how to connect the non-blocking forward
transport port of the channel to the non-blocking forward export of
the target.

Example 5-44 Binding Channel and TLM Non-Blocking Interface
class my_env extends vmm_group;
 initiator i0;
 target t0;
 virtual function void connect_ph();
 vmm_connect #(.D(my_trans))::tlm_bind(

i0.out_chan,
t0.nb_export,
vmm_tlm::TLM_NONBLOCKING_FW_PORT);

 endfunction: connect_ph
endclass: my_env

Bidirectional Non-Blocking Connection

Example 5-45 shows how to connect a consumer with a
vmm_channel to a producer with a TLM non-blocking bi-directional
port. Here, a producer with a non-blocking transport port calls the
nb_transport method of the non-blocking port.

Example 5-45 Initiator With TLM Non-Blocking Interface
class initiator extends vmm_xactor;
 vmm_tlm_nb_transport_port#(initiator,my_trans)
 nb_port=new(this,”initiator_port”);

 virtual task run_ph();
 ...
 nb_port.nb_transport_fw(tr,ph,delay);
 endtask

5-43

VMM User Guide

 function vmm_tlm::sync_e nb_transport_bw(int id=-1,
 my_trans trans,
 ref vmm_tlm::phase_e ph,
 ref int delay);
 //method is called when target notifies
 //vmm_data::ENDED on a particular transaction
 endfunction
endclass: initiator

Example 5-46 shows how to model a target with a vmm_channel
instantiated using the vmm_channel_typed class.

Example 5-46 Target With Channel
class target extends vmm_xactor;
 vmm_channel_typed#(my_trans)
 in_chan=new(“target”,”in_chan”);
 virtual task run_ph();

 in_chan.get(tr);
 ...
 tr.notify.indicate(vmm_data::ENDED); //calls the
 //nb_transport_bw method of the initiator with
 //the current transaction
 endtask: run_ph
endclass: target

Example 5-47 shows how to bind the channel’s non-blocking bi-
directional export to the non-blocking bi-directional port of the
initiator using the vmm_connect#(.D(d))::tlm_bind utility
class method.

Example 5-47 Binding Channel and TLM Non-Blocking Interface
class subenv extends vmm_subenv;
 initiator i0;
 target t0;
 virtual function void connect_ph();
 vmm_connect #(.D(my_trans))::tlm_bind(

5-44

VMM User Guide

t0.in_chan,
i0.nb_port,
vmm_tlm::TLM_NONBLOCKING_EXPORT);

 endfunction: connect_ph
endclass: subenv

Advanced Usage

Updating Data in Analysis Ports From vmm_notify

VMM has a default subscription based listener model based on
vmm_notify. You can use VMM notification service (vmm_notify)
to connect a transactor, a channel, or any other testbench
component to a scoreboard or functional coverage collector or any
other passive observer. There can be multiple observers, and they
will all see the same transaction stream.

There are pre-defined notification in vmm_xactor and
vmm_channel readily available for review and use.

Example 5-48 shows how to configure your notification normally and
call the indicate() API as usual.

Example 5-48 Modeling Monitor With Notification
class monitor extends vmm_xactor;
 ...
 int OBSERVED;
 function new(string name);
 this.OBSERVED=this.notify.configure();
 endfunction

 virtual task run_ph()
 ...
 this.notify.indicate(this.OBSERVED, my_trans)
 endtask: run_ph

5-45

VMM User Guide

 ...
endclass

Example 5-49 shows how to implement the indicated()
functionality to pass the transaction onto observer.

Example 5-49 Modeling Subscriber With Notification Callbacks
class subscribe extends vmm_notify_callbacks;
 ...
 local observer obs;
 function new(observer obs);
 this.obs = obs;
 endfunction
 virtual function void indicated(vmm_data status);
 this.obs.observe(status);
 endfunction
 ...
endclass

Example 5-50 shows how the observer class implements the
observe() function which executes the
analysis_port.write().

Example 5-50 Modeling Observer With Ad-Hoc Analysis Port
class observer extends vmm_object;
 vmm_tlm_analysis_port#(subscribe, my_trans)
 analysis_port = new(this,"observer_analysis_port");
 string name;

 function new(string name, vmm_notify ntfy, int id);
 subscribe cb = new(this);
 ntfy.append_callback(id, cb);
 this.name = name;
 endfunction

 function void observe(vmm_data tr);
 analysis_port.write(tr);
 endfunction

5-46

VMM User Guide

endclass

Finally, you instance the objects and bind the analysis port to any
subscribing analysis_export. Thus, when vmm_notifier
indicates the data object, analysis_exports observes it.

Connect Utility (vmm_connect)

You can use VMM connect utility class vmm_connect for
connecting channels and notifications in the
vmm_group::connect_ph() method. Additionally, it checks
whether you have already connected the channels to a producer and
a consumer. You usually connect with the vmm_channel
set_consumer() and set_producer() methods.

class vmm_connect #(type T, type N=T, type D=vmm_data)

The vmm_connect class has the following methods that you can
use for channel/notification connectivity.

class vmm_connect#(T)::channel(ref T upstream, downstream,
 string name= “”, vmm_object parent = null);

Example 5-51 shows how to use
vmm_connect#(T)::channel() method to connect the
channels.

Example 5-51 Connecting Producer/Consumer Channels Using
vmm_connect

class ahb_unit extends vmm_group;
 ahb_trans_channel gen_chan;
 ahb_trans_channel drv_chan;

 virtual function void build_ph();

5-47

VMM User Guide

 drv_chan = new(“ahb_chan”, “drv_chan”);
 gen_chan = new(“ahb_chan”, “gen_chan”);
 endfunction

 virtual function void connect_ph();
 vmm_connect#(.T(ahb_trans_channel))::channel(
 gen_chan, drv_chan, "gen2drv", this);

 endfunction

endclass

You should not attempt to connect two channels that are already
connected together or to another channel.

Example 5-52 shows how to use the vmm_connect#(T,N,
D)::notify() method to connect notification to the subscriber
such as, scoreboard.

Example 5-52 Using vmm_connect::notify()
class scoreboard;
 virtual function void observe_trans(ahb_trans tr);
 ...
 endfunction
endclass
`vmm_notify_observer(scoreboard, observe_trans)

class ahb_unit extends vmm_group;
 scoreboard sb;

 virtual function void build_ph();
 sb = new();
 endfunction

 virtual function void connect_ph();
 vmm_connect#(.N(scoreboard), .D(ahb_trans))::notify(
 sb, mon.notify, mon.TRANS_STARTED);
 endfunction
endclass

5-48

VMM User Guide

Channel Non-Atomic Transaction Execution

Non-atomic transactors execute transactions in parallel, pipelined
through multiple attempts, multiple partial sub-transactions or a
transaction repeatedly at regular intervals.

Such transactors use a non-blocking completion model. As shown in
Figure 5-4, the execution thread from the upstream transactor
(depicted as a dotted line) is not blocked while the transaction
descriptor flows through the channel and the downstream transactor
executes it.

It is blocked only when the channel is full and unblocks as soon as it
is non-full, regardless of whether the transaction is complete or not.

The non-blocking completion model allows submission of several
transactions to the downstream transactor for completion in future. It
is up to the upstream transactor to detect the completion of a
transaction according to a mechanism the downstream transactor
defines.

The suitability and proper implementation of this completion model
requires that the downstream transactor adheres to the following
guidelines:

The channel instance is responsible for blocking the execution of the
vmm_channel::put() method, not the downstream transactor.
That blocking only happens if the channel is considered full.

More than one transaction must be available in the channel to allow
out-of-order execution.

5-49

VMM User Guide

If you use a full level of a channel, you create a blocking interface.
Non-atomic execution is only possible if the downstream transactor
implements additional transaction descriptor buffering internally.

You receive the additional status information as a separate status
descriptor derived from vmm_data and attached to the
vmm_data::ENDED notification by the
vmm_channel::complete() method.

Example 5-53 Returning Status Information Through the Ended Notification
class transaction_resp extends vmm_data;
 ...
endclass: transaction_resp

class consumer extends vmm_xactor;
 ...
 virtual task main();
 ...
 forever begin
 transaction tr;
 ...
 this.in_chan.start(tr);
 ...
 begin: status
 transaction_resp tr_status = new(...);
 ...
 this.in_chan.complete(tr_status);
 end
 ...
 end
 endtask: main
endclass: consumer

Channel Out-of-Order Atomic Execution Model

Transactors with an out-of-order atomic execution model execute
individual transactions in a potentially different order than you submit
them.

5-50

VMM User Guide

The order in which you select transactions for execution is protocol-
specific and out of the scope of this book. Such transactors use a
non-blocking completion model.

As shown in Figure 5-4, you do not block the execution thread from
the producer transactor (depicted as a dotted line) while the
transaction descriptor flows through the channel and the consumer
transactor executes it. You block it only when the channel is full and
it unblocks as soon as the channel is empty, regardless of whether
the transaction is complete or not.

Figure 5-4 Non-Blocking Completion Model

TransactorTransactor

Channel

Producer
(upstream)

Consumer
(downstream)

The non-blocking completion model allows submission of several
transaction descriptors to the consumer transactor for completion in
the future.

If needed, it is up to the producer transactor to detect the completion
of a transaction by waiting for the indication of the
vmm_data::ENDED notification in the transaction descriptor or the
vmm_channel::ACT_COMPLETED indication in the input channel,
as shown in Example 5-54.

Example 5-54 Upstream of a Non-Blocking Completion Model
class producer extends vmm_xactor;
 ...
 virtual task main();

5-51

VMM User Guide

 ...
 ... begin
 transaction tr;
 ...
 out_chan.put(tr);
 fork
 begin
 automatic transaction w4tr = tr;
 w4tr.wait_for(vmm_data::ENDED);
 ...
 end
 join_none
 ...
 end
 endtask: main
 ...
endclass: producer

The suitability and proper implementation of this completion model
requires that consumer transactors adhere to the following
guidelines:

Out-of-order transactors often execute transactions in a sequence
other than the one you submit because they implement different
priorities or class of services for different transactions.

If a transactor offers more than one execution priority or class of
service, it must use a different input channel for each. Using a single
channel might block the execution of higher priority transactions
because you fill it with low-priority transactions.

You assume the transactions in the channel to be available for
execution. As soon as you select a transaction for execution
(concurrently, partially or as the first instance of a recurrence), you
might immediately remove it from the channel to prevent it from
being selected again by another transaction execution thread. You
need this if the channel is connected to multiple consumers.

5-52

VMM User Guide

Example 5-55 Removing a Transaction Descriptor From the Input Channel
class consumer extends vmm_xactor;
 ...
 virtual task main();
 ...
 forever begin
 ...
 this.in_chan.get(tr);
 tr.notify.indicate(vmm_data::STARTED);
 ...
 end
 endtask: main
endclass: consumer

A producer transactor might track individual transactions by
maintaining a reference to the transaction descriptors as they flow
through the channel and the downstream transactor executes them.
You use the vmm_notify::indicate function already in the
transaction descriptor to eliminate the need for additional
synchronization infrastructure in the upstream transactor.

Example 5-56 Indicating Transaction Execution Notifications
class consumer extends vmm_xactor;
 ...
 virtual task main();
 ...
 while (1) begin
 transaction tr;
 this.in_chan.get(tr, i);
 tr.notify.indicate(vmm_data::STARTED);
 ...
 tr.notify.indicate(vmm_data::ENDED);
 end
 endtask: main
 ...
endclass: consumer

5-53

VMM User Guide

You cannot use the vmm_channel::active(),
vmm_channel::start(), vmm_channel::complete() and
vmm_channel::remove() methods because they support an
atomic i.e. one at a time execution model. You cannot use these
methods when you execute multiple transactions concurrently.

A producer transactor might require information about the various
intermediate completions of a transaction execution such as each
execution attempt, each sub-transaction or each occurrence of a
recurring transaction.

As a transaction might have more than one completion indication,
you should use an output channel to return completion information
back to the producer transactor, as shown in Figure 5-5.

Figure 5-5 Completion Channel

TransactorTransactor

Input Channel

Producer
(upstream)

Consumer
(downstream)

Completion Channel

This usage avoids stalling the consumer transactor on a full
completion channel when the producer transactor fails to drain it. No
data is lost even if the channel becomes full.

Example 5-57 Providing Completion Status Through Completion Channel
class consumer extends vmm_xactor;
 transaction_channel in_chan;
 transaction_resp_channel compl_chan;

 virtual task main();
 ...

5-54

VMM User Guide

 forever begin
 ...
 this.in_chan.get(tr);
 tr.notify.indicate(vmm_data::STARTED);
 ...
 begin
 transaction_resp resp = new(...);
 tr.notify.indicate(vmm_data::ENDED, resp);
 this.compl_chan.sneak(resp);
 end
 end
 endtask: main
endclass: consumer

When you can use the transaction descriptor 's properties to specify
completion status information, you modify these properties by the
consumer transactor to provide status information back to the
producer transactor.

A single transaction descriptor might result in multiple completion
responses back through the completion channel. When you use the
same instance, subsequent responses might modify the content of
prior responses before the producer transactor has time to process
them.

Using separate instances for each response ensures that you
receive an accurate report of the history of the transaction execution
via the completion channel.

If the transaction descriptor does not have properties that you can
use to specify completion status information, the consumer
transactor can provide status information back to the upstream
transactor via a different status descriptor supplied through the
completion channel.

5-55

VMM User Guide

You provide additional status information as a separate descriptor
derived from vmm_data. You should provide a reference to the
original transaction in the status descriptor. It is not necessary to
overload all of the virtual methods in the status information class.
This is shown in Example 5-57.

Channel Passive Response

Passive transactors monitor transactions executed on a lower-level
interface and report to the higher-layers descriptions of the observed
transactions.

A passive transactor should report any protocol-level errors it
detects. However, the higher-level transactors are responsible for
checking the correctness of the data carried by the protocol. As
shown Figure 5-6, passive transactors use an output channel to
report transactions. Using a new instance of the transaction
descriptor, you report each observed transaction.

5-56

VMM User Guide

Figure 5-6 Passive Response Model

TransactorTransactor

Channel

Producer
(upstream)

Consumer
(downstream)

Note: You do not limit the passive response model to passive
transactors. You can use it to report on observed transactions in
various transactors. A reactive transactor might use the passive
response model to report on the observed transactions that
received active replies. A proactive transactor might use a passive
response model to report on the received transactions as
observed on a half-duplex interface.

The suitability and proper implementation of this response model
requires that passive transactors adhere to the following guidelines:

The output channel will block the execution thread of the passive
transactor if it becomes full. This blocking might break its
implementation or cause data to be lost.

The vmm_channel::sneak() method ignores the channel's full
level and never blocks the execution thread of the upstream
transactor. Because the passive monitor is observing the proper
execution of a protocol, you should regulate its execution by the time
required to execute a complete transaction.

A consumer transactor might need to know when a transaction has
started execution on an interface. For example, a half-duplex higher-
level transactor would need to know if the transport medium is busy
before attempting to execute its own transaction. Waiting until the
end of the transaction to put it in the output channel might delay the
information much.

5-57

VMM User Guide

Example 5-58 Incomplete Transaction Descriptor in an Output Channel
class producer extends vmm_xactor;
 ...
 virtual task main();
 ...
 while (1) begin
 ...
 tr = new;
 ...
 tr.notify.indicate(vmm_data::STARTED);
 this.out_chan.sneak(tr);
 ...
 tr.notify.indicate(vmm_data::ENDED);
 end
 endtask: main
endclass: producer

Consumer transactors can also use the timestamps associated with
these notifications for identifying time-related information about the
transaction such as its total execution time.

Example 5-59 Monitoring Transactions From a Passive Transactor
class consumer extends vmm_xactor;
 ...
 virtual task main();
 ...
 while (1) begin
 ...
 this.in_chan.peek(tr);
 tr.notify.wait_for(vmm_data::ENDED);
 this.in_chan.get(tr);
 ...
 end
 endtask: main
endclass: consumer

Channel Reactive Response

Reactive transactors monitor the transactions executed on a lower-
level interface and might have to request additional data or
information from higher-layer transactors to complete the

5-58

VMM User Guide

transaction. Reactive transactors should report any protocol-level
errors detected and locally generate protocol-level answers.
However, higher-level transactors are responsible for providing
correct data content to be carried by the protocol.

As shown in Figure 5-7, reactive transactors use an output channel
to request a transaction response. A second input channel is used to
receive the transaction response applied to the lower-level interface.
Each transaction response request is reported using a new instance
of a transaction response descriptor object.

Figure 5-7 Reactive Response Model

TransactorTransactor

Resp Req Channel

Requestor
(upstream)

Responder
(downstream)

Response Channel

Note: You only use the reactive response model to obtain higher-level
data the protocol carries. Where the protocol fully defines the
entire set of possible responses, the reactive transactor internally
generates the response.

For example, deciding to reply to a USB transaction with an ACK,
NACK, STALL packet or not replying at all can be entirely decided
internally. However, a reactive response model should provide the
content and length of a DATA packet in reply to an IN transaction.
Note you provide the response within sufficient time to avoid
breaking the protocol.

The suitability and proper implementation of this response model
requires that reactive transactors adhere to the following guidelines.

5-59

VMM User Guide

The implementation of the protocol might require that the requestor
transactor performs additional operations while the response is
being “composed.” The vmm_channel::sneak() method
ensures that the requestor transactor execution is never blocked, if
only to immediately wait for a response via the response channel.

Example 5-60 Requesting a Response
class requestor extends vmm_xactor;
 ...
 virtual task main();
 ...
 forever begin
 ...
 resp = new;
 ...
 this.req_chan.sneak(resp);
 ...
 this.resp_chan.get(resp);
 ...
 end
 endtask: main
endclass: requestor

You usually limit the time required to respond to a transaction by the
lower-level protocol specification. However, the requestor transactor
controls the time required to “compose” the response. Thus, the
requestor transactor can only check that the response comes back
when required.

Example 5-61 Checking Response Request Fulfillment Delay
class requestor extends vmm_xactor;
 ...
 virtual task main();
 ...
 forever begin
 ...
 resp = new;
 ...
 this.req_chan.sneak(resp);
 resp = null;
 fork

5-60

VMM User Guide

 this.resp_chan.get(resp);
 #(...);
 join_any
 disable fork;
 if (resp == null) ...
 ...
 end
 endtask: main
endclass: responder

To simplify the usage model of a reactive transactor, you might use
a default response if a higher-level transactor fails to provide an
explicit transaction response in time.

The higher-level transactor might have preferred to continue with the
default response. However, it should issue a message to inform an
unwary you of a potential problem with the verification environment.

The responding reactive monitor should fill in the content of a
transaction response descriptor. By default, it should provide a
random, but valid, response. Therefore, you should design the
transaction response descriptor to provide a valid response when
you use the randomize() method. You could user-extend the
transaction response request descriptor to provide a more
constrained response or procedurally filled in to provide a directed
response.

Example 5-62 Providing a Random Response
class responder extends vmm_xactor;
 ...
 virtual task main();
 ...
 forever begin
 this.req_chan.get(tr);
 ...
 tr.stream_id = this.stream_id;
 tr.data_id = response_id++;
 if (!tr.randomize()) ...
 ...
 this.resp_chan.sneak(tr);

5-61

VMM User Guide

 end
 endtask: main
endclass: responder

The protocol fully defines protocol-level responses and the reactive
transactor can select without any input required from higher-level
transactors.

The embedded factory-pattern generator should generate a
response. By default, you constrain the generator to produce the
best possible response. However, you can unconstraint or modify to
respond differently or inject errors.

To ease the creation of verification environments, a reactive
transactor might be configurable to generate the complete protocol
response internally. This instead of deferring the higher-level data to
higher-level reactive transactors.

A transactor detects whether you have provided a response within
an acceptable time and determines that the response request is still
in the request channel. It might then assume there are no higher-
level transactors and choose to compose a default response on its
own.

vmm_tlm_reactive_if

VMM provides a methodology to facilitate writing reactive
transactors using a polling approach rather than an interrupt
approach. The reactive interface should be instantiated in a
consumer transactor to connect to multiple producers.

It provides blocking and non-blocking (forward and bi-directional)
transport exports and can be bound to more than one transport port.

5-62

VMM User Guide

The q_size parameter specifies how many transactions can be
pending. The reactive interface provides blocking and non-blocking,
get() and try_get(), methods to receive transaction on a first in
first out basis. You indicate completion of the active transaction by
calling the completed() method.

Note:You must process one transaction at a time. An error is issued
if get is called before completing the previous transaction.

If the queue of pending transactions is full, all incoming transactions
from non-blocking ports are refused by immediately returning the
vmm_tlm::REFUSED status.

For blocking ports, the following behavior is observed by the initiator
if the queue is full:

• For vmm_tlm_generic_payload transactions, the
m_response_status field is set to
TLM_INCOMPLETE_RESPONSE and a warning is issued. The
b_transport() method returns immediately.

• If transactions are not of vmm_tlm_generic_payload type,
then they continue to be queued internally passed the maximum
queue size and a warning is issued. The b_transport()
method will be blocked until the transaction is completed. If the
queue of pending transaction grows to twice its maximum size,
then an error is issued and the b_transport() method returns
immediately.

If transactions can be queued, blocking initiators are blocked until
the transaction is completed and non-blocking initiators are
accepted by returning the vmm_tlm::ACCEPTED status. Pending
transactions are returned to the target by the try_get() or get()
methods in order of arrival.

5-63

VMM User Guide

Example 5-63 shows how to connect a TLM blocking port to reactive
class.

Example 5-63 Producer With TLM Blocking Interface
class producer extends vmm_xactor;
 vmm_tlm_b_transport_port#(producer) b_port = new(this,
"producer port");

 virtual task run_ph();
 …
 b_port.b_transport(tr,delay);
 endtask: run_ph
endclas: producer
Consumer with TLM reactive interface
class consumer extends vmm_xactor;
 vmm_tlm_reactive_if#(my_trans, 4) reac_export1 =
new(this, "export1");
 virtual task run_ph();
 my_trans trans;
 fork
 while (1)
 begin
 reac_export1.get(trans);
 reac_export1.completed();
 end
 join_none
 endtask : run_ph
endclass : consumer
Binding reactive interface and TLM Blocking interface
class my_env extends vmm_group;
 producer p1;
 producer p2;
 consumer c;
 function void connect_ph();
 c.reac_export1.tlm_bind(p.b_port,
vmm_tlm::TLM_BLOCKING_EXPORT);
 c.reac_export1.tlm_bind(p.b_port,
vmm_tlm::TLM_BLOCKING_EXPORT);
 endfunction
endclass

5-64

VMM User Guide

6-1

VMM User Guide

6
Implementing Tests & Scenarios 1

This chapter contains the following sections:

• Overview

• Generating Stimulus

• Modeling Scenarios

• Modeling Generators

• Implementing Testcases

Overview

The verification planning process outlined in Chapter 2 of the VMM
book produces the following three distinct sets of requirements:

6-2

VMM User Guide

- functional coverage

- stimulus generation

- response checking

This chapter focuses on the stimulus generation requirement.

This chapter is of interest to those responsible for creating reusable
test scenarios and testcases through directed or random stimulus.

Directed stimulus can be considered as a subset of random stimulus
and with a properly designed random generator, which can be
created simply. Random generators are aimed at exercising the DUT
according to the requirements outlined in the verification planning
process (VMM Book, Chapter 2).

Random generators should be controllable to cover the entire
spectrum of randomness between pure random and directed
stimulus.

Generating Stimulus

In a typical simulation, thousands of data items or transaction
descriptors are created, which flow through transactors, record and
compare in the self-checking structure. Also, only a handful of data
and transaction sources that need to exist at the beginning of the
simulation and remain in existence until the end are there.

You should model the generation of data (packets, frames,
instructions) or transaction descriptors separately from the data
models themselves because of the different dynamics of their
respective lifetimes.

6-3

VMM User Guide

Generation can be a manual or directed process, where transaction
descriptors and data items are individually created and submitted to
the appropriate transactor.

Generation can be automated with the use of independent random
generators, using randomness approximates automation. Left to run
for long enough, a random source will on its own eventually generate
the stimulus necessary to exercise a large portion of the functionality
you need to verify.

Random generators succeed in their task within reasonable time.
You do not ask them to replicate the exact directed stimulus an
engineer has written to exercise a specific feature. Rather, you
should expect random generators to hit any one of a large number
of features through non-optimal random stimulus sequences.

However, pure random stimulus, which is constrained to be valid, is
rarely useful. You must define the degrees of freedom in random
stimulus up front to create a mix of random but interesting scenarios.

Though many verification engineers are more familiar with directed
stimulus than random stimulus, random stimulus should be present
first. It is difficult to evolve from a directed stimulus process to an
automated, random stimulus one. However, you can consider
directed stimulus a subset of, or a highly constrained random
stimulus.

Random-based verification environment can be constrained or
override to produce directed stimulus. Accomplishing the opposite is
more difficult. If the directed stimulus only concerns a subset of the
input paths to the DUT, you can use the random stimulus on the other
input paths to provide background noise.

6-4

VMM User Guide

Random Stimulus

Random stimulus is traditionally used to generate background noise.
However, it should be used in lieu of directed stimulus to implement
the bulk of the testbenches. Coupled with functional coverage to
identify if the random stimulus has exercised the required
functionality, it uses constraints to direct the generation process in
appropriate corner cases.

This section specifies guidelines on how to write autonomous
generators that create a stream of random data or transaction
descriptors.

You should design generators to be easily externally constrained
without requiring modifications of their source code. You then write
constrained-random tests - not by writing a completely new or
slightly modified generator - but by adding constraints and scenario
definitions to the reusable generators that already exist.

Some predefined atomic and scenario generators are available in
the VMM Standard Library. You can then use the
vmm_atomic_gen() and vmm_scenario_gen() macros to
automatically create generators that follow all guidelines outlined in
this section for any user-defined type.

The Multi Stream Scenario Generator (MSSG)
vmm_ms_scenario_gen() provides the capability to implement
hierarchical and reusable transaction scenarios. It controls and
coordinates existing scenarios to achieve a fine-grained control over
stimulus.

As such, all guidelines applicable to transactors are applicable to
generators unless explicitly superseded in this section.

6-5

VMM User Guide

Example 6-1 Generators are Transactors
class eth_frame_gen extends vmm_xactor;
 ...
endclass: eth_frame_gen

A generator is a transactor, which has one or more output channels.
It might have input channels in the case of reactive stimulus
generation.

A generator produces streams of data or transaction descriptors that
need to be executed by the transactors. To connect the output of a
generator to the input of a transactor, both must use the same
transaction interface mechanism.

If a generator produces concurrent stimulus for multiple streams, it
must have an output channel for each of the output streams. This
channel connects each stream to their respective execution
transactors.

For the MSGG, the channel is a logical channel, which you can
dynamically bind to registered physical channels that might exist
anywhere in the environment.

This structure allows several important operations that you require to
implement testcases or build verification environments. For
example, you can,

• query the channel, control or reconfigure it.

• reference the channel as the input channel for a downstream
transactor.

• replace the channel if you require dynamic environment
reconfiguration.

6-6

VMM User Guide

Example 6-2 Generator Output Channel Class Property
class eth_frame_gen extends vmm_xactor;
 ...
 eth_frame_channel out_chan;
 ...
endclass: eth_frame_gen

If the channel instance is not specified, then it can be instantiated as
the output channel in the constructor. If it is specified, then its
reference is stored in the appropriate public class property.

Example 6-3 Connecting a Generator to a Specified Channel Instance
class eth_frame_gen extends vmm_xactor;
 eth_frame_channel out_chan;
 ...
 function new(...,
 eth_frame_channel out_chan = null);
 ...
 if (out_chan == null) out_chan = new(...);
 this.out_chan = out_chan;
 ...
 endfunction: new
 ...
endclass: eth_frame_gen

Connecting a generator to a transactor requires that the output
channel of the generator be the input channel of the downstream
transactor. You can accomplish this connection if they share
references to a single channel instance.

Figure 6-1 Connecting a Generator to a Transactor

TransactorGenerator

Channel

The steps to connect a generator to a transactor are,

1. Connect one of them internally to instantiate its channel

6-7

VMM User Guide

2. Pass a reference to that channel to the constructor of the other one

Using the vmm_connect class for connection of channels to each
other is recommended.

Example 6-4 Instantiating the Generator First (Explicitly Phased
Environment)

class tb_env extends vmm_env;
 ...
 eth_frame_gen gen;
 eth_mac mac;
 ...
 function void dut_env::build();
 this.gen = new(...);
 this.mac = new(..., this.gen.out_chan);
 endfunction: build
endclass: tb_env

Example 6-5 Instantiating the Transactor First (Explicitly Phased
Environment)

class tb_env extends vmm_env;
 ...
 eth_frame_gen gen;
 eth_mac mac;
 ...
 function void dut_env::build();
 this.mac = new(...);
 this.gen = new(..., this.mac.tx_chan);
 endfunction: build
endclass: tb_env

Alternatively, you can instantiate a stand-alone channel and then
passed to the constructor of the generator and the transactor.

Example 6-6 Instantiating the Channel
class tb_env extends vmm_env;
 ...
 eth_frame_channel gen_to_mac;
 eth_frame_gen gen;
 eth_mac mac;
 ...
 function void dut_env::build();

6-8

VMM User Guide

 eth_frame_channel gen_to_mac =new(...);
 eth_frame_gen gen = new(..., this.gen_to_mac);
 eth_mac mac = new(..., this.gen_to_mac);
 endfunction: build
endclass: tb_env

The factory enabled transaction object is a necessity to obtain highly
controllable stimulus. See “Class Factory Service” on page 26 for the
process to enable and use the factory service.

You should make the prototype or blueprint for the factory a class
property of the generator. It should follow a naming convention to
make it easier to identify the location, name and type of all
randomized instances in a verification environment. It also helps in
clearly identifying the purpose of the class property.

For example, in the predefined VMM atomic generator the instance
name of the prototype transaction is randomized_obj.

If a contradiction in a set of constraints makes it impossible for the
solver to find a solution, the randomize() method returns non-
zero.

It is important that an error is reported to indicate the problem with
the constraints in the status of the simulation and to prevent using a
partial solution.

Example 6-7 Checking the Success of Randomization Process
if (!this.randomized_fr.randomize()) begin
 ‘vmm_error(this.log, "Unable to find a solution");
 continue;
end

The stream identifier class property is defined in the vmm_data base
class and inherits by all data and transaction descriptor classes.

6-9

VMM User Guide

Example 6-8 shows how to set the value of the stream identifier class
property. It should be set before every randomization attempt, to
ensure that the user does not accidentally modify the stream
identifier in the randomized instance. It also ensures that the stream
identifier is set consistently even if the randomized instance is
substituted with another instance (for example, using the factory
service).

Example 6-8 Setting the stream_id Class Property
while (...) begin
 ...
 this.randomized_fr.stream_id = this.stream_id;
 ...
 if (!this.randomized_fr.randomize()) ...
 ...
end

You might use this stream identifier to specify stream-specific
constraints when adding constraints using a mechanism that is
global to all instances as shown in Example 6-9.

Example 6-9 Specifying Constraints on a Subset of Streams
constraint eth_frame::tc1 {
 ...
 if (stream_id == 2) {
 ...
 }
}

Directed Stimulus

Directed stimulus is manually constructed to verify a specific feature
of the design or to hit a specific functional coverage point. Not all of
the stimulus needs to be directed.

6-10

VMM User Guide

Random values can be used to fill portions of the stimulus that are
not directly relevant to the feature being exercised. For example, the
content of a packet payload is irrelevant to the correctness of the
packet routing. The only requirement is that it to be transferred
unmodified.

Similarly, the content and identity of the general purpose registers
used in an ADD instruction is not relevant as long as the destination
register eventually contains the accurate sum of the values
contained in the two source registers.

You might also use random stimulus as background noise on the
interfaces, not directly related to the feature you are verifying. The
directed stimulus is focused on the interfaces directly implicated in
the verification of the targeted functionality.

Similarly, directed stimulus might be injected in the middle of random
stimulus. This sequence might help identify problems that might not
be apparent, should the directed stimulus be applied from the reset
state.

Directed stimulus is typically meant to replace random stimulus, not
intermix with it. If the random generator is still running while directed
stimulus are injected into its output stream, the resulting stimulus
sequence is unpredictable.

Generators might be stopped for the duration of the simulation, while
others providing background noise, might keep running as usual.
Generators might be stopped at some points during the simulation,
and then restart after you inject the directed stimulus.

6-11

VMM User Guide

The built-in scenario and multi stream generators provide
capabilities to intermix directed and random stimulus. They reserve
channels for robustness and consistency in intermixing streams of
data. This is discussed in the later sections of this chapter.

Example 6-10 Stopping a Generator at the Beginning of a Simulation
class test_directed extends vmm_test;
...
vmm_xactor host_src_gen0, phy_src_gen1;
virtual function start_of_test_ph;
 ...
 $cast(this.host_src_gen0,
 vmm_object::find_object_by_name("host_src"));
 $cast(this.phy_src_gen1,
 vmm_object::find_object_by_name("phy_src"));
 this.host_src_gen0.stop_xactor();
endfunction
virtual task run_ph;
 fork
 directed_stimulus;
 join_none
endtask

task directed_stimulus;
 ...
endtask: directed_stimulus
endclass: test_directed

Directed stimulus can be specified by manually instantiating data
and transaction descriptors and then setting their properties
appropriately.

When injected in the output stream, the data or transaction
descriptor is passed to the callback methods before adding them to
the generator output channel. The procedure returns when the
directed data has been consumed by the output channel.

Example 6-11 Directed Transaction Interface
class eth_frame_gen extends vmm_xactor;
 eth_frame_channel out_channel;

6-12

VMM User Guide

 ...
 task inject(eth_frame fr,
 ref bit dropped);
 dropped = 0;
 ‘vmm_callback(eth_frame_gen_callbacks,
 post_inst_gen(this, fr, dropped));
 if (!dropped) this.out_chan.put(fr);
 endtask: inject
endclass: eth_frame_gen

Directed stimulus can easily be injected in the output stream of the
generator by directly putting instances of transaction descriptors in
the output channel. You accomplish this stimulus introduction by
calling the vmm_channel::put() method directly.

Example 6-12 Injecting a Directed Sequence
task directed_stimulus;
 eth_frame to_phy, to_mac;
 ...
 to_phy = eth_frame::create_instance(this,"to_phy");
 to_phy.randomize();
 ...
 fork
 this.host_src_gen0.inject(to_phy, dropped);
 begin
 // Force the earliest possible collision
 @ (posedge this.vif.tx_en); //virtual interface
 this.phy_src_gen1.inject(to_mac, dropped);
 end
 join
 ...

endtask: directed_stimulus

It is necessary that the directed stimulus is familiar with the
transactor completion model to identify when the transaction
execution completes.

Further, such stimulus might not be passed to the callbacks methods
of the generator and the scoreboard or the functional coverage
model might not record it.

6-13

VMM User Guide

You should use this mechanism only if it is necessary to create an
out-of-order or partial-execution directed stimulus. The reference to
the output channel of a generator is public to allow for dynamic
reconfiguration of an environment and to connect it to a downstream
transactor. It is not its primary purpose to allow direct injection of
directed stimulus.

Generating Exceptions

By default, transactors execute transactions without errors, as fast
as possible. However, the verification of a design necessitates that
the limits of a protocol are stretched and sometimes broken. A
verification environment and the transactors that compose it must
provide a mechanism for injecting exceptions in the execution of a
transaction.

As described in “Transactor Callbacks” on page 26, you can use the
callback mechanism to cause a transactor to deviate from its default
behavior.

You can inject within a callback, protocol exceptions such as, extra
delays, negative replies or outright errors without modifying the
original transactor. You can define many exceptions and implement
in the callback methods themselves such as, inserting delays or
corrupting the information in the transaction descriptor.

You must implement some exceptions in the transactor itself, such
as ignoring an entire transaction or prematurely terminating a
transaction. In the latter case, callback methods provide the
necessary control mechanism to trigger them.

6-14

VMM User Guide

Directed exception injection is performed by extending the
appropriate callback for the appropriate transactor within the
testcase implementation. Then this callback is prepended to the
appropriate transactor callback registry. As shown in Example 6-13,
a directed testcase uses the callback mechanism to force a collision
on all input ports of an ethernet device by aligning the transmission
of the next frame in all MII transactors.

Example 6-13 Aligning the Transmissions in All MII Transactors
class align_tx extends mii_mac_layer_callbacks;
 local int waiting = 0;
 local int until_n = 1;
 local event go;
 ...
 virtual task pre_frame_tx(...);
 waiting++;
 if (waiting >= until_n) ->go;
 else @(go);
 waiting--;
 endtask: pre_frame_tx
enclass: align_tx
class test extends vmm_test;
virtual function connect_ph;
 begin
 align_tx cb = new(...);
 //attach callbacks using transactor iterator
 ‘foreach_vmm_xactor(mii_xactor, "/./", "/./") begin
 xact.prepend_callback(cb);
 end
 end
 endfunction
endclass

Random stimulus is proving to be a powerful mechanism to improve
the productivity of functional verification. However, stimulus means
more than primary data and transactions. It also includes protocol
exceptions.

Instead of having to explicitly inject protocol exceptions using a
directed approach, you can include these exceptions randomly.

6-15

VMM User Guide

Random injection of a protocol exception is accomplished by
randomly generating an exception descriptor. This exception
descriptor is implemented and generated using the same technique
as transaction descriptors.

Example 6-14 shows an exception descriptor for an MII MAC-layer
transactor that you can use to create collisions.

Example 6-14 Exception Descriptor for an MII Protocol
class mii_mac_collision;
 typedef enum {NONE, EARLY, LATE} kind_e;
 rand kind_e kind;
 rand int unsigned on_symbol;
 int unsigned n_symbols;

 constraint early_collision {
 if (kind == EARLY) on_symbol < 112;
 }
 constraint late_collision {
 if (kind == LATE) {
 on_symbol >= 112;
 on_symbol < n_symbols;
 }
 }
 constraint no_collision {
 kind == NONE;
 }
endclass: mii_mac_collision

If more than one exception is injected concurrently during the
execution of the transaction, the exception descriptor should
properly model this capability.

The exception descriptor should contain a reference to the
interacting transaction descriptor as shown in Example 6-15. This
reference allows the expression of constraints to correlate protocol
exceptions with the transactions they are applied to.

6-16

VMM User Guide

Example 6-15 Exception Descriptor for an MII Protocol
class mii_mac_collision;
 ...
 eth_frame frame;
 ...
endclass: mii_mac_collisions

To prevent the injection of protocol exception, an exception
descriptor must be able to describe a no-exceptions condition as
shown in Example 6-16. A constraint block should ensure that. By
default, no exceptions are injected.

Most of the testcases show no interest in exceptions and thus use
the transactor as-is. For the few tests responsible for verifying the
response of the design to protocol exception, they simply need to
turn off the constraint block.

Example 6-16 Enabling the Injection of Protocol Exceptions
class test_collisions extends vmm_test;
...
virtual function start_of_test_ph;
 env.phy.randomized_col.
 no_collision.constraint_mode(0);
endfunction
endclass: test_collisions

The random exception generation might be built in the transactor
itself, as shown in Example 6-17. However, this usage requires that
the author of the transactor plan for every possible exception that he
can inject. If the source code for the transactor is available, the kinds
of exceptions that the transactor can inject evolve according to the
needs of the projects. You should never modify a truly reusable
transactor.

If the source code is not available, it might be difficult to introduce
additional exceptions in the transactor without introducing disjoint
control mechanisms.

6-17

VMM User Guide

Example 6-17 Exception Generation Built Into a Transactor
class mii_phy_layer extends vmm_xactor;
 virtual mii_if.phy_layer sigs;
 ...
 mii_phy_collision randomized_col;

 function new;
 ...
 this.randomized_col = new;
 endfunction: new
 ...
 task tx_driver();
 ...
 if (!randomized_col.randomize()) ...
 ...
 endtask: tx_driver
endclass: mii_phy_layer

You can also build the random exception generation into a callback
extension. You can use this mechanism to add exception injection
capabilities into a transactor that does not already support them or to
supplement the exceptions the transactor already provides.

Example 6-18 shows how you build the exception generation into a
callback extension.

Example 6-18 Exception Generation in a Callback Extension
class gen_rx_errs extends mii_phy_layer_callbacks;
 mii_rx_err randomized_rx_err;
 ...
 virtual task pre_frame_tx(...);
 ...
 if (!randomized_rx_err.randomize()) ...
 endtask: pre_frame_tx

 virtual task pre_symbol_tx(...);
 if (this.randomized_rx_err.on_symbol == nibble_no)
 err = 1’b1;
 endtask: pre_symbol_tx
endclass: gen_rx_errs

6-18

VMM User Guide

Embedded Stimulus

Stimulus is generally understood as being applied to the external
inputs of the design under verification. However, limiting stimulus to
external interfaces might only make it difficult for you to perform
some testcases.

If the verification environment does not have a sufficient degree of
controllability over the design, you might spend much effort trying to
create a specific stimulus sequence to an internal design structure.
This is because; it is too far removed from the external interfaces.
This problem is particularly evident in systems where internal buses
or functional units are not directly controllable from the outside.

You might not need transactors to be limited to driving external
interfaces. You can use them to replace an internal design unit and
provide control over that unit's interfaces.

The transaction-level interface of the embedded transactor remains
externally accessible, making the replaced unit interfaces logically
external. You can similarly replace monitors for slave devices.

For example, an embedded ARM core can be replaced with an
AMBA AHB Interface master transactor as shown in Figure 6-2.

Example 6-19 and Example 6-20 show how to instantiate an
interface in a module and to bind it in the top environment.

Thus generation if transactions is achieved not by executing
instructions but by having the transactor execute the transaction
descriptors.

6-19

VMM User Guide

Connectivity is preserved and verified it because the transactor is
inserted within the original design unit interface. The testcase run-
time is improved, because fewer lines of code are simulated. There
is no need to fetch instructions or the processor core executes no
object code.

Figure 6-2 Replacing a Design Unit With a Transactor
ARM Core

AMBA AHB Interconnect

AMBA AHB
Interface

Code
Mem

Master

Example 6-19 Replacement Module for Embedded Stimulus Generation
module arm_core(input hclk,
 output mhbusreq,
 input mhgrant, ...);

ahb_if sigs();
assign sigs.hclk = hclk;
assign mhbusreq = sigs.mhbusreq;
assign sigs.mhgrant = mhgrant;
...
endmodule

Example 6-20 Embedded Transactor (Explicitly Phased Environment)
task dut_env::build();
 ahb_master core = new(...);
 //bind the transactor virtual interface
 core.bind_vif(top.dut.core_i.sigs.master);
 ...
endtask

When substituting a design block for a transactor, you might need to
ensure that the generated stimulus is representative of system-level
activity.

6-20

VMM User Guide

Controlling Random Generation

The objective of a random generator is to create the entire needed
stimulus to completely verify a design. Some of these stimulus are
created without any constraints, except those are required to create
valid stimulus.

Other stimulus requires additional or modified constraints to strike
certain corner cases or inject errors.

The ability to create certain stimulus patterns is directly related to the
ability to express the constraints that causes the patterns to be
generated.

If it is not possible to express a constraint between two variables, it
is not possible to create a relationship between their respective
values. Declarative constraints can only be expressed across
properties (or sub-properties) of a class, procedural constraints are
expressed across disjoint variables using the std::randomize
with statement.

You should prefer declarative constraints as they can be added,
modified or removed without modifying or duplicating the generation
code.

Instead of coding a directed testcase to verify a particular function of
the design, it might be simpler to modify the constraints on the
generators to increase the likelihood that they generate the required
data streams on their own.

Because generators are always randomizing the same instance, it is
possible to “remove” the rand mode on arbitrary properties - which
for a particular test - must remain constant.

6-21

VMM User Guide

You might turn off the rand mode of some properties by default to
prevent generation of invalid data. Errors can be injected by turning
them back on and adding relevant constraints. This procedural
constraint modification can be executed at any time during the
execution of a testcase.

Example 6-21 Controlling the rand Mode of a Class Property
vmm_xactor host_src;
$cast(host_src,
 vmm_object::find_object_by_name("host_src"));
host_src.randomized_obj.dst = this.cfg.mac.addr;
host_src.randomized_obj.dst.rand_mode(0);
host_src.randomized_obj.src = this.cfg.dut_addr;
host_src.randomized_obj.src.rand_mode(0);

Because generators are always randomizing the same instance, it is
possible to turn constraint blocks ON or OFF using the
constraint_mode() method. This method can disable constraint
blocks that might prevent the injection of errors or modify the
distribution of the generated values and obtain a different
distribution. This method can be executed as a procedural constraint
modification at any time during the execution of a testcase.

Example 6-22 Controlling Constraint Blocks
class test_collisions extends vmm_test;
...
 virtual function start_of_test_ph;
 begin
 vmm_xactor phy;
 $cast(phy,
 vmm_object::find_object_by_name("host_phy"));
 phy.randomized_col.no_collision.constraint_mode(0);
 end
 endfunction
endclass: test_collisions

6-22

VMM User Guide

If the definition of a randomized class contains extern
constraint blocks, you can define them for each testcase. This
style requires the pre-existence of an undefined extern
constraint block and you can use it to add constraints.

The new constraint block definition can be simply added by
including a source file that defines it. This change is a declarative
constraint modification that applies to all instances of the class.
They are taken into consideration (unless the constraint block is
turned OFF) whenever you randomize an instance of the class.
The constraints apply for the entire duration of the testcase
execution.

Example 6-23 Specifying External Constraints
class test extends vmm_test;
...
 constraint eth_frame::tc1 {
 data.size() == min_len;
 }
endclass: test

It is not always possible to create the desired data stream simply by
turning constraints on or off or by tweaking distribution weights. If the
constraints or variable distribution weights did not exist earlier, it is
not possible to create the necessary stimulus.

Because generators are always randomizing the same instance, it is
possible to replace the randomized instance with an instance of a
derived class using the factory service.

As the randomize() method is virtual, the additional or overridden
constraint blocks should be implemented in the derived class.

6-23

VMM User Guide

Unlike the external constraint block implementation, this mechanism
allows the addition of class properties and methods. It allows further
extension of virtual methods to facilitate the expression of the
required constraints. It also allows the redefinition of existing
constraint blocks and methods.

Though the class extension is declarative and global to a simulation,
the substitution of the randomized instance with an instance of this
new class is procedural. This constraint modification can be done at
any time during the execution of a testcase.

Example 6-24 Replacing a Factory Instance
class test;
...
class long_eth_frame extends eth_frame;
 ‘vmm_typename(long_eth_frame)
 constraint long_frames {
 data.size() == max_len;
 }
endclass: long_eth_frame
...
virtual function start_of_test_ph;
 begin
 //override default with long_eth_frame derived type
 eth_frame::override_with_new(
 "@env:host_src:randomized_obj",
 long_eth_frame::this_type,
 log);
 end
endfunction
endclass: test

Example 6-25 Constraining the Test Configuration
class duplex_test_cfg extends test_configuration;
 ‘vmm_typename(duplex_test_cfg)
 constraint test_Y {
 mode == DUPLEX;
 }
endclass

class test_Y;

6-24

VMM User Guide

 virtual function start_of_test_ph;
 begin
 test_configuration::override_with_new(
 "@top.env.randomized_cfg",
 duplex_test_cfg::this_type,
 log);
 end
 endfunction
endclass: test_Y

Modeling Scenarios

The atomic generator creates a stream of individually randomized
transactions. This is fine for creating broad-spectrum stimulus, but
corner cases are likely to require a more constrained sequence of
transactions.

Scenarios are short sequences of transactions that are directed or
mutually constrained, or a combination of both.

This chapter describes specification of single-stream and multi-
stream scenarios - both random and directed - and hierarchical
scenarios.

Note: The multi-stream scenarios are the recommended way to
model scenarios going forward.

Appendix A includes detailed documentation for,
vmm_scenario_gen and
vmm_scenario::define_scenario(),
vmm_ms_scenario_gen and vmm_ms_scenario.

6-25

VMM User Guide

Architecture of the Generators

The scenario generators and multi-stream scenario generators are
transactors that repeatedly select a scenario from a set of available
ones. They randomize and then execute it. After you have executed
a scenario, the total number of transactions the scenario creates is
added to the total number of transactions the generator
generates.The number of generated scenarios is incremented.

This process is repeated until the maximum number of scenarios or
transaction descriptors to generate is reached.

By default, the single-stream scenario generator provides only one
scenario: a scenario that randomizes and then applies just one
transaction.

Functionally, the default behavior of the single-stream scenario
generator is equivalent to that of the atomic generator.

You must register single-stream scenarios with a single-stream
scenario generator to produce different stimulus. Note that the
performance of the default-configuration single-stream scenario
generator is significantly lower than the atomic generator because of
the overhead associated with selecting, randomizing and applying
scenarios.

You should not use this as a replacement of the atomic generator in
situations where the atomic generator suffices.

By default, the multi-stream scenario generator does not provide any
scenarios. Multi-stream scenarios must be registered with a multi-
stream scenario generator to produce stimulus.

6-26

VMM User Guide

Other than this difference, multi-stream scenarios provide a more
flexible feature set and you can use them in conjunction with existing
single stream scenarios. It is therefore recommended over single
stream scenario generator.

You can register scenarios to the desired scenario generator
instance via the vmm_scenario_gen::register_scenario()
or vmm_ms_scenario_gen::register_ms_scenario()
method.

This allows specific generators to generate the desired stimulus
sequence and no other. In case you need to register a scenario with
multiple instances of scenario generators, you can use the
transactor iterator as shown in Example 6-26.

Example 6-26 Registering a Scenario With Multiple Generators
‘foreach_vmm_xactor(ahb_scenario_gen, "/./", "/./") begin
 my_ahb_scenario sc = new();
 xact.register_scenario(sc);
end

Scenario Selection

As shown in Figure 6-3, a generator selects to generate the next
scenario among all of the scenarios you register with it, by
randomizing its vmm_scenario_gen::select_scenario or
vmm_ms_scenario_gen::select_scenario class property.
The final value of the vmm_scenario_election::select or
vmm_ms_scenario_election::select identifies the scenario.
The generator interprets it as the index in the
vmm_scenario_gen::scenario_set[$] or
vmm_ms_scenario_gen::scenario_set[$] of the scenario
generated.

6-27

VMM User Guide

Figure 6-3 Scenario Selection and Execution Process

Scenario Generator

select_scenario rand int select

scenario_set[$]
Scenario Descriptor

virtual task apply()

Output Channel(s)

1. randomize()

2. randomize()

3. apply() or execute()
virtual task execute()

By default, the vmm_scenario_election::round_robin and
vmm_ms_scenario_election::round_robin constraint blocks
constrains the selection process to a round-robin order.

By turning off this constraint block, you can make the scenario
selection process completely random.

Example 6-27 Making the Scenario Selection Random
vmm_xactor gen;
$cast(gen,
 vmm_object::find_object_by_name("@env:ahb_gen2"));
gen.select.round_robin.constraint_mode(0);

You can replace the instance of the vmm_scenario_election or
vmm_ms_scenario_election class in the
vmm_scenario_gen::select_scenario or
vmm_ms_scenario_gen::select_scenario class property to
create a different selection process. Various state variables are
available to help procedurally or randomly determine the next
scenario to execute.

6-28

VMM User Guide

Modeling Generators

Atomic Generation

Atomic generation is the generation of individual data items or
transaction descriptors. It generates each of them independent of
the items or descriptors that was previously or subsequently
generated.

Atomic generation is like using a random function that returns a
complex data structure instead of a scalar value.

Atomic generation is simple to describe and use as shown in
Example 6-28. Its ease of use is the reason why you use atomic
generation to illustrate most of the generation and constraints
examples in this book and in other literature.

However, it is unlikely to create interesting stimulus sequences on its
own even with the addition of constraints.

Example 6-28 Atomic Generator
class eth_frame_gen extends vmm_xactor;
 ...
 eth_frame randomized_fr;
 ...
 virtual protected task main();
 ...
 while (...) begin
 ...
 if (!this.randomized_fr.randomize()) ...
 ...
 end
 ...
 endtask: main
endclass: eth_frame_gen

6-29

VMM User Guide

For example, how can you constrain an atomic instruction generator
to generate a well-formed loop structure? How about a nested loop
structure? Generating interesting stimulus sequences requires the
ability to constrain random stimulus within the context of the previous
and subsequent items and descriptors.

The predefined atomic generator vmm_atomic_gen macro creates
follows all relevant guidelines. You can create with a few keystrokes,
a powerful atomic generator for any type derived from the vmm_data
class.

Multiple-Stream Scenarios

Multi-stream scenarios are able to inject stimulus on multiple output
channels. Unlike single-stream scenarios, you do not tie multi-
stream scenarios to a particular channel. They have the flexibility to
access any channel in the environment. You must explicitly define
them by extending their vmm_ms_scenario::execute() method.

That is not to say that random multi-stream scenarios are not
possible! You can implement a random multi-stream scenario by
defining properties as “rand” or by calling “randomize()” from within
the vmm_ms_scenario::execute() method.

As shown in Figure 6-4, multi-stream scenarios interact with
channels identified by logical names. This allows to execute the
same scenario on a different set of channels.

Channels are associated with a logical name by registering them
with an instance of a multi-stream scenario generator by using the
vmm_ms_scenario_gen::register_channel() method.

6-30

VMM User Guide

The channel that is associated with a logical name can be obtained
from within the vmm_ms_scenario::execute() method by
calling the vmm_ms_scenario::get_channel() method.

Figure 6-4 Channels in Multi-Stream Scenarios

Multi-stream Scenario Generator

Channel Registry

"Tx"
"Rx"

Scenario Registry

Scenario Descriptor"Aa"
"Rx".get()
"Tx".put()

Scenario Descriptor"Bb"
"Rx".get()
"Tx".put()

Transactor

Transactor

Example 6-29 Registering Logical Channel Pairs
foreach (this.ms_gen[i]) begin
 this.ms_gen[i].register_channel("Tx",
 this.bfm[i].tx_chan);
 this.ms_gen[i].register_channel("Rx",
 this.bfm[i].rx_chan);
end

A multi-stream scenario need not only to generate stimulus on
multiple output channels. You can use a single-channel multi-stream
scenario to describe a single-stream scenario.

Similarly, you might connect a multi-stream scenario generator to
only one output channel thereby effectively emulating a single-
stream scenario generator.

The performance of a multi-stream scenario generator used in a
single-stream application is comparable to the performance of a
single-stream scenario generator.

6-31

VMM User Guide

Procedural Scenarios

Multi-stream scenarios are procedural scenarios, which do not have
a pre-defined default random scenario. The only implicit
randomization is the randomization of the multi-stream scenario
descriptor before you execute it.

The body of the multi-stream scenario is completely under your
control and could include further randomization of local variables and
data members. Or the hierarchical execution of child scenarios,
depending on the your intention.

You must specify a multi-stream scenario by overloading the
vmm_ms_scenario::execute() task in an extension of the
vmm_ms_scenario class. You must specify each multi-stream
scenario as a separate class extension. The execution of this task
constitutes the multi-stream scenario.

It is required that for each scenario the
vmm_ms_scenario::copy() should be overloaded for
multistream scenarios to return the copy of the scenario.

The easiest way to achieve this is to use the shorthand macros.

`vmm_scenario_member_begin(..)
...
vmm_scenario_member_end(..)

Note: These macros create a default constructor. If there is a need
to create your own constructor, you need to explicitly define the
macro, ‘vmm_scenario_new(..) in addition to the above
macros.

It is up to the task to create or randomize transaction descriptors and
then copy them in the appropriate channels. It is recommended that,

6-32

VMM User Guide

• The transaction descriptor be factory enabled.

• That the scenario be factory enabled. This facilitates further
customization or replacement of the scenario from a testcase.

Example 6-30 A Simple Multi-Stream Scenario
class simple_scenario extends vmm_ms_scenario;
 ‘vmm_typename(simple_scenario)
 rand ahb_cycle ahb;
 ocp_cycle ocp;

 function new(vmm_ms_scenario parent = null);
 super.new(parent);
 this.ahb =
 ahb_cycle::create_instance(this,"ahb_cycle");
 this.ocp =
 ocp_cycle::create_instance(this,"ocp_cycle");
 endfunction

 virtual function vmm_data copy(vmm_data to = null);
 simple_scenario cpy;

 if (to == null)
 cpy = new(this.get_parent_scenario());
 else $cast(cpy, to);

 $cast(cpy.ahb, this.ahb.copy());
 $cast(cpy.ocp, this.ocp.copy());
 endfunction

 virtual task execute(ref int n);
 vmm_channel ocp_chan = this.get_channel("OCP");
 vmm_channel ahb_chan = this.get_channel("AHB");
 fork
 begin
 this.ocp.randomize();
 ocp_chan.put(this.ocp.copy());
 end
 // this.ahb will be randomized when this
 // class is randomized by the generator
 ahb_chan.put(this.ahb.copy());
 join
 n += 2;
 endtask
 ‘vmm_class_factory(simple_scenario)

6-33

VMM User Guide

endclass

A multi-stream scenario generator can be connected to any channel
instance in the testbench environment. However, such a connection
does not prevent other transactors to concurrently inject transactions
to a channel, as a scenario is not guaranteed exclusive access by
default to an output channel.

Multiple threads in the same scenario might inject transactions in the
same channel, or another generator might be actively generating its
own stream of transactions in a channel concurrently with the multi-
stream generator.

If a multi-stream scenario requires exclusive access to a channel, to
ensure that you do not interrupt its specific sequence of transactions
or mix with a sequence from another thread in the same scenario (or
from another transactor) it must first grab the channel. This is done
by calling the vmm_channel::grab() method.

After the channel is grabbed, all other potential producers on the
channel are blocked from injecting transactions in the channel until
it has been explicitly ungrabbed.

When injecting transactions in a potentially grabbed channel, you
must supply a reference to the scenario currently injecting the
transaction to grabber argument of the vmm_channel::put() or
vmm_channel::sneak() methods.

Example 6-31 A Multi-Stream Scenario With Exclusive Channel Access
class exclusive_access extends vmm_ms_scenario;
 ‘vmm_typename(exclusive_access)
 rand ahb_cycle ahb;

 function new(vmm_scenario parent = null);
 super.new(parent);
 this.ahb = ahb_cycle::create_instance(this,"ahb_c");

6-34

VMM User Guide

 endfunction

 virtual function vmm_data copy(vmm_data to = null);
 exclusive_scenario cpy;

 if (to == null)
 cpy = new(this.get_parent_scenario());
 else $cast(cpy, to);

 $cast(cpy.ahb, this.ahb.copy());
 endfunction

 virtual task execute(ref int n);
 vmm_channel chan = this.get_channel("AHB");
 chan.grab(this);
 repeat (10) chan.put(this.ahb, .grabber(this));
 chan.ungrab(this);
 n += 2;
 endtask
‘vmm_class_factory(exclusive_access)
endclass

Hierarchical Scenarios

Multi-stream scenarios can be composed of other single-stream and
multi-stream scenarios. There are two types of hierarchical
scenarios: "contained" and "distributed".

A contained multi-stream scenario is entirely described and
executed by a multi-stream scenario descriptor. It executes within
the context of a single multi-stream scenario generator, as shown in
Figure 6-4. The sub-scenarios in a contained hierarchical scenario
execute on the same logical channels as the top-level scenario.

Example 6-32 Contained Hierarchical Multi-Stream Scenario
class contained extends vmm_ms_scenario;
 rand simple_scenario simple;
 rand exclusive_access excl;
 rand single_stream_scenario sss;

6-35

VMM User Guide

 function new(vmm_scenario parent = null);
 super.new(parent);
 this.simple = simple_scenario::create_instance(...);
 this.excl = exclusive_access::create_instance(...);
 this.sss =
 single_stream_scenario::create_instance(...);
 this.sss.set_parent_scenario(this);
 endfunction

 virtual function vmm_data copy(vmm_data to = null);
 contained cpy;

 if (to == null)
 cpy = new(this.get_parent_scenario());
 else $cast(cpy, to);

 $cast(cpy.simple, this.simple.copy());
 $cast(cpy.excl, this.excl.copy());
 $cast(cpy.sss, this.sss.copy());
 endfunction

 virtual task execute(ref int n);
 fork
 begin
 this.simple.execute(n);
 this.excl.execute(n);
 end
 this.sss.apply(this.get_channel("MII"), n);
 join
 endtask
endclass

A distributed multi-stream scenario is described and executed by
multiple multi-stream scenario descriptors. Each multi-stream
scenario descriptor executes within the context of the multi-stream
scenario generator where it is registered, as shown in Figure 6-5.

The sub-scenarios in a distributed hierarchical scenario execute on
the logical channels as registered in the multi-stream scenario
generator where they execute.

6-36

VMM User Guide

Figure 6-5 Distributed Hierarchical Multi-Stream Scenarios

“AHB”
“OCP” Transactor

Transactor

“Rx”
“Tx” Transactor

Transactor

Scenario Registry

“IO”
“BUS”

Transactor

Channel Registry

Channel Registry

Generator Registry

“Tx”
Channel Registry

“Tx”.put()
“IO”.”Aa”.execute()
“BUS”.”Xx”.execute()
“BUS”.”OCP”.put()

Scenario Descriptor“Zz”

Multi-stream Scenario Generator

Scenario Registry

“AHB”.put()
”OCP”.put()

Scenario Descriptor“Aa”

Multi-stream Scenario Generator

“AHB”.put()
”OCP”.put()

Scenario Descriptor“Xx”

Scenario Registry

“Rx”.get()
”Tx”.put()

Scenario Descriptor“Aa”

Multi-stream Scenario Generator

“AHB”.put()
”OCP”.put()

Scenario Descriptor“Bb”

6-37

VMM User Guide

Example 6-33 Distributed Hierarchical Multi-Stream Scenario
class distributed extends vmm_ms_scenario;
 rand simple_scenario simple;

 function new(vmm_scenario parent = null);
 super.new(parent);
 this.simple = simple_scenario::create_instance(...);
 this.simple.set_parent_scenario(this);
 endfunction

 virtual function vmm_data copy(vmm_data to = null);
 contained cpy;

 if (to == null)
 cpy = new(this.get_parent_scenario());
 else $cast(cpy, to);

 $cast(cpy.simple, this.simple.copy());
 endfunction

 virtual task execute(ref int n);
 fork
 this.simple.execute(n);
 begin
 vmm_ms_scenario mii;
 mii = this.get_ms_scenario("MII_GEN",
 "Collision");
 if (mii != null) mii.execute(n);
 end
 join
 endtask
endclass
...
initial
begin
 vmm_ms_scenario_gen top_gen = new;

 // Assuming that somewhere, this registration happens
 // env.mii_gen.register_ms_scenario("Collision", ...);

 top_gen.register_ms_scenario_gen("MII_GEN",
 env.mii_gen);
 begin
 distributed d = new;
 top_gen.register_ms_scenario("Example", d);
 end

6-38

VMM User Guide

 ...
end

You can surely compose a distributed hierarchical scenario of
contained hierarchical scenarios.

Configuring Scenario Generators

Scenario generators are configured by using many concurrent
mechanisms. You can use various mechanisms or in combination
with others to achieve the desired results.

Stopping a Generator
The stop_after_n_scenarios class property specifies the total
number of scenarios to generate. By default, it is set to zero or an
infinite number of scenarios.

Example 6-34 shows how to configure a specific scenario generator
instance to automatically stop after generating one scenario.

Example 6-34 Configuring the Number of Scenarios to Generate (Explicit
Phasing)

task my_test::run(vmm_env env);
 vmm_xactor gen0;
 $cast(gen0, vmm_object::find_object_by_name("eth_gen"));
 env.build();
 gen0.stop_after_n_scenarios = 1;
 env.run();
endtask

The stop_after_n_insts class property specifies the minimum
total number of transactions to generate. By default, it is set to zero
or an infinite number of transactions.

6-39

VMM User Guide

Example 6-35 shows how to configure all instances of a scenario
generator type to automatically stop after generating at least one
hundred transactions.

Example 6-35 Configuring the Number of Transactions to Generate (Explicit
Phasing)

task my_test::run(vmm_env env);
 env.build();
 begin
 ‘foreach_vmm_xactor(ahb_scenario_gen, "/./", "/./")
 xact.stop_after_n_insts = 100;
 end
 env.run();
endtask

Available Scenarios
The scenarios that are available to be generated by the generator
must be registered with a generator. By default, single-stream
scenario generators only know about the "atomic" scenario and
multi-stream scenario generators do not know about any scenarios.

Example 6-36 shows how to remove the default atomic scenario
from a single-stream scenario generator instance.

Example 6-36 Removing Scenarios (Explicit Phasing)
task my_test::run(vmm_env env);
 vmm_xactor gen;
 $cast(gen,
 vmm_object::find_object_by_name("atomic_gen"));
 env.build();
 gen.unregister_scenario_by_name("Atomic");
 env.run();
endtask

Example 6-37 shows how to register a user-defined scenario with all
instances of a specific scenario generator class.

6-40

VMM User Guide

Example 6-37 Registering Scenarios
class a_scenario extends
 ahb_scenario;
 ...
endclass

task my_test::run(vmm_env env);
 env.build();
 begin
 ‘foreach_vmm_xactor(ahb_scenario_gen,
 "/./", "/./") begin
 a_scenario a = new;
 xact.register_scenario("A", a);
 end
 end
 env.run();
endtask

It is also possible to design a verification environment where
scenarios can be automatically registered with all instances of the
relevant scenario generators.

Example 6-38 shows how to implement a type-specific global
scenario registry and automatic scenario registration in an
environment.

Example 6-38 Automatic Scenario Registration
class auto_ahb_scenario extends ahb_scenario;
 static string names[$];
 static ahb_scenario registry[$];
 static function bit auto_register(string name,
 ahb_scenario sc);
 this.names.push_back(name);
 this.registry.push_back(sc);
 endfunction
endclass

class a_scenario extends auto_ahb_scenario;
 ...
 static local a_scenario _sc = new();
 static local bit _dummy = auto_register("A", this._sc);
endclass

6-41

VMM User Guide

class b_scenario extends auto_ahb_scenario;
 ...
 static local b_scenario _sc = new();
 static local bit _dummy = auto_register("B", this._sc);
endclass

class tb_env extends vmm_env;
 ...
 virtual task build();
 ...
 foreach (auto_ahb_scenario::names[i]) begin
 ‘foreach_vmm_xactor(ahb_scenario_gen,
 "/./", "/./")
 xact.register_scenario(
 auto_ahb_scenario::names[i],
 auto_ahb_scenario::registry[i]);
 end
 endtask
 ...
endclass

Scenario Generation Order
The next scenario to generate is defined by randomizing their
respective select_scenario class property. By default,
scenarios are selected in a round-robin fashion. You can modify the
scenario selection by changing the constraints on the select
subclass property.

Example 6-39 shows how to configure the scenario selection
process for all multi-stream scenario generator instances to select
one specific scenario, another specific scenario and finally randomly
make a selection from the remaining scenarios.

Example 6-39 Configuring the Scenario Selection Process (Explicit
Phasing)

class a_then_b_then_random extends
 vmm_ms_scenario_election;
 constraint round_robin {

6-42

VMM User Guide

 if (scenario_id == 0) select == 0;
 if (scenario_id == 1) select == 1;
 if (scenario_id > 1) select > 1;
 }
endclass

task my_test::run(vmm_env env);
 env.build();
 begin
 a_then_b_then_random sel = new;
 ‘foreach_vmm_xactor(vmm_ms_scenario_gen,
 "/./", "/./") begin
 a_scenario a = new;
 b_scenario b = new;
 xact.scenario_set.push_front(b);
 xact.scenario_set.push_front(a);
 xact.select_scenario = sel;
 end
 end
 env.run();
endtask

You might implement a "directed" testcase by running one "top-level"
scenario. You can accomplish this by making sure this top-level
scenario is the first one selected by pushing it at the front of the
scenario_set array and configuring the generator to execute only
one scenario.

Example 6-40 assumes the existence of a top-level multi-stream
scenario generator to execute such a directed testcase.

Example 6-40 Running Only One Top-Level Scenario (Explicit Phasing)
class directed_test extends
 vmm_ms_scenario;
 ...
endclass

task my_test::run(vmm_env env);
 env.build();
 begin
 vmm_xactor top_gen;
 $cast(top_gen,

6-43

VMM User Guide

 vmm_object::find_object_by_name("top_gen"));
 directed_test test = new;
 top_gen.push_front(test);
 top_gen.stop_after_n_scenarios = 1;
 end
 env.run();
endtask

Constraining Transactions
The items class property in single-stream scenario descriptors
implements a two-stage factory for generating random transactions:

• The array is filled with copies of the using class property, if it is
not null. Once filled, the array is repeatedly randomized and then
its result content is copied onto the output channel.

• To modify the constraints on all the transactions in a single-stream
scenario descriptor, you might assign a prototype instance to the
using class property, as shown in Example 6-41.

The alternative and recommended technique is to use VMM class
factory service. For details see “Factory for Scenario Generators”
on page 38.

Note: It is important that you properly overload the copy() method
in the transaction class extension. This will ensure that the items
array is filled with instances of the using class property.

Example 6-41 Modifying Constraints in All Transactions (Explicit Phasing)
class my_ahb_tr extends ahb_tr;
 constraint my_constraints {
 ...
 }
 ‘vmm_data_member_begin(my_ahb_tr)
 ‘vmm_data_member_end(my_ahb_tr)
endclass

task my_test::run(vmm_env env);

6-44

VMM User Guide

 env.build();
 begin
 my_ahb_tr tr = new;
 foreach (env.gen.scenario_set[i]) begin
 env.gen.scenario_set[i].using = tr;
 end
 end
 env.run();
end

To modify the constraints on a specific transaction in a single-stream
scenario descriptor, you should assign the specialized instance to
the required items element as shown in Example 6-42. The
remaining array elements are filled with default instances.

Example 6-42 Modifying Constraints in a Specific Transaction
class my_ahb_tr extends ahb_tr;
 constraint my_constraints {
 ...
 }
 ‘vmm_data_member_begin(my_ahb_tr)
 ‘vmm_data_member_end(my_ahb_tr)
endclass

task my_test::run(vmm_env env);
 env.build();
 begin
 ahb_tr_scenario sc;
 my_ahb_tr tr = new;
 vmm_xactor gen;
 $cast(gen,
 vmm_object::find_object_by_name("ahb_gen"));
 sc = gen.get_scenario("Aa");
 sc.items.fill_scenario();
 sc.items[0] = tr;
 end
 env.run();
endtask

6-45

VMM User Guide

To modify the constraints on the components of a multi-stream
scenario descriptor or a hierarchical single-stream scenario
descriptor, you might assign the prototype property in the scenario
with the specialized, derived instance as shown in next example.

The alternative and recommended technique is to use the VMM
class factory service as shown in “Factory for Scenario Generators”
on page 38.

Example 6-43 Modifying Constraints in Other Scenario Descriptors (Explicit
Phasing)

class my_ahb_tr extends ahb_tr;
 constraint my_constraints {
 ...
 }
 ‘vmm_data_member_begin(my_ahb_tr)
 ‘vmm_data_member_end(my_ahb_tr)
endclass

task my_test::run(vmm_env env);
 env.build();
 begin
 some_scenario sc;
 my_ahb_tr tr = new;
 sc = env.gen.get_scenario("Aa");
 sc.ahb = tr;
 end
 env.run();
endtask

Single-Stream Scenarios

The single-stream scenario generator is a type-specific generator
that you declare using the vmm_scenario_gen() macro as shown
in Example 6-44. This creates a class named
class_name_scenario_gen where class_name is the name of
the user-defined class you supply to the macro.

6-46

VMM User Guide

Alternatively, you might also declare the scenario generator might
using VMM built-in parametrized implementations of the generators
which is described in “Parameterized Atomic and Scenario
Generators” on page 52.

Example 6-44 Declaring a Single-Stream Scenario Generator
class eth_frame extends vmm_data;
 ...
endclass
‘vmm_channel(eth_frame)
‘vmm_scenario_gen(eth_frame, "Ethernet Frames")

You connect the single-stream scenario generator to a single output
channel at construction time, or by assigning its
vmm_scenario_gen::out_chan class property. All generated
scenarios are injected in this output channel.

Example 6-45 Instantiating a Single-Stream Scenario Generator (Explicit
Phasing Environment)

class tb_env extends vmm_env;
 eth_frame_scenario_gen gen;
 eth_frame_channel gen_to_bfm;
 ...
 virtual function void build();
 super.build();
 this.gen_to_bfm = new();
 this.gen = new("gen", 0, this.gen_to_bfm);
 endfunction
 ...
endclass

The macro also defines a single-stream scenario descriptor class
named class_name_scenario. This class contains a type-
specific array of transaction descriptors that you randomize
according to the constraints in the scenario descriptor.

6-47

VMM User Guide

The macro predefines an atomic scenario in a class named
class_name_atomic_scenario. You register an instance of this
class by default with any instance of the corresponding single-
stream scenario generator. You will need to unregister this default
scenario if you do not desire it.

Random Scenarios

By default, single-stream scenarios are randomly generated. The
combination of three things makes this happen:

• A single-stream scenario descriptor contains a rand array of user-
defined transaction descriptors in the
class_name_scenario::items[] class property.

• After the scenario descriptor is selected, the generator
automatically randomizes it.

• The default behavior of the
class_name_scenario::apply() method copies the
content of the class_name_scenario::items[] class
property onto the generator’s output channel.

As shown in Example 6-46, you define a random scenario by
extending the class_name_scenario class and providing
constraints over the elements of the
class_name_scenario::items[] class property.

You must also specify the maximum length of the scenario by calling
the vmm_scenario::define_scenario() method. This process
is simplified by the use of the shorthand macros for scenario
generators.

Example 6-46 Declaring a Random Single-Stream Scenario
class bad_eth_frames extends eth_frame_scenario;

6-48

VMM User Guide

 ‘vmm_typename(bad_eth_frames)
 function new();
 this.define_scenario("Bad Frames", 10);
 endfunction

 constraint bad_eth_frames_valid {
 foreach (this.items) {
 this.items[i].fcs != 0;
 }
 }
 ‘vmm_class_factory(bad_eth_frames)
endclass

Procedural Scenarios

Procedural or directed scenarios are specified by overloading the
class_name_scenario::apply()method. Any user-defined
code can use the procedural scenario that puts transaction
descriptors into the supplied output channel. The total number of
procedurally generated transactions is then returned via the
n_insts argument.

Note: It is important that you do not call super.apply(), else any
transaction descriptor found in the
class_name_scenario::items[] class property will also be
injected into the output channel.

You can create random transactions by using rand class properties
(such as, the predefined class_name_scenario::items[]
class property), or by explicitly calling randomize() on local
variables or non-random class properties.

Example 6-47 Declaring a Procedural Single-Stream Scenario
class collision extends eth_frame_scenario;
 ‘vmm_typename(collision)
 virtual mii_if sigs;

 function new();

6-49

VMM User Guide

 bit is_set;
 mii_if_wrapper if_wrapper;
 this.define_scenario("Collision", 1);
 $cast(if_wrapper,
 vmm_opts::get_object_obj(is_set, this,
"mii_if_wrapper"));
 this.sigs = if_wrapper.sigs;
 endfunction

 virtual task apply(eth_frame_channel channel,
 ref int unsigned n_insts);
 @ (posedge this.sigs.crs);
 channel.put(this.items[0]);
 n_insts++;
 endtask
‘vmm_class_factory(collision)
endclass

If stimulus from another scenario must not interrupt the sequence of
transactions the scenario generates (For details, see “Multiple-
Stream Scenarios” on page 29), it might take an output channel for
exclusive use until it is explicitly released.

If another scenario does not take the channel, the scenario
generator reserves it immediately for the exclusive use of this
scenario descriptor. If another scenario does take the channel, the
generator suspends the execution of this scenario descriptor until
the channel becomes available.

Example 6-48 Ensuring a Transaction Order in a Single-Stream Scenario
class dot_dot_dot extends eth_frame_scenario;
 ‘vmm_typename(dot_dot_dot)
 function new();
 this.define_scenario("Exclusive", 0);
 endfunction

 virtual task apply(eth_frame_channel channel,
 ref int unsigned n_insts);
 eth_frame fr;

 fr = new;

6-50

VMM User Guide

 fr.randomize() with {...};
 channel.grab(this);
 repeat (3) begin
 channel.put(fr.copy(), .grabber(this));
 end
 channel.ungrab(this);
 n_insts += 3;
 endtask
‘vmm_class_factory(dot_dot_dot)
endclass

Hierarchical Scenarios

You can describe scenarios hierarchically by composing them of
lower-level scenarios. A hierarchical scenario is a procedural
scenario. You simply instantiate the lower-level scenario descriptors
in the higher-level scenario descriptor.

The higher-level scenario’s apply() method calls the lower-level
scenario’s respective apply() method in the appropriate
sequence.

Example 6-49 Declaring a Hierarchical Single-Stream Scenario
class bad_frames_then_collision extends eth_frame_scenario;
 ‘vmm_typename(bad_frames)
 rand bad_eth_frames bad;
 rand collision col;

 function new();
 this.define_scenario("Bad+Collision", 0);
 this.bad =
 bad_eth_frames::create_instance(this,"bad");
 this.col = collision::create_instance(this,"col");
 endfunction

 virtual task apply(eth_frame_channel channel,
 ref int unsigned n_insts);
 this.bad.apply(channel, n_insts);
 this.col.apply(channel, n_insts);
 endtask

6-51

VMM User Guide

‘vmm_class_factory(bad_frames)
endclass

You register hierarchical scenarios like any other scenarios. If the
sub-scenarios are relevant top-level scenarios, you need to register
them for them to become available for selection.

Example 6-50 Registering Hierarchical and Flat Scenarios
‘foreach_vmm_xactor(eth_frame_scenario_gen,
 "/./", "/./") begin
 mii_phy phy;
 if ($cast(phy, xact.out_chan.get_consumer())) begin
 bad_frames_then_collision btc =
 bad_frames_then_collision::create_instance(
 this,"bad_col");
 bad_eth_frames bad =
 bad_eth_frames::create_instance(this,"bad");

 xact.register_scenario("Bad then Col", btc);
 xact.register_scenario("Bad Burst", bad);
 end
end

To prevent deadlock situations, a higher-level-scenario-taken
channel is available for its lower-level scenarios. To make the
exclusive use of an output channel from a higher-level scenario
available to a lower-level scenario it is necessary to specify that the
higher-level scenario instance is a parent of the lower-level scenario.

Example 6-51 Preventing Deadlocks in Taking the Output Channel
class bad_frames_then_collision extends eth_frame_scenario;
 ‘vmm_typename(bad_frames_then_collision)
 rand dot_dot_dot ddd;
 rand bad_eth_frames bad;
 rand collision col;

 function new();
 this.define_scenario("Bad+Collision", 0);
 this.ddd = dot_dot_dot::create_instance(...);
 this.bad = bad_eth_frames::create_instance(...);

6-52

VMM User Guide

 this.col = collision::create_instance(...);

 this.ddd.set_parent_scenario(this);
 this.bad.set_parent_scenario(this);
 this.col.set_parent_scenario(this);
 endfunction

 virtual task apply(eth_frame_channel channel,
 ref int unsigned n_insts);
 channel.grab(this);
 this.bad.apply(channel, n_insts);
 this.col.apply(channel, n_insts);
 channel.ungrab(this);
 endtask
‘vmm_class_factory(bad_frames_then_collision)
endclass

Parameterized Atomic and Scenario Generators

In addition to the macro-based definition of built-in VMM atomic and
scenario generators, parameterized implementations are available.
These also contain built-in class factories. For details, see “Factory
for Atomic Generators” on page 36.

The main classes created for this purpose are,

• class vmm_atomic_gen #(type T)

• class vmm_scenario_gen #(type T)

• class vmm_ss_scenario #(type T)

These are generic classes with parameterized transaction types. you
define `vmm_atomic_gen/`vmm_scenario_gen macros in VMM
library to use these parameterized atomic/scenario generators and
scenarios using typedef as shown in the following examples:

• typedef vmm_atomic_gen#(T) T_atomic_gen;

6-53

VMM User Guide

• typedef vmm_scenario_gen#(T) T_scenario_gen;

• typedef vmm_ss_scenario#(T) T_scenario;

This ensures that the existing macro-based atomic/scenario usage
is fully supported without making any changes in user code.

There are two methods to declare vmm_channel,
vmm_atomic_gen, vmm_scenario_gen objects:

• By using macros

• By using parameterized classes

The first method is to instantiate generators and channels, which you
define using macros, as shown in Example 6-52. You can use
callbacks and scenarios in the same way.

Example 6-52 Using Macros for Declaring Atomic and Scenario Generators
class ahb_trans extends vmm_data;
 rand bit [31:0] addr;
 rand bit [31:0] data;
endclass

`vmm_channel(ahb_trans)
`vmm_atomic_gen(ahb_trans, “AHB Atomic Gen”)
`vmm_scenario_gen(ahb_trans, “AHB Scenario Gen”)

ahb_trans_channel chan0 = new(“ahb_trans_chan”, “chan0”);
ahb_trans_atomic_gen gen0 = new(“AhbGen0”, 0, chan0);
ahb_trans_scenario_gen gen1 = new(“AhbGen1”, 0, chan0);

class user_callbacks0 extends
 ahb_trans_atomic_gen_callbacks;
endclass

class user_callbacks1 extends
 ahb_trans_scenario_gen_callbacks;
endclass

6-54

VMM User Guide

class user_scenario extends ahb_trans_scenario;
endclass

The second method is to create a user-defined type using typedef or
directly instantiate the parameterized generator and channels, as
shown in Example 6-53. You must use the parameterized
vmm_ss_scenario class in case of a single stream scenario, as the
base class for user-defined single stream scenarios.

Example 6-53 Parameterized Atomic and Scenario Generators
vmm_channel_typed#(ahb_trans) chan0 = new(
 “ahb_trans_chan”, “chan0”);
vmm_atomic_gen #(ahb_trans) gen0 = new(“AhbGen0”, 0, chan0);
vmm_scenario_gen #(ahb_trans) gen1 = new(
 “AhbGen1”, 0, chan0);

class user_callbacks0 extends
 vmm_atomic_gen_callbacks#(ahb_trans);
endclass

class user_callbacks1 extends
 vmm_scenario_gen_callbacks#(ahb_trans);
endclass

class user_scenario extends
 vmm_ss_scenario#(ahb_trans);
endclass

Implementing Testcases

The vmm_test base class must be used to implement test cases.
For each testcase, you should create a new class that extends
vmm_test. You must implement a testcase using the phasing
mechanism of the environment for which it is written.

6-55

VMM User Guide

You can write testcases using an implicitly-phased or explicitly-
phased top-level environment. For details, see “Understanding
Implicit and Explicit Phasing” on page 31.

Creating an Explicitly Phased Test

When writing a test for an explicitly phased environment (that is,
based on vmm_env), the test procedure is implemented in the
vmm_test::run() method. Shorthand macros are available to
simply the creation of such tests, as shown in Example 6-54.

Example 6-54 Declaring Test Using vmm_test Macros
`vmm_test_begin(test, my_env, "Test")
 // Body of run() task here...
 this.env.start();
 this.env.run();
`vmm_test_end(test)

Creating an Implicitly Phased Test

While writing a test for an implicitly phased environment (that you
base on vmm_group), you implement the test procedure by
extending the appropriate phase methods.

Any test-specific vmm_group component that is a child of the test
object and part of the top-test timeline is automatically phased.

A simple default test is implemented as shown in Example 6-55.

Example 6-55 Declaring Test Using vmm_test Extension
class test1 extends vmm_test;
 `vmm_typename(test1)

 function new();

6-56

VMM User Guide

 super.new(“test1”);
 endfunction

endclass: test1

A typical test changes or adds a few constraints to existing
transactions, introduces modifications etc.

Example 6-56 shows how to add constraints to a generator by
inserting it back using the object factory.

Example 6-56 Implementing Test Using vmm_test
`include “vip_trans.sv”
class test2_trans extends vip_trans;
 `vmm_typename(test2_trans)
 constraint { … }
 ‘vmm_data_member_begin(test2_trans)
 ‘vmm_data_member_end(test2_trans)
endclass: test2_trans

class test2 extends vmm_test;
 function new();
 super.new(“test2”);
 endfunction

 virtual function void configure_test_ph();
 // Replace factory transaction with extended type
 vip_trans::override_with_new(“@%*”,
 test2_trans::this_type(), log);
 endfunction
endclass: test2

Running Tests

An explicitly phased verification environment can simulate only one
test per run. The test is run by calling
vmm_test_registry::run() in a program thread. If a single test

6-57

VMM User Guide

class exists in the simulation, that is the test that is run by default. If
multiple test classes exist, you must specify the name of the test to
run using the +vmm_test option.

Example 6-57 shows how to register multiple tests and run them, this
is the recommended way for explicitly phased environments.

Example 6-57 Multiple Tests Registration
`vmm_test_begin(test1, my_env, "Test1")
 ...
`vmm_test_end(test1)

`vmm_test_begin(test2, my_env, "Test2")
 ...
`vmm_test_end(test2)

program top;

initial
begin
 my_env env = new;
 vmm_test_registry::run(env);
end
endprogram

An implicitly phased verification environment can simulate multiple
tests per run, one after another. The tests are run by calling
vmm_simulation::run_tests() in a program thread.

If a single test class exists in the simulation, that is the test which is
run by default. You must specify the name of the test(s) - if multiple
test classes exist - using the +vmm_test option and using a plus-
separated list of test names.

Example 6-58 shows how to construct multiple tests and run them,
this is the recommended way for implicitly phased environments.

6-58

VMM User Guide

Example 6-58 Multiple Tests Registration
program top;
 initial
 begin
 my_env env = new("env");
 test1 t1 = new("test1");
 test2 t2 = new("test2");
 vmm_simulation::run_tests();
 end
endprogram

It is important to note that when serializing multiple tests, they might
not behave the same way when they are running as standalone. This
unless special care is taken to ensure that they start with a clean
slate.

VMM phasing provides tests the capability to restore the initial state
at the end of the test using the "configure_test" phase.

7-1

VMM User Guide

7
Common Infrastructure and Services 1

This chapter contains the following sections:

• Common Object

• Message Service

• Class Factory Service

• Options & Configurations Service

• Simple Match Patterns

7-2

VMM User Guide

Common Object

Overview

The vmm_object is a virtual class that is used as the common base
class for all VMM-related classes. It provides parent/child
relationships for all VMM class instances. Additionally, it provides
local, relative and absolute hierarchical naming. Combined with
regular expressions, it makes it easy to locate all specific objects that
match a given pattern in any hierarchy. This base class comes with
a rich set of methods for assigning, querying, printing and traversing
object hierarchies.

This section contains the following topics:

- Setting Object Relationships

- Finding Objects

- Printing and Displaying Objects

- Object Traversing

- Namespaces

Setting Object Relationships

All classes that are based on the vmm_object base class have
constructors that include a reference to the parent object and an
object name as optional arguments, which are then passed to the
vmm_object class constructor.

7-3

VMM User Guide

You can define the vmm_object members parent and name
explicitly using the vmm_object::set_parent_object() and
vmm_object::set_object_name() methods respectively.

When a parent object is specified, the new object is added to the list
of children objects in the parent object by default. If no parent object
is specified, the new object is a new root object. Thus, the parent-
child relationship is created when any class extending from
vmm_object is created.

Example 7-1 shows how to build up the parent-child association
during construction.

Example 7-1 Building Object and Associating Parent-Child Relationship
class cfg extends vmm_object;
 function new(vmm_object parent = null, string name = "");
 super.new(parent,name);
 endfunction
endclass

class vip extends vmm_xactor;
 cfg c1;
 function new(string name = "", string inst = "",
 vmm_object parent = null);
 super.new(name,inst, parent);
 c1 = new(this, "CFG");
 endfunction
endclass

class env extends vmm_group;
 vip v1;
 function new(string name = "", string inst = "",
 vmm_object parent = null);
 super.new(name,inst, parent);
 v1 = new("VIP", "v1", this);
 endfunction
endclass

7-4

VMM User Guide

class root_class extends vmm_object;
 function new(vmm_object parent = null, string name = "");
 super.new(parent,name);
 endfunction
endclass

program test;
 initial begin
 root_class orphan;
 env e1 = new ("env","e1");
 orphan = new(,"orphan"); //No parent
 end
endprogram

As described in Example 7-1, instances c1, v1 and the parent e1 are
passed through the constructor and thus the parent-child association
between them is established. It is possible not to associate a parent
to an object, in this case the object belongs to the root object.

Example 7-2 shows how to change relationships and the new
objects hierarchy as in Example 7-3.

Example 7-2 Object Hierarchy Tree
[e1]
|--[v1]
|-----[c1]
[orphan]

Note: The parent-child association is typically done when
constructing object. It is possible to change this relationship by
using the vmm_object::set_parent_object() method.

Example 7-3 Changing Parent-Child Relationship
 c1.set_parent_object(orphan);

[e1]
|--[v1]
[orphan]

7-5

VMM User Guide

|--[c1]

It is a good practice to name an object after the variable that contains
the reference to the newly created object. This way, it makes it easier
to correlate an object name with its location in the actual class
hierarchy.

If you decide not to add vmm_object to the list of children objects,
you can do it by setting the flag disable_hier_insert to 1 in the
argument of the constructor.

Though a vmm_object instance can be referred through different
SystemVerilog class-handle variables of different names, it only has
one name an one parent. If an object location in the class hierarchy
changes throughout the simulation, its name and parent remain the
same.

Although it is possible to update the parent and name of an object
to reflect its new location, it is recommended that you do not modify
them. The main reason is that some name-based registries may
depend on the name of an object to locate it and the identity of the
parent object is useful for identifying the origin of an object.

There are methods to query the parent and the children objects of an
object. You can use these methods dynamically for structural
introspection.

In Example 7-4, get_parent_object() invoked from instance
e1.v1.c1 returns parent object of c1, which turns out to be v1.

Example 7-4 Getting Handle to Parent Object
vmm_object parent;
env e1 = new ("env","e1");
parent = e1.v1.c1.get_parent_object();

7-6

VMM User Guide

// parent of c1 is now v1

Finding Objects

Given that different components directly or indirectly extend the
vmm_object base class, you can use pre-defined methods to query
hierarchical names, find objects and children by name, find the root
of an object and so on. While invoking these functions, you can use
the simple match patterns or complete regular expressions to define
the search criteria.

The get_object_hiername() and get_object_name()
methods return the full hierarchical name and local name of the
object respectively. A hierarchical name is composed of series of
colon-separated object names, usually starting from a root object
through parent-child relationships.

The methods find_child_by_name() and
find_object_by_name() find the named object as a hierarchical
name relative to this object or absolute hierarchical name
respectively in the specified namespace.

The get_nth_root() and the get_nth_child() methods
return the nth root and the nth child respectively of the specified
object.

Example 7-5 shows how to use the various methods to find and
query objects.

Example 7-5 Finding and Querying Objects
my_class inst1 = new("inst1");
initial begin
 vmm_object obj, root;

7-7

VMM User Guide

 obj = e1.find_child_by_name("c1");
 // obj is now c1

 obj = e1.get_nth_child(0);
 // obj name is now "v1"

 root = E::get_nth_root(1);
 // root name is now "orphan"

Printing and Displaying Objects

At any point in time, it is possible to view the complete vmm_object
hierarchy of the testbench or the sub-hierarchy of any instance of a
vmm_object using the print_hierarchy() method.

This method displays the vmm_object hierarchy as currently
defined by the parent-child relationships and object names. It only
prints the hierarchy correctly if the right parent-child relationship has
been created before the invocation of the print_hierarchy()
method.

Example 7-6 Printing Hierarchy of Objects
vmm_object::print_hierarchy(e1);

The above code produces the following output:

[e1]
|--[v1]
| |--[c1]

7-8

VMM User Guide

Object Traversing

The vmm_object_iter class traverses the hierarchy rooted at the
specified object, looking for objects whose relative hierarchical name
matches the specified name. Beginning at a specific object, it can
traverse through the hierarchy via the
vmm_object_iter::first() and
vmm_object_iter::last() methods.

Continuing from the previous example, Example 7-7 shows how to
traverse an object hierarchy.

Example 7-7 Traversing Object Hierarchy
Object_extension my_obj; //object_extension is a class
inherited from vmm_object
 vmm__object_iter my_iter = new(e1, pattern);
 ̀ vmm_note(log, $psprintf("Match pattern: %s with root e1",
 pattern));
 my_obj = my_iter.first();
 // my_obj is now "v1"

 my_obj = my_iter.next();
 // my_obj is now NULL

`foreach_vmm_object is a powerful macro to iterate over all
objects of a specified type and name under a specified root.

Example 7-8 shows how to traverse an object’s hierarchy using
`foreach_vmm_object macro.

Example 7-8 Traversing Object Hierarchy Using Macro
`foreach_vmm_object(vmm_object, "@%*", e1) begin
 `vmm_note(log, {"Got:", obj.get_object_name()});
end

7-9

VMM User Guide

Namespaces

VMM introduces the concept of namespace for object. The main
purpose of namespace is to attach objects to a given space. This is
particularly useful when a given lower-stream transactor must
execute transactions from various upper-stream transactors like
multi-stream scenario generator, RAL and other transactors.

Because each upper-stream transactor can tag its transaction to be
executed with its namespace, it is easier to determine where this
transaction is coming from by simply looking into its namespace.

For instance, all transactions that a RAL application initiates belong
to its space event though signal-level transactors execute them.
More explicitly, if you initiate an abstract call to register like
my_ral.write(IRQ_EN, 32'h01), the associated bus
transaction like AXI.WRITE(32'h1000, 32'h01) becomes
tagged with the RAL namespace and you can easily associate its
source.

You can specify a namespace optionally at the beginning of a pattern
using the namespace scope operator ::. A namespace might contain
any character except a colon (:). If you do not specify a namespace,
you use the object namespace. An error is issued if an unknown
namespace is specified.

For example, looking for a leaf object named “X” in the “RAL”
namespace would be specified as,

RAL::%:X

Namespace names starting with “VMM” are reserved.

7-10

VMM User Guide

Message Service

This section contains the following topics:

- Overview

- Message Source

- Message Type

- Message Severity

- Message Filters

- Simulation Handling

- Issuing Messages

- Shorthand Macros

- Filtering Messages

- Redirecting Message to File

- Promotion and Demotion

- Message Catcher

- Message Callbacks

- Stop Simulation Depending Upon Error Number

7-11

VMM User Guide

Overview

Transactors, scoreboards, assertions, environment and testcases
use messages to report any definite or potential errors detected.
They might also issue messages to indicate the progress of the
simulation or provide additional processing information to help
diagnose problems.

To ensure a consistent look and feel to the messages issued from
different sources, you should use a common message service. It
only concerns a message service with the formatting and issuance
of messages, not their cause. For example, the time reported in a
message is the time at which the message was issued, not the time
a failed assertion started.

VMM message service uses the following concepts to describe and
control messages:

• Source: component where the message is issued.

• Type: used to determine the message verbosity. For instance a
message can be a note, a trace or a debug trace. Depending upon
this verbosity, this message can be filtered out.

• Severity: used to determine the message severity. For instance
a message can be a warning, an error or a fatal.

• Handling: used to determine the action associated to a given
message. For instance stop the simulation after a fatal, count the
number of errors, etc.

• Filters: used to promote or demote a message. For instance an
error can be demoted to a warning or promoted to a fatal.

7-12

VMM User Guide

Message Source

Each instance of the message service interface object represents a
message source. A message source can be any component of a
testbench: a command-layer transactor, a sub-layer of the self-
checking structure, a testcase, a generator, a verification IP block or
a complete verification environment. Messages from each source
can be controlled independently of the messages from other
sources.

Message Type

Individual messages are categorized into different types by the
author of the code used to issue the message. Assigning messages
to their proper type lets a testcase or simulation produce and save
only (or all) messages that are relevant to the concerns addressed
by a simulation. Table 7-1 summarizes the available message types
and their intended purposes:

Table 7-1 Message Types

Message Type Purpose

vmm_log::FAILURE_TYP An error has been detected. The severity of the error is
categorized by the message severity.

vmm_log::NOTE_TYP Normal message used to indicate the simulation progress.

vmm_log::DEBUG_TYP Message used to provide additional information designed to
help diagnose the cause of a problem. Debug messages of
increasing detail are assigned lower message severities.

vmm_log::TIMING_TYP A timing error has been detected (for example, set-up or
hold violation).

vmm_log::XHANDLING_TYP An unknown or high-impedance state has been detected or
driven on a physical signal.

7-13

VMM User Guide

Message Severity

Individual messages are categorized into different severities by the
author of the code used to issue the message. A message’s severity
indicates its importance and seriousness and must be chosen with
care. For fail-safe reasons, certain message severities cannot be
demoted to arbitrary severities. Table 7-2 summarizes the available
message severities and their meaning:

Table 7-2 Message Severities

vmm_log::REPORT_TYP
vmm_log::PROTOCOL_TYP
vmm_log::TRANSACTION_TYP
vmm_log::COMMAND_TYP
vmm_log::CYCLE_TYP

Additional message types that can be used by transactors.

vmm_log::INTERNAL_TYP Messages from the VMM base classes should not be used
when implementing user-defined extensions.

Message Severity Indication

vmm_log::FATAL_SEV The correctness or integrity of the simulation has been
compromised. By default, simulation is aborted after a
fatal message is issued. Fatal messages can only be
demoted into error messages.

vmm_log::ERROR_SEV The correctness or integrity of the simulation has been
compromised, but simulation may be able to proceed with
useful result. By default, error messages from all sources
are counted and simulation aborts after a certain number
are observed. Error messages can only be demoted into
warning messages.

vmm_log::WARNING_SEV The correctness or integrity of the simulation has been
potentially compromised, and simulation can likely
proceed and still produce useful result.

vmm_log::NORMAL_SEV This message is produced through the normal course of the
simulation. It does not indicate that a problem has been
identified.

vmm_log::TRACE_SEV This message identifies high-level internal information
that is not normally issued.

Message Type Purpose

7-14

VMM User Guide

Message Filters

Filters can prevent or allow a message from being issued. Filters are
associated and disassociated with message sources. They are
applied in order of association and control messages based on their
identifier, type, severity or content. Message filters can promote or
demote messages severities, modify message types and their
simulation handling. After a message has been subjected to all the
filters associated with its source, its effective type and severity may
be different from the actual type and severity originally specified in
the code used to issue a message.

Simulation Handling

Different messages require different action by the simulator once the
message has been issued. Table 7-3 summarizes the available
message handling and their default trigger:

vmm_log::DEBUG_SEV This message identifies medium-level internal information
that is not normally issued.

vmm_log::VERBOSE_SEV This message identifies low-level internal information that
is not normally issued.

Message Severity Indication

7-15

VMM User Guide

Table 7-3 Simulation Handlings

Simulation Handling Action

vmm_log::ABORT_SIM Terminates the simulation immediately and returns to the
command prompt, returning an error status. This is the
default handling after issuing a message with a
vmm_log::FATAL_SEV severity.

vmm_log::COUNT_ERROR Counts the message as an error. If the maximum number of
such messages from all sources has exhausted a user-
specified threshold, the simulation is aborted. This is the
default handling after issuing a message with an
vmm_log::ERROR_SEV severity.

vmm_log::STOP_PROMPT Stops the simulation immediately and return to the
simulation runtime-control command prompt.

vmm_log::DEBUGGER Stops the simulation immediately and start the graphical
debugging environment.

vmm_log::DUMP_STACK Dumps the callstack or any other context status
information and continue the simulation.

vmm_log::CONTINUE Continues the simulation normally.

Shorthand Macros

A simple way of issuing messages can be achieved with macros.
These macros provide a shorthand notation for issuing single-line
failure messages.

Available shorthand macros are:

- ‘vmm_normal(log, str)

- ‘vmm_trace(log, str)

- ‘vmm_debug(log, str)

- ‘vmm_warning(log, str)

- ‘vmm_error(log, str)

- ‘vmm_fatal(log, str)

7-16

VMM User Guide

Example 7-9 Using a Macro to Issue a Message
‘vmm_error(this.log, "Unable to write to TxBD.TxPNT");

VCS provides the $psprintf() function that returns the formatted
string instead of writing it into a string, like $sformat() does. You
can use this function with the message macros, to display messages
with runtime formatted content. The macros are designed to invoke
the $psprintf() function only if you will issue the message as per
this recommendation.

Example 7-10 Using a Macro and the $psprintf() System Function
`vmm_debug(this.log,
 $psprintf("Transmitting frame...%s",
 fr.psdisplay(" ")));

Issuing Messages

This section describes how to issue messages from within
transactors, data and transaction models, the self-checking
structure, the verification environment itself or testcases.

Issuing messages is simply done by instantiating a vmm_log object
and using its methods log::start_msg(), log::text(),
log::end_msg().

Do not use $display() to manually produce output messages. If
you must invoke a predefined method that produces output text
(such as, the vmm_data::psdisplay() method), do so within the
context of a message.

Example 7-11 shows how to issue a message with DEBUG severity.
It is similar to Example 7-10.

7-17

VMM User Guide

Example 7-11 Issuing a Message with Externally-Displayed Text
vmm_log log = new(...);
...
if (log.start_msg(vmm_log::DEBUG_TYP,
 vmm_log::TRACE_SEV)) begin
 log.text("Transmitting frame...");
 log.text(fr.psdisplay(" "));
 log.end_msg();
end

Filtering Messages

It is possible to filter out messages based on their specific type and
severity. The default severity of vmm_log can be set globally using
a run time switch

+vmm_log_default=<sev>

where "<sev>" is the desired minimum severity and is a one of the
following: "error", "warning," "normal," "trace,"
"debug" or "verbose".

Note: This switch affects all the vmm_log instances present in the
verification environment.

There are two methods for filtering out specific vmm_log instances:

• Disable specified type of vmm_log messages from specified
vmm_log instance using the vmm_log::disable_types()
method.

• Set the minimum verbosity to the specified vmm_log instance, so
that the severities above the specified levels are disabled. This is
achieved by using the set_verbosity() method

For example, if the verbosity is set to NORMAL, the remaining
TRACE, DEBUG, VERBOSE & DEFAULT severities are disabled.

7-18

VMM User Guide

Example 7-12 shows a simple use model:

Example 7-12 Filtering Out Message by Type or Verbosity
program automatic P;
class A;
 vmm_log log = new("SEQ_GT_COLLECTOR", "seq_cltr");
 task call_msg();
 begin
 `vmm_warning(log, "Warning: Hello collected");
 `vmm_error(log, "Error: Hello collected");
 end
 endtask
endclass

vmm_log log=new("Top", "program");
A a;
initial begin
 a = new;

 // Disable message type of all "SEQ_GT_COLLECTOR"
 // instances to a FAILURE
 log.disable_types(vmm_log::FAILURE_TYP,
 "SEQ_GT_COLLECTOR", "seq_cltr",);

 // Change message verbosity of all "SEQ_GT_COLLECTOR"
 // instances to an ERROR
 log.set_verbosity(vmm_log::ERROR_SEV,
 "SEQ_GT_COLLECTOR", "seq_cltr",);

 a.call_msg();
end
endprogram

7-19

VMM User Guide

Note: You can globally force the minimum severity level with
+vmm_force_verbosity=<sev> runtime command-line
option.

Redirecting Message to File

You can issue messages to a separate file instead of sending them
to a simulation log file. This way it is easier to trace/debug vmm_log
messages. You can stop and start this logging at any point of
simulation. There are two vmm_log base class methods called
log_start() and log_stop() used to meet such requirements.

As a first step, you must disable this standard output. Use
log_stop() method:

log.log_stop(vmm_log::STDOUT);

Then, the file handle can be passed to log_start() method:

log.log_start(file_handle);

Example 7-13 Redirecting Message to File
program automatic test ;
 vmm_log log = new("program","Test");

 initial begin
 int log_descr = $fopen("my_vmm.log");
 //Redirect messages to file my_vmm.log
 log.log_stop(vmm_log::STDOUT, "program","Test");
 if (log_descr == 0)
 `vmm_error(log,"Failed to $fopen ");
 else
 log.log_start(log_descr, "program","Test");

 `vmm_error(log, "message redirected to a file") ;

 //Redirect messages to STDOUT

7-20

VMM User Guide

 log.log_stop(log_descr, "program","Test");
 `vmm_error(log, "message in STDOUT") ;
 end
endprogram

Promotion and Demotion

You can promote or demote messages. This means that you can
promote a warning to an error or demote it to a note. This feature is
useful for getting rid of expected failures like error injection or for
changing the severity level of a given transactor.

A typical situation is to stop simulation on specific severities (such
as, ERROR_SEV, which is the severity used by ̀ vmm_error macro).
This can be of interest for debugging a given error.

To configure all vmm_log objects to stop on error, use the
vmm_log::modify() method:

log.modify("/./", "/./", 0,
 vmm_log::ALL_TYPS ,
 vmm_log::FATAL_SEV + vmm_log::ERROR_SEV,
 "/./",
 vmm_log::UNCHANGED,
 vmm_log::UNCHANGED,
 vmm_log::DEBUGGER);

Note: The last argument specifies the log to call the debugger.

For details, see vmm_log::modify() in Annex A.

Message Catcher

In some cases, you might want your environment to execute specific
code whenever a given message is issued by any of its components.

7-21

VMM User Guide

VMM provides an easy and flexible mechanism to do that using the
vmm_log_catcher class. This class is based on regexp to specify
matching vmm_log messages. When a message that matches a
specified regexp is issued during simulation, the code that you
specify gets executed.

vmm_log_catcher class comes with the following methods:

vmm_log_catcher::caught()
vmm_log_catcher::throw()
vmm_log_catcher::issue()

vmm_log_catcher::caught() method can be used to modify
the caught message, change its type and severity. You can choose
to ignore this message in which case it will not be displayed. The
message can be displayed as is after executing your specified code.
The updated message can be displayed by calling
vmm_log_catcher::issue in the caught method.

The caught message, modified or unmodified, can be passed to
other catchers that have been registered using the
vmm_log_catcher::throw function. The messages to be caught
are registered with the vmm_log class using the vmm_log::catch
method.

To catch messages, first you need to extend the vmm_log_catcher
class and implement its caught(), throw() and issue()
method.

Example 7-14 Extending and Customizing VMM Log Catcher
class error_catcher extends vmm_log_catcher;
 virtual function void caught(vmm_log_msg msg);
 msg.text[0] = {" Acceptable Error" , msg.text[0]};
 msg.effective_severity = vmm_log::WARNING_SEV;
 issue(msg);
 endfunction

7-22

VMM User Guide

endclass

Next step is to instantiate your custom log catcher in your
environment.

Example 7-15 Registering Custom VMM Log Catcher for Specific Instance
initial begin
 env = new();
 error_catcher catcher = new();
 env.build();
 catcher_id = env.sb.log.catch(catcher,,,1,,
 vmm_log::ERROR_SEV,
 "/Mismatch/");
 env.run();
end

In the previous example, the error_catcher class extends the
vmm_log_catcher class and implements the caught method. The
caught method prepends "Acceptable Error" to the original message
and changes the severity to WARNING_SEV. In the initial block of the
program block, an object of error_catcher is created and a
handle is passed to catch method to register the catcher.

Any vmm_log message from scoreboard (sb), having ERROR_SEV
as severity and including the string "Mismatch", will be caught and
changed to WARNING_SEV with "Acceptable Error" prepended to it.

If you need the message to catch from all vmm_log instances, you
can call catch with more arguments so that the pattern matching
applies to all instances.

Example 7-16 Registering Custom VMM Log Catcher for All Instances
initial begin
 env = new();
 error_catcher catcher = new();
 env.build();
 catcher_id = env.sb.log.catch(catcher,/./,/./,1,,
 vmm_log::ERROR_SEV,

7-23

VMM User Guide

 "/Mismatch/");

 env.run();
end

To unregister a catcher, you can use,
vmm_log::uncatch(catcher_id) or
vmm_log::uncatch_all() methods. After a log catcher is
unregistered using uncatch or uncatch_all, subsequent
messages will not be caught and the user-defined extensions will no
longer apply.

Message Callbacks

The Message Service Class provides an efficient way of controlling
the simulation and debugging your environment when certain
messages are issued.

vmm_log provides pre-defined callbacks that are defined in
vmm_log_callbacks object. Callbacks are associated with the
message service itself, not a particular message service instance.

The available virtual methods are:

vmm_log_callbacks::pre_abort()
vmm_log_callbacks::pre_stop()
vmm_log_callbacks::pre_debug()

The vmm_log_callbacks::pre_abort() callback method is invoked
by message service before simulation is aborted because of,

- ABORT simulation handling of particular vmm_log instance

- Exceed maximum number of COUNT_ERROR messages and on
the basis of that you want to do some debug action /(print some
logistics report).

7-24

VMM User Guide

Example 7-17 shows how to extend vmm_log_callbacks so that
a specific action is taken when the `vmm_fatal is fired off.

Example 7-17 Using vmm_log_callbacks::pre_abort Callback
`include "vmm.sv"
program automatic test_log;

class cb extends vmm_log_callbacks;
 virtual function void pre_abort(vmm_log log);
 `vmm_note(log, "pre_abort cb has been invoked");
 endfunction
endclass

initial begin
 vmm_log log = new("", "");
 cb cb0 = new;
 log.append_callback(cb0);

 ‘vmm_fatal(log, "Aborting...");
end // initial begin
endprogram

Message service invokes vmm_log_callbacks::pre_stop()
callback method before simulation is stopped due to STOP simulation
handling of particular vmm_log instance.

Message service invokes vmm_log_callbacks::pre_debug()
callback method before simulation is stopped due to DEBUGGER
simulation handling of particular vmm_log instance.

Stop Simulation Depending Upon Error Number

The Message Service Class provides an efficient way of stopping the
simulation after a defined number of errors.

7-25

VMM User Guide

This is made possible with the vmm_log.stop_after_n_errors()
method that allows to change the error threshold (10 by default).

Example 7-18 Changing vmm_log Error Threshold
program automatic test;
 vmm_log log = new("Test", "Errors");
 initial begin
 log.stop_after_n_errors(50) ;
 for (i=1 ; i<100 ; i=i+1)
 ̀ vmm_error(log, $psprintf ("*** Error No. %0d ***\n"
, i));
 end
endprogram

7-26

VMM User Guide

Class Factory Service

This section contains the following topics:

- Overview

- Modeling a Transaction to be Factory Enabled

- Creating Factories

- Replacing Factories

- Factory for Parameterized Classes

- Factory for Atomic Generators

- Factory for Scenario Generators

- Modifying a Testbench Structure Using a Factory

Overview

Factory Service provides an easy way to replace any kind of object,
transaction, scenario, or transactor by a similar object. This
replacement can take place from anywhere in the verification
environment or in the test case.

The following typical situations are for object oriented extensions:

• Replace a class by a derived class.

• Replace a parameterized class by a derived class.

• Replace a transaction modeled using vmm_data by a derived
class.

7-27

VMM User Guide

• Replace a scenario extending vmm_scenario by another
scenario.

• Replace a transactor modeled using vmm_xactor or vmm_group
by a derived transactor.

Similarly, it is possible to use factory to replace similar objects
between classes:

• Switch configurations in transactors.

• Switch scenarios in generators.

Factory service acts as a replacement for object construction. Rather
than declaring an object and constructing it using its new() method,
VMM provides facilities to consider objects as factory.

The factory service use model is as follows:

• Implement any object as a class and use ̀ vmm_class_factory
macro for having this object becoming factory enabled.

• Create object instance by using a method
class::create_instance()instead of new(), this object
instance in turn becomes a factory, for example, an object that
can be replaced.

• Replace this factory from wherever the replacement is desired,
such as a parent transactor, environment or a testcase. This is
achieved by using a set of static methods for either copying or
allocating a new object using,
class::override_with_copy() or
class::override_with_new().

Factory service is very handy for modeling generators. Usually
generators declare a transaction and then randomize it by applying
its built-in constraints.

7-28

VMM User Guide

When other set of constraints should be applied to this transaction,
you can replace this transaction by a new transaction that derives
the latter one.

You can easily carry out these steps by declaring the generator
transaction with class::create_instance() and replacing it in
your test with class::override_with_new()method.

Certainly, you should be careful regarding phases where factory
should be created and replaced. Creation should take place in
start_of_sim phase and recording the replacement should take
place in a preliminary phase like configure_test.

Table 7-4 Phases for Factory Creation and Replacement

Factory creation and
replacement

Phases for {Transactions,
Transactors, objects, MSS}

Phases for generators such
as {Atomic, single stream
Scenario, MSS}

create_instance() start_of_sim_ph() N/A (built-in)

override_with_() configure_test_ph() configure_test_ph()

The following sections provide more details on how to model, add
and replace factories.

Modeling a Transaction to be Factory Enabled

This section explains how to model a transaction so that it can be
considered as a factory, either in transactor or in the verification
environment.

This requires that the class implements a general-purpose
constructor, allocate() and copy() methods.

7-29

VMM User Guide

Note: These methods are automatically implemented with vmm_data
extension while using shorthand macros.

As any class factory is mostly based on user-friendly macros,
replacing it by an extended class requires the following guidelines:

• Provide a general-purpose constructor. The constructor must
have the default arguments, so that the calls to new() are
allowed. If some specific members need to be initialized to user
specific values, set*/get* methods can be used to handle these
assignments. Another approach is to use advanced options as
described in following section.

• Create a new object by using the allocate() method. In this
case, the extended class provides the necessary implementation
to allocate data members, subsequent objects, etc.

• Create a new object by using the copy() method. In this case,
the extended class provides the necessary implementation to
copy data members, subsequent objects, etc.

Example 7-19 shows how to model a simple transaction that extends
vmm_data.

Example 7-19 Factory Enabled Transaction
class cpu_trans extends vmm_data;
 ‘vmm_typename(cpu_trans);
 typedef enum bit {READ = 1'b1, WRITE = 1'b0} kind_e;
 rand bit [31:0] address;
 rand bit [7:0] data;
 rand kind_e kind;
 rand bit [3:0] trans_delay;

 `vmm_data_member_begin(cpu_trans)
 `vmm_data_member_scalar(address, DO_ALL)
 `vmm_data_member_scalar(data, DO_ALL)
 `vmm_data_member_scalar(trans_delay, DO_ALL)
 `vmm_data_member_enum(kind, DO_ALL)

7-30

VMM User Guide

 `vmm_data_member_end(cpu_trans)

 `vmm_class_factory(cpu_trans)
endclass
`vmm_channel(cpu_trans)

Note: `vmm_typename() creates the get_typename() function
that contains a typename to return a string like “cpu_trans”. This
is very convenient for displaying this object type.

You should use shorthand macros to model data members and
`vmm_class_factory declares all necessary methods required to
turn this transaction into a factory. Shorthand macros
vmm_data_member_* automatically implement allocate() and
copy() methods.

In case you need to add extra content to this transaction such as,
new members, constraints, and methods, you just extend its base
class.

Example 7-20 shows how to model a simple transaction that extends
cpu_trans. The only required step is to add a
`vmm_class_factory statement at the end of this transaction to
make the class factory ready.

Example 7-20 Factory Enabled Derived Transaction
class test_write_back2back_test_trans extends cpu_trans;
 `vmm_typename(test_write_back2back_test_trans)
 // Macros which define utility methods like
 // copy, allocate, etc
 `vmm_data_member_begin(test_write_back2back_test_trans)
 `vmm_data_member_end(test_write_back2back_test_trans)
 constraint cst_dly {
 kind == WRITE;
 trans_delay == 0;
 }
 `vmm_class_factory(test_write_back2back_test_trans)

7-31

VMM User Guide

endclass

Creating Factories

The previous section explains how to model a transaction so that it
can be considered as a factory. This section describes how to
instantiate this object in a transactor.

Usually, an object is declared in a transactor and constructed in its
new() task. This modeling style does not apply for factories. A
factory must be explicitly created in start_of_sim phase.

Note: The create_instance() method is static and must be
prefixed with its class name.

Example 7-21 shows how to instantiate and use the previously
created transaction factory in a Multi-Stream Scenario (MSS). The
scenario has to be instantiated in start_of_sim phase.

Example 7-21 Instantiation of Transaction Factory in MSS
class cpu_rand_scenario extends vmm_ms_scenario;
 cpu_trans blueprint;
 `vmm_scenario_new(cpu_rand_scenario)
 `vmm_scenario_member_begin(cpu_rand_scenario)
 `vmm_scenario_member_vmm_data(blueprint, DO_ALL,
 DO_REFCOPY)
 `vmm_scenario_member_end(cpu_rand_scenario)
 function new();
 blueprint = cpu_trans::create_instance(this,
 "blueprint",
 `__FILE__, `__LINE__);
 endfunction

 virtual task execute(ref int n);
 cpu_trans tr;
 bit res;

7-32

VMM User Guide

 vmm_channel chan;
 if (chan == null) chan = get_channel("cpu_chan");
 $cast(tr, blueprint.copy());
 res = tr.randomize();
 chan.put(tr);
 endtask

 `vmm_class_factory(cpu_rand_scenario)
endclass

Replacing Factories

The factory is now available in the transactor, so you can use it as is
or replace in the test, either by copying it from another transaction or
by constructing it from scratch.

Both use models are made possible using the
class_name::override_with_copy() or
class_name::override_with_new() functions.

Example 7-22 shows how to add two transactors to a program block
and use the default factory, i.e. cpu_trans.

Example 7-22 Instantiation of Transactor Factory
class env extends vmm_group;
 ahb_gen gen0, gen1;

 virtual task build_ph();

 gen0 = ahb_gen::create_instance(this, "gen0");
 gen1 = ahb_gen::create_instance(this, "gen1");

 vmm_log log = new("prgm", "prgm");
 `vmm_note(log, {“gen0.tr.addr=”, gen0.tr.addr);
 endtask
endclass

7-33

VMM User Guide

To replace a factory by another instance of the same type with
different data member values, you can use the
class_name::override_with_copy() method with a regular
expression that matches a specific pattern, either in the
vmm_object hierarchy or by referring to the transactor structure.

Example 7-23 shows how to replace a specific test that replaces
initial factory with a copy.

Example 7-23 Replacement of Transaction Factory
class test_read_back2back extends vmm_test;

 function new(string name);
 super.new(name);
 endfunction

 virtual function void configure_test_ph();
 test_read_back2back_test_trans tr = new();
 tr.address = 'habcd_1234;
 tr.address.rand_mode(0);
 cpu_trans::override_with_copy("@%*", tr, log,
 `__FILE__, `__LINE__);
 endfunction
endclass

To replace a factory by a derived class, you can use the
class_name::override_with_new() method with a regular
expression that matches a specific pattern, either in the
vmm_object hierarchy or by referring to the transactor structure.

In the case of referring to the transactor structure, the new
transaction type for factory replacement should be considered and
returned by
test_read_back2back_test_trans::this_type.

7-34

VMM User Guide

This transaction type is usually a derived class, since the
class_name::create_instance() method considers its
underlying base class by default, so there is no point in using a
statement such as,

cpu_trans::override_with_new("@%*",
 test_write_back2back_test_trans::this_type(),
 log, `__FILE__, `__LINE__);

Example 7-24 shows how to replace the initial factory with a derived
object.

Example 7-24 Replacing Derived MSS in Test
class test_write_back2back extends vmm_test;
 function new(string name);
 super.new(name);
 endfunction
 virtual function void configure_test_ph();
 cpu_trans::override_with_new("@%*",
 test_write_back2back_test_trans::this_type(), log,
 `__FILE__, `__LINE__);
 endfunction
endclass

Note: The factory replacement takes place in the
test2::start_of_sim phase. This is necessary as this
should always be called before ahb_gen::config_dut phase,
otherwise subsequent calls to
class_name::override_with_new() are not considered.

Factory for Parameterized Classes

Factories are general purpose and apply to any kind of object.
Modeling transactions can be achieved either by extending
vmm_data, vmm_object or no object at all.

7-35

VMM User Guide

Example 7-25 shows how to write a factory on top of a parameterized
class.

Example 7-25 Parameterized Class Factory
program P;
class cpu_trans #(type T=int) extends vmm_data;
 `vmm_typename(cpu_trans#(T))
 T value;
 `vmm_data_member_begin(cpu_trans#(T))
 `vmm_data_member_end(cpu_trans#(T))
 `vmm_class_factory(cpu_trans#(T))
endclass

class cpu_gen #(type T=int) extends vmm_xactor;
 `vmm_typename(cpu_gen#(T))
 cpu_trans #(T) tr;
 function new(string inst, vmm_unit parent=null);
 super.new("cpu_driver", inst, , parent);
 tr = cpu_trans#(T)::create_instance(this, "MY_TRANS");
 tr.display();
 endfunction
endclass

class my_cpu_trans #(type T=int) extends cpu_trans#(T);
 `vmm_typename(my_cpu_trans#(T))
 `vmm_data_member_begin(my_cpu_trans#(T))
 `vmm_data_member_end(my_cpu_trans#(T))
 T value;
 `vmm_class_factory(my_cpu_trans#(T))
endclass

class tb_env extends vmm_group;
 cpu_gen#(string) gen;
 function new(string inst = "env");
 super.new("tb_env", inst);
 endfunction
 virtual function void build_ph();
 gen = new("gen", this);
 endfunction
endclass

7-36

VMM User Guide

class my_test extends vmm_test;
 my_cpu_trans#(string) mtr;
 function new(string inst);
 super.new(inst);
 endfunction
 function void configure_test_ph();
 cpu_trans#(string)::override_with_new("@%*",
 my_cpu_trans#(string)::this_type, log);
 endfunction
endclass

tb_env env;
my_test tst;
initial begin
 env = new("env");
 tst = new("test");
 vmm_simulation::run_tests();
end

endprogram

Factory for Atomic Generators

Atomic generators are used to randomize unrelated transactions
and posting them to a vmm_channel. By default, atomic_gen
comes with a transaction blueprint named randomized_obj that
can be replaced by a factory. This factory can have the same type as
randomized_obj or be an extension of it.

Consider an example where atomic_gen is wrapped in a
vmm_xactor. This is necessary to ensure its run flow is properly
controlled.

Example 7-26 Creating an Atomic Generator Using Factory
class ahb_env extends vmm_xactor;
 `vmm_typename(env)
 cpu_trans_atomic_gen gen;

7-37

VMM User Guide

 function new(string name);
 super.new(get_typename(), name);
 endfunction

 virtual function void build_ph();
 gen = ahb_gen::create_instance(this,"gen",);
 endfunction

endclass

In the test, it is possible to directly replace
atomic_gen::randomized_obj by a factory using
override_with_new for a given generator.

Similarly, a copy of atomic_gen::randomized_obj can be
overridden in the other generator by also passing its implicit name to
the override_with_copy() method.

Example 7-27 shows how to replace an
atomic_gen::randomized_obj factory in specific generator by
its name.

Example 7-27 Overriding Atomic Scenario Factory
class test extends vmm_test;
 cpu_trans mtr;
 virtual function void start_of_sim_ph();
 // Replace factory in env0.gen
 cpu_trans::override_with_new(
 "@env0:gen:randomized_obj",
 my_cpu_trans::this_type, log, `__FILE__,
 `__LINE__);

 // copy factory in env1.gen
 mtr = new; mtr.addr = 'h55;
 cpu_trans::override_with_copy(
 "@env1:gen:randomized_obj", mtr, log, `__FILE__,
 `__LINE__);

7-38

VMM User Guide

 endfunction
endclass: test

Factory for Scenario Generators

Scenario generators are aimed at randomizing lists of related
transactions and posting them to a vmm_channel. By default,
scenario_gen comes with a scenario blueprint that you can
replace by a factory. You can make this factory of the same type as
the scenario or an extension of it.

As described in preceding sections, scenarios are similar to any kind
of transaction and need to implement general-purpose new(),
allocate() and copy() methods. These methods are directly
invoked by the override_with_copy() and
override_with_new() methods. The only required step is to add
a vmm_class_factory macro at the end of the scenario to make
this class factory ready.

Example 7-28 shows how to model a scenario.

Example 7-28 Modeling Scenario Factory
class test_scenario extends my_scenario;
 int TST_KIND;
 constraint cst_test {
 scenario_kind == TST_KIND;
 foreach (items[i]) {
 items[i].data == 'ha5a5a5a5;
 }
 }
 function new();
 TST_KIND = define_scenario("tst_scenario", 3);
 endfunction

 function vmm_data allocate();
 test_scenario scn = new;

7-39

VMM User Guide

 allocate = scn;
 endfunction

 function vmm_data copy(vmm_data to = null);
 test_scenario scn = new;
 scn.TST_KIND = this.TST_KIND;
 scn.stream_id = this.stream_id;
 scn.scenario_id = this.scenario_id;
 copy = scn;
 endfunction
 `vmm_class_factory(test_scenario)
endclass

Similarly to other transactors, scenario_gen should be wrapped in
a vmm_xactor. This is necessary to ensure its run flow is properly
controlled and that you properly create the factory using a two-phase
approach.

Example 7-29 shows how to wrap a scenario_gen into a
controllable vmm_xactor, where gen.my_scenario is the factory.

Example 7-29 Overriding Scenario Factory
class env extends vmm_group;
 `vmm_typename(env)
 cpu_trans_scenario_gen gen;
 my_scenario scn;

 function new(string name);
 super.new(get_typename(), name);
 endfunction

 virtual function void build_ph();
 gen = new(this,"gen");
 scn = cpu_trans_scenario::create_instance(
 this,"scn");
 endfunction

 virtual function void connect_ph();
 gen.register_scenario("my_scenario", scn);

7-40

VMM User Guide

 endfunction
endclass

In the test, it is now possible to directly replace gen:my_scenario
by a factory using override_with_new. This is made possible by
simply passing the generator’s hierarchical name to this method.

Similarly, a copy of my_scenario can be overridden in the scenario
generator by passing its implicit name to the
override_with_copy() method.

Example 7-30 shows how to replace vmm_scenario_gen factory
by its name.

Example 7-30 Overriding Scenario Generator Factory
class test extends vmm_test;
 my_scenario other_scn;

 virtual function void start_of_sim_ph();
 // replace factory in env0.gen with new scenario
 my_scenario::override_with_new(
 "@env0:gen:my_scenario",
 test_scenario::this_type,
 log, `__FILE__, __LINE__);

 // copy factory in env1.gen
 other_scn = new;
 my_scenario::override_with_copy(
 "@env0:gen:my_scenario", other_scn, log,
 `__FILE__, `__LINE__);
 endfunction
endclass: test

7-41

VMM User Guide

Modifying a Testbench Structure Using a Factory

Because the test timeline executes after the pre-test timeline, a test
cannot use the override_with_new() or
override_with_copy() factory methods to modify the structure
of an environment.

By the time the test timeline starts to execute, the environment will
already have been built during its "build" phase and all of the
testbench component instances will already have been created, so
subsequent calls to override_with_new() or
override_with_copy().So you do not consider them.

A test can only use the factory replacement methods to affect the
instances generators dynamically create. A test must use
vmm_xactor_callbacks to affect the behavior of testbench
components, not factories.

Implementation does not cause this limitation. However, it arises
from requirements for test concatenation. When concatenating
multiple tests, a test must be able to restore the environment to its
original state. It is simple to do so by removing callback extensions,
but it is not possible to do so if you construct the environment with a
test-specific instance.

However, to simplify the use model when not using test
concatenation, you execute the vmm_test::set_config()
method before the phasing of the pre-test timeline.

It is thus possible for a test to set factory instances by using the
override_with_new() or override_with_copy() factory
methods. However, it is not possible to concatenate such a test with

7-42

VMM User Guide

other tests, as its modification of the environment would interfere
with the configuration of other tests. You invoke this method only if
there is only one test selected for execution.

7-43

VMM User Guide

Options & Configurations Service

This section contains the following topics:

- Overview

- Hierarchical Options (vmm_opts)

- Structural Configurations

- RTL Configuration

Overview

VMM comes with comprehensive ways of configuring transactors,
components and verification environments.

You can use,

- Hierarchical options to get options from command line,
command file or in the VMM code directly.

- Structural options to configure transactors and ensure their
configuration are well set in the configure phase in a given
phase called configure.

- RTL configuration to configure both RTL and verification
environment.

Hierarchical Options (vmm_opts)

Configurations can be set from the simulator command line or a file.
You can set them on an instance basis or hierarchically by using
regular expressions.

7-44

VMM User Guide

Configuration parameters can be set from three different sources, in
order of increasing priority: within the code itself using
vmm_opts::set_*() methods, external option files and
command-line options.

You can either generate configuration parameters through
randomization or set with hierarchical/global options by calling
vmm_opts::get_*() methods.

The following methods let you specify configurations for,

• Global configurations with the following expressions to set
Field=Value for all objects that contain option Field. Note that
simv is the name of the executable,

simv +vmm_opts+Field=Value

• Hierarchical objects by using the following expressions to set
Field=Value for unique object Top0.instance,

simv +vmm_opts+Field=Value@Top0.instance

• Hierarchical objects by using the following expressions to set
Field=Value for all objects under Top0 that contain option Field,

simv +vmm_opts+Field=Value@Top0

Specifying Placeholders for Hierarchical Options

Configurations are usually modeled as a class and correspond to a
container where all possible options are defined as data members.

The static methods vmm_opts::get_object_* assign a specific
data member with a value from the vmm_opts::set_* methods.

7-45

VMM User Guide

Example 7-31 shows a configuration of two members: boolean b and
integer i are flagged with B and I tags respectively, and the is_set
variable is set when the option is overridden from command line.
This is handy to find out whether a used value is a default one or
comes from the command line.

Example 7-31 Adding Options in a Class
class vip extends vmm_xactor;
 bit b;
 int i;
 function configure_ph();
 bit is_set;
 b = vmm_opts::get_object_bit(is_set, this, "B",
 "SET b value", 0);
 i = vmm_opts::get_object_int(is_set, this, "I", 0,
 "SET i value", 0);
 endfunction
endclass

Setting Hierarchical Options

Configurations can be set from the simulator command line or a file.
You can set them on an instance basis or hierarchically by using
regular expressions.

Example 7-32 shows how to assign configuration members: boolean
b and integer i in a test. This is made possible by using
vmm_opts::set_int and vmm_opts::set_bit in the program
block. Of course, these assignments could be anywhere in
vmm_timelines or in vmm_test:configure_test_ph().

Example 7-32 Assigning Options in Code Block
function build_ph();
 vip vip0 = new("vip0", null);
 vip vip1 = new("vip1", null);
endfunction

7-46

VMM User Guide

function start_ph();
 vmm_opts::set_bit("vip0:b",null);
 vmm_opts::set_int("vip0:i",null);
 vmm_opts::set_bit("vip1:b",null);
 vmm_opts::set_int("vip1:i",null);

 $display(" Value of vip0:b is %0b", vip0.b);
 $display(" Value of vip0:i is %0d", vip0.i);
 $display(" Value of vip1:b is %0b", vip1.b);
 $display(" Value of vip1:i is %0d", vip1.i);
endfunction

Note: It is also possible to set configurations that only belong to a
given hierarchy, for instance the following line assigns B
configurations for all b* matching objects that are under the d2
root object.

Example 7-33 Setting Options Using Regular Expressions
vmm_opts::set_int("%b*:B", 99, d2);

Setting Hierarchical Options on Command Line

After you have defined the configurations, it is possible to change
their values from,

• The simulator command line with +vmm_opts+Field=Value or
+vmm_Field=Value

• An option file with the following syntax for assigning d2:b1.b=88,
all d1.*.b=99, i=1’b0 globally and c2.b1.str=”NEW_VAL2”

Example 7-34 Option File
+B =88@d2:b1
+B =99@d1*
+I = 0
+STR=NEW_VAL2@c2:b1

7-47

VMM User Guide

The following example shows how its default values are returned
when no options are specified on the command line:

% ./simv
Chronologic VCS simulator copyright 1991-2008
Contains Synopsys proprietary information.

 Value of vip0:b is 0
 Value of vip0:i is 0
 Value of vip1:b is 0
 Value of vip1:i is 0
Simulation PASSED on /./ (/./) at 0
(0 warnings, 0 demoted errors & 0 demoted warnings)
 V C S S i m u l a t i o n R e p o r t
Time: 0
CPU Time: 0.020 seconds; Data structure size:
0.0Mb

The following example shows how to globally assign values for
boolean b=1’b1 and integer i=10:

% ./simv +vmm_opts+I=10 +vmm_B=1
Chronologic VCS simulator copyright 1991-2008
Contains Synopsys proprietary information.

 Value of vip0:b is 1
 Value of vip0:i is 10
 Value of vip1:b is 1
 Value of vip1:i is 10
Simulation PASSED on /./ (/./) at 0
(0 warnings, 0 demoted errors & 0 demoted warnings)
 V C S S i m u l a t i o n R e p o r t
Time: 0
CPU Time: 0.030 seconds; Data structure size:
0.0Mb

The following example shows how to assign values for boolean
vip0.b=1’b1 and integer vip1.i=10:

% ./simv +vmm_opts+I=10@vip1 +vmm_B='1@*vip0'
Chronologic VCS simulator copyright 1991-2008

7-48

VMM User Guide

Contains Synopsys proprietary information.

 Value of vip0:b is 1
 Value of vip0:i is 0
 Value of vip1:b is 0
 Value of vip1:i is 10
Simulation PASSED on /./ (/./) at 0
(0 warnings, 0 demoted errors & 0 demoted warnings)
 V C S S i m u l a t i o n R e p o r t
Time: 0
CPU Time: 0.020 seconds; Data structure size:
0.0Mb

For details on all available options, see the VMM Reference Guide.

Structural Configurations

Structural configuration is an important aspect of verification
environment composition. This is usually required for dynamically
building verification components based upon configurations
specified either on the command line or in a command file. You can
set these configurations on an instance basis or hierarchically by
using regular expressions.

Configuration parameters that affect the structure of the environment
itself you must set during the "build" phase and implement the
vmm_unit::build_ph() method.

You can specify these configuration parameters using options, but
you typically set using RTL configuration parameters. Because you
invoke the vmm_unit::build_ph() methods in a top-down order,
procedural parameter settings from higher-level modules supersede
procedural parameter settings from lower-level modules.

Due to the nature of structural configurations, there is no need for
automatic randomization of structural configuration parameters.

7-49

VMM User Guide

The use model of structural configuration is similar to hierarchical
configurations except that specific vmm_unit shorthand macros
must be used to instrument transactors that extend the vmm_unit
base class.

You can set structural configuration parameters from three different
sources, in order of increasing priority:

• within the code itself using vmm_opts::set_*() methods.

• external option files.

• command-line options.

You set these parameters by explicitly calling the
vmm_opts::get_*() methods in vmm_timeline or environment.

The following use models are available for specifying a structural
configuration:

• Global configurations by using the following expressions to set
Field=Value for all objects that contain option Field,

simv +vmm_opts+Field=Value

• Instance-specific objects by using the following expressions to set
Field=Value for unique object Top0.instanceX,

simv +vmm_opts+Field=Value@Top0.instanceX

• Hierarchical objects by using the following expressions to set
Field=Value for all objects under Top0 that contain option Field,

simv +vmm_opts+Field=Value@Top0

7-50

VMM User Guide

Specifying Structural Configuration Parameters in
Transactors

Structural configuration declarations should sit in the transactor that
extends vmm_unit.

You can use a pre-defined set of shorthand macros to attach
structural configuration parameters to transactor structural tags,
which you can access from either the command line or a command
file. These macros automatically implement the declaration and
assignment of structural options in the build phase.

The following vmm_unit shorthand macros are available:

`vmm_unit_config_int(int_data_member,”doc",
 def_value, transactor)
‘vmm_unit_config_boolean(boolean_data_member,"doc",
 def_value, transactor)
‘vmm_unit_config_string(string_data_member,"doc",
 def_value, transactor)

Example 7-35 shows a structural configuration where three data
members: {boolean b, integer i, string s} are tagged with the {B, I, S}
keywords respectively.

Example 7-35 Defining Structural Configurations
class vip extends vmm_xactor;
 `vmm_typename(vip)
 int i;
 bit b;
 string s;

 function new(string inst, vmm_unit parent = null);
 super.new(get_typename(), inst, parent);
 endfunction

7-51

VMM User Guide

function void configure_ph();
 `vmm_unit_config_int(i,1,"doc",0,vip)
 `vmm_unit_config_boolean(b,"doc",0,vip)
 `vmm_unit_config_string(s,"doc", ”null”,vip)
endfunction
endclass

Setting Structural Configuration Parameters

Structural configuration parameters can be set from the simulator
command line or a file. You can set them on an instance basis or
hierarchically by using regular expressions.

Example 7-36 shows how to assign the v1 configuration members:
{boolean b, integer i, string s} in a test. This is made possible by
using vmm_opts::set_int and vmm_opts::set_bit.

Certainly, these assignments could be anywhere in vmm_timeline
or in vmm_test:configure_test_ph(). They have to be
executed before the corresponding vmm_opts::get_* methods/
vmm_unit_config macro execution.

Example 7-36 Setting Structural Configurations in Code Block
function void configure_ph();
 vip v1;
 vmm_opts::set_bit("v1:b",1);
 vmm_opts::set_int("v1:i",2);
 vmm_opts::set_string("v1:s",”Burst”);

 v1 = new(this, "v1");

 $display("v1.i=%0d, v1.b=%0d”, v1.i, v1.b);
endfunction

7-52

VMM User Guide

Setting Options on Command Line

After you have defined the configurations, it is possible to change
their values from,

• The simulator command line with +vmm_opts+Field=Value or
+vmm_Field=Value.

• An option file with following syntax for assigning d2:b1.b=88, all
d1.*.b=99, i=1’b0 globally and c2.b1.str=”NEW_VAL2”

+B =88@d2:b1
+B =99@d1*
+I = 0
+STR=NEW_VAL2@c2:b1

The following example shows how to assign values for boolean
v1.b=1’b0 and integer v1.i=9:

./simv +vmm_b=0 +vmm_opts+i=9@v1

RTL Configuration

RTL configuration is an important aspect for ensuring that the RTL
and testbench share the same configuration. This can be handy for
sharing parameters such as,

• Number of input ports for a given protocol.

• Number of output ports for a given protocol.

• Architectural parameters like FIFO sizes, DMA capabilities and
IRQs.

• Latency, bandwidth limitations, etc.

• Specific operating modes.

7-53

VMM User Guide

As opposed to hierarchical or structural configurations, RTL
configuration solely depends on an input file that describes available
options for a given instance. This input file allows the testbench and
RTL to share the same configuration.

The following key features are supported by this set of VMM base
classes:

• Support configurable RTL.

• Support RTL configuration with randomized / directed
parameters.

• Support functional coverage of configuration.

• Support composition of RTL configurations.

• Support multiple instances of the same RTL module with different
configurations.

• Support partially-specified configurations.

RTL configuration is performed using compile-time conditional code
(i.e. `ifdef/`endif) or parameter values, all of which are set before
simulation runs. It is therefore impossible to randomize RTL
configuration in the same simulation run and also run the test that will
verify that configuration.

You must use the following two-pass process:

• First pass to generate the RTL configuration to use. This can be
manual or external to VCS.

• Second pass to verify that configuration. This pass might be
repeated multiple times to apply multiple tests to the same
configuration. During this pass RTL and testbench are compiled
using RTL configuration as created in first pass.

7-54

VMM User Guide

The second pass must not depend on random stability to reproduce
the same RTL configuration. Instead, it should depend on a
configuration specification file that is read in to set the RTL
configuration parameters. This enables the RTL configuration to be
specified manually, not only randomly.

Defining RTL Configuration Parameters

RTL configuration parameters should be declared in a transactor
configuration that extends the vmm_rtl_config base class.

Note: This transactor configuration acts as a data member container
and is not supposed to be run.

A pre-defined set of shorthand macros can be used to attach RTL
configuration parameters to transactor RTL tags, which you can
access from either the command line or a command file.

The following vmm_rtl_config shorthand macros are available:

 `vmm_rtl_config_int (RTL_config_name,
 RTL_config_fname)
 `vmm_rtl_config_boolean(RTL_config_name,
 RTL_config_fname)
 `vmm_rtl_config_string (RTL_config_name,
 RTL_config_fname)

Example 7-37 shows how to model a configuration where RTL
configuration parameters: {boolean mst_enable, integer
addr_width} are tagged with {mst_enable, mst_width} keywords
respectively. By default, these data members can be randomized
and associated with user-specific constraints.

Example 7-37 Modeling RTL Configuration for Transactor
class ahb_master_config extends vmm_rtl_config;
 rand int addr_width;

7-55

VMM User Guide

 rand bit mst_enable;
 string kind = "MSTR";

 constraint cst_mst {
 addr_width == 64;
 mst_enable == 1;
 }
 `vmm_rtl_config_begin(ahb_master_config)
 `vmm_rtl_config_int(addr_width, mst_width)
 `vmm_rtl_config_boolean(mst_enable, mst_enable)
 `vmm_rtl_config_string(kind, kind)
 `vmm_rtl_config_end(ahb_master_config)

 function new(string name = "",
 vmm_rtl_config parent = null);
 super.new(name, parent);
 endfunction

endclass

Using RTL Configuration in vmm_unit Extension

A transactor can simply refer to the RTL configuration by declaring a
handle to this class that gets associated in the
vmm_unit::configure phase.

You can use the static method vmm_rtl_config::get_config
to handle this association.

Example 7-38 shows how to associate a previously declared
ahb_master_config object within a transactor.

Example 7-38 Retrieving a RTL Configuration in Transactor
class ahb_master extends vmm_xactor;
 ahb_master_config cfg;

 function new(string name, vmm_unit parent = null);
 super.new(get_typename(), name, parent);

7-56

VMM User Guide

 endfunction

 function void configure_ph();
 $cast(cfg, vmm_rtl_config::get_config(this);
 endfunction
endclass

After you have instantiated the transactor in its enclosing
environment, you must properly construct and associate it with the
right RTL configuration file.

This assumes that a RTL configuration file with name like
“INST.rtlconfig” was previously created using the
+vmm_gen_rtl_config first pass (see the following section).

Example 7-39 shows how to map the previously declared
ahb_master transactor with the right RTL configuration file name.

Example 7-39 Mapping Transactor RTL Configuration in Environment
class env extends vmm_group;
 ahb_master mstr;

 function new(string name, vmm_unit parent = null);
 super.new(get_typename(), name, parent);
 endfunction

 function void build_ph();
 mstr = new(this, "mst");
 env_cfg.map_to_name("^");
 env_cfg.mst_cfg.map_to_name("env:mst");
 endfunction
endclass

First Pass: Generation of RTL Configuration Files

The first pass to generate the RTL configuration can take place after
the transactor configuration is ready.

7-57

VMM User Guide

You activate the file generation when running the simulation with
+vmm_gen_rtl_config option.

In this case, the simulator considers all objects that extend
vmm_rtl_config base class. During this phase, all transactor
configurations are created, randomized and their content is dumped
to multiple RTL configuration files. No simulation is run during this
pass.

The following example shows how to create RTL configuration files
by prefixing all output files with ‘RTLCFG’:

% ./simv +vmm_rtl_config=RTLCFG +vmm_gen_rtl_config

% more RTLCFG:env_cfg:mst_cfg.rtl_conf
mst_width : 64;
mst_enable : 1;
kind : MSTR;

Second Pass: Simulation Using RTL Configuration File

The following example shows how to kick off a simulation by reading
all RTL configuration files that are prefixed with ‘RTLCFG’:

./simv +vmm_rtl_config=RTLCFG

7-58

VMM User Guide

Simple Match Patterns

This section contains the following topics:

- Overview

- Pattern Matching Rules

Overview

Simple match pattern performs hierarchical name matching in a
specific hierarchical namespace. As vmm_object instance names
are in the form of top::subenv::vip, writing usual regular
expressions can be cumbersome and require to escape all delimiters
consisting of ’:’. character.

To overcome this issue, VMM comes with a rich set of custom regular
expressions. These expressions perform hierarchical name
matching in a specific hierarchical namespace. Using this custom
regular expression is turned on by simply appending the’@’
character before the expression.

Here is a description of specific character that VMM regular
expression interprets:

- “:” is used as hierarchical name separator, ‘.’ character with
no need to be escaped

- “@” is used to indicate a match pattern

- “/” is used for normal regular expressions

A match pattern matches every character as-is, except for meta-
characters, which match in the following manner:

7-59

VMM User Guide

- “.” matches any one character, except ‘:’

- “*” matches any number of characters, except ‘:’

- “?” matches zero or one character, except ‘:’

- “%” matches zero or more colon-separated names, including
the final colon

Pattern Matching Rules

Table 7-5
Pattern Description Matches Does Not Match
@%. Matches any path ending

with a single character as the
last element

t
t:s
t:s:v

t:sub_env

@%* Matches any hierarchical
path

top
top:sub_env
top:sub_env:vip

top:
top:sub_env:
top:sub_env:vip:

@%? Matches any hierarchical
path, including null string

t
t:s
t:s:v
t ::v

top
top:sub_env
top:sub_env:vip

@top:*:vip Matches the occurrence of
any string

top:sub_env0:vip
top:sub_env1:vip

top:vip
top:sub_env0:slice0:vip

@top:???:
vip

Matches the occurrence of
any string that contains 1 to
3 characters

top:s:vip
top:su:vip
top:sub:vip

top:sub_env0:vip

VMM Regular Expression Pattern Matching Rules

7-60

VMM User Guide

8-1

VMM User Guide

8
Methodology Guide 1

This chapter contains the following sections:

• Recommendations: describes the complete set of
recommendations to follow while developing VMM components.

• Rules: describes the complete set of rules to follow while
developing VMM components.

Recommendations

Transactions

• All class properties without a rand attribute should be local when
possible with the exception of constructed properties like parity
etc.

8-2

VMM User Guide

• Transaction descriptors should have implementation and context
references.

• All constructor arguments should have default values.

• All non-local methods should be virtual.

• Provide default constraint blocks to produce better distributions
on size or duration class properties.

• Solve discriminant class properties first to avoid constraint
failures.

• If the transaction object has a parent, only then you should copy
the parent handle while creating a new object in the copy()
method. Deep copy of the parent object is not recommended.

• Transactions should be factory enabled by using the
`vmm_class_factory macro. You must create copy() and
allocate() methods for the transactions. You can also use the
shorthand macros to create the same.

Message Service

• Issue messages of type FAILURE_TYP using the
‘vmm_warning(),‘vmm_error() or‘vmm_fatal() macros.

• Issue messages of type NOTE_TYP using the‘vmm_note()
macro.

• Issue messages of type DEBUG_TYP using the vmm_trace(),
‘vmm_debug() or ‘vmm_verbose() macros.

• Make calls to text output tasks only once it you have confirmed
that a message is issued.

8-3

VMM User Guide

Transactors

• You might declare transactor in a package.

• Transactor objects should indicate the occurrence of significant
protocol and execution events via the notification service interface
in the vmm_xactor::notify class property.

• For custom transactors modeled using vmm_xactor, you should
ensure that XACTOR_IDLE and XACTOR_BUSY notifications are
indicated or reset so that the transactor instance can appropriately
agree or oppose 'end of test' completion managed through the
vmm_consensus class.

• When you overload the start_ph, shutdown_ph and
reset_ph of any transactors derived from vmm_xactor, you
should call the super.start_ph, super.shutdown_ph and
super.reset_ph so that implicit calls to start_xactor/
stop_xactor/reset_xactor will be made in these methods.

Callbacks

• Transactors should call a callback method after receiving data,
letting you record, modify or drop the data.

• Transactors should call a callback method before transmitting
data, letting you record, modify or drop the data.

• Transactors should call a callback method after generating any
new information, letting you record or modify the new information.

• Transactors should call a callback method after making a
significant decision but before acting on it, letting you modify the
default decision.

8-4

VMM User Guide

Channels

• Specify channel instances as optional constructor arguments.

• Consumer transactors should use the
vmm_channel::activate(), vmm_channel::start(),
vmm_channel::complete() and
vmm_channel::remove() methods to indicate the progress of
the transaction execution.

• Indicate the vmm_data::STARTED and vmm_data::ENDED
notifications if vmm_channel::start() and
vmm_channel::complete are not invoked.

• Use an output “completion” channel to send back (partially)
completed transactions.

• Transactors should put an incomplete transaction descriptor
instance in the output channel as soon as you identify the start of
a transaction.

• Requestor transactors should continue with a default response if
you receive no response after the maximum allowable time
interval.

• Requestor transactors should issue a warning message if you
receive no response after the maximum allowable time interval.

• Transaction response request descriptors should solve to a valid
random response when randomized.

Environments

• Randomize the timing relationship of unrelated clock signals as
part of the testcase configuration.

8-5

VMM User Guide

• Make a monitor transactor configurable as reactive or passive.

• The vmm_env::cfg_dut() method should have a fast
implementation that writes to registers and memories via direct
accesses.

• When an object is no longer needed, you can remove all the
references to it by using vmm_object::kill_object().

• Avoid creating log instances for VMM base class extensions
except vmm_data.

• Set the parent of a VMM component either during construction or
through vmm_object::set_parent_object().

Tests and Generators

• User testcases should extend vmm_test.

• The name of the class property containing the randomized
instance should have the prefix “randomized_”.

• You should not directly add directed stimulus to the public output
channel.

• Describe exceptions separately from transactions directly in
testcases.

• Use the predefined atomic generator vmm_atomic_gen for basic
randomization.

• Use the multi-stream scenario generator for randomizing and
controlling scenarios.

8-6

VMM User Guide

Channels and TLM Ports

• Channels are preferred as input connector versus TLM interfaces.
This is because, they come with a superior completion model and
can feed back a status in the passed transaction directly.

• You should use VMM notification for dataless synchronization.

• For producers, use b_transport as they will be automatically
throttled.

• For consumers, use channel + active slot as it provides all TLM
interfaces.

• Use analysis ports for events with status/data because they are
strongly-typed.

Configuration

• For an environment, you should define and instantiate a global
configuration object derived from vmm_object, and you should
have randomizable fields.

• The global configuration object should instantiate the child config
objects (which are also derived from vmm_object)
corresponding to individual components or sub-environments
(and which have been defined there).

8-7

VMM User Guide

Rules

Transactions

• You shall derive data and transaction model classes from the
vmm_data class.

• All data classes shall have a public static class property referring
to an instance of the message service vmm_log.

• All class properties corresponding to a protocol property or field
shall have the rand attribute.

• Use a rand class property to define the kind of transaction you
describe.

• You shall unconditionally constrain the size of a rand array-type
class property to limit its value.

• Make all class properties with a rand attribute public.

• Data protection class properties shall model their validity, not their
value.

• Model fixed payload data using explicit class properties.

• Use class inheritance to model different data formats, you will
prefer discriminants.

• You shall not use tagged unions to model different data
formats.

• Use a class property with the rand attribute to indicate if optional
properties from different data formats are present.

• All methods shall be functions.

8-8

VMM User Guide

• Provide a virtual method to compute the correct value of each
data protection class property.

• Provide a constraint block to ensure the validity of randomized
class property values.

• A distribution constraint block shall constrain a single class
property.

• Provide constraint blocks to avoid errors in randomized values.

• An error-prevention constraint block shall constrain a single class
property.

Message Service

• You shall issue all simulation messages through the message
service.

Transactors

• All transactor-related declarations shall have a unique prefix.

• Include all transactor-related declarations in the same file.

• implement transactors using a vmm_xactor.

• implement transactors in classes derived from vmm_xactor.

• You shall start no threads in the constructor.

• Model layers of a protocol as separate transactors.

• Identify transactors or configure as proactive, reactive or passive.

8-9

VMM User Guide

• All messages issued by a transactor instance shall use the
message service interface in the vmm_xactor::log class
property.

• Transactors shall assign the value of their
vmm_xactor::stream_id class property to the
vmm_data::stream_id class property of the data and
transaction descriptors flowing through them.

• Transactors shall be configurable if the protocol they implement
has options.

• Configure transactors using a randomizable configuration
descriptor.

• Assign transactor configuration descriptor in the configure
phase.

• Specify physical interfaces using a virtual modport
interface and assign in the build phase.

• Store the virtual interface in a public class property.

• Command-layer transactors shall not refer directly to clock
signals.

• Master transactor should be constructed with arguments allowing
to be associated with its enclosing component, for example, its
parent.

• Implicitly phased master transactor should implement the
connect() phase for assigning interfaces.

• Implicitly phased master transactor should implement the
shutdown() phase.

8-10

VMM User Guide

Callbacks

• Transactors shall have a rich set of callback methods.

• Declare all callback methods for a transactor as virtual methods
in a single class derived from vmm_xactor_callbacks.

• Declare callbacks as tasks or void functions.

• Arguments that you must not modify shall have the const
attribute.

• Include a reference to the calling transactor in the callback
arguments.

• Transactors shall use the ‘vmm_callback() macro to invoke the
registered callbacks.

• You must use callback and not analysis ports to convey the
transactions that may be modified.

• You must not modify transactions reported through an analysis
ports.

• Transactions should be reported on analysis ports only after they
have been reported on callbacks.

Channels

• You might use a channel to exchange transactions between two
transactors.

• Store references to channel instances in public class properties
suffixed with “_chan”.

8-11

VMM User Guide

• A transactor shall not hold an internal reference to a channel
instance while you stop or reset.

• Reactive and passive transactors shall allocate a new transaction
descriptor instance from a factory instance using the
vmm_data::allocate() method.

• You shall not make a transactor both a producer and a consumer
for a channel instance.

• Reactive or passive transactors shall use the
vmm_channel::sneak() method to put transaction descriptors
in their output channels.

• Transactors shall clearly document the completion model input
channels use.

• Reactive transactors shall clearly document the response model
expected by output channels.

• Configure input channel instances with a full level of one.

• Peek transaction descriptors from the input channel.

• Remove transaction descriptors from the channel only when you
complete the transaction execution.

• Use a separate channel instance for each priority or class of
service.

• Consumer transactors shall use the
vmm_channel::activate(), vmm_channel::start(),
vmm_channel::complete() and
vmm_channel::remove() methods to indicate the progress of
the transaction execution.

• Consumer transactors shall use the vmm_channel::get() to
immediately remove a transaction from the channel.

8-12

VMM User Guide

• Consumer transactors shall use the vmm_channel::sneak()
method to add completed transaction descriptors to the
completion channel.

• Producer transactors shall put transaction descriptor instances in
the output channel using the vmm_channel::sneak() method.

• Transactors shall indicate the vmm_data::STARTED and
vmm_data::ENDED notifications.

• Requestor transactors shall use the vmm_channel::sneak()
method to post a response request into the response request
channel.

• Requestor transactors shall check that a response is provided
within the required time interval.

• You shall randomly generate a protocol-level response using an
embedded generator.

• Protocol-level response shall be randomly generated using an
embedded generator.

Environments

• Implement the signal layer and instantiate the DUT in a top-level
module.

• implement the verification environment in a top-level class.

• Declare all interface signals as inout.

• Sample synchronous interface signals and drive using a
clocking block.

• Define set-up and hold time in clocking blocks using parameters.

8-13

VMM User Guide

• Specify the direction of asynchronous signals in the modport
declaration.

• Specify the direction of synchronous signals in the clocking
block declaration.

• Include the clocking block in modports port list instead of
individual clock and synchronous signals.

• Map Signals in different interface instances implementing the
same physical interface to each other.

• Instantiate the design and all required interfaces and signals in a
module with no ports.

• You should add clock generation in the top-level module.

• There shall be no clock edges at time 0.

• Use the bit type for all clock and reset signals.

• Implement drivers and monitors as transactors.

• Transactors shall execute in the reactive region.

• Implement monitors as transactors.

• Generators shall execute in the reactive region.

• Implement generators as transactors.

• Testcases shall access elements in the top-most module or design
via absolute cross-module references.

• Instantiate all transactors and generators in public class
properties.

• Register first the self-checking integration callbacks with a
transactor.

8-14

VMM User Guide

• Register callback extension instances that can modify or delay
the transactions before the scoreboard callback extension
instances.

• Register callback extension instances that do not modify the
transactions after the scoreboard callback extension instances.

• An implicitly phased environment should extend from
vmm_group.

• An explicitly phased environment should extend from vmm_env.

• An implicitly phased sub-environment should extend from
vmm_group.

• An explicitly phased sub-environment should extend from
vmm_group.

• To use explicitly phased components inside an implicitly phased
environment, you should instantiate them inside a vmm_subenv
and instantiate the subenv inside a implicitly phased
environment.

• To use implicitly phased components inside an explicitly phased
environment, you should instantiate them inside a
vmm_timeline and instantiate the timeline inside an explicitly
phased environment.

Notifications

• Use a vmm_notify extension to exchange notifications between
two transactors.

• Store references to notification service instances in public class
properties.

8-15

VMM User Guide

• A transactor shall not hold an internal reference to a notification
service instance while it is stopped or reset.

Tests and Generators

• Design verification environments with random stimulus.

• Model a generator as a transactor.

• A generator shall have an output channel for each output stream.

• The reference to the generator output channels shall be in public
class properties.

• Make optionally specifiable, a reference to pre-existing output
channel instances to the generator constructor.

• A generator shall randomize a single instance located in a public
class property and copy the final value to a new instance.

• Check the return value of the randomize()method and report
an error if it is false.

• Assign the value of the stream_id class property of the
generator to the stream_id class property in the randomized
instance before each randomization.

• Stop generators while you inject directed stimulus.

• Generators shall provide a procedural interface to inject data or
transaction descriptors.

• Use a randomized exception descriptor to randomly inject
exceptions.

• An exception descriptor shall have a reference to the transaction
descriptor it will be applied to.

8-16

VMM User Guide

• An exception descriptor shall have a constraint block to prevent
the injection of exception by default.

• Randomize the exception descriptor using a factory pattern.

• All scenarios extended from vmm_ms_scenario should overload
the copy() method. The `vmm_scenario_member_begin/
end macros can be used to implement the same.

• For implicitly phased tests, you should not have any code in the
build, configure and connect phases as they will not be executed
when the tests are concatenated.

• You use the `vmm_test_concatenate() macros to denote
whether the test can be concatenated or not.

• You should use the ̀ vmm_test_concatenate macro to denote
which phases of a timeline should roll back to for a particular test
when it is concatenated.

• You should not use factory overrides in tests which will be
concatenated.

• Use configure_test_ph for test specific code.

• For test concatenation, restore environment to original state in
cleanup_ph.

• Copy() should be created for all multistream scenarios. You can
use the MSS shorthand macros to create the same.

9-1

VMM User Guide

9
Optimizing, Debugging and Customizing
VMM 1

This chapter contains the following sections:

• Optimizing VMM Components

• Transaction and Environment Debugging

• Customizing VMM

9-2

VMM User Guide

Optimizing VMM Components

Garbage-Collecting vmm_object Instances

Any common mistakes might contribute to the needless
consumption of memory. Some basic precautions and techniques
ensure that your testbench consumes as little memory as possible.

An easy way of expediting garbage collection to reduce memory
usage is to turn on garbage collection for unused vmm_object
instances. It is also possible to deallocate a complete vmm_object
hierarchy, either from a top object or the root object.

When you no longer need an object, it is important that you remove
all references to it from scoreboards and lists and to call its
vmm_object::kill_object() method.

Example 9-1 Killing Objects
class sb;
 packet expected[$];
 ...
 function void observed(packet obs);
 packet exp = expected.pop_front();
 if (!exp.compare(obs)) ...
 exp.kill_object();
 obs.kill_object();
 endfunction
 ...
endclass

9-3

VMM User Guide

Optimizing vmm_log Usage

Both vmm_log and vmm_object have names. When a class that
is based on vmm_object also contains a vmm_log instance, how
should you name them?

You should use the hierarchical name of the object as the instance
of the vmm_log and you should use the name of the class as the
name of the vmm_log instance.

This ensures that the identification of the vmm_object easily
correlate message source to a specific object instance in the object
hierarchy and render it consistent with the name of the vmm_log
instantiated in the VMM base classes.

Example 9-2 Associating vmm_log With Class Parent
class my_class extends vmm_object;
 vmm_log log; // Not static if not too many instances

 function new(string name = "",
 vmm_object parent = null);
 super.new(parent, name);
 log = new("my_class",
 this.get_object_hiername());
 endfunction
 ...
endclass

There is no need to provide a vmm_log in extensions of VMM base
classes as their instances already include the vmm_log from the
base class, this applies to almost all VMM base classes. Otherwise,
this results in creating two vmm_log instances where one is
sufficient. For example, the following code creates an extra instance
of the vmm_log class, hiding the instance already provided in the
vmm_xactor base class:

9-4

VMM User Guide

Example 9-3 Hiding Local vmm_log in vmm_xactor
class my_xactor extends vmm_xactor;
 vmm_log log; // Hides internal vmm_xactor::log!!

 function new(string name = "",
 vmm_object parent = null);
 super.new("my_xactor", name, parent);
 // Extra vmm_log instance!!
 log = new("my_xactor",
 this.get_object_hiername());
 endfunction
endclass

Static vmm_log Instances

If you have a class with a large number of instances (for example, all
classes extended from vmm_data), it is recommended that the class
contain a static vmm_log data member.

This ensures you create only one instance of the Message Service
Interface for all instances of that class.

You should initialize the static vmm_log instance (as well as any
other static data member) by instantiating the vmm_log [or "static
instance"] with the class declaration.

This ensures you create a single instance of the vmm_log class
automatically during elaboration of the SystemVerilog model.

Example 9-4 Efficient vmm_log Usage
class my_data extends vmm_data;
 static vmm_log log = new("my_data", "static");
 ...
 function new(string name = "",
 vmm_object parent = null);

9-5

VMM User Guide

 super.new(this.log, parent, name);
 ...
 endfunction
 ...
endclass

If you need to initialize the static data members in the class
constructor, make sure that you initialize them only once, i.e. when
you create the first instance of that class.

Example 9-5 Unique Construction of vmm_log
class my_data extends vmm_data;
 static vmm_log log;
 ...
 function new(string name = "",
 vmm_object parent = null);
 super.new(this.log, parent, name);
 if (this.log == null) begin
 this.log = new("my_data", "static");
 super.notify.set_log(this.log);
 end
 ...
 endfunction
 ...
endclass

You must be careful not to allocate a vmm_log instance every time
you create an instance of the class. This causes memory to
continuously increase because you cannot garbage-collect
vmm_log instances unless you explicitly kill them using the
vmm_log::kill() method.

9-6

VMM User Guide

vmm_log Instances in vmm_channel

For each vmm_channel instance, a vmm_log instance is allocated
internally. This helps to debug the VMM environments. However, if
there are a large number of channel instances, the additional
vmm_log instances can lead to memory issues.

After you have debugged an environment, you need not maintain
unique vmm_log instances for every channel as they will not issue a
message.

You can thus improve the memory consumption of your environment
by using a single vmm_log instance for all vmm_channel instances.

The run-time command-line option +vmm_channel_shared_log
causes all vmm_channel instances in your testbench to share a
single vmm_log instance.

9-7

VMM User Guide

Transaction and Environment Debugging

Starting with VCS D-2009.12 version, you can record transactions or
environment status to the VPD file. Hence, these recorded values
can be visualized in DVE transaction pane and waveform viewer.

Most of the VMM base classes have been instrumented so that there
status are recorded. For performance reasons, the VMM base
classes are not recorded by default.This recording comes with
different verbosity level, which allows to turn on/off particular
instances. VMM channels are also instrumented, their content and
corresponding commands are recorded as well.

It is also possible to record specific objects to specific streams with
the help of VMM base classes vmm_tr_stream and
vmm_tr_record.

Usage

Transaction recording is not turned on by default, it needs to be
activated while compiling your VMM environment. You simply need
to provide the +define+VMM_TR_RECORD switch and -debug_pp
option to allow the activation of underlying system tasks.

The following command line shows how to turn on transaction
recording:

% vcs -sverilog your_vmm_files.sv \
+define+VMM_TR_RECORD \
-debug_pp

9-8

VMM User Guide

Once your code has been compiled, transactions can be recorded
during VCS simulation by using the
+vmm_tr_verbosity=[trace|debug|verbose] switch.

As transactions can be tagged with their own verbosity, it is possible
to partially dump transactions whose verbosity are lower than the
one provided in the command line. For instance, the switch
+vmm_tr_verbosity=debug only allows recording of
transactions that are tagged as TRACE_SEV or DEBUG_SEV.

The following command line shows how to record transactions with
TRACE_SEV verbosity.

% simv +vmm_tr_verbosity=trace

Built-in Transaction Recording

The following VMM base classes have built-in recording support and
can be debugged in DVE:

• vmm_channel

• vmm_consensus

• vmm_env

• vmm_subenv

• vmm_simulation

The following sections explain how to take advantage of these built-
in recording to debug instances of these VMM base classes.

9-9

VMM User Guide

Debugging vmm_channel

The vmm_channel records the new transactions that are stored in
the channel and the commands that might affect these transactions.
To ease vmm_channel instances debug, the channel transaction is
tagged as TRACE_SEV and channel commands are tagged as
DEBUG_SEV.

The following screenshot shows the content of vmm_channel
instance with size=1 and +vmm_tr_verbosity=trace. In this
mode, only the channel content is recorded.

The following screenshot shows the content of vmm_channel
instance with size=1 and +vmm_tr_verbosity=debug. In this
mode, the channel content and commands are recorded

9-10

VMM User Guide

Debugging vmm_simulation

The vmm_simulation base class records the pre_test, top_test
and post_test status at any point of time. To ease vmm_simulation
instance debug, the status is tagged as TRACE_SEV. You should
use +vmm_tr_verbosity=trace to activate its recording.

The following screenshot shows the content of vmm_simulation.
In DVE waveform viewer, it’s fairly easy to see that pre_test
timeline invokes the rtl_config phase followed by build,
configure and connect.Then, the top_test phases are
invoked. The post_test phases are empty as they are not invoked
yet.

9-11

VMM User Guide

Debugging vmm_env

The vmm_env records the environment status at any point of time.
To ease vmm_env instances debug, the status is tagged as
TRACE_SEV. You should use +vmm_tr_verbosity=trace to
activate its recording.

The following screenshot shows the content of vmm_env. In DVE
waveform viewer, it’s fairly easy to see that
RAL_Based_verif_Env environment invokes the gen_cfg step
followed by build and reset_dut.

9-12

VMM User Guide

Debugging vmm_consensus

The vmm_consensus records the consensus status at any point of
time. To ease vmm_consensus instances debug, the status is
tagged as TRACE_SEV. You should use
+vmm_tr_verbosity=trace to activate its recording.

The following screenshot shows the content of vmm_consensus.
In DVE waveform viewer, it’s fairly easy to see that EOT consensus
opposes the end of test as its registered vmm_notify instance is
not indicated, followed by its registered vmm_channel instance that
is not empty.

Custom Transaction Recording

The following VMM base classes allow to record transactions or
status to VPD and to debug them in DVE:

• vmm_tr_stream

• vmm_tr_record

The vmm_tr_stream base class acts as a stream container where
transactions can be recorded to. It can either be constructed with
vmm_tr_stream::new() or allocated with a
vmm_tr_record::set_stream() call.

9-13

VMM User Guide

Subsequent calls to vmm_tr_record::start_tr() and
vmm_tr_record::end_tr() should provide this handle as the
first argument. Sub-streams can be allocated with the
vmm_tr_record::set_sub_stream(), where this method first
argument should refer to the top stream handle.

Example 9-6 shows how to define vmm_tr_stream handles.

The top handle allows to record transactions to a stream called
Stream_0 and a header called Tr_0.

It is possible to create a sub-stream handle named child that
inherits top properties. It shares the same stream and gets a header
named Tr_0_sub.

The top handle gets the TRACE_SEV verbosity level, the child
handle gets the DEBUG_SEV verbosity level. Therefore, at run-time it
is possible to select the one that should be recorded with the
+vmm_tr_verbosity switch.

Example 9-6
string stream_name, tr_name;
vmm_tr_stream top, child;

stream_name = $psprintf("Stream_%0d", id);
tr_name = $psprintf("Tr_%0d", id);

top = vmm_tr_record::set_stream(stream_name,
 tr_name,
 vmm_debug::TRACE_SEV);

child = vmm_tr_record::set_sub_stream(top,
 "sub",
 vmm_debug::DEBUG_SEV);

9-14

VMM User Guide

Transactions can be recorded to a given stream or sub-stream by
using the vmm_tr_record::start_tr() and
vmm_tr_record::end_tr() methods.

Note: Any call to vmm_tr_record::end_tr() is ignored if you do
not initiate vmm_tr_record::start_tr() first.

Example 9-7 shows how to record atm_cell transactions to the
top stream and subsequent commands to the child sub-stream.
This emulates various actions that might happen to a channel.

Example 9-7
atm_cell cell = new();
void'(cell.randomize());

vmm_tr_record::start_tr(top, "Put",
 cell.psdisplay(""));

vmm_tr_record::start_tr(child, "Peek",
 cell.psdisplay(""));
vmm_tr_record::end_tr(child);

vmm_tr_record::start_tr(child, "Activate",
 cell.psdisplay(""));
vmm_tr_record::end_tr(child);

#10;
vmm_tr_record::end_tr(top);

9-15

VMM User Guide

The following screenshot shows the end result of above example
with +vmm_tr_verbosity=trace. In this mode, all commands
targeted to the child sub-stream are ignored.

The following screenshot shows the end result of above example
with +vmm_tr_verbosity=debug. In this mode, all commands
are recorded.

9-16

VMM User Guide

Customizing VMM

The components of VMM Standard Library are designed to meet the
needs of the vast majority of users without additional customization.

However, some organizations may wish to customize the
components of VMM Standard Library to offer organization-specific
features and capabilities not readily available in the standard
version. You should use the Standard Library customization
mechanisms described in this chapter.

It is recommended to use the user-defined extension mechanisms
provided by the various base and utility classes such as, virtual and
callback methods.

Adding to the Standard Library

You can extend VMM Standard Library by automatically including up
to two user-specified files in the vmm.sv file. All user-defined
customization are then embedded in the same package as the VMM
Standard Library and become automatically visible without further
modifications to user code.

If the define ‘VMM_PRE_INCLUDE is declared, the file specified by
the definition is included at the beginning of the vmm.sv file, at the
file level, before the VMM standard library package. You can use this
symbol to import the pre-processor declarations needed to
customize the VMM Standard Library and to define the global
customization symbols.

9-17

VMM User Guide

If the define ‘VMM_POST_INCLUDE is declared, the file specified by
the definition is included at the top of the VMM standard library
package, but only after all of the known class names have been
defined.

You can use this symbol to import declarations and type definitions
a customized VMM Standard Library needs and the implementation
of VMM Standard Library customizations that are built on the
predefined classes.

Example 9-8 Inclusion Points in the vmm.sv File
‘include ‘VMM_PRE_INCLUDE
...
package _vcs_vmm;
 typedef class vmm_xactor;
 ‘ifdef VMM_XACTOR_BASE
 typedef class ‘VMM_XACTOR_BASE
 ‘endif
 ...
 ‘include ‘VMM_POST_INCLUDE
 ...
 class vmm_broadcast extends ‘VMM_XACTOR;
 ...
endpackage

Note: The symbol definition must include the double quotes
surrounding the filename.

Example 9-9 Adding to VMM Standard Library
vcs -sverilog -ntb_opts rvm \
 +define+VMM_PRE_INCLUDE=\"vmm_defines.svh\" \
 +define+VMM_POST_INCLUDE=\"acme_stdlib.sv\" ...

9-18

VMM User Guide

Customizing Base Classes

The vmm_data, vmm_channel, vmm_xactor and vmm_env base
classes are designed to be specialized into different protocol-specific
transaction descriptors, transactors and verification environments.

You can create a set of organization-specific base classes to
introduce organization-specific generic functionality to all VMM
components that organization creates, as shown in Example 9-10
and Example 9-11.

Example 9-10 Organization-Specific Transactor Base Class
class acme_xactor extends vmm_xactor;
 ...
endclass: acme_xactor

Example 9-11 Transactor Based on Organization-Specific Base Class
class ahb_master extends acme_xactor;
 ...
endclass: ahb_master

A problem exists that any VMM component not written by the
organization, such as the one shown in Example 9-12, will not be
based on that organization’s base class. This makes several kinds of
features (such as automatically starting all transactor instances
when acme_env::start() is executed) impossible to create.

Example 9-12 Transactor Based on Standard Base Class
class ocp_master extends vmm_xactor;
 ...
endclass: ocp_master

9-19

VMM User Guide

You can use the following techniques to customize the VMM base
classes. Although you describe the techniques using the
vmm_xactor base class, you can apply the same techniques to the
vmm_data and vmm_env base classes as well.

The only difference is that their respective symbols would start with
"VMM_DATA" and "VMM_ENV" respectively, instead of
"VMM_XACTOR".

“Customizing VMM” on page 16 details the customization macros
available with all predefined components in the VMM standard
library.

Symbolic Base Class

All VMM-compliant components are based on the symbolic base
class specified by the 'VMM_XACTOR symbol, as shown in Example
9-13. Upon compilation, you can redefine the symbol (defined by
default to be "vmm_xactor") to cause the transactor to be based
on an alternate (but homomorphic) base class, as shown in Example
9-14. You should ultimately base this alternate base class on
vmm_xactor.

Example 9-13 Transactors Based on Symbolic Base Class
class ahb_master extends ‘VMM_XACTOR;
 ...
endclass: ahb_master

class ocp_master extends ‘VMM_XACTOR;
 ...
endclass: ocp_master

Example 9-14 Redefining the Symbolic vmm_xactor Base Class
‘define VMM_XACTOR acme_xactor

9-20

VMM User Guide

In the above example, the simple mechanism works if the
constructor of the alternate base class has the exact same
arguments as the vmm_xactor base class. Additional macros are
provided to support non-homomorphic constructors.

You should create the transactors using (see Example 9-15),

• VMM_XACTOR_NEW_ARGS

• VMM_XACTOR_NEW_CALL

Note: A comma does not precede either of the macros. The purpose
of this is to handle any instance where you do not define the
symbols. It also implies that whenever you define these symbols,
their definition must start with a comma.

Example 9-15 Transactor Supporting Non-Homomorphic Base Constructor
class ocp_master extends ‘VMM_XACTOR;
 ...
 extern function new(string inst,
 int stream_id = -1
 ‘VMM_XACTOR_NEW_ARGS);
 ...
endclass: ocp_master

function ocp_master::new(string inst,
 int stream_id
 ‘VMM_XACTOR_NEW_ARGS);
 super.new("OCP Master", inst, stream_id
‘VMM_XACTOR_NEW_CALL);
 ...
endfunction: new

You can then use an alternate transactor base class by defining the
symbolic constructor argument macros appropriately. Example 9-16
shows how to use the alternate base class shown in Example 9-17.

Example 9-16 Using a Non-Homomorphic Transactor Base Class
‘define VMM_XACTOR acme_xactor

9-21

VMM User Guide

‘define VMM_XACTOR_NEW_ARGS , acme_xactor parent = null, \
 int key = -1
‘define VMM_XACTOR_NEW_CALL , parent, key

In order to be backward compatible with existing VMM-compliant
transactors, the first arguments of the alternate base class must
match the arguments of the standard vmm_xactor base class and
provide default argument values for any subsequent arguments, as
shown in Example 9-17.

Example 9-17 Backward-Compatible Alternate Base Class
class acme_xactor extends vmm_xactor;
 function new(vmm_object parent = null,
 string name = "",
 string inst = "",
 int stream_id = -1,
 acme_xactor parent = null
 int key = -1);
 super.new(name, inst, stream_id);
 super.set_parent_object(parent);
 ...
 endfunction: new
endclass: acme_xactor

You can write all predefined transactions, transactors and
verification environments in the VMM library (vmm_broadcast,
vmm_scheduler, vmm_atomic_gen and vmm_scenario_gen)
and application packages (vmm_rw_access, vmm_rw_xactor,
vmm_ral_env) using symbolic base classes and additional
constructor arguments. By default, you base them on the standard
VMM base classes.

“Customizing VMM” on page 16 details the customization macros
available with all predefined components in the VMM standard
library. For details, see User's Guide that corresponds to VMM
application package for the available customization macros.

9-22

VMM User Guide

It is important to note that the implementation of virtual methods
sometimes needs to invoke the base class implementation (for
example, vmm_xactor::start_xactor()) and sometimes might
not (for example, vmm_data::compare()). When using an
alternate vmm_data base class, it is important to understand that
except for vmm_data:copy_data(), their respective extensions
call none of the virtual methods in the base class.

Customizing Utility Classes

The vmm_log, vmm_notify and vmm_consensus utility classes
are designed to be used as-is when creating verification
components, verification environments and test cases. You can
create a set of organization-specific utility classes to introduce
organization-specific generic functionality to all VMM components,
environments and test cases created by that organization, as shown
in Example 9-18.

Example 9-18 Organization-Specific Message Interface
class acme_log extends vmm_log;
 ...
endclass: acme_log

A problem exists that any VMM component not written by the
organization, such as the standard library component shown in
Example 9-19, will not use that organization’s utility class. This
makes several kinds of features impossible to create.

Example 9-19 VMM Base Class Using Standard Utility Class
class vmm_xactor;
 vmm_log log;
 ...
endclass: vmm_xactor

9-23

VMM User Guide

You can use the following techniques to customize the VMM utility
classes. Although the techniques are described using the vmm_log
utility class, you can apply them to the vmm_notify and
vmm_consensus utility classes as well. The only difference is that
their respective symbols would start with "VMM_NOTIFY" and
"VMM_CONSENSUS" respectively instead of "VMM_LOG".

“Customizing VMM” on page 16 details the customization macros
available with all predefined components in VMM standard library.

Symbolic Utility Class

All VMM-compliant components should use the symbolic base class
specified by the ‘VMM_LOG symbol, as shown in Example 9-20 and
Example 9-21. You can redefine the symbol (defined by default to be
"vmm_log") at compile-time to cause the base classes and
components to use an alternate (but homomorphic) utility class, as
shown in Example 9-22. This alternate utility class should ultimately
be based on vmm_log.

Example 9-20 VMM Base Class Using Symbolic Utility Class
class vmm_xactor;
 ‘VMM_LOG log;
 ...
endclass: vmm_xactor

Example 9-21 Scoreboard Using Symbolic Utility Class
class scoreboard;
 ‘VMM_LOG log;
 ...
endclass: scoreboard

Example 9-22 Redefining the Symbolic vmm_log Utility Class
‘define VMM_LOG acme_log

9-24

VMM User Guide

The simple mechanism shown above works if the constructor of the
alternate utility class has the exact same arguments as the vmm_log
utility class.

All predefined elements in the VMM library and application packages
are written using symbolic utility classes. By default, they use the
standard VMM utility classes.

“Customizing VMM” on page 16 details the customization macros
available with all predefined components in the VMM standard
library. See the User’s Guide which corresponds to the appropriate
VMM application package for the available customization macros.

Underpinning Classes

SystemVerilog does not support multiple inheritance. You should
limit class inheritance to a single lineage. It might be desirable to
have all transactors derived from more than one base class.

For example, it might be useful to have all transactors derived from
the organization-specific transactor base class and the organization-
specific "any class" base class. Figure 9-1(a) displays how to
accomplish this in a language supporting multiple inheritance such
as, C++. Figure 9-1(b) and Figure 9-1(c) show two alternative
implementations in a single-inheritance language such as,
SystemVerilog.

9-25

VMM User Guide

Figure 9-1 Transactor Inheriting From More Than One Class

ocp_master

acme_xactor

vmm_xactor any_class

(a)
ocp_master

acme_xactor

vmm_xactor

any_class

(b)

ocp_master

acme_xactor

any_class

vmm_xactor

(c)

You can implement the inheritance shown in Figure 9-1(b) by using
the VMM_XACTOR symbolic base class macros described in
“Customizing Base Classes” on page 18. However, you can do this
if you can in turn base the ultimate base class on the vmm_xactor
base class-which is not always possible or sensible.

It is possible to base the VMM Standard Library base and utility
classes on a suitable user-defined base class. Although these
techniques are described for the vmm_xactor base class, you can
apply them to the all other base and utility classes defined in the
VMM Standard Library as well. The only difference is that their
respective symbols would start, for example, with "VMM_DATA" and
"VMM_LOG" respectively instead of "VMM_XACTOR".

Note: You can use the +define+VMM_11 VCS compilation option to
avoid the potential conflicts that might be introduced while
underpinning base classes in VMM D-2010.06 and later versions.
This is because many new VMM1.2 functionality is introduced
through the same mechanism of underpinning base classes.

9-26

VMM User Guide

Any Standard Library base or utility class can be based on a user-
defined class by appropriately defining the following macros:

• VMM_XACTOR_BASE

• VMM_XACTOR_BASE_NEW_ARGS

• VMM_XACTOR_BASE_NEW_CALL

• VMM_XACTOR_BASE_METHODS

If you define the VMM_XACTOR_BASE macro, the vmm_xactor
base class becomes implemented as shown in Example 9-23.

Example 9-23 Targetable vmm_xactor Base Class
class vmm_xactor extends ‘VMM_XACTOR_BASE;
 ...
 function new(string name,
 string inst,
 int stream_id = -1
 ‘VMM_XACTOR_BASE_NEW_ARGS);
‘ifdef VMM_XACTOR_BASE_NEW_CALL
 super.new(‘VMM_XACTOR_BASE_NEW_CALL);
‘endif
 ...
 endfunction: new

 ‘VMM_XACTOR_BASE_METHODS

 ...
endclass: vmm_xactor

Example 9-24 shows how the vmm_xactor base class can be
targeted to the base class shown in Example 9-25.

Example 9-24 Underpinning vmm_xactor Base Class
‘define VMM_XACTOR_BASE any_class
‘define VMM_XACTOR_BASE_METHODS \
 virtual function string whoami(); \
 return "vmm_xactor"; \
 endfunction: whoami

9-27

VMM User Guide

Example 9-25 Ultimate Base Class
virtual class any_class;
 virtual function string whoami();
endclass: any_class

If you choose to expose the arguments of the new base class
underpinning the vmm_xactor base class to the transactors, you
must add the content of the following symbols:

• VMM_XACTOR_BASE_NEW_ARGS

• VMM_XACTOR_BASE_NEW_CALL

...to the following symbols, respectively:

• VMM_XACTOR_NEW_ARGS

• VMM_XACTOR_NEW_CALL

Base Classes as IP

You can apply the base class underpinning mechanism shown prior
recursively to any class hierarchy. This allows the creation of base
class IP that you can position between the inheritances of two
appropriately written classes.

Example 9-26 shows a VMM-compliant transactor base class
provided by company XYZ. Any organization, whose transactor base
class has a structure similar to this one can then leverage that base
class by inserting it into their transactor class hierarchy.

Example 9-26 Transactor Base Class IP
‘include "vmm.sv"
‘ifndef XYZ_XACTOR_BASE

9-28

VMM User Guide

 ‘define XYZ_XACTOR_BASE ‘VMM_XACTOR
‘endif
‘ifndef XYZ_XACTOR_BASE_NEW_ARGS
 ‘define XYZ_XACTOR_BASE_NEW_ARGS ‘VMM_XACTOR_NEW_ARGS
 ‘define XYZ_XACTOR_BASE_NEW_CALL ‘VMM_XACTOR_NEW_CALL
‘endif

class xyz_xactor extends XYZ_XACTOR_BASE;
 ...
 function new(string name,
 string inst,
 int stream_id = -1,
 bit foo = 0
 ‘XYZ_XACTOR_BASE_NEW_ARGS);
 super.new(name, inst, stream_id
‘XYZ_XACTOR_BASE_NEW_CALL);
 ...
 endfunction: new
 ...
endclass: xyz_xactor

By default, this third-party base class should extend the
vmm_xactor base class and can thus be easily inserted between
the organization's transactor base class and the vmm_xactor base
class as shown in Example 9-27. But it can also be inserted above
the organization's own transactor base class as shown in Example
9-28.

Example 9-27 Using Base Class IP Below Organization Base Class
‘define ACME_XACTOR_BASE xyz_xactor
‘define ACME_XACTOR_BASE_NEW_ARGS , bit foo = 0 \
 ‘XYZ_XACTOR_BASE_NEW_ARGS
‘define ACME_XACTOR_BASE_NEW_CALL

Example 9-28 Using Base Class IP Above Organization Base Class
‘define XYZ_XACTOR_BASE acme_base
‘define XYZ_XACTOR_BASE_NEW_ARGS , acme_xactor parent =
null, \
 int key = -1
‘define XYZ_XACTOR_BASE_NEW_CALL , parent, key

9-29

VMM User Guide

‘define VMM_XACTOR xyz_xactor
‘define VMM_XACTOR_NEW_ARGS , bit foo = 0 \
 ‘XYZ_XACTOR_BASE_NEW_ARGS
‘define VMM_XACTOR_NEW_CALL ‘XYZ_XACTOR_BASE_NEW_CALL

9-30

VMM User Guide

10-1

VMM User Guide

10
Primers 1

This chapter contains the following sections:

• Multi-Stream Scenario Generator Primer

• Class Factory Service Primer

• Hierarchical Configuration Primer

• RTL Configuration Primer

• Implicitly Phased Master Transactor Primer

10-2

VMM User Guide

Multi-Stream Scenario Generator Primer

Introduction

Multi-Stream Scenario Generator (MSSG) provides an efficient way
of generating and synchronizing stimulus to various BFMs. This
helps you in reusing block-level scenarios in subsystem and system
levels and controlling and synchronizing the execution of those
scenarios of same or different streams. Single stream scenarios can
also be reused in multi-stream scenarios.

vmm_ms_scenario and vmm_ms_scenario_gen are the base
classes provided for this functionality. This section describes the
various types of usage of multi-stream scenario generation with
these base classes.

Multi-Stream Scenario (MSS) extend vmm_ms_scenario class and
define the execution of the scenario execute() method. By
controlling the content of execute() method entirely, you can
execute single or multiple, transactions or scenarios.

Execution can be single-threaded, multi-threaded, reactive, etc.
depending on your requirement. Then the scenario object has to be
registered with a multi-stream generator. MSSG executes the
registered scenario. Multiple MSS can be registered to the same
MSSG.

The following sections explain how to implement Multi-stream
scenarios and create hierarchical scenarios using a procedural
approach:

10-3

VMM User Guide

 Step1: Creation of Scenario Class

You can create a scenario class by extending vmm_ms_scenario
and defining any properties as rand if they are intended to be
randomized before the execution of the execute() method.
Implement copy() method by copying the contents of the scenario.
This can be done by using `vmm_data_scenario* macros
also.You then define the execute() method according to the need.

You can update 'n', the argument of execute method to keep
track of the number of transactions executed by the generator to
which this scenario is registered. Number of transactions is
controlled by stop_after_n_insts property of the generator.

It is required that for each scenario the
vmm_ms_scenario::copy() should be overloaded for
multistream scenarios to return the copy of the scenario.

The easiest way to achieve this is to use the shorthand macros.

`vmm_scenario_member_begin(..)
...
vmm_scenario_member_end(..)

Note: These macros create a default constructor. If there is a need
to create your own constructor, you need to explicitly define the
macro, ‘vmm_scenario_new(..) in addition to the above
macros.

Example 10-1 Creating Basic MSS
class my_scenario extends vmm_ms_scenario;

 // NUM will be randomized before execute() is called
 rand int NUM;
 //Implementing copy() and application methods through
 macro

10-4

VMM User Guide

‘vmm_scenario_new(my_scenario)
`vmm_scenario_member_begin(my_scenario)
`vmm_scenario_member_int(NUM, DO_ALL)
`vmm_scenario_member_end(my_scenario)
 constraint cst_num {
 NUM inside {[1:10]};
 }
 `vmm_scenario_member_begin(my_scenario)
 `vmm_scenario_member_scalar(SCN_KIND, DO_ALL)
 `vmm_scenario_member_end(my_scenario)

 function new(vmm_ms_scenario parent = null);
 super.new(parent);
 trans = new();
 endfunction

 task execute(ref int n);
 for (int i=0; i<NUM; i++) begin
 $display(“This is a dummy transaction: %0d”, n);

 n++; // Incrementing n after execution
 // of every transaction

 end
 endtask
endclass

 Step 2: Usage of Logical Channels in MSS

Usually, scenarios are in charge of putting transactions to VMM
channels. To facilitate this, vmm_channel instances can be
registered to the MSSG by name and be accessed in the
vmm_ms_scenario through its get_channel() method by
specifying the same name.

You must declare the vmm_channel instances in the top
environment and then associate it the register_channel()
method.

10-5

VMM User Guide

Example 10-2 Using Logical vmm_channel in MSS
class my_scenario extends vmm_ms_scenario;
 ….
 task execute(ref int n);
 my_trans tr = new;
 // Returns channel with name “MY_CHAN” if
 // available in the generator where this scenario
 // is registered
 vmm_channel my_chan = get_channel(“MY_CHAN”);
 tr.randomize();
 my_chan.put(tr);
 tr.notify.wait_for(vmm_data::ENDED);
 endtask
endclass

my_scenario scn = new();
my_trans_channel chan = new(“mychan”, “mychaninst”);
vmm_ms_scenario_gen gen = new(“GEN”);

// registering vmm_channel by name "MY_CHAN"
gen.register_channel(“MY_CHAN”, chan);

 Step 3: Registration of MSS in MSSG

You can instantiate the previous MSS and register it to MSSG object
through register_ms_scenario() method.

MSSG randomizes the scenario and calls its execute() method.

Any number of MSS can be registered to a MSSG by default. It
executes scenarios in round robin order until the
stop_after_n_scenarios or stop_after_n_insts limit is
reached.

Example 10-3 Registration of MSS in MSSG
my_scenario scn = new();
vmm_ms_scenario_gen gen = new(“GEN”);

10-6

VMM User Guide

gen.register_ms_scenario(“MY_SCN”, scn);

// Generator randomizes and executes the registered
// scenario 5 times.
gen.stop_after_n_scnearios = 5;

Complete Example of a Simple MSSG

The following code snippets show the basic usage of MSS where
two different types of transactions are executed concurrently.

You can change the order of execution according to the requirement
(dynamic, reactive, etc.).

Example 10-4 shows how to model an ALU and a APB transaction.

Example 10-4 Implementation of ALU and APB Transactions
//ALU transaction
class alu_trans extends vmm_data;
 typedef enum bit [2:0] {ADD=3'b000, SUB=3'b001,
 MUL=3'b010, LS=3'b011,
 RS=3'b100} kind_t;
 rand kind_t kind;
 rand bit [3:0] a, b;
 rand bit [6:0] y;

 `vmm_data_member_begin(alu_trans)
 `vmm_data_member_enum(kind, DO_ALL)
 `vmm_data_member_scalar(a, DO_ALL)
 `vmm_data_member_scalar(b, DO_ALL)
 `vmm_data_member_scalar(y, DO_ALL)
 `vmm_data_member_end(alu_trans)
endclass
`vmm_channel(alu_trans)

//APB transaction
class apb_trans extends vmm_data;
 typedef enum bit {READ=1'b0, WRITE=1'b1} kind_e;

10-7

VMM User Guide

 rand bit [31:0] addr;
 rand bit [31:0] data;
 rand kind_e kind;
 `vmm_data_member_begin(apb_trans)
 `vmm_data_member_scalar(addr, DO_ALL)
 `vmm_data_member_scalar(data, DO_ALL)
 `vmm_data_member_enum(kind, DO_ALL)
 `vmm_data_member_end(apb_trans)
endclass
`vmm_channel(apb_trans)

Example 10-5 shows how to create a scenario that randomizes a
stream of ALU transactions and a stream of APB transactions.

Note: Each randomized transaction is posted to its respective logical
channel.

Example 10-5 Implementation of MSS to Randomized ALU and CPU
Transactions

// Multi stream scenario with concurrent execution of 2
// transactions of different streams
class my_scenario extends vmm_ms_scenario;
 alu_trans_channel alu_chan;
 apb_trans_channel apb_chan;

 //Transaction gets randomized when this
 // ms scenario gets randomized
 rand apb_trans apb_tr;

 alu_trans alu_tr; //Transaction won't get randomized
 int MY_SCN = define_scenario(“MY_SCN”, 0);
 function new(vmm_ms_scenario parent=null);
 super.new(parent);
 apb_tr = new();
 endfunction

 virtual task execute(ref int n);
 $cast(alu_chan, this.get_channel("ALU_SCN_CHAN"));
 $cast(apb_chan, this.get_channel("APB_SCN_CHAN"));
 fork

10-8

VMM User Guide

 begin // Randomize ALU transaction
 alu_trans tr;
 $cast(tr, alu_tr.copy());
 tr.randomize();
 alu_chan.put(tr);
 n++; //User must update the number of transactions
 end
 begin // Randomize APB transaction
 apb_trans tr;
 $cast(tr, apb_tr.copy());
 apb_chan.put(tr);
 n++; //User must update the number of transactions.
 end
 join
 endtask
endclass

Example 10-6 shows how to extract transactions from two registered
logical channels that are attached to the previously declared MSSG.
A simple code block gets each transaction stream. This example
outputs APB transactions and ALU transactions concurrently five
times as the scenario gets executed five times
(stop_after_n_scenarios = 5).

Example 10-6 Implementation of MSSG
program automatic P;

initial begin
 alu_trans_channel alu_chan = new("ALU_CHAN", "Chan");
 apb_trans_channel apb_chan = new("APB_CHAN", "Chan");
 vmm_ms_scenario_gen gen = new("Gen"); //MSSG
 my_scenario scn = new;

 // Register alu_chan channel to the generator
 gen.register_channel("ALU_SCN_CHAN", alu_chan);

 //register apb_chan channel to the generator
 gen.register_channel("APB_SCN_CHAN", apb_chan);

 // register multi stream scenario to the generator

10-9

VMM User Guide

 gen.register_ms_scenario("SCN", scn);

 gen.stop_after_n_scenarios = 5;
 gen.start_xactor();

 fork
 repeat(5) begin
 alu_trans tr;
 alu_chan.get(tr);
 tr.display("ALU:");
 end
 repeat(5) begin
 apb_trans tr;
 apb_chan.get(tr);
 tr.display("APB:");
 end
 join
end

endprogram

10-10

VMM User Guide

Class Factory Service Primer

Introduction

In a typical verification environment, there are generators that create
transactions or transaction scenarios. And there are transactors that
process these transactions and transmit them to the design under
test (DUT). The transactions and scenarios are modeled as classes
with built-in members, methods and constraints.

It is often required for the tests to provide additional features such as
different constraints to target various design functionalities to verify.
Class Factory service provides an easy way to construct any kind of
object such as, transaction or scenario. This factory can be
overridden by a similar one without having to modify the generators
and transactors it belongs to.

This section explains how to construct and override objects by using
the class factory service.

The example for design under test (DUT) contains two functional
interfaces, the CPU interface and the SRAM interface. The top-level
testbench instantiates a CPU subenvironment and a SRAM
subenvironment.

There are two transactors inside the CPU subenvironment:

• CPU driver that is responsible for driving and sampling the DUT
signals through the interface.

• VMM multi-stream scenario generator (MSSG) that is responsible
for creating CPU transaction scenarios for the CPU driver to
process.

10-11

VMM User Guide

Figure 10-1 Environment Block Diagram

Step 1: Modeling Classes to be Factory Ready

This step explains how to model transactions and scenarios to be
factory ready.

To create all underlying factory infrastructures and to make a
transaction factory ready, you use the `vmm_class_factory()
macro with the name of the class as its argument.

It is important that you provide a new(), allocate() and
copy() method in the transaction or any other component which is
desired to be made factory ready.

10-12

VMM User Guide

The use of `vmm_class_factory macro with the specified data
type creates four class methods, which are static to ensure that they
can be called from anywhere:

• classname::this_type() returns the handle to the class
factory.

• classname::create_instance() constructs an instance of
the specified class type. This method is similar to
classname::new() but should be used to ensure the
constructed object can be replaced.

• classname::override_with_new() replaces the matching
class instance by the specified class. This method uses the
classname::allocate() method of the specified class to
create a new instance.

• classname::override_with_copy() replaces the matching
class instance by a copy of the provided class instance. This
method uses the classname::copy() method of the specified
class to create a new instance.

The cpu_trans class describes the properties of a CPU
transaction. This class is extended from the vmm_data base class
and uses the `vmm_data_member_* shorthand macros to
implement all the virtual methods including vmm_data::copy(),
and vmm_data::allocate().

These two methods must be overridden with a transaction-
specific implementation as they are used when a factory is
replaced in the environment and/or the tests, which is
described in the later sections.

Example 10-7 Modeling Factory-Enabled Transaction
class cpu_trans extends vmm_data;
 typedef enum bit {READ = 1'b1, WRITE = 1'b0} kind_e;

10-13

VMM User Guide

 rand bit [7:0] address;
 rand bit [7:0] data;
 rand kind_e kind;

 `vmm_data_member_begin(cpu_trans)
 `vmm_data_member_scalar(address, DO_ALL)
 `vmm_data_member_scalar(data, DO_ALL)
 `vmm_data_member_enum(kind, DO_ALL)
 `vmm_data_member_end(cpu_trans)

 `vmm_class_factory(cpu_trans)

endclass

To build a multi-stream scenario (MSS) based on the cpu_trans
objects, a cpu_rand_scenario class is extended from the
vmm_ms_scenario base class.

VMM provides several useful shorthand macros such as
`vmm_scenario_member_*() to implement all the virtual
methods in the vmm_ms_scenario base class.

As described earlier, it is important to implement its allocate()
and copy() methods. This is automatically done by using the
`vmm_class_factory macro with the class name as shown in
Example 10-8 to make the transaction scenario class factory ready.

Example 10-8 Modeling Factory-Enabled Scenario
class cpu_rand_scenario extends vmm_ms_scenario;
 cpu_trans blueprint;
 `vmm_scenario_new(cpu_rand_scenario)

 `vmm_scenario_member_begin(cpu_rand_scenario)
 `vmm_scenario_member_vmm_data(blueprint, DO_ALL,
DO_REFCOPY)
 `vmm_scenario_member_end(cpu_rand_scenario)
 ...

10-14

VMM User Guide

 `vmm_class_factory(cpu_rand_scenario)
endclass

Step 2: Instantiating a Factory in Transactor

In the previous step, both the cpu_trans transaction class and the
cpu_rand_scenario MSS have been made factory ready by
using the `vmm_class_factory() macro in the respective
classes.

In this step, you will learn how to instantiate a transaction factory in
a transactor. A typical situation is to instantiate a transaction factory
in MSS.

The cpu_trans transaction is instantiated as a blueprint object for
the cpu_rand_scenario MSS in its constructor. Keeping the
instantiation and the randomization of the cpu_trans objects
separately is necessary so that the factory can be replaced
anywhere in the verification environment and tests before the
cpu_trans objects get randomized in the
cpu_rand_scenario::execute() method.

Example 10-9 Instantiating a Transaction in MSS
class cpu_rand_scenario extends vmm_ms_scenario;
 cpu_trans blueprint;
 function new();
 // Construct the blueprint with name "blueprint"
 // and provides a handle to cpu_rand_scenario
 blueprint = cpu_trans::create_instance(this,
 "blueprint", ̀ __FILE__, ̀ __LINE__);
 endfunction
 virtual task execute(ref int n);
 cpu_trans tr;
 bit res;
 vmm_channel chan;
 if (chan == null) chan = get_channel("cpu_chan");

10-15

VMM User Guide

 $cast(tr, blueprint.copy());
 res = tr.randomize();
 chan.put(tr);
 endtask
 `vmm_class_factory(cpu_rand_scenario)
endclass

In the execute() method of the MSS, the blueprint is first copied
and then cast to the local variable tr of the cpu_trans type.
Casting is necessary because the blueprint is the object that extends
from cpu_trans and contains the user-defined features such as,
additional members and constraints but the object to randomize is of
the cpu_trans type.

A new instance of the blueprint is required before each
randomization as the channel stores the cpu_trans objects by
reference and not by copy.

Step 3: Instantiating a MSS Factory in MSSG

In the previous step, the cpu_rand_scenario MSS class has
been made factory ready by using the `vmm_class_factory()
macro.

In this step, you will learn how to instantiate MSS and MSSG.

The MSS and MSSG are instantiated in the CPU subenvironment
class, cpu_subenv. Testbench components such as MSSG are
constructed in the build_ph() phase in the pre-test timeline.

The creation of the cpu_rand_scenario instance and its
registration to MSSG using
vmm_ms_scenario_gen::register_ms_scenario() are

10-16

VMM User Guide

done in the start_of_sim_ph() phase in the test timeline, so it
allows the tests to override the factory in the
configure_test_ph() phase, the first in the test timeline.

Example 10-10 Instantiating MSS in MSSG
class cpu_subenv extends vmm_unit;
 `vmm_typename(cpu_subenv)
 ...
 vmm_ms_scenario_gen gen;
 cpu_rand_scenario rand_scn;

 function void build_ph();
 ...
 this.gen = new({get_object_name(), "Gen"},0, this);
 endfunction

 function void start_of_sim_ph();
 // Construct the scenario blueprint with
 // name "rand_scn" and provides a handle
 // to cpu_subenv
 rand_scn = cpu_rand_scenario::create_instance(this,
 "rand_scn", ̀ __FILE__, ̀ __LINE__);
 this.gen.register_ms_scenario("rand_scn", rand_scn);
 ...
 endfunction

endclass

Step 4: Replacing a Factory

In the previous step, the cpu_rand_scenario factory was
instantiated in the CPU environment MSSG.

In this step, you will learn how to replace it, either by a copy or by
new MSS.

10-17

VMM User Guide

After you have created the MSS in the build_ph() phase of the
CPU subenvironment, it is ready to be replaced using
override_with_new() and override_with_copy() methods,
as shown in the examples below.

For an object that needs to be replaced by an extended object with
added constraints and/or data members, you should use the
override_with_new() method.

For an object that needs to be replaced by a similar object but with
different data member values, you should use the
override_with_copy() method. These examples also
demonstrate how both the transaction and the transaction scenario
factories can be replaced.

Step 4a: Replacing a Factory by a New One

A MSS is derived from cpu_rand_scenario. It might include other
MSS and other properties and constraints. This extended scenario
can be used to override the cpu_rand_scenario factory in the
CPU subenvironment with the static method
cpu_rand_scenario::override_with_new().

It is important that you implement the allocate() and copy()
methods of this new scenario. You can do this automatically by using
the shorthand macros, vmm_scenario_member_*.

Example 10-11 demonstrates the usage for factory for the multi-
stream scenario. Recall that the cpu_rand_scenario factory
instance is created in the start_of_sim_ph() phase of the test
timeline. In order to override the factory, the override_with_*()
methods must be called before the factory instance creation. The
phase before the start_of_sim_ph() in the same test timeline is

10-18

VMM User Guide

the configure_test_ph() phase and this is where
cpu_rand_scenario::override_with_new() is called in the
example.

Example 10-11 Implementing a New MSS and Instantiating It
class my_cpu_mss extends cpu_rand_scenario;
 cpu_write_scenario write_scn;
 cpu_read_scenario read_scn;
 rand bit [31:0] Addr;
 rand bit [7:0] Data;
 `vmm_scenario_new (my_cpu_mss)

`vmm_scenario_member_begin(my_cpu_mss)
 `vmm_scenario_member_vmm_scenario(write_scn, DO_ALL)
 `vmm_scenario_member_vmm_scenario(read_scn, DO_ALL)
 `vmm_scenario_member_scalar(Addr, DO_ALL)
 `vmm_scenario_member_scalar(Data, DO_ALL)
`vmm_scenario_member_end(my_cpu_mss)
 ...
 virtual task execute(ref int n);
 cpu_trans tr;
 bit res;
 vmm_channel chan;
 write_scn.randomize() with {
 addr == this.Addr; data == this.Data;
 };
 write_scn.execute(n);
 read_scn.randomize() with {
 addr == this.Addr;
 };
 read_scn.execute(n);
 endtask
endclass

class test_write_read_same_addr extends vmm_test;
 // this macro defines a get_typename function
 // that returns the handle to the current object
 `vmm_typename(test_write_read_same_addr)

 function new(string name);

10-19

VMM User Guide

 super.new(name);
 endfunction

 virtual function void configure_test_ph();
 // Replace matching MSS blueprint called
 // "*:CPU:rand_scn"
 // with the extended MSS my_cpu_mss
 cpu_rand_scenario::override_with_new(
 "@%*:CPU:rand_scn",
 my_cpu_mss::this_type(),
 log, `__FILE__, `__LINE__);
 endfunction
endclass

After the test_write_read_same_addr test class is defined, it is
instantiated with the standard call to its constructor,
vmm_test::new(). During the construction, the test object is
added to the test registry in the vmm_simulation. When the
vmm_simulation reaches its test timeline, the test is run when
selected by +vmm_test at VCS runtime.

Step 4b: Replacing a Factory by a Copy

Similarly, the underlying cpu_trans transaction factory can also be
replaced.

Example 10-12 demonstrates the usage for factory for the
transaction. To override the factory in this example, you must call the
cpu_trans::override_with_copy() static method before you
call the static method cpu_trans::create_instance()
static method to create the factory instance of the blueprint.

10-20

VMM User Guide

The blueprint instance is created in the construction of the
cpu_rand_scenario which is instanced in the
start_of_sim_ph() phase of the CPU subenvironment.
Consequently, if you call the
cpu_trans::override_with_copy() method in the
configure_test_ph() phase of the test timeline, the
cpu_trans factory is successfully overridden.

Example 10-12 Implementing a Copy Transaction and Instantiating It
class test_read_back2back extends vmm_test;
 function new(string name);
 super.new(name);
 endfunction

 virtual function void configure_test_ph();
 cpu_trans tr = new();
 // modify the content of the extended cpu_trans
 tr.address = 'habcd_1234;
 // turn off its randomization
 tr.address.rand_mode(0);

 // replace all matching cpu_trans blueprint with tr
 cpu_trans::override_with_copy("@%*", tr,
 log, ̀ __FILE__, ̀ __LINE__);
 endfunction
endclass

Summary

VMM provides a pre-defined factory API that greatly eases the
implementation of object factories.

You should perform the following three steps to create an effective
factory service:

10-21

VMM User Guide

1. Model the object using a class and use the
`vmm_class_factory macro to make the object factory
enabled.

2. In testbench components that create instances of the objects,
create the object instance using the object's
create_instance() method so that this object instance can
be replaced easily, as required.

3. Replace the object factory as needed using either the
override_with_copy() or override_with_new()
methods of the object.

10-22

VMM User Guide

Hierarchical Configuration Primer

Introduction

Configurations are important elements of a verification environment.
They are aimed at configuring various testbench components as well
as the DUT. In addition to the usual ways of setting them with
assignment statements and/or declarative constraints in objects,
VMM allows configurations to be set from the simulator command
line or a options file as well as from different hierarchies in the
verification environment.

This primer describes how the vmm_opts utility class helps to pass
values from the command line, option file during runtime and from
the source code across hierarchies.

10-23

VMM User Guide

Figure 10-2 Environment Hierarchy

The testbench comprises of a few key elements, some of which are
configuration-related. At the environment level, a time-out
configuration parameter is defined, which defines how long the
environment should be allowed to run if different verification
components do not consent to the test to be completed for specific
reasons.

The top-environment instantiates two subenvironments, the CPU
subenvironment and the SRAM subenvironment. In the CPU
subenvironment level, one of the configuration parameters is
num_scenarios, which defines the number of scenarios to
generate by the scenario generator.

10-24

VMM User Guide

The following sections walks you through different ways how global,
hierarchical and structural options can be set and the values
collected from within the code. Except for specifying instance paths
through match patterns in the case of hierarchical options and
structural options, the techniques of setting such options is the same
across all three modes. Therefore, setting these different type of
configuration options are discussed at the end.

Step 1: Setting/Getting Global Options

VMM supports global options setting from the command line as well
as from different code heirarchies and collecting them through by
using vmm_opts::get_*() methods. As this is a global option, it
has only one value which is more applicable for global environment
variables such as, verbosity control, channel record/playback facility,
etc.

Global options such as the simulation timeout limit generally set in
the pre-test timeline retreiving these values. The configure_ph()
phase is the recommended for capturing these values in the code.

You can change the global options in the command line, or in a
command file, or by using the set_*() method in the testbench
code. When global options are set from either the command line or
from within the code, only the absolute value is specified and there
is no need to specify the instance path hierarchy through the match
patterns as global options are applicable throughout the complete
environment.

Example 10-13 explains how to use global option for defining an
environment parameter.

10-25

VMM User Guide

Example 10-13 Getting Environment Timeout Option
class cntrlr_env extends vmm_group;
 int timeout;
 function void configure_ph();
 timeout = vmm_opts::get_int("TIMEOUT",
 100_000_000,
 "Simulation Timeout Limit");
 endfunction
endclass

This provides the capability to specify these configuration options at
run time using the syntax similar to
+vmm_opts+TIMEOUT=[value] or
+vmm_opts_TIMEOUT=[value].

Another way to set the the value is through the set_*() methods
in the code, however, for this specific example, you should set in a
phase before the configure_ph.

Step 2: Setting/Getting Hierarchical Options

In the previous step, you learnt how to assign a global option and
then collect the value in the code. In some cases, you might want to
specify an option on an instance basis or to specify the option either
in code, command line or in a file. This step describes on how VMM
can provide a set of get_object_*() methods that allows you to
handle these situations.

You can use the get_object_*() methods to detect whether the
named options are specified by the command line and assigns the
parameters with the specified option values or default values. This
provides the capability to specify these configuration options at run
time using the syntax similar to +vmm_opts+name=[value] or
+vmm_opts_name=[value].

10-26

VMM User Guide

Most of the arguments are identical between the get_object_*()
method and the corresponding get_*() method except that the
get_object_*() methods have an output is_set argument
which is set to TRUE if an explicit value is specified for the option. It
also has an input obj argument which allows you to specify the
object instance for the given option. The former is useful to test
whether a specific option has been explicitly set to. The latter
enables the hierarchical options.

The object hierarchy is specified using the custom regular
expression defined in VMM. Given that most of these hierarchical
options can be leveraged by the testcase to modify testbench
behaviour across different instances, you should typically use the
vmm_opts::get_object_* method after the
configure_test_ph(), where the options would mostly be set
by the testcases.

Example 10-14 Getting Hierarchical Option
class vip extends vmm_xactor;
bit b;
int i;
function start_of_sim_ph();
bit is_set;
b = vmm_opts::get_object_bit(is_set, this, "B",
"SET b value", 0);
i = vmm_opts::get_object_int(is_set, this, "I", 0,
"SET i value", 0);
endfunction
endclass

Step 3: Getting Structural Options

In the previous step, you learnt how to use hierarchical options.

10-27

VMM User Guide

You will now learn how to assign options that affect the structure of
the testbench components in the verification environment, a.k.a
structural options. For instance, configuring transactors could be
necessary for setting memory spaces, number of transactions or
scenarios, protocol-specific parameters, etc.

Structural options should be declared in the transactors that extend
vmm_xactor or the environments/subenvironments that extend
vmm_group.

VMM provides a set of shorthand macros called
`vmm_unit_config_*() to take advantage of the
vmm_opts::get_object_*() methods. When the
`vmm_unit_config_begin() and `vmm_unit_config_end
macros are used, it is ensured that that these methods are called in
the right phase, i.e. in configure_ph(). You should use these
macros to declare these structural options and to provide default
values. These structural options can then be set by using the
vmm_opts::set_*() methods procedurally or with the run-time
command line arguments or option files.

Example 10-15 shows how to model a cpu subenvironment with
some structural options. The enable_gen option is non-random
and specifies whether the generator is enabled. The
num_scenarios option is randomized and specifies number of
scenarios to be generated.

Example 10-15 Getting Structural Options
class cpu_subenv extends vmm_group;
 `vmm_typename (cpu_subenv)
 bit enable_gen;
 rand int num_scenarios;
 vmm_ms_scenario_gen gen;

 function void configure_ph();

10-28

VMM User Guide

 `vmm_unit_config_bit(enable_gen, 1,
 "Enable/disable the scenario generator",
 0, DO_ALL);
 endfunction
 function void start_of_sim();
 `vmm_unit_config_rand_int (num_scenarios, 1,
 "runs n scenarios", 0, DO_ALL);
 void'(this.randomize());
 this.gen.stop_after_n_scenarios = num_scenarios;

 endfunction
endclass

A shorthand `vmm_unit_config_bit macro is used for the
enable_gen option. The first argument is the option itself. The
second argument is the default value, if it is not set. The verbosity,
the second last argument, is set to 0. DO_ALL in the last argument
implements all the built-in methods such as copy() and
allocate().

Similarly, a shorthand `vmm_unit_config_rand_int macro is
used for the num_scenarios option. The
`vmm_unit_config_rand* macro also sets the rand_mode of
the variable to 0, so that the value set through configuration will not
change due to randomization.

Using the shorthand macro to declare the num_scenarios option
in the start_of_sim_ph() phase instead of the
configure_ph() is deliberate. A lot of this has to do with how the
testbench use model is defined. It is intended for each test in the
testbench to have the ability to modify the number of random
scenarios at the beginning of the test. To allow the tests to call
set_int() method to modify this option at the beginning of the test,
i.e. in the configure_test_ph() phase of the test timeline, this
num_scenario option is assigned here using the shorthand

10-29

VMM User Guide

`vmm_unit_config_rand_int()macro. This is important when
you concatenate the multiple tests with different numbers of
scenario.

Step 4: Setting Options

There are three different ways to set options, in the order of
precedence,

• Use the set_*() methods

• Use the option file

• Use the command line arguments

Step 4a: Setting Options with set_*

You can use the set_*() methods to specify the options in a given
hierarchy path pattern directly. If there is a pattern match to options,
they are set using direct assignments. If there is no match, random
options get randomized with the randomize() method and non-
random options get the specified default values.

Example 10-16 Setting Options in Code
class test_random extends vmm_test;

 `vmm_typename (test_random);
 ...
 virtual function void configure_test__ph ();
 vmm_opts::set_int ("%*:num_scenarios", 50);
 endfunction

endclass

10-30

VMM User Guide

The num_scenarios option is matched with the%* hierarchical
name pattern and is set to 50 for the test, test_random. For more
details on the match patterns and how they can be used to specify
select hierarchies, see Simple Match Patterns.

As the detection of setting the num_scenarios option is done in the
start_of_sim_ph() phase, as long as the set_int() method is
called before that, for example, the build_ph() phase in the pre-
test timeline or configure_test_ph() phase in the test timeline,
the specified option value will be in effect for the test.

Step 4b: Setting Options in Command Line

The test to run and the num_scenarios options can be specified in
the command line.

For example,

% simv +vmm_test=test_random \
 +vmm_num_scenarios=5

% simv +vmm_test=test_random \
 +vmm_opts+num_scenarios=5

The simulation will run for 5 scenarios, instead of 50, specified in the
test. Overriding the options in the command line takes a high
precedence than the set_*() methods.

Step 4c: Setting Options With Command File

VMM options can be provided using the option files as well, where
options are provided using +opt_name.

// file: prj_opts.txt

10-31

VMM User Guide

+num_scenarios=10

Any combinations of the above methods can be used to set the
options. For example, the command below runs the test_random
test, uses the option file to configure the num_scenarios option,
and uses the command line argument to set the simulation time-out
to 99999.

% simv +vmm_test=test_random \
 +vmm_opts_file+prj_opts.txt \
 +vmm_opts+timeout=99999

The command below shows the precedence of the three option
setting methods. The command configures the cpu subenvironment
to run 10 scenarios, not 50 as specified in the test_random class,
and not 10 as specified in the option file.

% simv +vmm_test=test_random \
 +vmm_opts_file+prj_opts.txt \
 +vmm_opts+num_scenarios=10

The command line options have the highest precedence, then the
option file, and last the set_*() methods in the code.

Conclusion

VMM provides the vmm_opts utility class to configure options in any
level of the testbench hierarchy. You can set these options
dynamically from the command line, option file, or from procedurally
from the testbench code.

10-32

VMM User Guide

RTL Configuration Primer

Introduction

Unlike the configurations that affect the behavior of the testbench,
there are some configuration parameters that define the RTL
configuration. Examples of these configuration parameters are
number of input ports, number of output ports, FIFO sizes and
depths, etc. These configuration parameters must be shared with the
testbench for consistent design verification.

RTL configuration depends upon an input file that describes the
parameters for a given instance. While it is usual that these files are
created manually, VCS can be used to randomize the RTL
configurations and create one RTL configuration file for each
randomized configurations. This feature helps verify the design in
multiple configurations.

10-33

VMM User Guide

Figure 10-3 Environment Hierarchy

The testbench comprises several RTL configurations in different
levels of hierarchy. The two subenvironments have their own RTL
configurations: the CPU subenvironment has a CPU RTL
configuration, cpu_config, and the SRAM subenvironment has a
SRAM RTL configuration, sram_config. The top-level RTL
configuration, cntrlr_config, simply instantiates the lower-level
RTL configurations and makes them random.

10-34

VMM User Guide

Step 1: Defining RTL Configurations

VMM provides the base class for RTL configuration called,
vmm_rtl_config. You can use the extensions of
vmm_rtl_config to encapsulate and define the RTL configuration
parameters for the design.

The following RTL configuration parameters for this design are
explained:

• CPU Address Width: This is the physical address width of the CPU
interface on the DUT.

• Number of SRAM devices: This DUT can be configured to
physically connect to a single, 2, or 4 SRAM devices, etc.

You can use the pre-defined macros, `vmm_rtl_config_* to
specify the mapping between the configuration variable and the
corresponding string in the configuration file.

Note: These macros should be defined between
`vmm_rtl_config_begin and `vmm_rtl_config_end.

Example 10-17 Implementing RTL Configuration
class cpu_config extends vmm_rtl_config;
 rand int addr_width = 32;
 `vmm_rtl_config_begin (cpu_config)
 `vmm_rtl_config_int (addr_width, addr_width)
 `vmm_rtl_config_end (cpu_config)
 function new (string name = "",
 vmm_rtl_config parent = null);
 super.new (name, instance);
 endfunction
endclass

class sram_config extends vmm_rtl_config;
 rand int num_sram_devices;

10-35

VMM User Guide

 ...
 constraint cst_sram_config_valid {
 num_sram_devices inside {1, 2, 4};
 }
 `vmm_rtl_config_begin (sram_config)

`vmm_rtl_config_int (num_sram_devices,
 num_sram_devices)
 `vmm_rtl_config_end (sram_config)
 function new (string name = "",
 vmm_rtl_config parent = null);

super.new (name, instance);
 endfunction
endclass

Step 2: Nested RTL Configurations

The top-level configuration, cntrlr_config simply instantiates the
two subenvironment RTL configuration objects.

class cntrlr_config extends vmm_rtl_config;
 rand cpu_config cpu_cfg;
 rand sram_configsram_cfg;

 function new (string name, vmm_rtl_config parent=null);
 super.new(name);
 cpu_cfg = new ("cpu_cfg", this);
 sram_cfg = new ("sram_cfg", this);
 endfunction

endclass

Step 3: Instantiating RTL Configurations

You use the following two-pass process for the RTL configuration:

10-36

VMM User Guide

1. Generate the RTL configuration for the RTL (and testbench) to
use and save it in a file. This can be done using VCS but it does
not have to be.

2. The parameters in the RTL configuration file are then used to
compile both the design and testbench (which contains compile-
time conditional code using `ifdef/`endif or parameterized
values). Simulations are then run with this RTL configuration to
verify the design in this configuration.

In Example 10-18, the CPU subenvironment has a RTL configuration
and the SRAM subenvironment has another RTL configuration. It
associates the previously declared cpu_config object within the
CPU subenvironment in the build_ph() phase.

Example 10-18 Instantiating RTL Configuration in Environment
class cpu_subenv extends vmm_group;
 `vmm_typename (cpu_subenv)
 cpu_config cfg;
 function void build_ph();
 $cast(this.cfg,
 vmm_opts::get_object_obj (is_set,
 this, "cpu_cfg"));
 endfunction
endclass

class sram_subenv extends vmm_group;
 `vmm_typename (sram_subenv)
 sram_config cfg;
 sram_model rams[];
 function void build_ph();
 $cast (this.cfg,
 vmm_opts::get_object_obj(is_set,
 this, "sram_cfg"));
 this.rams = new [cfg.num_sram_devices];
 for (int i = 0; i < cfg.num_sram_devices; i++) begin
 this.rams[i] = new (..);
 end
 endfunction

10-37

VMM User Guide

endclass

These RTL configurations are used in the build_ph() phase
because it affects the structural content of the verification
environment, such as the construction of right number of the SRAM
models in the environment above.

Step 4: Generating RTL Configuration File

When you run the simulation with the +vmm_gen_rtl_config
option, VCS considers all the objects that extend the
vmm_rtl_config base class, create these configuration objects,
randomize their contents, and write them out to multiple RTL
configuration files, one for each vmm_rtl_config instance:

% simv +vmm_rtl_config=../RTLCFG +vmm_gen_rtl_config

At this point, no simulation is run during this pass. The RTL
configuration files are written out in such a way that the hierarchical
paths to the vmm_rtl_config instance are identical to the directory
structure and RTL configuration files in it. The root directory for the
RTL configuration files is specified by using the +vmm_rtl_config
switch.

This creates a set of files in this example in a directory structure
identical to the hierarchical structure of the RTL configuration objects
in the testbench. An example of the file content is shown in
Figure 10-4.

10-38

VMM User Guide

Figure 10-4

Step 5: Simulation Using RTL Configuration File

VCS now needs to read a previously generated RTL configuration,
which might contain multiple RTL configuration files from the
directory specified by the +vmm_rtl_config switch.

% simv +vmm_rtl_config=../RTLCFG +vmm_test=test_random

Other VCS runtime arguments can be added to the command line to
kick off one or more simulations with the same "RTLCFG"
configuration.

10-39

VMM User Guide

Conclusion

Some designs in RTL are configurable using `ifdef/`endif or
parameter values, which must all be set before simulation runs.
VMM provides the capability to randomize and generate the RTL
configuration to use and then in a separate pass, verify the design in
the specified configuration. The RTL configuration can also be
created manually with directed parameters.

The RTL configuration files are organized in the directories and
subdirectories representing the same object hierarchies in the
testbench. You can customize the file format by using the file format
class.

10-40

VMM User Guide

Implicitly Phased Master Transactor Primer

Introduction

This primer explains how to write VMM-compliant implicitly phased
master transactor. A master transactor is a transaction-level
interface on one side and pin wiggling on the other, also known as
bus-functional models (BFM).

This section provides a step-by-step recommendations for
implementing a command-layer transactor. As such, you should
read it in a sequential fashion. You can use the same sequence to
create your own specific transactor.

The Protocol

The protocol used in this primer is the AMBA™ Peripheral Bus (APB)
protocol. It is a simple single-master address-based parallel bus
providing atomic individual read and write cycles. The protocol
specification can be found in the AMBA™ Specification (Rev 2.0)
available from ARM (http://arm.com).

When writing a reusable transactor, you should think of all possible
applications it might be used in and not just the device you are using
it for the first time. Therefore, even though the device in this primer
only supports 8 address bits and 16 data bits, the APB transactors
should be written for the entire 32-bit of address and data
information.

10-41

VMM User Guide

The Verification Components

Figure 10-5 illustrates the various components that are created
throughout this primer. A command-layer master transactor
interfaces directly to the DUT signals and initiates transactions upon
requests on a transaction-level interface.

Figure 10-5

10-42

VMM User Guide

Step 1: Implementing the APB Interface

The first step is to define the physical signals used by the protocol to
exchange information between a master and a slave. A single
exchange of information such as, READ or WRITE operation along
with address or data is called a transaction. There might be multiple
slaves on an APB bus but there can only be one master. Slaves are
differentiated by responding to different address ranges.

The signals are declared inside an interface. The name of the
interface is prefixed with "apb_" to identify that it belongs to the
APB protocol. The entire content of the file declaring the interface is
embedded in an `ifndef/`define/`endif construct. This
allows the file to be included multiple times, whenever required,
without causing multiple-definition errors.

The first step is to define the physical signals used by the protocol to
exchange information between a master and a slave. A single
exchange of information (READ or WRITE operation) is called a
transaction. There may be multiple slaves on an APB bus but there
can only be one master. Slaves are differentiated by responding to
different address ranges.

The signals listed in the AMBA™ specification in section 2.4 are
declared as wires inside the interface [Line 4-9].

Because this is a synchronous protocol, clocking blocks are used to
define the direction and sampling of the signals [Line 10-13].

The clocking block defining the synchronous signals is specified in
the modport for the APB master transactor. The clock signal need
not be specified as it is implicit in the clocking block [Line 14].

10-43

VMM User Guide

The interface declaration is now sufficient for writing a master
APB transactor. To be fully compliant, it should eventually include a
modport for a slave and a passive monitor transactor. These can be
added later when those transactors are written.

1 `ifndef APB_IF__SV
2 `define APB_IF__SV

3 interface apb_if(input bit pclk);
4 wire [31:0] paddr;
5 wire psel;
6 wire penable;
7 wire pwrite;
8 wire [31:0] prdata;
9 wire [31:0] pwdata;

10 clocking mck @(posedge pclk);
11 output paddr, psel, penable, pwrite, pwdata;
12 input prdata;
13 endclocking: mck

14 modport master(clocking mck);
15 endinterface: apb_if
16 `endif

To make the transactor component reusable across test benches,
the physical level interface is modeled in two steps. This removes
any dependency between the test, env and the DUT interface.

• Create an object wrapper for the virtual interface and make it as
one of the properties of the transactor.

• Set this object using VMM configuration options either from the
enclosing environment or from the top level.

class apb_master_port extends vmm_object;
 virtual apb_if.master mstr_if;
 function new(string name,
 virtual apb_if.master mstr_if);

10-44

VMM User Guide

 super.new(null, name);
 this.mstr_if = mstr_if;
 endfunction
endclass

Step 2: Instantiating and Connecting the DUT

The interface can now be connected to the DUT. It is instantiated in
a top-level module, alongside of the DUT instantiation. The
connections to the DUT pins are specified using a hierarchical
reference to the wires in the interface instance [Line 5-13].

This top-level module also contains the clock generators; using the
bit type and ensuring that no clock edges occurs at time zero [Line
2, 3, 12 and 13].

// File: Command_Master_Xactor/tb_top.sv
1 module tb_top;
2 bit clk = 0;
3 apb_if apb0(clk);
 ...
4 my_design dut(...,
5 .apb_addr (apb0.paddr),
6 .apb_sel (apb0.psel),
7 .apb_enable (apb0.penable),
8 .apb_write (apb0.pwrite),
9 .apb_rdata (apb0.prdata),
10 .apb_wdata (apb0.pwdata),
 ...
12 .clk (clk));

13 always #10 clk = ~clk;

14 endmodule: tb_top

10-45

VMM User Guide

Step 3: Modeling the APB Transaction

The next step is to define the APB transaction descriptor.
Traditionally, tasks would have been defined, one for the READ
transaction and one for the WRITE transaction.

task read(input bit [31:0] addr,
 output logic [31:0] data);

task write(input bit [31:0] addr,
 input bit [31:0] data);

This works well for directed tests, but not at all for random tests. A
random test requires a transaction descriptor. This descriptor is a
class extended from the vmm_data class, containing a public rand
property enumerating the directed tasks and public rand properties
for each task argument. If an argument is the same across multiple
tasks, a single property can be used. It also needs a static vmm_log
property instance used to issue messages from the transaction
descriptor. This instance of the message service interface is passed
to the vmm_data constructor [Line 6-8] and it is done by using the
shorthand macros.

Note how the same property is used for "data". It is interpreted
differently depending on the transaction kind. In a WRITE
transaction, it is interpreted as the data to be written. In a READ
transaction, the random content is initially ignored and it is replaced
by the data value that was read. The type for the "data" property is
logic as it is a superset of the bit type and allows the description of
READ cycles to reflect the unknown results.

A transaction-level interface is required to transfer transaction
descriptors to a transactor to be executed. This is done by using the
`vmm_channel macro [Line 16].

10-46

VMM User Guide

The transaction descriptor class can be factory enabled by using
`vmm_class_factory macro. Factory Service provides an easy
way to replace any kind of transaction object by a similar object. This
replacement can take place from anywhere in the verification
environment or in the test case [Line 14]. For details on factory, see
Step 1: Modeling Classes to be Factory Ready.

The transaction descriptor class requires many utility methods
implemented to facilitate various types of operation. All the
necessary utility classes like new, copy, compare, allocate,
byte pack and unpack etc. along with vmm_log instance can be
automatically done using the standard shorthand macros. The
shorthand macros implements the code for these methods.

The following code is the complete transaction descriptor class using
the shorthand macros [Line 9-13]:

1 `ifndef APB_TRANS__SV
2 `define APB_TRANS__SV

3 `include "vmm.sv"

4 class apb_trans extends vmm_data;
5 `vmm_typename(apb_trans)

6 rand enum {READ, WRITE} kind;
7 rand bit [31:0] addr;
8 rand logic [31:0] data;

9 `vmm_data_member_begin(apb_trans)
10 `vmm_data_member_scalar(addr, DO_ALL)
11 `vmm_data_member_scalar(data, DO_ALL)
12 `vmm_data_member_enum(kind, DO_ALL)
13 `vmm_data_member_end(apb_trans)

14 `vmm_class_factory(apb_trans)
15 endclass: apb_trans

10-47

VMM User Guide

 16 `vmm_channel(apb_trans)
 17 ...
 18 `endif

Step 4: Modeling the Master Transactor

In VMM implicit phasing, the environment steps are called as phases
that are used to coordinate the simulation execution. Phases can be
thought as testbench component activities which are activated and
flow controlled through a timeline. VMM predefines several
simulation phases. Transactors progress through a series of phases
throughout the simulation. The phases of all transactors are
automatically coordinated and executed synchronously with other
transactors during simulation execution.

Implicit phasing works only with transactors that are based on the
vmm_group or vmm_xactor base class. Also, note that the
stop_xactor method is not called automatically and should be
called in the shutdown_ph of this transactor. The enclosing
environment is responsible for controlling the shutdown behavior of
the transactor. You can override any of these phase methods to
implement the required functionality for a particular testbench
component.

For our APB master, the important phases are,

• build_ph

• connect_ph

• start_of_sim_ph

• run_ph

• shutdown_ph

10-48

VMM User Guide

You should use the main method to implement the transactor
functionality and fork off the run phase to advance to the next phase.

The master transactor can now be started. It is a class derived from
the vmm_xactor base class.

The transactor needs a transaction-level interface to receive
transactions to be executed and a physical-level interface to wiggle
pins. The former is done using vmm_channel instance and the latter
is done by using a virtual modport wrapper class.

READ and WRITE tasks are implemented in this class. They are
declared virtual so that the transactor might be extended to modify
the behavior of these tasks if required. They are also declared
protected to prevent them from being called from outside the class
and create concurrent bus access problems.

class apb_master extends vmm_xactor;
 `vmm_typename(apb_master)
 apb_trans_channel in_chan;
 apb_master_port mstr_port_obj;
 virtual apb_if.master mstr_if;

 extern function new(string inst="",
 vmm_unit parent=null);
 // Supporting tasks
 extern virtual protected task read(
 input bit [31:0] addr, output logic [31:0] data);
 extern virtual protected task write(
 input bit [31:0] addr, input bit [31:0] data);

 // Component phases
 extern virtual function void reset_xactor(
 reset_e rst_typ = SOFT_RST);
 extern virtual function void build_ph();
 extern virtual function void connect_ph();
 extern virtual function void start_of_sim_ph();
 extern virtual task run_ph();

10-49

VMM User Guide

 extern virtual task shutdown_ph();

 // Factory enablement
 extern virtual function apb_master allocate();
 extern virtual function apb_master copy();
 `vmm_class_factory(apb_master)
endclass: apb_master

It is important that this transactor gets associated with its parent. The
main reason is to allow it to be replaced, queried or its options to be
modified. This association is established in the constructor:

function apb_master::new(string inst="",
 vmm_unit parent=null);
 super.new(get_typename(), inst, 0, parent);
endfunction

The get_typename() method returns the string apb_master .
It is declared by the `vmm_typename(apb_master)macro.

When the transactor is reset, the input channel must be flushed and
the critical output signals must be driven to their idle state. This is
accomplished in the extension of the
vmm_xactor::reset_xactor() method. This method might be
called in the transactor constructor to initialize the output signals to
their idle state, or explicit signal assignments might be used in the
constructor.

virtual function void apb_master::reset_xactor(
 reset_e rst_typ = SOFT_RST);
 super.reset(rst_typ);
 this.in_chan.flush();
 this.sigs.mck.psel <= '0;
 this.sigs.mck.penable <= '0;
 endfunction: reset_xactor

10-50

VMM User Guide

An analysis_port is used to convey the transaction processed by
this transactor to the other testbench components. In the build
phase, construct the analysis port and TLM interfaces to associate
this analysis port with this transactor so that you can back trace to it
if necessary. You might need the TLM interfaces for passing
transactions in a blocking/non-blocking way.

class apb_master extends vmm_xactor;
 `vmm_typename(apb_master)
 ...
 vmm_tlm_analysis_port#(apb_master, apb_trans)
 analysis_port;
 ...
 function void apb_master::build_ph();
 analysis_port = new(this,
 {get_object_name(), "_analysis_port"});
 endfunction: build_ph
endclass: apb_master

In the connect phase, the testbench components are connected to
assist the data flow between the generation through the DUT pin
interface.

In the APB transactor's connect phase, a handle to the virtual
interface port is obtained using the vmm_opts_get method. Here,
the virtual interface connection is made between the master
transactor and the DUT pin interface.

virtual function void apb_master::connect_ph();
 bit is_set;
 if ($cast(this.mstr_port_obj,
 vmm_opts::get_object_obj(is_set,
 this,
 "apb_mstr_port")))
 begin
 if (mstr_port_obj != null)
 this.mstr_if = mstr_port_obj.mstr_if;
 else
 `vmm_fatal(log, "Virtual port wrapper not

10-51

VMM User Guide

initialized");
 end
endfunction: connect_ph

Implement the start_of_sim phase to ensure that the channel
and the interface are present. If null, report a FATAL error message
and exit the simulation.

function void apb_master::start_of_sim_ph();
 if (mstr_port_obj == null)
 `vmm_fatal(log, "Virtual port is not connected to
the actual interface instance");
endfunction

The transaction descriptors are pulled from the input channel and
translated into method calls in the main() task. The most flexible
transaction execution mechanism uses the active slot as it supports,
block, non-blocking and out-of-order execution models.

Because the protocol supports being suspended between
transactions, the
vmm_xactor::wait_if_stopped_or_empty() method is used
to suspend the execution of the transactor if it is stopped.

The main apb master transactor functionality is implemented in the
main() task of the transactor. You have a choice to use the main
method or the run phase to implement this behavior.

There is no difference between using the main method (VMM 1.1
style) over the run phase (VMM 1.2 style).

Note: After processing the current transaction, the analysis port's
write method is called to issue the observed transaction to the
other testbench components for further analysis.

10-52

VMM User Guide

task apb_master::run_ph();
 apb_trans tr;
 bit drop;
 fork
 forever begin
 this.wait_if_stopped_or_empty(this.in_chan);

this.in_chan.activate(tr);
 ...
 this.in_chan.start();
 case (tr.kind)
 apb_trans::READ: this.read(tr.addr, tr.data);
 apb_trans::WRITE: this.write(tr.addr, tr.data);
 endcase
 this.in_chan.complete();
 ...
 this.analysis_port.write(tr);
 this.in_chan.remove();
 end
 join_none
endtask: run_ph

In the shutdown_ph phase, the stop_xactor() method is called.

Note: The enclosing testbench environment is responsible for
controlling the shutdown phase of this transactor.
task apb_master::shutdown_ph();
 this.stop_xactor();
endtask

The READ and WRITE tasks are coded exactly as they would be if
good old Verilog was used. It is a simple matter of assigning output
signals to the proper value then sampling input signals at the right
point in time. The only difference is that the physical signals are
accessed through the clocking block of the virtual modport instead of
pins on a module and they can only be assigned using non-blocking
assignments.

10-53

VMM User Guide

Similarly, the active clock edge is defined by waiting on the clocking
block itself, not an edge of an input signal in order to increase
flexibility and reusability of the code.

protected task apb_master::read(input bit [31:0] addr,
 output logic [31:0] data);
 this.sigs.mck.paddr <= addr;
 this.sigs.mck.pwrite <= '0;
 this.sigs.mck.psel <= '1;
 @ (this.sigs.mck);
 this.sigs.mck.penable <= '1;
 @ (this.sigs.mck);
 data = this.sigs.mck.prdata;
 this.sigs.mck.psel <= '0;
 this.sigs.mck.penable <= '0;
endtask: read

protected task apb_master::write(input bit [31:0] addr,
 input bit [31:0] data);
 this.sigs.mck.paddr <= addr;
 this.sigs.mck.pwdata <= data;
 this.sigs.mck.pwrite <= '1;
 this.sigs.mck.psel <= '1;
 @ (this.sigs.mck);
 this.sigs.mck.penable <= '1;
 @ (this.sigs.mck);
 this.sigs.mck.psel <= '0;
 this.sigs.mck.penable <= '0;

 endtask: write

To make the transactor factory enabled, you should
use`vmm_class_factory macro.

Note: You must implement the copy and allocate method
whenever using the factory for the transactor implementation.

function apb_master apb_master::copy();
 apb_master drv;

10-54

VMM User Guide

 drv = this.allocate();
 return drv;
endfunction

function apb_master apb_master::allocate();
 vmm_unit prnt;
 apb_master drv;
 $cast(prnt, this.get_parent_object());
 drv = new(this.get_object_name(), prnt);
 return drv;
endfunction

The transactor as presently coded provides basic functionality. Now
you have a transactor that can perform READ and WRITE cycles
with identical capabilities to one you would have written using the old
Verilog language.

The problem is that the transactor as coded is not very reusable. It
is not be possible to modify the behavior of this transactor, for
example, to introduce delays between transactions, to synchronize
the start of a transaction with some other external event, or modify a
transaction to inject errors-without modifying the transactor itself or
constantly rewrite the apb_master::read() and
apb_master::write() virtual methods.

A callback method allows you to extend the behavior of a transactor
without having to modify the transactor itself. Callback methods
should be provided before and after a transaction executes.

The "pre-transaction" callback method allows errors to be injected
and delays to be inserted. The "post-transaction" callback method
allows delays to be inserted and the result of the transaction to be
recorded in a functional coverage model or checked against an
expected response.

10-55

VMM User Guide

The callback methods are first defined as virtual tasks or virtual void
functions in a callback façade class extended from the
vmm_xactor_callbacks base class. It is a good idea to create a
mechanism in the "pre-transaction" callback method to allow an
entire transaction to be skipped or dropped.

typedef class apb_master;
class apb_master_cbs extends vmm_xactor_callbacks;
 virtual task pre_cycle(apb_master xactor,
 apb_trans cycle,
 ref bit drop);
 endtask: pre_cycle
 virtual task post_cycle(apb_master xactor,
 apb_trans cycle);
 endtask: post_cycle
endclass: apb_master_cbs

Next, the appropriate callback method needs to be invoked at the
appropriate point in the execution of the transaction by using the
`vmm_callback() macro. This is done in the run_ph.

 task apb_master::run_ph();
 bit drop;
 fork
 forever begin
 drop = 0;
 `vmm_callback(apb_master_cbs,
 pre_cycle(this, tr, drop));
 if (drop) begin
 `vmm_debug(log,
 {"Dropping transaction...\n",
 tr.psdisplay("")});
 this.in_chan.remove();
 continue;
 end
 `vmm_callback(apb_master_cbs,
 post_cycle(this, tr));
 end
 join_none
 endtask: run_ph

10-56

VMM User Guide

For complete code, see Appendix.

Step 5: Implementing an Observer

The following example shows how to implement a simplified
observer model that prints the observed transaction. This is
instantiated in the testbench environment and the appropriate
connections are made during the connect phase.

class observer extends vmm_object;
 `vmm_typename(observer)
 vmm_tlm_analysis_export#(observer, apb_trans) obsrv =
new(this,
 "apb_trans_obsrv");

 function new(string inst="",vmm_object parent = null);
 super.new(parent, get_typename());
 endfunction
endclass: observer

 virtual function void write (int id = -1, apb_trans tr);
 tr.display("Trans Rcvd ");
 endfunction: write

Step 6: Instantiating the Components in the
Environment

You use the vmm_group base class to implement the implicitly-
phased apb environment. An instance of the apb master transactor,
observer and an APB channel are instantiated here. The components
are built in the build phase and connected to each other in the
connect phase of the environment.

// File: apb/tb_env.sv
`ifndef TB_ENV__SV
`define TB_ENV__SV

10-57

VMM User Guide

`include "vmm.sv"
`include "apb.sv"

class tb_env extends vmm_group;
 `vmm_typename(tb_env)
 apb_master mstr;
 apb_trans_channel gen_to_drv_chan;
 observer obsrv_apb_trans;
 vmm_log log = new("log", "TB_ENV_LOG");

 function new(string inst, vmm_unit parent);
 super.new(get_typename(), inst, parent);
 endfunction

 extern function void build_ph();
 extern function void connect_ph();
endclass: tb_env

`endif

The component construction happens in the build phase.
Environment components are allocated as required by the test
bench. Factory service acts as a replacement for object construction.
Rather than declaring an object and constructing it using its new()
method, VMM provides facilities to construct and replace the objects
as needed by the testbench.

Create object instance by using a method
class::create_instance(), this object instance in turn
becomes a factory, an object that can be replaced.

Replace this factory object by using another set of static methods for
either copying or allocating a new object using,
class::override_with_copy() or
class::override_with_new()methods.

function void tb_env::build_ph();
 this.mstr = apb_master::create_instance(this,
 "APB_MSTR");

10-58

VMM User Guide

 this.gen_to_drv_chan = new("Gen2DrvChan", "apb_chan");
 this.obsrv_apb_trans = new("TRANS_OBSVR", this);
endfunction: build_ph

The input channel of this transactor is connected in the connect
phase of the environment as needed. TLM interface connection
happens in this phase to bind the observer to the appropriate
transactor.

function void tb_env::connect_ph();
 this.mstr.in_chan = this.gen_to_drv_chan;
 this.mstr.analysis_port.tlm_bind(
 obsrv_apb_trans.obsrv);
endfunction: connect_ph

 Step 7: Implementing Sanity Test

You use the VMM configuration options to set and get the virtual
interface port objects. The environment is created and the interface
port object is set in the initial block of the main program.

// File: apb/apb_tb.sv
`include "test_simple.sv"
program automatic apb_tb;
 tb_env env ;
 apb_master_port apb_mstr_p0;
 initial begin
 env = new("TB_ENV");
 apb_mstr_p0 = new("apb_port", tb_top.apb_if_p0);
 // Set the master port interface
 vmm_opts::set_object("APB_MSTR:apb_mstr_port",
 apb_mstr_p0, env);
 end
endprogram

10-59

VMM User Guide

A simple test to perform a write followed by a read of the same
address can now be written and executed to verify the correct
operation of the transactor and the DUT interface. The test is written
by extending the vmm_test base class.

The directed stimulus is created by instantiating transaction
descriptors appropriately filled. It is a good idea to randomize these
descriptors by only constraining those properties that are needed for
the directed test.

By doing this, any additional property is randomized instead of
defaulting to always the same value.

// File: apb/test_simple.sv
`include "tb_env.sv"
class apb_test1 extends vmm_test();
 `vmm_typename(apb_test1);
 tb_env env;
 function new (string name = "APB_TEST1", tb_env env);
 super.new(name);
 this.env = env;
 endfunction

 task run_ph();
 apb_trans rd, wr;
 bit ok;

 // Transaction : Write
 wr = new;
 ok = wr.randomize() with {kind == WRITE;};
 if (!ok)
 ̀ vmm_fatal(log, "Unable to randomize WRITE cycle");
 env.mstr.in_chan.put(wr);

 // Transaction : Read
 rd = new;
 ok = rd.randomize() with {
 kind == READ;
 addr == wr.addr;

10-60

VMM User Guide

 };
 if (!ok)
 ̀ vmm_fatal(log, "Unable to randomize READ cycle");
 env.mstr.in_chan.put(rd);

 // Compare the Read data
 if (rd.data[15:0] !== wr.data[15:0]) begin
 `vmm_error(log, "Readback value != write value");
 end
 endtask: run_ph
endclass

You can run this test many times, each time with a different seed to
verify the transactor and the DUT using different addresses.

To simplify, the test scenario is added directly in the run phase of
example. However, it is recommended to use MSSG for achieving
the same result.

Step 8: Adding Debug Messages

To be truly reusable, it should be possible to understand what the
transactor does and debug its operation without having to inspect the
source code. This capability might even be a basic requirement if
you plan on shipping encrypted or compiled code.

Debug messages should be added at judicious points to indicate
what the transactor is about to do, is doing or has done. These debug
messages are inserted using the `vmm_trace(), `vmm_debug()
or `vmm_verbose() macros.

To use these debug messages, see master transactor code in
Appendix.

10-61

VMM User Guide

Step 9: Implementing Transaction Generator

To promote the use of random stimulus, it is a good idea to pre-define
random transaction generators whenever transaction descriptors
are defined.

It is simple to use the `vmm_atomic_gen() and
`vmm_scenario_gen() macros in the transaction descriptor file.
These macros automatically create generators that follows all the
guidelines for any user-defined type.

The Multi Stream Scenario Generator (MSSG) base class
component provides the capability to implement hierarchical and
reusable transaction scenarios. It controls and coordinates existing
scenarios to achieve a fine-grained control over stimulus.

For details, see Chapter 6, "Implementing Tests & Scenarios".

Step 10: Implementing the Top-Level File

To include all the necessary files without having to know the detailed
filenames and file structure of the transactor, interface and
transaction descriptor, it is a good idea to create a top-level file that
automatically includes all the source files that make up the
verification IP for a protocol.

// File: apb/apb_tb_files.sv
`ifndef APB__SV
`define APB__SV
`include "vmm.sv"
`include "apb_if.sv"
`include "apb_rw.sv"
`include "apb_master.sv"
`endif

10-62

VMM User Guide

In this example, only a master transactor is implemented; but a
complete VIP for a protocol would also include a slave transactor
and a passive monitor transactor. All of these transactors would be
included in the top-level file.

10-63

VMM User Guide

Step 11: Congratulations!

You have now completed the creation of VMM-compliant command-
layer master transactor.

Upon reading this primer, you probably realized that there is much
code that is similar across different master transactors. Wouldn't be
nice if you could simply cut-and-paste from an existing VMM-
compliant master transactor and only modify what is unique or
different for your protocol? That can easily be done using the
"vmmgen" tool provided with VCS. Based on a few simple question
and answers, it will create a template for various components of a
VMM-compliant master transactor.

You may consider reading other publications in this series to learn
how to write VMM compliant command-layer slave transactors,
command-layer passive monitor transactors, functional-layer
transactors or verification environments.

10-64

VMM User Guide

Appendix A

The following example is the complete code of the APB master.

File: apb/apb_master.sv

`ifndef APB_MASTER__SV
`define APB_MASTER__SV

`include "apb_if.sv"
`include "apb_trans.sv"

////// Transactor Extension Callback methods /////
typedef class apb_master;
class apb_master_cbs extends vmm_xactor_callbacks;
 virtual task pre_cycle(apb_master xactor,
 apb_trans cycle,
 ref bit drop);
 endtask: pre_cycle

 virtual task post_cycle(apb_master xactor,
 apb_trans cycle);
 endtask: post_cycle
endclass: apb_master_cbs

/////////// APB Master Driver Class //////////
class apb_master extends vmm_xactor;
 `vmm_typename(apb_master)

 // Variables declaration
 apb_trans_channel in_chan;
 apb_master_port mstr_port_obj;
 virtual apb_if.master mstr_if;

 // Analysis port
 vmm_tlm_analysis_port#(apb_master, apb_trans)
analysis_port;

 // Component phases
 extern function new(string inst="", vmm_unit

10-65

VMM User Guide

parent=null);
 extern virtual function void reset_xactor(reset_e
rst_typ = SOFT_RST);
 extern virtual function void build_ph();
 extern virtual function void connect_ph();
 extern virtual function void start_of_sim_ph();
 extern virtual task run_ph();
 extern virtual task shutdown_ph();

 // Supporting tasks
 extern virtual protected task read(input bit [31:0]
addr, output logic [31:0] data);
 extern virtual protected task write(input bit [31:0]
addr, input bit [31:0] data);

 // Factory enablement
 extern virtual function apb_master allocate();
 extern virtual function apb_master copy();
 `vmm_class_factory(apb_master)

endclass: apb_master

////////////// Constructor //////////////////
function apb_master::new(string inst, vmm_unit parent);
 super.new(get_typename(), inst, 0, parent);
endfunction

/////////////// Build Phase /////////////////
function void apb_master::build_ph();
 // Construct the analysis port
 analysis_port = new(this, {get_object_name(),
"_analysis_port"});
endfunction: build_ph

////////////// Connect Phase ////////////////
function void apb_master::connect_ph();
 begin
 bit is_set;

`vmm_note(log,$psprintf("**** %s: Entering
connect_ph\n",get_object_hiername()));

//
 if ($cast(this.mstr_port_obj,

10-66

VMM User Guide

vmm_opts::get_object_obj(is_set,this,"apb_mstr_port")))
begin
 if (mstr_port_obj != null)
 this.mstr_if = mstr_port_obj.mstr_if;
 else
 `vmm_fatal(log, "Virtual port [Master] wrapper
not initialized");
 end

// Initialize the port signals
 this.mstr_if.mck.psel <= '0;
 this.mstr_if.mck.penable <= '0;

//
`vmm_note(log,$psprintf("**** %s: Exiting

connect_ph\n",get_object_hiername()));
 end
endfunction: connect_ph

////////////// start_of_sim_ph Phase /////////
function void apb_master::start_of_sim_ph();
 if (mstr_port_obj == null)
 `vmm_fatal(log, "Virtual port is not connected to
the actual interface instance");
endfunction
//
function void apb_master::reset_xactor(reset_e rst_typ =
SOFT_RST);
 super.reset_xactor(rst_typ);
 this.in_chan.flush();
 this.mstr_if.mck.psel <= '0;
 this.mstr_if.mck.penable <= '0;
endfunction: reset_xactor
//
task apb_master::run_ph();
 apb_trans tr;
 bit drop;
 fork
 forever begin
 //
 this.wait_if_stopped_or_empty(this.in_chan);
 this.in_chan.activate(tr);
 @ (this.mstr_if.mck);
 drop = 0;

10-67

VMM User Guide

 `vmm_callback(apb_master_cbs, pre_cycle(this, tr,
drop));
 if (drop) begin
 `vmm_debug(log, {"Dropping transaction...\n",
tr.psdisplay(" ")});
 this.in_chan.remove();
 continue;
 end
 `vmm_trace(log, {"Starting transaction...\n",
tr.psdisplay(" ")});
 this.in_chan.start();
 case (tr.kind)
 apb_trans::READ : this.read(tr.addr, tr.data);
 apb_trans::WRITE: this.write(tr.addr, tr.data);
 endcase
 this.in_chan.complete();
 `vmm_trace(log, {"Completed transaction...\n",
tr.psdisplay(" ")});
 `vmm_callback(apb_master_cbs, post_cycle(this,
tr));

 // broadcast to the observers
 this.analysis_port.write(tr);
 this.in_chan.remove();

 end
 join_none
endtask: run_ph

////////////// shutdown_ph Phase ////////////
task apb_master::shutdown_ph();
 this.stop_xactor();
endtask

////////////// Factory: copy ////////////
function apb_master apb_master::copy();
 apb_master drv;
 drv = this.allocate();
 return drv;
endfunction

////////////// Factory: allocate //////////
function apb_master apb_master::allocate();
 vmm_unit prnt;

10-68

VMM User Guide

 apb_master drv;
 $cast(prnt, this.get_parent_object());
 drv = new(this.get_object_name(), prnt);
 return drv;
endfunction

///////////// APB BUS READ task //////////
task apb_master::read(input bit [31:0] addr, output
logic [31:0] data);
 this.mstr_if.mck.paddr <= addr;
 this.mstr_if.mck.pwrite <= '0;
 this.mstr_if.mck.psel <= '1;
 @ (this.mstr_if.mck);
 this.mstr_if.mck.penable <= '1;
 @ (this.mstr_if.mck);
 data = this.mstr_if.mck.prdata;
 this.mstr_if.mck.psel <= '0;
 this.mstr_if.mck.penable <= '0;
endtask: read

///////////// APB BUS WRITE task ////////
task apb_master::write(input bit [31:0] addr, input bit
[31:0] data);
 this.mstr_if.mck.paddr <= addr;
 this.mstr_if.mck.pwdata <= data;
 this.mstr_if.mck.pwrite <= '1;
 this.mstr_if.mck.psel <= '1;
 @ (this.mstr_if.mck);
 this.mstr_if.mck.penable <= '1;
 @ (this.mstr_if.mck);
 this.mstr_if.mck.psel <= '0;
 this.mstr_if.mck.penable <= '0;
endtask: write
//
`endif

 A- 1

VMM User Guide

A
Standard Library Classes (Part 1) A

This appendix provides detailed information about the OpenVera
and SystemVerilog classes that compose the VMM Standard Library.
The functionality of OpenVera and SystemVerilog classes is
identical, except for the following difference:

• OpenVera methods have a prefix of rvm

• SystemVerilog methods have a prefix of vmm

Note:
Each method, explained in this appendix, uses the SystemVerilog
name in the heading to introduce it. Additionally, there are a few
instances where a _t suffix is appended to indicate that it may be
a blocking method.

A-2

VMM User Guide

Usage examples are specified in a single language, but that should
not prevent the use of the other language, as both the languages are
almost identical. Rather than providing usage examples that are
almost identical, this appendix provides different examples for each
language.

The classes are documented in alphabetical order. The methods in
each class are documented in a logical order, where methods that
accomplish similar results are documented sequentially. A summary
of all available methods, with cross-references to the page where
their detailed documentation can be found, is provided at the
beginning of each class specification.

VMM Standard Library Class List

• “factory”

• “vmm_atomic_gen#(T)”

• “<class-name>_atomic_gen_callbacks”

• “vmm_atomic_scenario#(T)”

• “vmm_broadcast”

• “vmm_channel”

• “vmm_connect#(T,N,D)”

• “vmm_consensus”

• “vmm_data”

• “vmm_env”

• “vmm_group”

 A- 3

VMM User Guide

• “vmm_group_callbacks”

• “vmm_log”

• “vmm_log_msg”

• “vmm_log_callback”

• “vmm_log_catcher”

• “vmm_log_format”

• “vmm_ms_scenario”

• “vmm_ms_scenario_gen”

• “vmm_notification”

• “vmm_notify”

• “vmm_notify_callbacks”

• “vmm_notify_observer#(T,D)”

• “vmm_object”

• “vmm_object_iter”

• “vmm_opts”

A-4

VMM User Guide

factory

The factory class is the utility class to generate instances of any
class through the factory mechanism.

Summary

• factory::create_instance() page A-5
• factory::override_with_new() page A-7
• factory::override_with_copy() page A-9
• factory::this_type() page A-11
• `vmm_class_factory(classname) page A-12

 A- 5

VMM User Guide

factory::create_instance()

Creates an instance of the specified class type.

SystemVerilog

static function classname
classname::create_instance(vmm_object parent, string name,
 string fname = "", int lineno = 0);

Description

Creates an instance of the specified class type, for the specified
name in the scope, created by the specified parent vmm_object.

The new instance is created by calling allocate() or copy() on
the corresponding factory instance, specified using the
override_with_new() or override_with_copy() method, in
this class, or any of its parent (base) classes. If you do not specify
any factory instance, then it creates an instance of this class.

The newly created instance contains the specified name and the
specified vmm_object as parent, if the newly created instance is
extended from vmm_object.

The fname and lineno arguments are used to track the file name
and the line number where the instance is created using
create_instance.

Example

class ahb_trans extends vmm_object;
 `vmm_class_factory(ahb_trans)
endclass
class ahb_gen extends vmm_group;

A-6

VMM User Guide

 ahb_trans tr;
 virtual function void_build_ph();
 tr = ahb_trans::create_instance(this, "Ahb_Tr0",
 `__FILE__, `__LINE__);
 ...
 endfunction
endclass

 A- 7

VMM User Guide

factory::override_with_new()

Sets the specified class instance as the create-by-construction
factory.

SystemVerilog

static function void classname::override_with_new(
 string name, classname factory, vmm_log log,
 string fname = "", int lineno = 0);

Description

Sets the specified class instance as the create-by-construction
factory, when creating further instances of that class under the
specified instance name. You can specify the instance name as a
match pattern or regular expression. Also, you can specify an
instance name in a specific namespace by prefixing it with
spacename::. The classname::create_instance() method
uses the allocate() method to create a new instance of this
class.

You should call this method using the following pattern:

master::override_with_new(
 "@*", extended_master::this_type(), this.log, ̀ __FILE__,
 `__LINE__);

If the specified name matches the hierarchical name of atomic,
single-stream, or multi-stream scenario generators of the
appropriate type, then the matching factory instances they contain
are immediately replaced with newly allocated instances of the
specified class. If this method is called before the build phase, then
this replacement is delayed until the completion of that phase.

A-8

VMM User Guide

The log argument is the message interface used by factory to report
various messages. The fname and lineno arguments are used to
track the file name and the line number where the instance is created
using create_instance.

Example

class my_ahb_trans extends vmm_object;
 `vmm_class_factory(my_ahb_trans)
endclass

initial begin
 ahb_trans::override_with_new("@%*",
 my_ahb_trans::this_type, log,
 `__FILE__, `__LINE__);
end

 A- 9

VMM User Guide

factory::override_with_copy()

Schedules creation of a factory instance by copying the provided
instance.

SystemVerilog

static function void classname::override_with_copy(
 string name, classname factory, vmm_log log,
 string fname = "", int lineno = 0);

Description

Sets the specified class instance as the create-by-copy factory,
when creating further instances of that class under the specified
instance name. You can specify the instance name as a match
pattern or regular expression. Also, you can specify an instance
name in a specific namespace by prefixing it with spacename::.
The classname::create_instance() method uses the
copy() method to create new instance of this class.

If the specified name matches the hierarchical name of atomic,
single-stream, or multi-stream scenario generators of the
appropriate type, the matching factory instances they contain are
immediately replaced with copies of the specified factory
instance. If you call this method before the build phase, this
replacement is delayed until the completion of that phase.

The log argument is the message interface used by factory to report
various messages. The fname and lineno arguments are used to
track the file name and the line number where the instance is created
using create_instance.

A-10

VMM User Guide

Example

class ahb_trans extends vmm_object;
 rand bit [7:0] addr;
 `vmm_class_factory(ahb_trans)
endclass

initial begin
 ahb_trans tr;
 tr = new("gen_trans");
 tr.addr = 5;
 ahb_trans::override_with_copy("@%*", tr, log,
 `__FILE__, `__LINE__);
end

 A- 11

VMM User Guide

factory::this_type()

Returns a dummy instance of the factory class.

SystemVerilog

static function classname classname::this_type();

Description

Returns a dummy instance of this class. You can use this class to call
the classname::allocate() method.

Example

ahb_trans::override_with_new("@%*",
my_ahb_trans::this_type,
 log, `__FILE__, `__LINE__);

A-12

VMM User Guide

`vmm_class_factory(classname)

This is a macro for defining factory class.

Description

Creates the factory class methods for the specified class. You
must specify this method within the class declaration, with virtual
allocate() and copy() methods. These virtual methods can be
called without any arguments.

Example

class ahb_trans extends vmm_object;
 rand bit [7:0] addr;
 ...
 `vmm_class_factory(ahb_trans)
endclass

 A- 13

VMM User Guide

vmm_atomic_gen#(T)

Creates a parameterized version of the VMM atomic generator.

SystemVerilog

class vmm_atomic_gen #(type T= vmm_data,
C=vmm_channel_typed#(T), string text = "") extends
vmm_atomic_gen_base;

Description

The `vmm_atomic_generator macro creates a parameterized
atomic generator. This generator can generate non-vmm_data
transactions as well.

A macro is used to define a class named class-
name_atomic_gen for any user-specified class derived from
vmm_data1, using a process similar to the ‘vmm_channel macro.

The atomic generator class is an extension of the vmm_xactor
class and as such, inherits all the public interface elements provided
in the base class.

Example

class ahb_trans extends vmm_data;
 rand bit [31:0] addr;
 rand bit [31:0] data;
endclass

`vmm_channel(ahb_trans)

1. With a constructor callable without any arguments.

A-14

VMM User Guide

`vmm_atomic_gen(ahb_trans, "AHB Atomic Gen")
ahb_trans_channel chan0 = new("ahb_trans_chan", "chan0");
ahb_trans_atomic_gen gen0 = new("AhbGen0", 0, chan0);

Is the same as:

vmm_channel_typed #(ahb_trans) chan0 = new("ahbchan",
 "chan0");
vmm_atomic_gen #(ahb_trans, , “AHB Atomic Gen”) gen0 =
new("AhbGen0", 0, chan0);

Summary

• vmm_atomic_gen::<class-name>_channel out_chan page A-15
• vmm_atomic_gen::enum {DONE} page A-16
• vmm_atomic_gen::enum {GENERATED} page A-17
• vmm_atomic_gen::inject() page A-18
• vmm_atomic_gen::new() page A-20
• vmm_atomic_gen::post_inst_gen() page A-22
• vmm_atomic_gen::randomized_obj page A-23
• vmm_atomic_gen::stop_after_n_insts page A-25
• ‘vmm_atomic_gen() page A-27
• ‘vmm_atomic_gen_using() page A-28

 A- 15

VMM User Guide

vmm_atomic_gen::<class-name>_channel out_chan

Reference the output channel for the instances generated by this
transactor.

SystemVerilog

class-name_channel out_chan;

OpenVera

Not supported.

Description

The output channel may have been specified through the
constructor. If you did not specify any output channel instances, a
new instance is automatically created. You may dynamically replace
this reference in this property, but you should stop the generator
during replacement.

Example

Example A-1
program t();
`vmm_atomic_gen(atm_cell, "ATM Cell")
 atm_cell_atomic_gen gen = new("Singleton");
 atm_cell cell;
 ...
 gen.out_chan.get(cell);
 ...
endprogram

A-16

VMM User Guide

vmm_atomic_gen::enum {DONE}

Notification identifier for the notification service.

SystemVerilog

enum {DONE};

OpenVera

Not supported.

Description

Notification identifier for the notification service that is in the
vmm_xactor::notify property, provided by the vmm_xactor
base class. It is configured as a vmm_xactor::ON_OFF notification,
and is indicated when the generator stops, because the specified
number of instances are generated. No status information is
specified.

Example

Example A-2
gen.notify.wait_for(atm_cell_atomic_gen::DONE);

 A- 17

VMM User Guide

vmm_atomic_gen::enum {GENERATED}

Notification identifier for the notification service.

SystemVerilog

enum {GENERATED};

OpenVera

Not supported.

Description

Notification identifier for the notification service interface that is in the
vmm_xactor::notify property, provided by the vmm_xactor
base class. It is configured as a vmm_xactor::ONE_SHOT
notification, and is indicated immediately before an instance is added
to the output channel. The generated instance is specified as the
status of the notification.

Example

Example A-3
gen.notify.wait_for(atm_cell_atomic_gen::GENERATED);

A-18

VMM User Guide

vmm_atomic_gen::inject()

Injects the specified transaction or data descriptor in the output
stream.

SystemVerilog

virtual task inject(class-name data obj, ref bit dropped);

OpenVera

Not supported.

Description

You can use this method to inject directed stimulus, while the
generator is running (with unpredictable timing) or when the
generator is stopped.

Unlike injecting the descriptor directly in the output channel, it counts
toward the number of instances generated by this generator and will
be subjected to the callback methods. The method returns once the
instance is consumed by the output channel or it is dropped by the
callback methods.

Example

Example A-4
task directed_stimulus;
 eth_frame to_phy, to_mac;
 ...
 to_phy = new;
 to_phy.randomize();
 ...

 A- 19

VMM User Guide

 fork
 env.host_src.inject(to_phy, dropped);
 begin
 // Force the earliest possible collision
 @ (posedge tb_top.mii.tx_en);
 env.phy_src.inject(to_mac, dropped);
 end
 join
 ...
 -> env.end_test;
endtask: directed_stimulus

A-20

VMM User Guide

vmm_atomic_gen::new()

Creates a new instance of the class-name_atomic_gen class

SystemVerilog

function new(string instance, int stream_id = -1,
class-name_channel out_chan = null, vmm_object parent =
null);

OpenVera

Not supported.

Description

Creates a new instance of the class-name_atomic_gen class,
with the specified instance name and optional stream identifier. You
can optionally connect the generator to the specified output channel.
If you did not specify any output channel instance, one will be
created internally in the class-name_atomic_gen::out_chan
property.

The name of the transactor is defined as the user-defined class
description string specified in the class implementation macro
appended with “Atomic Generator”. The parent argument should
be passed if implicit phasing needs to be enabled.

Example

Example A-5
`vmm_channel(alu_data)
Class alu_env extends vmm_group;
 vmm_atomic_gen#(alu_data, ,"AluGen") gen_a;

 A- 21

VMM User Guide

 alu_data_channel alu_chan;
 . . .
 function void build_ph();
 alu_chan = new ("ALU", "channel");
 gen_a = new("Gen", 0,alu_chan ,this);
 endfunction
 . . .
endclass

A-22

VMM User Guide

vmm_atomic_gen::post_inst_gen()

Invokes callback method, after a new transaction or data descriptor
is created.

SystemVerilog

virtual task post_inst_gen(class-name_atomic_gen gen,
class-name obj, ref bit drop);

OpenVera

Not supported.

Description

The generator invokes the callback method, after a new transaction
or data descriptor is created and randomized, but before it is added
to the output channel.

The gen argument refers to the generator instance that is invoking
the callback method (if the same callback extension instance is
registered with more than one transactor instance). The data
argument refers to the newly generated descriptor, which can be
modified. If the value of the drop argument is set to non-zero, the
generated descriptor will not be forwarded to the output channel.
However, the remaining registered callbacks will be invoked.

 A- 23

VMM User Guide

vmm_atomic_gen::randomized_obj

Randomizes the creation of random content of the output descriptor
stream.

SystemVerilog

class-name randomized_obj;

OpenVera

Not supported.

Description

Transaction or data descriptor instance that is repeatedly
randomized to create the random content of the output descriptor
stream. The individual instances of the output stream are copied
from this instance, after randomization, using the
vmm_data::copy() method.

The atomic generator uses a class factory pattern to generate the
output stream instances. Using various techniques, you can
constrain the generated stream on this property.

The vmm_data::stream_id property of this instance is set to the
stream identifier of the generator, before each randomization. The
vmm_data::data_id property of this instance is also set before
each randomization. It will be reset to 0 when the generator is reset,
and after the specified maximum number of instances are
generated.

A-24

VMM User Guide

Example

Example A-6
program test_...;
...
class long_eth_frame extends eth_frame;
 constraint long_frames {
 data.size() == max_len;
 }
endclass: long_eth_frame
...
initial begin
 env.build();
 begin
 long_eth_frame fr = new;
 env.host_src.randomized_obj = fr;
 end
 ...
 top.env.run();
end
endprogram

 A- 25

VMM User Guide

vmm_atomic_gen::stop_after_n_insts

Stops, after the specified number of object instances are generated.

SystemVerilog

int unsigned stop_after_n_insts;

OpenVera

Not supported.

Description

The generator stops, after the specified number of object instances
are generated and consumed by the output channel. You must reset
the generator, before it can be restarted. If the value of this property
is 0, the generator will not stop on its own.

The default value of this property is 0.

Example

Example A-7
program t();
 `vmm_atomic_gen(atm_cell, "ATM Cell")
 atm_cell_atomic_gen gen = new("Singleton");
 gen.stop_after_n_insts = 10;
 ...
endprogram

A-26

VMM User Guide

<class-name>_atomic_gen_callbacks

This class implements a façade for atomic generator, transactor, and
callback methods. This class is automatically declared, and
implemented for any user-specified class by the atomic generator
macro.

Summary

• ‘vmm_atomic_gen() page A-27
• ‘vmm_atomic_gen_using() page A-28

 A- 27

VMM User Guide

‘vmm_atomic_gen()

Defines an atomic generator class.

SystemVerilog

‘vmm_atomic_gen(class-name, "Class Description")

OpenVera

Not supported.

Description

Defines an atomic generator class named class-
name_atomic_gen, to generate instances of the specified class.
The generated class must be derived from the vmm_data class, and
the class-name_channel class must exist.

A-28

VMM User Guide

‘vmm_atomic_gen_using()

Defines an atomic generator class.

SystemVerilog

‘vmm_atomic_gen_using(class-name, channel-type, "Class
Description")

OpenVera

Not supported.

Description

Defines an atomic generator class named class-
name_atomic_gen to generate instances of the specified class,
with the specified output channel type. The generated class must be
compatible with the specified channel type, and both must exist.

You should use this macro, only while generating instances of a
derived class that must be applied to a channel of the base class.

 A- 29

VMM User Guide

vmm_atomic_scenario#(T)

Parameterized version of the VMM atomic scenario.

SystemVerilog

class vmm_atomic_scenario #(T) extends vmm_ss_scenario#(T)

Description

The parameterized atomic scenario is a generic typed scenario,
extending vmm_ss_scenario. It is used by the parameterized
scenario generator as the default scenario.

Example

class ahb_trans extends vmm_data;
 rand bit [31:0] addr;
 rand bit [31:0] data;
endclass

`vmm_channel(ahb_trans)
`vmm_scenario_gen(ahb_trans, "AHB Scenario Gen")

class vmm_atomic_scenario#(ahb_trans) extends
 vmm_ss_scenario#(ahb_trans);
endclass

A-30

VMM User Guide

vmm_broadcast

Channels are point-to-point data transfer mechanisms. If multiple
consumers are extracting transaction descriptors from a channel,
the transaction descriptors are distributed among various
consumers and each of the N consumers view 1/N descriptors. If a
point-to-multi-point mechanism is required, where all consumers
must view all transaction descriptors in the stream, then a
vmm_broadcast component can be used to replicate the stream of
transaction descriptors from a source channel to an arbitrary and
dynamic number of output channels. If only two output channels are
required, the vmm_channel::tee() method of the source channel
may also be used.

You can configure individual output channels to receive a copy of the
reference to the source transaction descriptor (most efficient but the
same descriptor instance is shared by the source and all like-
configured output channels) or to use a new descriptor instance
copied from the source object (least efficient but uses a separate
instance that can be modified without affecting other channels or the
original descriptor). A vmm_broadcast component can be
configured to use references or copies in output channels by default.

In the As Fast As Possible (AFAP) mode, the full level of output
channels is ignored. Only the full level of the source channel controls
the flow of data through the broadcaster. Output channels are kept
non-empty, as much as possible. As soon as an active output
channel becomes empty, the next descriptor is removed from the
source channel (if available), and added to all output channels, even
if they are already full.

 A- 31

VMM User Guide

In the As Late As Possible (ALAP) mode, the slowest of the output
or input channels controls the flow of data through the broadcaster.
Only once, all active output channels are empty, the next descriptor
is removed from the source channel (if available) and added to all
output channels.

If there are no active output channels, the input channel is
continuously drained as transaction descriptors are added to it to
avoid data accumulation.

This class is based on the vmm_xactor class.

Summary

• vmm_broadcast::add_to_output() page A-32
• vmm_broadcast::bcast_off() page A-34
• vmm_broadcast::bcast_on() page A-35
• vmm_broadcast::broadcast_mode() page A-36
• vmm_broadcast::log page A-37
• vmm_broadcast::new() page A-38
• vmm_broadcast::new_output() page A-39
• vmm_broadcast::reset_xactor() page A-40
• vmm_broadcast::set_input() page A-41
• vmm_broadcast::start_xactor() page A-42
• vmm_broadcast::stop_xactor() page A-43

A-32

VMM User Guide

vmm_broadcast::add_to_output()

Overloads to create broadcaster components with different
broadcasting rules.

SystemVerilog

virtual protected function bit
 add_to_output(int unsigned decision_id,

int unsigned output_id,
vmm_channel channel,
vmm_data obj);

OpenVera

Not supported.

Description

Overloading this method, allows the creation of broadcaster
components with different broadcasting rules. If this function returns
TRUE (that is, non-zero), then the transaction descriptor will be
added to the specified output channel. If this function returns FALSE
(that is, zero), then the descriptor is not added to the channel. If the
output channel is configured to use new descriptor instances, the
obj parameter is a reference to that new instance.

This method is not necessarily invoked in increasing order of output
identifiers. It is only called for output channels currently configured
as ON. If this method returns FALSE for all output channels, for a
given broadcasting cycle, lock-up may occur. The decision_id
argument is reset to 0 at the start of every broadcasting cycle, and is
incremented after each call to this method in the same cycle. It can
be used to identify the start of broadcasting cycles.

 A- 33

VMM User Guide

If transaction descriptors are manually added to output channels, it
is important that the vmm_channel::sneak() method be used to
prevent the execution thread from blocking. It is also important that
FALSE be returned to prevent that descriptor from being added to
that output channel by the default broadcast operations, and thus
from being duplicated into the output channel.

The default implementation of this method always returns TRUE.

A-34

VMM User Guide

vmm_broadcast::bcast_off()

Turns broadcasting to the specified output channel off.

SystemVerilog

virtual function void bcast_off(int unsigned output_id);

OpenVera

Not supported.

Description

By default, broadcasting to an output channel is on. When
broadcasting is turned off, the output channel is flushed and the
addition of new transaction descriptors from the source channel is
inhibited. The addition of descriptors from the source channel is
resumed, as soon as broadcasting is turned on.

If all output channels are off, the input channel is continuously
drained to avoid data accumulation.

Any user extension of this method should call
super.bcast_off().

 A- 35

VMM User Guide

vmm_broadcast::bcast_on()

Turns-on broadcasting to the specified output channel.

SystemVerilog

virtual function void bcast_on(int unsigned output-id);

OpenVera

Not supported.

Description

By default, broadcasting to an output channel is on. When
broadcasting is turned off, the output channel is flushed and the
addition of new transaction descriptors from the source channel is
inhibited. The addition of descriptors from the source channel is
resumed, as soon as broadcasting is turned on.

If all output channels are off, the input channel is continuously
drained to avoid data accumulation.

Any user extension of these methods should call
super.bcast_on().

A-36

VMM User Guide

vmm_broadcast::broadcast_mode()

Changes the broadcasting mode to the specified mode.

SystemVerilog

virtual function void broadcast_mode(bcast_mode_e mode);

OpenVera

Not supported.

Description

The new mode takes effect immediately. The available modes are
specified by using one of the class-level enumerated symbolic
values shown in Table A-1.

Table A-1 Broadcasting Mode Enumerated Values
Table A-2

Enumerated Value Broadcasting Operation
vmm_broadcast::ALAP As Late As Possible.

Data is broadcast only when all active output channels are empty.
This delay ensures that data is not broadcast any faster than the
slowest of all consumers can digest it.

vmm_broadcast::AFAP As Fast As Possible.
Active output channels are kept non-empty, as much as possible.
As soon as an active output channel becomes empty, the next
descriptor from the input channel (if available) is immediately
broadcast to all active output channels, regardless of their fill level

This mode must not be used if the data source can produce data
at a higher rate than the slowest data consumer, and if broadcast
data in all output channels are not consumed at the same average
rate.

 A- 37

VMM User Guide

vmm_broadcast::log

Message service interface for the broadcast class.

SystemVerilog

vmm_log log;

OpenVera

Not supported.

Description

Sets by the constructor, and uses the name and instance name
specified in the constructor.

A-38

VMM User Guide

vmm_broadcast::new()

Creates a new instance of a channel broadcaster object.

SystemVerilog

function new(string name,
string instance,
vmm_channel source,
bit use_references = 1,
bcast_mode_typ mode = AFAP);

OpenVera

Not supported.

Description

Creates a new instance of a channel broadcaster object with the
specified name, instance name, source channel, and broadcasting
mode. If use_references is TRUE (that is, non-zero), references
to the original source transaction descriptors are assigned to output
channels by default (unless individual output channels are
configured otherwise). The source can be assigned to null and set
later by using “vmm_broadcast::set_input()” .

For more information on the available modes in the
broadcast_mode() method, see the section “virtual function void
broadcast_mode(bcast_mode_e mode);” on page 36.

Example

Example A-8
 vmm_broadcast bcast = new("Bcast", "", in_chan, 1);

 A- 39

VMM User Guide

vmm_broadcast::new_output()

Adds the specified channel instance as a new output channel.

SystemVerilog

virtual function int new_output(vmm_channel channel,
logic use_references = 1'bx);

OpenVera

Not supported.

Description

Adds the specified channel instance as a new output channel to the
broadcaster. If use_references is TRUE (that is, non-zero),
references to the original source transaction descriptor is added to
the output channel. If FALSE (that is, zero), a new instance copied
from the original source descriptor is added to the output channel. If
unknown (that is, 1'bx), the default broadcaster configuration is
used.

If there are no output channels, the data from the input channel is
continuously drained to avoid data accumulation.

This method returns a unique identifier for the output channel that
must be used to modify the configuration of the output channel.

Any user extension of this method must call
super.new_output().

A-40

VMM User Guide

vmm_broadcast::reset_xactor()

Resets this vmm_broadcast instance.

SystemVerilog

virtual function void
 reset_xactor(reset_e rst_type = SOFT_RST);

OpenVera

Not supported.

Description

The broadcaster can be restarted. The input channel and all output
channels are flushed.

 A- 41

VMM User Guide

vmm_broadcast::set_input()

Specifies the channel as the source if not set previously

System Verilog

function void set_input(vmm_channel source);

Open Vera

Not supported

Description

Identifies the channel as the source of the broadcaster, if the source
is not set previously. If source is already set, then a warning is issued
stating that this particular call has been ignored.

Example

Example A-9
vmm_broadcast bcast = new("Bcast", "", null, 1);
bcast.set_input(in_chan);

A-42

VMM User Guide

vmm_broadcast::start_xactor()

Starts this vmm_broadcast instance.

SystemVerilog

virtual function void start_xactor();

OpenVera

Not supported.

Description

The broadcaster can be stopped. Any extension of this method must
call super.start_xactor().

Example

Example A-10
 vmm_broadcast bcast = new("Bcast", "", in_chan, 1);
 bcast.start_xactor();

 A- 43

VMM User Guide

vmm_broadcast::stop_xactor()

Suspends this vmm_broadcast instance.

SystemVerilog

virtual function void stop_xactor();

OpenVera

Not supported.

Description

The broadcaster can be restarted. Any extension of this method
must call super.stop_xactor().

Example

Example A-11
program test_directed;
...
initial begin
 ...
 env.start();
 env.host_src.stop_xactor();
 env.phy_src.stop_xactor();
 fork
 directed_stimulus;
 join_none
 env.run();
end
task directed_stimulus;
 ...
endtask: directed_stimulus
endprogram: test

A-44

VMM User Guide

vmm_channel

This class implements a generic transaction-level interface
mechanism.

Offset values, either accepted as arguments or returned values, are
always interpreted the same way. A value of 0 indicates the head of
the channel (first transaction descriptor added). A value of –1
indicates the tail of the channel (last transaction descriptor added).
Positive offsets are interpreted from the head of the channel.
Negative offsets are interpreted from the tail of the channel. For
example, an offset value of –2 indicates the transaction descriptor
just before the last transaction descriptor in the channel. It is illegal
to specify a non-zero offset that does not correspond to a transaction
descriptor, which is already in the channel.

The channel includes an active slot that can be used to create more
complex transactor interfaces. The active slot counts toward the
number of transaction descriptors currently in the channel, for
control-flow purposes, but cannot be accessed nor specified through
an offset specification.

The implementation uses a macro to define a class named class-
name_channel, derived from the class named vmm_channel, for
any user-specified class named class-name.

Summary

• VMM Channel Relationships page A-45
• VMM Channel Record or Replay page A-47
• vmm_channel::activate() page A-49
• vmm_channel::active_slot() page A-51
• vmm_channel::connect() page A-52
• vmm_channel::complete() page A-54
• vmm_channel::empty_level() page A-55
• vmm_channel::flow() page A-56
• vmm_channel::flush() page A-57

 A- 45

VMM User Guide

• vmm_channel::for_each() page A-58
• vmm_channel::for_each_offset() page A-59
• vmm_channel::full_level() page A-60
• vmm_channel::get() page A-61
• vmm_channel::get_consumer() page A-62
• vmm_channel::get_producer() page A-63
• vmm_channel::grab() page A-64
• vmm_channel::level() page A-66
• vmm_channel::is_full() page A-67
• vmm_channel::is_grabbed() page A-68
• vmm_channel::is_locked() page A-70
• vmm_channel::kill() page A-71
• vmm_channel::lock() page A-72
• vmm_channel::log page A-73
• vmm_channel::new() page A-74
• vmm_channel::notify page A-75
• vmm_channel::peek() page A-77
• vmm_channel::playback() page A-78
• vmm_channel::put() page A-81
• vmm_channel::reconfigure() page A-83
• vmm_channel::record() page A-85
• vmm_channel::register_vmm_sb_ds() page A-86
• vmm_channel::remove() page A-87
• vmm_channel::set_consumer() page A-88
• vmm_channel::set_producer() page A-90
• vmm_channel::sink() page A-92
• vmm_channel::size() page A-93
• vmm_channel::sneak() page A-94
• vmm_channel::start() page A-96
• vmm_channel::status() page A-97
• vmm_channel::tee() page A-98
• vmm_channel::tee_mode() page A-99
• vmm_channel::try_grab() page A-100
• vmm_channel_typed#(type) page A-102
• vmm_channel::ungrab() page A-104
• vmm_channel::unlock() page A-106
• vmm_channel::unput() page A-107
• vmm_channel::unregister_vmm_sb_ds() page A-108
• ‘vmm_channel() page A-109

VMM Channel Relationships

VMM extends its VMM channels, so that transactors acting as
producer or consumer for this channel can be registered.

Hence, it is possible to verify that one unique producer or consumer
pair is attached to a given channel. This insures that no collisions
occur, even if you try to register new producer or consumer. In

A-46

VMM User Guide

addition, while registering channel producer or consumer,
corresponding transactors are updated with input or output
channels.

Using this class, you can avail benefits from built-in transactor
uniqueness check and easily traverse transactor channels.

vmm_channel::set_producer() identifies the specified
transactor as the current producer for the channel instance. This
channel will be added to the list of output channels for the transactor.
If a producer had been previously identified, the channel instance is
removed from the list of previous producer output channels.
Specifying a NULL transactor indicates that the channel does not
contain any producer.

Although a channel can contain multiple producers (even though
with an unpredictable ordering of each producer’s contribution to the
channel), only one transactor can be identified as the producer of a
channel as they are primarily a point-to-point transaction-level
connection mechanism.

vmm_channel::set_consumer() identifies the specified
transactor as the current consumer for the channel instance. This
channel will be added to the list of input channels for the transactor.
If a consumer had been previously identified, the channel instance is
removed from the list of previous consumer input channels.
Specifying a NULL transactor indicates that the channel does not
contain any consumer.

Although a channel can have multiple consumers (even though with
an unpredictable distribution of input of each consumer from the
channel), only one transactor can be identified as a consumer of a

 A- 47

VMM User Guide

channel as they are primarily a point-to-point transaction-level
connection mechanism. The producer or consumer relationships are
set from within transactors.

function xact::new(string inst,
 tr_channel in_chan = null,
 obj_channel out_chan = null);
super.new(“Xactor”, inst);
 if (in_chan == null) in_chan = new(…);
 this.in_chan = in_chan;
 this.in_chan.set_consumer(this);
 if (out_chan == null) out_chan = new(…);
 this.out_chan = in_chan;
 this.out_chan.set_producer(this);
endfunction

vmm_channel::get_producer() — Returns the transactor that
is specified as the current producer for the channel instance. Returns
NULL, if no producer is identified.

vmm_channel::get_consumer() — Returns the transactor that
is specified as the current consumer for the channel instance.
Returns NULL, if no consumer is identified.

VMM Channel Record or Replay

VMM extends its VMM channels so that incoming transactions can
be stored to a file, and be replayed from this file later on.

It is possible to replay transactions either on-demand (for example,
each time the channel is not blocking), or in a time-accurate way.
With the time-accurate option, record or replay can replicate the
original channel insertions scheme.

virtual task tb_env::start();
 ...

A-48

VMM User Guide

 if (vmm_opts::get_bit(“record”, “Record generator
output”)) begin
 this.gen.out_chan.record(“gen.dat”);
 end
 if (vmm_opts::get_bit(“play”, “Playback recorded output”))
begin
 xaction tr = new;
 this.gen.out_chan.playback(ok, “gen.dat”, tr);
 end
 else this.gen.start_xactor();
endtask

This feature is useful to speed-up time to debug by shutting down
scenario generators. It can also be used to insure that the same data
stream is always injected to channels.

class recorded_scenario extends vmm_ms_scenario;
 virtual task execute(ref int n);
 vmm_channel to_ahb = get_channel(“ABUS”);
 ahb_cycle tr = new;
 to_ahb.grab(this);
 fork
 forever begin: count
 to_ahb.notify.wait_for(vmm_channel::PUT);
 n++;
 end
 join_none
 to_ahb.playback(ok, “ahb.dat”, tr, .grabber(this));
 to_ahb.release(this);
 disable count;
 endtask
endclass

 A- 49

VMM User Guide

vmm_channel::activate()

Removes the transaction descriptor, which is currently in the active
slot.

SystemVerilog

task activate(output class-name obj, input int offset = 0);

OpenVera

Not supported.

Description

If the active slot is not empty, then this method first removes the
transaction descriptor, which is currently in the active slot.

Move the transaction descriptor at the specified offset in the channel
to the active slot ,and update the status of the active slot to
vmm_channel::PENDING. If the channel is empty, then this method
will wait until a transaction descriptor becomes available. The
transaction descriptor is still considered as being in the channel.

It is an error to invoke this method with an offset value greater than
the number of transaction descriptors currently in the channel, or to
use this method with multiple concurrent consumer threads.

Example

Example A-12
class consumer extends vmm_xactor;
 ...
 virtual task main();

A-50

VMM User Guide

 ...
 forever begin
 transaction tr;
 ...
 this.in_chan.activate(tr);
 this.in_chan.start();
 ...
 this.in_chan.complete();
 this.in_chan.remove();
 end
 endtask: main
 ...
endclass: consumer

 A- 51

VMM User Guide

vmm_channel::active_slot()

Returns the transaction descriptor, which is currently in the active
slot.

SystemVerilog

function class-name active_slot();

OpenVera

Not supported.

Description

Returns the transaction descriptor, which is currently in the active
slot. Returns null, if the active slot is empty.

A-52

VMM User Guide

vmm_channel::connect()

Connects the output of this channel instance to the input of the
specified channel instance.

SystemVerilog

function void connect(vmm-channel downstream);

OpenVera

Not supported.

Description

The connection is performed with a blocking model to communicate
the status of the downstream channel, to the producer interface of
the upstream channel. Flushing this channel causes the downstream
connected channel to be flushed as well. However, flushing the
downstream channel does not flush this channel.

The effective full and empty levels of the combined channels is equal
to the sum of their respective levels minus one. However, the
detailed blocking behavior of various interface methods differ from
using a single channel, with an equivalent configuration. Additional
zero-delay simulation cycles may be required, while transaction
descriptors are transferred from the upstream channel to the
downstream channel.

Connected channels need not be of the same type, but must carry
compatible polymorphic data.

 A- 53

VMM User Guide

The connection of a channel into another channel can be
dynamically modified and broken by connection to a null reference.
However, modifying the connection while there is data flowing
through the channels may yield unpredictable behavior.

A-54

VMM User Guide

vmm_channel::complete()

Updates the status of an active slot to
vmm_channel::COMPLETED.

SystemVerilog

function class-name complete(vmm_data status = null);

OpenVera

Not supported.

Description

The transaction descriptor remains in the active slot, and may be
restarted. It is an error to call this method, if the active slot is empty.
The vmm_data::ENDED notification of the transaction descriptor in
the active slot is indicated with the optionally specified completion
status descriptor.

Example

Example A-13
class consumer extends vmm_xactor;
 virtual task main();
 forever begin
 transaction tr;
 this.in_chan.activate(tr);
 this.in_chan.start();
 this.in_chan.complete();
 this.in_chan.remove();
 end
 endtask: main
endclass: consumer

 A- 55

VMM User Guide

vmm_channel::empty_level()

Returns the currently configured empty level.

SystemVerilog

function int unsigned empty_level();

OpenVera

Not supported.

A-56

VMM User Guide

vmm_channel::flow()

Restores the normal flow of transaction descriptors through the
channel.

SystemVerilog

function void flow();

OpenVera

Not supported.

 A- 57

VMM User Guide

vmm_channel::flush()

Flushes the content of the channel.

SystemVerilog

function void flush();

OpenVera

Not supported.

Description

Flushing unblocks any thread, which is currently blocked in the
vmm_channel::put() method. This method causes the FULL
notification to be reset, or the EMPTY notification to be indicated.
Flushing a channel unlocks all sources and consumers.

A-58

VMM User Guide

vmm_channel::for_each()

Iterates over all transaction descriptors, which are currently in the
channel.

SystemVerilog

function class-name for_each(bit reset = 0);

OpenVera

Not supported.

Description

The content of the active slot, if non-empty, is not included in the
iteration. If the reset argument is TRUE, a reference to the first
transaction descriptor in the channel is returned. Otherwise, a
reference to the next transaction descriptor in the channel is
returned. Returns null, when the last transaction descriptor in the
channel is returned. It keeps returning null, unless reset.

Modifying the content of the channel in the middle of an iteration
yields unexpected results.

 A- 59

VMM User Guide

vmm_channel::for_each_offset()

Returns the offset of the last transaction descriptor, which is returned
by the vmm_channel::for_each() method.

SystemVerilog

function int unsigned for_each_offset();

OpenVera

Not supported.

Description

Returns the offset of the last transaction descriptor, which is returned
by the vmm_channel::for_each() method. An offset of 0
indicates the first transaction descriptor in the channel.

A-60

VMM User Guide

vmm_channel::full_level()

Returns the currently configured full level.

SystemVerilog

function int unsigned full_level();

OpenVera

Not supported.

 A- 61

VMM User Guide

vmm_channel::get()

Retrieves the next transaction descriptor in the channel, at the
specified offset.

SystemVerilog

task get(output class-name obj, input int offset = 0);

OpenVera

Not supported.

Description

If the channel is empty, the function blocks until a transaction
descriptor is available to be retrieved. This method may cause the
EMPTY notification to be indicated, or the FULL notification to be
reset. It is an error to invoke this method, with an offset value greater
than the number of transaction descriptors, which are currently in the
channel or with a non-empty active slot.

Example

Example A-14
virtual function void build();
 fork
 forever begin
 eth_frame fr;
 this.mac.rx_chan.get(fr);
 this.sb.received_by_phy_side(fr);
 end
 join_none
endfunction: build

A-62

VMM User Guide

vmm_channel::get_consumer()

Returns the current consumer for a channel.

SystemVerilog

function vmm_xactor get_consumer();

OpenVera

Not supported.

Description

Returns the transactor that is specified as the current consumer for
the channel instance. Returns NULL, if no consumer is identified.

Example

Example A-15
class tr extends vmm_data;
endclass
`vmm_channel(tr)

class xactor extends vmm_xactor;
endclass

program prog;
 initial begin
 tr_atomic_gen agen = new("Atomic Gen");
 xactor xact = new("Xact", agen.out_chan);
 if (agen.out_chan.get_consumer() != xact) begin
 ̀ vmm_error(log, "Wrong consumer for agen.out_chan");
 end
 end
endprogram

 A- 63

VMM User Guide

vmm_channel::get_producer()

Returns the current producer for a channel.

SystemVerilog

function vmm_xactor get_producer();

OpenVera

Not supported.

Description

Returns the transactor that is specified as the current producer, for
the channel instance. Returns NULL, if no producer is identified.

Example

Example A-16
class tr extends vmm_data;
endclass
`vmm_channel(tr)

class xactor extends vmm_xactor;
endclass

program prog;
 initial begin
 tr_atomic_gen agen = new("Atomic Gen");
 xactor xact = new("Xact", agen.out_chan);
 if (xact.in_chan.get_producer() != agen) begin
 `vmm_error(log, "Wrong producer for xact.in_chan");
 end
 end
endprogram

A-64

VMM User Guide

vmm_channel::grab()

Grabs a channel for exclusive use.

SystemVerilog

task grab(vmm_scenario grabber);

OpenVera

task grab_t(rvm_scenario grabber);

Description

Grabs a channel for the exclusive use of a scenario and its sub-
scenarios. If the channel is currently grabbed by another scenario,
the task blocks until the channel can be grabbed by the specified
scenario descriptor. The channel will remain as grabbed, until it is
released by calling the vmm_channel::ungrab() method.

If a channel is grabbed by a scenario that is a parent of the specified
scenario, then the channel is immediately grabbed by the scenario.

If exclusive access to a channel is required outside of a scenario
descriptor, then allocate a dummy scenario descriptor and use its
reference.

When a channel is grabbed, the vmm_channel::GRABBED
notification is indicated.

 A- 65

VMM User Guide

Note:Grabbing multiple channels creates a possible deadlock
situation.

For example, two multi-stream scenarios may attempt to
concurrently grab the same multiple channels, but in a different
order. This may result in some of the channels to be grabbed by one
of the scenario, and some of the channels to be grabbed by another
scenario. This creates a deadlock situation, because neither
scenario would eventually grab the remaining required channels.

Example

Example A-17
class my_data extends vmm_data;
 ...
endclass
`vmm_channel(my_data)

class my_scenario extends vmm_ms_scenario;
 ...
endclass

program test_grab

 my_data_channel chan = new("Channel", "Grab", 10, 10);
 my_scenario scenario_1 = new;
 my_scenario scenario_2 = new;

 initial begin
 ...
 chan.grab(scenario_1);
 ...
 chan.ungrab(scenario_1);
 chan.grab(scenario_2);
 ...
 end

endprogram

A-66

VMM User Guide

vmm_channel::level()

Returns the current fill level of the channel.

SystemVerilog

function int unsigned level();

OpenVera

Not supported.

Description

The interpretation of the fill level depends on the configuration of the
channel instance.

 A- 67

VMM User Guide

vmm_channel::is_full()

Returns an indication of whether the channel is full or not.

SystemVerilog

function bit is_full();

OpenVera

Not supported.

Description

Returns TRUE (that is, non-zero), if the fill level is greater than or
equal to the currently configured full level. Otherwise, returns
FALSE.

A-68

VMM User Guide

vmm_channel::is_grabbed()

Checks if a channel is currently under exclusive use.

SystemVerilog

function bit is_grabbed();

OpenVera

function bit is_grabbed();

Description

Returns TRUE, if the channel is currently grabbed by a scenario.
Otherwise, returns FALSE.

Example

Example A-18
class my_data extends vmm_data;
 ...
endclass
`vmm_channel(my_data)

class my_scenario extends vmm_ms_scenario;
 ...
endclass

program test_grab

 my_data_channel chan = new("Channel", "Grab", 10, 10);
 my_scenario scenario_1 = new;
 bit chan_status;

 initial begin
 ...

 A- 69

VMM User Guide

 chan_status = chan.is_grabbed();
 if(chan_status == 1)
 `vmm_note(log, "The channel is currently grabbed");
 else if(parent_grab == 0)
 ̀ vmm_note(log, "The channel is currently not grabbed ");
 ...
 end

endprogram

A-70

VMM User Guide

vmm_channel::is_locked()

Returns TRUE (non-zero), if any of the specified sides is locked.

SystemVerilog

function bit is_locked(bit [1:0] who);

OpenVera

Not supported.

Description

Returns TRUE (non-zero), if any of the specified sides is locked. If
both sides are specified, and if any side is locked, then returns
TRUE.

Example

Example A-19
while (chan.is_locked(vmm_channel::SOURCE
 vmm_channel::SINK))
 begin
 chan.notify.wait_for(vmm_channel::UNLOCKED);
 end

 A- 71

VMM User Guide

vmm_channel::kill()

Prepares a channel for deletion.

SystemVerilog

function void kill();

OpenVera

Not supported.

Description

Prepares a channel for deletion and reclamation by the garbage
collector.

Remove this channel instance from the list of input and output
channels of the transactors, which are identified as its producer and
consumer.

Example

Example A-20
program test_grab
 vmm_channel chan;

 initial begin
 chan = new("channel" ,"chan");
 ...
 chan.kill();
 ...
 end

endprogram

A-72

VMM User Guide

vmm_channel::lock()

Blocks any source (consumer), as if the channel was full (empty),
until explicitly unlocked.

SystemVerilog

function void lock(bit [1:0] who);

OpenVera

Not supported.

Description

The side that is to be locked or unlocked is specified using the sum
of the symbolic values, as shown in Table A-3.

Although the source and sink contain same control-flow effect,
locking a source does not indicate the FULL notification, nor does
locking the sink indicate the EMPTY notification.

Table A-3 Channel Endpoint Identifiers
Table A-4

Symbolic Property Channel Endpoint
vmm_channel::SOURCE The producer side, i.e., any thread calling the

vmm_channel::put() method

vmm_channel::SINK The consumer side, i.e., any thread calling the
vmm_channel::get() method

 A- 73

VMM User Guide

vmm_channel::log

Messages service interface for messages, issued from within the
channel instance.

SystemVerilog

vmm_log log;

OpenVera

Not supported.

A-74

VMM User Guide

vmm_channel::new()

Creates a new instance of a channel with the specified name,
instance name, and full and empty levels.

SystemVerilog

function new(string name,
 string instance,
 int unsigned full = 1,
 int unsigned empty = 0,
 bit fill_as_bytes = 0,
vmm_object parent = null);

OpenVera

Not supported.

Description

If the fill_as_bytes argument is TRUE (non-zero), then the full
and empty levels and the fill level of the channel are interpreted as
the number of bytes in the channel, as computed by the sum of
vmm_data::byte_size() of all transaction descriptors in the
channel and not the number of objects in the channel.

If the value is FALSE (zero), the full and empty levels, and the fill
level of the channel are interpreted as the number of transaction
descriptors in the channel.

It is illegal to configure a channel with a full level, lower than the
empty level. The parent argument specifies the type of parent class
which instantiates this channel.

 A- 75

VMM User Guide

vmm_channel::notify

Indicates the occurrence of events in the channel.

SystemVerilog

vmm_notify notify

OpenVera

Not supported.

Description

An event notification interface used to indicate the occurrence of
significant events within the channel. The notifications shown in
Table A-5 are pre-configured

Table A-5 Pre-Configured Notifications in vmm_channel Notifier Interface

Symbolic Property Corresponding Significant Event

vmm_channel::FULL Channel is reached or surpassed its configured full level. This
notification is configured as ON/OFF. Does not return any status.

vmm_channel::EMPTY Channel is reached or underflowed the configured empty level.
This event is configured as ON/OFF. Does not return any status.

vmm_channel::PUT A new transaction descriptor is added to the channel. This event
is configured as ONE_SHOT. The newly added transaction
descriptor is available as status.

vmm_channel::GOT A transaction descriptor is removed from the channel. This event
is configured as ONE_SHOT. The newly removed transaction
descriptor is available as status.

vmm_channel::PEEKED A transaction descriptor is peeked from the channel. This event
is configured as ONE_SHOT. The newly peeked transaction
descriptor is available as status.

A-76

VMM User Guide

vmm_channel::
 ACTIVATED

A transaction descriptor is transferred to the active slot. This
notification also implies a PEEKED notification. This event is
configured as ONE_SHOT. The newly activated transaction
descriptor is available as status.

vmm_channel::
 ACT_STARTED

The state of a transaction descriptor in the active slot is updated
to STARTED. This event is triggered ONE_SHOT. The currently
active transaction descriptor is available as status.

vmm_channel::
 ACT_COMPLETED

The state of a transaction descriptor in the active slot is updated
to COMPLETED. This event is configured as ONE_SHOT. The
currently active transaction descriptor is available as status.

vmm_channel::
 ACT_REMOVED

A transaction descriptor is removed from the active slot. This
notification also implies a GOT notification. This event is
configured ONE_SHOT. The newly removed transaction
descriptor is available as status.

vmm_channel::LOCKED A side of the channel is locked. This event is configured as
ONE_SHOT.

vmm_channel::
 UNLOCKED

A side of the channel is unlocked. This event is configured as
ONE_SHOT.

vmm_channel::
GRABBED

When a channel is grabbed, this notification is indicated. This
event is configured as ONE_SHOT.

vmm_channel::
UNGRABBED

When a channel is ungrabbed, this notification is indicated. This
event is configured as ONE_SHOT.

vmm_channel::
RECORDING

When the channel is being recorded, this notification is indicated.
This event is configured as ON_OFF.

vmm_channel::
PLAYBACK

When the channel is being played, this notification is indicated.
This event is configured as ON_OFF.

vmm_channel::
PLAYBACK_DONE

When the channel is being playback is done, this notification is
indicated. This event is configured as ON_OFF.

Symbolic Property Corresponding Significant Event

 A- 77

VMM User Guide

vmm_channel::peek()

Gets a reference to the next transaction descriptor that will be
retrieved from the channel, at the specified offset.

SystemVerilog

task peek(output class-name obj, input int offset = 0);

OpenVera

Not supported.

Description

Gets a reference to the next transaction descriptor that will be
retrieved from the channel, at the specified offset, without actually
retrieving it. If the channel is empty, then the function will block until
a transaction descriptor is available to be retrieved.

It is an error to invoke this method with an offset value greater than
the number of transaction descriptors currently in the channel, or
with a non-empty active slot.

Example

Example A-21
class consumer extends vmm_xactor;
 virtual task main();
 forever begin
 transaction tr;
 this.in_chan.peek(tr);
 this.in_chan.get(tr);
 end
 endtask: main
endclass: consumer

A-78

VMM User Guide

vmm_channel::playback()

Plays-back a recorded transaction stream.

SystemVerilog

task playback(output bit success,
input string filename,
input vmm_data factory,
input bit metered = 0,
input vmm_scenario grabber = null);

OpenVera

task playback_t(var bit success,
string filename,
rvm_data factory,
bit metered = 0);

Description

Injects the recorded transaction descriptors into the channel, in the
same sequence in which they were recorded. The transaction
descriptors are played back one-by-one, in the order found in the file.
The recorded transaction stream replaces the producer for the
channel. Playback does not need to happen in the same simulation
run as recording. It can be executed in a different simulation run.

You must provide a non-null factory argument, of the same
transaction descriptor type, as that with which recording was done.
The vmm_data::byte_unpack() or vmm_data::load()
method must be implemented for the transaction descriptor passed
in to the factory argument.

 A- 79

VMM User Guide

If the metered argument is TRUE, then the transaction descriptors
are played back (that is, sneak, put, or unput-ed) to the channel in
the same relative simulation time interval, as the one in which they
were originally recorded.

While playing back a recorded transaction descriptor stream on a
channel, all other sources of the channel are blocked (for example,
vmm_channel::put() from any other source be blocked).
Transactions added using the vmm_channel::sneak() method
would still be allowed from other sources, but a warning will be
printed on any such attempt.

The success argument is set to TRUE, if the playback was
successful. If the playback process encounters an error condition
such as a NULL (empty string) filename, a corrupt file or an empty
file, then success is set to FALSE.

When playback is completed, the PLAYBACK_DONE notification is
indicated by vmm_channel::notify.

If the channel is currently grabbed by a scenario, other than the one
specified, the playback operation will be blocked until the channel is
ungrabbed.

Example

Example A-22
class packet_env extends vmm_env;
 ...
 task start();
 ...
 `ifndef PLAY_DATA
 this.gen.start_xactor();
 `else
 fork
 begin

A-80

VMM User Guide

 bit success;
 data_packet factory = new;
 this.gen.out_chan.playback(success,
 "stimulus.dat",
 factory, 1);
 if (!this.success) begin
 `vmm_error(this.log,
 "Error during playback");
 end
 end
 join_none
 `endif
 endtask
 ...
endclass::packet_env

 A- 81

VMM User Guide

vmm_channel::put()

Puts a transaction descriptor in the channel.

SystemVerilog

task put(vmm_data obj,
 int offset = -1,
 vmm_scenario grabber = null);

OpenVera

task put_t(rvm_data obj,
 integer offset = -1);

Description

Adds the specified transaction descriptor to the channel. If the
channel is already full, or becomes full after adding the transaction
descriptor, then the task will block until the channel becomes empty.

If an offset is specified, then the transaction descriptor is inserted in
the channel at the specified offset. An offset of 0 specifies at the
head of the channel (LIFO order). An offset of -1 indicates the end of
the channel (FIFO order).

If the channel is currently grabbed by a scenario other than the one
specified, then this method will block and not insert the specified
transaction descriptor in the channel, until the channel is ungrabbed
or grabbed by the specified scenario.

Example

Example A-23
class my_data extends vmm_data;

A-82

VMM User Guide

 ...
endclass
`vmm_channel(my_data)

class my_scenario extends vmm_ms_scenario;
 ...
endclass

program test_grab

 my_data_channel chan = new("Channel", "Grab", 10, 10);
 my_data md1 = new;
 my_scenario scenario_1 = new;

 initial begin
 ...
 chan.grab(scenario_1);
 chan.put(md1,scenario_1);
 ...
 end

endprogram

 A- 83

VMM User Guide

vmm_channel::reconfigure()

Reconfigures the full or empty levels of the channel.

SystemVerilog

function void reconfigure(int full = -1,
int empty = -1,
logic fill_as_bytes = 1'bx);

OpenVera

Not supported.

Description

If not negative, this method reconfigures the full or empty levels of
the channel to the specified levels . Reconfiguration may cause
threads, which are currently blocked on a vmm_channel::put()
call to unblock. If the fill_as_bytes argument is specified as 1’b1
or 1’b0, then the interpretation of the fill level of the channel is
modified accordingly. Any other value, leaves the interpretation of
the fill level unchanged.

Example

Example A-24
class consumer extends vmm_xactor;
 transaction_channel in_chan;
 ...
 function new(transaction_channel in_chan = null);
 ...
 if (in_chan == null)
 in_chan = new(...);
 in_chan.reconfigure(1);

A-84

VMM User Guide

 this.in_chan = in_chan;
 endfunction: new
 ...
endclass: consumer

 A- 85

VMM User Guide

vmm_channel::record()

Starts recording the flow of transaction descriptors.

SystemVerilog

function bit record(string filename);

OpenVera

function bit record(string filename)

Description

Starts recording the flow of transaction descriptors, which are added
through the channel instance in the specified file. The
vmm_data::save() method must be implemented for that
transaction descriptor, and defines the file format. A transaction
descriptor is recorded, when added to the channel by the
vmm_channel::put() method.

A null filename stops the recording process. Returns TRUE, if the
specified file was successfully opened.

A-86

VMM User Guide

vmm_channel::register_vmm_sb_ds()

For more information, refer to the VMM Scoreboard User Guide.

 A- 87

VMM User Guide

vmm_channel::remove()

Updates the status of the active slot to vmm_channel::INACTIVE.

SystemVerilog

function class-name remove();

OpenVera

Not supported.

Description

Updates the status of the active slot to
vmm_channel::INACTIVE, and removes the transaction
descriptor from the active slot from the channel. This method may
cause the EMPTY notification to be indicated, or the FULL notification
to be reset. It is an error to call this method with an active slot in the
vmm_channel::STARTED state. The vmm_data::ENDED
notification of the transaction descriptor in the active slot is indicated.

Example

Example A-25
class consumer extends vmm_xactor;
 virtual task main();
 forever begin
 transaction tr;
 this.in_chan.activate(tr);
 this.in_chan.start();
 this.in_chan.complete();
 this.in_chan.remove();
 end
 endtask: main
endclass: consumer

A-88

VMM User Guide

vmm_channel::set_consumer()

Specifies the current consumer for a channel.

SystemVerilog

function void set_consumer(vmm_xactor consumer);

OpenVera

Not supported.

Description

Identifies the specified transactor as the current consumer for the
channel instance. This channel will be added to the list of input
channels for the transactor. If a consumer is previously identified, the
channel instance is removed from the previous list of consumer input
channels.

Specifying a NULL transactor indicates that the channel does not
contain any consumer.

Although a channel can contain multiple consumers (even though
with unpredictable distribution of input of each consumer from the
channel, only one transactor can be identified as a consumer of a
channel, as they are primarily a point-to-point transaction-level
connection mechanism.

Example

Example A-26
class tr extends vmm_data;
 ...

 A- 89

VMM User Guide

endclass
`vmm_channel(tr)

class xactor extends vmm_xactor;
 ...
endclass

program prog;

 initial begin
 xactor xact = new("xact");
 tr_channel chan1 = new("tr_channel", "chan1");
 ...
 chan1.set_consumer(xact);
 ...
 end
endprogram

A-90

VMM User Guide

vmm_channel::set_producer()

Specifies the current producer for a channel.

SystemVerilog

function void set_producer(vmm_xactor producer);

OpenVera

Not supported.

Description

Identifies the specified transactor as the current producer for the
channel instance. This channel will be added to the list of output
channels for the transactor. If a producer is previously identified, the
channel instance is removed from the previous list of producer
output channels.

Specifying a NULL transactor indicates that the channel does not
contain any producer.

Although a channel can have multiple producers (even though with
unpredictable ordering of each contribution of a producer to the
channel, only one transactor can be identified as a producer of a
channel, as they are primarily a point-to-point transaction-level
connection mechanism.

Example

Example A-27
class tr extends vmm_data;
 ...

 A- 91

VMM User Guide

endclass
`vmm_channel(tr)
`vmm_scenario_gen(tr, "tr")

program prog;

 initial begin
 tr_scenario_gen sgen = new("Scen Gen");
 tr_channel chan1 = new("tr_channel", "chan1");
 ...
 chan1.set_producer(sgen);
 ...
 end
endprogram

A-92

VMM User Guide

vmm_channel::sink()

Flushes the content of the channel, and sinks any further objects put
into it.

SystemVerilog

function void sink();

OpenVera

Not supported.

Description

No transaction descriptors will accumulate in the channel, while it is
sunk. Any thread attempting to obtain a transaction descriptor from
the channel will be blocked, until the flow through the channel is
restored using the vmm_channel::flow() method. This method
causes the FULL notification to be reset, or the EMPTY notification
to be indicated.

 A- 93

VMM User Guide

vmm_channel::size()

Returns the number of transaction descriptors, which are currently in
the channel.

SystemVerilog

function int unsigned size();

OpenVera

Not supported.

Description

Returns the number of transaction descriptors, which are currently in
the channel, including the active slot, regardless of the interpretation
of the fill level.

A-94

VMM User Guide

vmm_channel::sneak()

Sneaks a transaction descriptor in the channel.

SystemVerilog

function void sneak(vmm_data obj,
 int offset = -1,
 vmm_scenario grabber = null);

OpenVera

task sneak(rvm_data obj,
 integer offset = -1);

Description

Adds the specified transaction descriptor to the channel. This
method will never block, even if the channel is full. An execution
thread calling this method must contain some other throttling
mechanism, to prevent an infinite loop from occurring.

This method is designed to be used in circumstances, where
potentially blocking the execution thread could yield invalid results.
For example, monitors must use this method to avoid missing
observations.

If an offset is specified, the transaction descriptor is inserted in the
channel at the specified offset. An offset of 0 specifies at the head of
the channel (for example, LIFO order). An offset of -1 indicate the
end of the channel (for example, FIFO order).

If the channel is currently grabbed by a scenario, other than the one
specified, the transaction descriptor will not be inserted in the
channel.

 A- 95

VMM User Guide

Example

Example A-28
class my_data extends vmm_data;
 ...
endclass
`vmm_channel(my_data)

class my_scenario extends vmm_ms_scenario;
 ...
endclass

program test_grab

 my_data_channel chan = new("Channel", "Grab", 10, 10);
 my_data md1 = new;
 my_scenario scenario_1 = new;

 initial begin
 ...
 chan.grab(scenario_1);
 chan.sneak(md1,,scenario_1);
 ...
 end

endprogram

A-96

VMM User Guide

vmm_channel::start()

Updates the status of the active slot to vmm_channel::STARTED.

SystemVerilog

function class-name start();

OpenVera

Not supported.

Description

The transaction descriptor remains in the active slot. It is an error to
call this method, if the active slot is empty. The
vmm_data::STARTED notification of the transaction descriptor in
the active slot is indicated.

Example

Example A-29
class consumer extends vmm_xactor;
 ...
 virtual task main();
 forever begin
 transaction tr;
 ...
 this.in_chan.activate(tr);
 this.in_chan.start();
 ...
 this.in_chan.complete();
 this.in_chan.remove();
 end
 endtask: main
 ...
endclass: consumer

 A- 97

VMM User Guide

vmm_channel::status()

Returns an enumerated value indicating the status of the transaction
descriptor in the active slot.

SystemVerilog

function active_status_e status();

OpenVera

Not supported.

Description

Returns one of the enumerated values, as shown in Table A-6,
indicating the status of the transaction descriptor in the active slot.

Table A-6 Pre-Configured Notifications in vmm_channel Notifier Interface
Table A-7

Symbolic Property Corresponding Significant Event
vmm_channel::INACTIVE No transaction descriptor is present in the active slot.

vmm_channel::PENDING A transaction descriptor is present in the active slot, but it is not
started yet.

vmm_channel::STARTED A transaction descriptor is present in the active slot, and it is
started, but it is not completed yet. The transaction is being
processed by the downstream transactor.

vmm_channel::COMPLETED A transaction descriptor is present in the active slot, and it is
processed by the downstream transactor, but it is not yet
removed from the active slot.

A-98

VMM User Guide

vmm_channel::tee()

Retrieves a copy of the transaction descriptor references that have
been retrieved by the get() or activate() methods.

SystemVerilog

task tee(output class-name obj);

OpenVera

Not supported.

Description

When the tee mode is ON, retrieves a copy of the transaction
descriptor references that is retrieved by the get() or activate()
methods. The task blocks until one of the get() or activate()
methods successfully completes.

This method can be used to fork off a second stream of references
to the transaction descriptor stream.

Note:The transaction descriptors themselves are not copied.

The references returned by this method are referring to the same
transaction descriptor instances obtained by the get() and
activate() methods.

 A- 99

VMM User Guide

vmm_channel::tee_mode()

Turns the tee mode ON or OFF for this channel.

SystemVerilog

function bit tee_mode(bit is_on);

OpenVera

Not supported.

Description

Returns TRUE, if the tee mode was previously ON. A thread that is
blocked on a call to the vmm_channel::tee() method will not
unblock execution, if the tee mode is turned OFF. If the stream of
references is not drained through the vmm_channel::tee()
method, data will accumulate in the secondary channel when the tee
mode is ON.

A-100

VMM User Guide

vmm_channel::try_grab()

Tries grabbing a channel for exclusive use.

SystemVerilog

function bit try_grab(vmm_scenario grabber);

OpenVera

function bit try_grab(rvm_scenario grabber);

Description

Tries grabbing a channel for exclusive use and returns TRUE, if the
channel was successfully grabbed by the scenario. Otherwise, it
returns FALSE.

For more information on the channel grabbing rules, see the section
vmm_channel::grab().

Example

Example A-30
class my_data extends vmm_data;
 ...
endclass
`vmm_channel(my_data)

class my_scenario extends vmm_ms_scenario;
 ...
endclass

program test_grab

 my_data_channel chan = new("Channel", "Grab", 10, 10);

 A- 101

VMM User Guide

 my_scenario scenario_1 = new;
 bit grab_success;

 initial begin
 ...
 grab_success = chan.try_grab(scenario_1);
 if(grab_success == 0)
 `vmm_error(log, "scenario_1 could not grab the
channel");
 else if(parent_grab == 1)
 ̀ vmm_note(log, "scenario_1 has grabbed the channel ");
 ...
 end

endprogram

A-102

VMM User Guide

vmm_channel_typed#(type)

Parameterized transaction-level interface.

SystemVerilog

class vmm_channel_typed #(type T) extends vmm_channel;

OpenVera

Not supported.

Description

Parameterized class implementing a strongly typed transaction-level
interface. The specified type parameter, T must be based on the
vmm_data base class.

This class is the underlying class corresponding to the T_channel
class that is created when using the ‘vmm_channel(T) macro.
They are both interchangeable. The parameterized class may be
used directly, without having to declare the strongly-typed channel
using the ‘vmm_channel() macro beforehand.

The parameterized class also allows channels of parameterized
classes to be defined without having to define an intermediate
typedef.

Example

Example A-31 Equivalent definitions
‘vmm_channel(eth_frame)
eth_frame_channel in_chan;

 A- 103

VMM User Guide

vmm_channel_typed#(eth_frame) in_chan;

Example A-32 Equivalent definitions
typedef apb_tr#(32, 64) apb_32_64_tr;
‘vmm_channel(apb_32_64_tr) apb_32_64_tr_channel in_chan;
vmm_channel_typed#(apb_tr#(32, 64)) in_chan;

A-104

VMM User Guide

vmm_channel::ungrab()

Releases a channel from exclusive use.

SystemVerilog

function void ungrab(vmm_scenario grabber);

OpenVera

task ungrab(rvm_scenario grabber);

Description

Releases a channel that is previously grabbed for the exclusive use
of a scenario, using the vmm_channel::grab() method. If
another scenario is waiting to grab the channel, it will be immediately
grabbed.

A channel must be explicitly ungrabbed, after the execution of an
exclusive transaction stream is completed, to avoid creating
deadlocks.

When a channel is ungrabbed, the vmm_channel::UNGRABBED
notification is indicated.

Example

Example A-33
class my_data extends vmm_data;
 ...
endclass
`vmm_channel(my_data)

class my_scenario extends vmm_ms_scenario;

 A- 105

VMM User Guide

 ...
endclass

program test_grab

 my_data_channel chan = new("Channel", "Grab", 10, 10);
 my_scenario scenario_1 = new;
 my_scenario scenario_2 = new;

 initial begin
 ...
 chan.grab(scenario_1);
 ...
 chan.ungrab(scenario_1);
 chan.grab(scenario_2);
 ...
 end

endprogram

A-106

VMM User Guide

vmm_channel::unlock()

Blocks any source (consumer), as if the channel was full (empty),
until explicitly unlocked.

SystemVerilog

function void unlock(bit [1:0] who);

OpenVera

Not supported.

Description

The side that is to be locked or unlocked is specified using the sum
of the symbolic values, as shown in Table A-3.

Although the source and sink contain the same control-flow effect,
locking a source does not indicate the FULL notification, nor does
locking the sink indicate the EMPTY notification.

 A- 107

VMM User Guide

vmm_channel::unput()

Removes the specified transaction descriptor from the channel.

SystemVerilog

function class-name unput(int offset = -1);

OpenVera

Not supported.

Description

 It is an error to specify an offset to a transaction descriptor that does
not exist.

This method may cause the EMPTY notification to be indicated, and
causes the FULL notification to be reset.

A-108

VMM User Guide

vmm_channel::unregister_vmm_sb_ds()

For more information, refer to the VMM Scoreboard User Guide.

 A- 109

VMM User Guide

‘vmm_channel()

Defines a channel class to transport instances of the specified class.

SystemVerilog

‘vmm_channel(class-name)

OpenVera

Not supported.

Description

The transported class must be derived from the vmm_data class.
This macro is typically invoked in the same file, where the specified
class is defined and implemented.

This macro creates an external class declaration, and no
implementation. It is typically invoked when the channel class must
be visible to the compiler, but the actual channel class declaration is
not yet available.

A-110

VMM User Guide

vmm_connect#(T,N,D)

Utility class for connecting channels and notifications in the
vmm_unit::connect_ph() method.

SystemVerilog

class vmm_connect #(type T=vmm_channel, type N=T, type
D=vmm_data);

Description

The vmm_connect utility class can be used for connecting channels
and notifications in the vmm_unit::connect_ph() method. It
performs additional check to verify whether the channels are already
connected.

Summary

• vmm_connect::channel() page A-111
• vmm_connect::notify() page A-112
• vmm_connect::tlm_bind() page A-113
• vmm_connect::tlm_transport_interconnect() page A-115

 A- 111

VMM User Guide

vmm_connect::channel()

Connects the specified channel ports.

SystemVerilog

class vmm_connect#(T)::channel(ref T upstream, downstream,
 string name = "", vmm_object parent = null);

Description

Connects the specified channel ports (upstream and
downstream). If both specified channels are not null, then they are
connected using the upstream.connect(downstream)
statement. Otherwise, both channels are connected by referring to
the same channel instance. It is an error to attempt to connect two
channels that are already connected together or to another channel.
The optional argument name specifies the name of the binding, while
parent is the component in which this binding is done.

Example

class ahb_unit extends vmm_group;
 ahb_trans_channel gen_chan;
 ahb_trans_channel drv_chan;

 virtual function void build_ph();
 gen_chan = new("ahb_chan", "gen_chan");
 drv_chan = new("ahb_chan", "drv_chan");
 endfunction

 virtual function void connect_ph();
 vmm_connect#(ahb_trans_channel)::channel(
 gen_chan, drv_chan, "gen2drv", this);
 endfunction
endclass

A-112

VMM User Guide

vmm_connect::notify()

Connects the specified observer to the specification notification.

SystemVerilog

class vmm_connect#(T,N,D)::notify(N observer,
vmm_notify ntfy, int notification_id);

Description

Connects the specified observer to the specification notification,
using an instance of the vmm_notify_observer class. The
specified argument ntfy indicates the notify class under which
specified notification notification_id is registered. Each
subsequent call to ntfy.indicate(notification_id, tr)
allow to directly pass the transaction tr to the observer.

Example

class scoreboard;
 virtual function void observe_trans(ahb_trans tr);
 endfunction
endclass
`vmm_notify_observer(scoreboard, observe_trans)

class ahb_unit extends vmm_group;
 scoreboard sb;
 virtual function void build_ph();
 sb = new();
 endfunction

 virtual function void connect_ph();
 vmm_connect#(.N(scoreboard), .D(ahb_trans))::notify(
 sb, mon.notify, mon.TRANS_STARTED);
 endfunction
endclass

 A- 113

VMM User Guide

vmm_connect::tlm_bind()

Connects a VMM channel to a TLM interface.

SystemVerilog

class vmm_connect#(.D(d))::tlm_bind(
vmm_channel_typed#(D) channel ,
vmm_tlm_base tlm_intf,
vmm_tlm::intf_e intf,
string fname = "", int lineno = 0);

Description

Connects the specified VMM channel channel to the specified TLM
interface tlm_intf. The TLM interface can be of any type as
provided with intf such as vmm_tlm::TLM_BLOCKING_PORT,
vmm_tlm::TLM_BLOCKING_EXPORT.

Example

class Environment extends vmm_env;
 packet_atomic_gen gen[];
 tlm_driver drv[];

 virtual function void build_ph();
 gen = new[4];
 drv = new[4];
 for(int i=0; i<drv.size; i++) begin
 drv[i] = new($psprintf("Driver[%0d]", i), i, router);
 gen[i] = new($psprintf("Gen[%0d]", i), i);
 end
 endfunction

 virtual function void connect_ph();
 for(int i=0; i<drv.size; i++) begin
 vmm_connect #(.D(Packet))::tlm_bind(

gen[i].out_chan,

A-114

VMM User Guide

drv[i].socket,
vmm_tlm::TLM_BLOCKING_PORT);

 end
 endfunction
endclass

 A- 115

VMM User Guide

vmm_connect::tlm_transport_interconnect()

Connects TLM port to TLM export.

SystemVerilog

static function tlm_transport_interconnect(vmm_tlm_base
tlm_intf_port, vmm_tlm_base tlm_intf_export,
vmm_tlm::intf_e intf, vmm_object parent = null, string fname
= "", int lineno = 0);

Description

Binds the tlm_intf_port to tlm_intf_export, which are
passed as arguments to the function.

First argument to the function is tlm port and the second argument is
tlm export. If wrong types are passed to first or second argument
then an error is issued.

Third argument takes the following values:

• vmm_tlm::TLM_NONBLOCKING_EXPORT

This is used when producer is vmm_tlm_b_transport_port
and consumer is vmm_tlm_nb_transport_export.

• vmm_tlm::TLM_NONBLOCKING_FW_EXPORT

This is used when producer is vmm_tlm_b_transport_port
and consumer is vmm_tlm_nb_transport_fw_export.

• vmm_tlm::TLM_NONBLOCKING_PORT

This is used when producer is vmm_tlm_nb_transport_port
and consumer is vmm_tlm_b_transport_export.

A-116

VMM User Guide

• vmm_tlm::TLM_NONBLOCKING_FW_PORT

This is used when producer is
vmm_tlm_nb_transport_fw_port and consumer is
vmm_tlm_b_transport_export.

Any other values for third argument will issue an error.

Example

class Environment extends vmm_env;
 tlm_gen gen;
 tlm_driver drv;

 virtual function void build_ph();
 gen = new(this,”tlm_gen”);

 drv = new(this,”tlm_driver”);
 endfunction

 virtual function void connect_ph();

vmm_connect#(vmm_channel,vmm_channel,my_trans)::tlm_transp
ort_interconnect(gen.socket,drv.socket,vmm_tlm::TLM_NONBLO
CKING_EXPORT,this);

 endfunction

endclass

 A- 117

VMM User Guide

vmm_consensus

This class is used to determine when all the elements of a testcase,
a verification environment, or a sub-environment agree that the test
may be terminated.

Summary

• vmm_consensus::consensus_force_thru() page A-118
• vmm_consensus::forcing() page A-119
• vmm_consensus::is_forced() page A-120
• vmm_consensus::is_reached() page A-121
• vmm_consensus::log page A-122
• vmm_consensus::nays() page A-123
• vmm_consensus::new() page A-124
• vmm_consensus::notifications_e page A-125
• vmm_consensus::psdisplay() page A-126
• vmm_consensus::register_channel() page A-127
• vmm_consensus::register_consensus() page A-128
• vmm_consensus::register_no_notification() page A-130
• vmm_consensus::register_notification() page A-132
• vmm_consensus::register_voter() page A-134
• vmm_consensus::register_xactor() page A-136
• vmm_consensus::request() page A-137
• vmm_consensus::unregister_channel() page A-138
• vmm_consensus::unregister_consensus() page A-139
• vmm_consensus::unregister_notification() page A-140
• vmm_consensus::unregister_voter() page A-142
• vmm_consensus::unregister_xactor() page A-143
• vmm_consensus::wait_for_consensus() page A-144
• vmm_consensus::wait_for_no_consensus() page A-145
• vmm_consensus::yeas() page A-146

A-118

VMM User Guide

vmm_consensus::consensus_force_thru()

Forces sub-consensus through or not.

SystemVerilog

function void consensus_force_thru(
vmm_consensus vote,
bit force_through = 1);

OpenVera

Not supported

Description

If the force_through argument is TRUE, any consensus forced
on the specified sub-consensus instance will force the consensus on
this vmm_consensus instance.

If the force_through argument is FALSE, any consensus forced
on the specified sub-consensus instance will simply consent to the
consensus on this vmm_consensus instance.

 A- 119

VMM User Guide

vmm_consensus::forcing()

Returns a description of the forcing participants.

SystemVerilog

function void forcing(ref string who[],
ref string why[]);

OpenVera

task forcing(var string who[*],
var string why[*]);

Description

Returns a description of the testbench elements that are currently
forcing the end of test, and their respective reasons.

Example

Example A-34
program test_consensus;

 string who[];
 string why[];
 vmm_consensus vote = new("Vote", "Main");

 initial begin
 ...
 vote.forcing(who,why);
 for(int i=0; i<who.size; i++)
 $display(" %s ------ %s",who[i],why[i]);
 ...
 end

endprogram

A-120

VMM User Guide

vmm_consensus::is_forced()

Checks if a consensus is being forced.

SystemVerilog

function bit is_forced();

OpenVera

function bit is_forced();

Description

This method returns an indication, if a participant forces a
consensus. If the consensus is forced, a non-zero value is returned.
If there is no consensus, or the consensus is not being forced, a zero
value is returned.

Example

Example A-35
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 ...
 if (vote.is_forced())

 `vmm_note (vote.log, "Consensus is forced");
 end
 ...
 end

endprogram

 A- 121

VMM User Guide

vmm_consensus::is_reached()

Checks if a consensus is reached.

SystemVerilog

function bit is_reached();

OpenVera

function bit is_reached();

Description

This method returns an indication, if a consensus is reached. If a
consensus exists (whether forced or not), a non-zero value is
returned. If there is no consensus, and the consensus is not being
forced, a zero value is returned.

Example

Example A-36
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 ...
 if (vote.is_reached())

 `vmm_note (vote.log, "Consensus is reached");
 else

 `vmm_error (vote.log, "Consensus has not reached");
 ...
 end

endprogram

A-122

VMM User Guide

vmm_consensus::log

Message service interface for the consensus class.

SystemVerilog

vmm_log log;

OpenVera

rvm_log log;

Description

This property is set by the constructor using the specified name and
instance name. These names may be modified afterward, using the
vmm_log::set_name() or vmm_log::set_instance()
methods.

Example

Example A-37
program test_consensus;
 vmm_consensus vote = new("Vote", "Main");

 initial begin
 ...
 if (vote.is_reached()) begin

 `vmm_note(vote.log, "Consensus has reached ");
 end else begin

 `vmm_note(vote.log, "Consensus has not reached yet");
 end
 ...
 end

endprogram

 A- 123

VMM User Guide

vmm_consensus::nays()

Returns a description of the opposing participants.

SystemVerilog

function void nays(ref string who[],
ref string why[]);

OpenVera

task nays(var string who[*],
var string why[*]);

Description

Returns a description of the testbench elements, which are currently
opposing to the end of test, and their respective reasons.

Example

Example A-38
program test_consensus;

 string who[];
 string why[];
 vmm_consensus vote = new("Vote", "Main");

 initial begin
 ...
 vote.nays(who,why);
 for(int i=0; i<who.size; i++)
 $display(" %s ------ %s",who[i],why[i]);
 ...
 end

endprogram

A-124

VMM User Guide

vmm_consensus::new()

Creates a consensus, usually to determine the end-of-test.

SystemVerilog

function new(string name, string inst, vmm_log log = null);

OpenVera

task new(string name,
 string inst);

Description

Creates a new instance of this class with the specified name and
instance name. The specified name and instance names are used as
the name and instance names of the log class property. You can
pass a massage service interface(log) to consensus through
constructor, if log is not being passed the it will create a new instance
of log.

Example

Example A-39
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 ...
 end
endprogram

 A- 125

VMM User Guide

vmm_consensus::notifications_e

Predefined notifications.

SystemVerilog

typedef enum int { NEW_VOTE = 999_999,
 REACHED = 999_998,
 REQUEST = 999_997} notifications_e;

OpenVera

static integer NEW_VOTE;

Description

Predefined notifications that are configured in
vmm_consensus::notify object.

NEW_VOTE is a ONE_SHOT notification that is indicated whenever a
participant changes its vote (using vmm_consensus::consent,
vmm_consensus::oppose or vmm_consensus::forced).
REACHED is a ON_OFF notification that is indicated whenever a test
case end condition is reached or unregister_all method is
called. REQUEST is a ONE_SHOT notification that is indicated
whenever a request method is called.

A-126

VMM User Guide

vmm_consensus::psdisplay()

Describes the status of the consensus.

SystemVerilog

function string psdisplay(string prefix = "");

OpenVera

function string psdisplay(string prefix = "");

Description

Returns a human-readable description of the current status of the
consensus, and who is opposing or forcing the consensus and why.
Each line of the description is prefixed with the specified prefix.

Example

Example A-40
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 ...
 $display(vote.psdisplay());
 ...
 end

endprogram

 A- 127

VMM User Guide

vmm_consensus::register_channel()

Registers a channel as a participant.

SystemVerilog

function void register_channel(vmm_channel chan);

OpenVera

task register_channel(rvm_channel chan);

Description

Adds a channel that can participate in this consensus. By default, a
channel opposes the end of test if it is not empty, and consents to the
end of test if it is currently empty. The channel may be later
unregistered from the consensus using the
“vmm_consensus::unregister_channel()” method.

Example

Example A-41
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 vmm_channel v1 =new("Voter", "#1");
 ...
 vote.register_channel(v1);
 ...
 end

endprogram

A-128

VMM User Guide

vmm_consensus::register_consensus()

Registers a sub-consensus as a participant.

SystemVerilog

function void register_consensus(vmm_consensus vote,
bit force_through = 0);

OpenVera

task register_consensus(vmm_consensus vote
bit force_through = 0);

Description

Adds a sub-consensus that can participate in this consensus. By
default, a sub-consensus opposes the higher-level end of test if it is
not reached its own consensus. Also, it consents to the higher-level
end of test, if it is reached (or forced) its own consensus. The sub-
consensus may be later unregistered from the consensus, using the
“vmm_consensus::unregister_consensus()” method.

By default, a sub-consensus that has reached its consensus by force
will not force a higher-level consensus, only consent to it. If the
force_through parameter is specified as non-zero, a forced sub-
consensus will force a higher-level consensus.

Example

Example A-42
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 A- 129

VMM User Guide

 initial begin
 vmm_consensus c1;
 c1 = new("SubVote", "#1");
 ...
 vote.register_consensus(c1, 0);
 ...
 end

endprogram

A-130

VMM User Guide

vmm_consensus::register_no_notification()

Registers a notification as a participant.

SystemVerilog

function void register_no_notification(vmm_notify notify,
int notification);

OpenVera

task register_no_notification(rvm_notify notify,
integer notification);

Description

Adds an ON or OFF notification that can participate in this
consensus. By default, a notification opposes the end of test if it is
indicated, and consents to the end of test if it is not currently
indicated. The notification may be later unregistered from the
consensus using the
“vmm_consensus::unregister_notification()” method.

For more information on the opposite polarity participation, see the
section, “vmm_consensus::register_notification()” .

Example

Example A-43
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 vmm_notify v1;

 A- 131

VMM User Guide

 vmm_log notify_log;
 notify_log = new ("Voter", "#1");
 v1 = new (notify_log);
 v1.configure(1, vmm_notify::ON_OFF);
 ...
 vote.register_no_notification(v1,1);
 ...
 end

endprogram

A-132

VMM User Guide

vmm_consensus::register_notification()

Registesr a notification as a participant.

SystemVerilog

function void register_notification(vmm_notify notify,
int notification);

OpenVera

task register_notification(rvm_notify notify,
integer notification);

Description

Adds an ON or OFF notification that can participate in this
consensus. The specified argument notify is the handle of
vmm_notify class under which specified notification is registered.
By default, a notification opposes the end of test if it is not indicated,
and consents to the end of test if it is currently indicated. The
notification may be later unregistered from the consensus using the
“vmm_consensus::unregister_notification()” method.

For more information on opposite polarity participation, see the
“vmm_consensus::register_no_notification()”
method.

Example

Example A-44
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 A- 133

VMM User Guide

 initial begin
 vmm_notify v1;
 vmm_log notify_log;
 notify_log = new ("Voter", "#1");
 v1 = new (notify_log);
 v1.configure(1, vmm_notify::ON_OFF);
 ...
 vote.register_notification(v1,1);
 ...
 end

endprogram

A-134

VMM User Guide

vmm_consensus::register_voter()

Registers a new general purpose participant.

SystemVerilog

function vmm_voter register_voter(string name, vmm_voter
voter = null);

OpenVera

function vmm_voter register_voter(string name);

Description

Creates a new general-purpose voter interface that can participate
in this consensus. The specified argument name indicates the name
of a voter. If null is specified to the vmm_voter argument, an
instance of vmm_voter will be internally allocated. By default, a
voter opposes the end of test. The voter interface may be later
unregistered from the consensus using the
“vmm_consensus::unregister_voter()” method.

For more information on the general-purpose participant interface,
see the section “vmm_voter” .

Example

Example A-45
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 vmm_voter v1;

 A- 135

VMM User Guide

 ...
 v1 = vote.register_voter("Voter #1");
 ...
 end
endprogram

A-136

VMM User Guide

vmm_consensus::register_xactor()

Registers a transactor as a participant.

SystemVerilog

function void register_xactor(vmm_xactor xact);

OpenVera

task register_xactor(rvm_xactor xact);

Description

Adds a transactor that can participate in this consensus. A
transactor opposes the end-of-test, if it is currently indicating the
vmm_xactor::IS_BUSY notification. Moreover, it consents to the
end of test, if it is currently indicating the vmm_xactor::IS_IDLE
notification. The transactor may be later unregistered from the
consensus using the
“vmm_consensus::unregister_xactor()” method.

Example

Example A-46
program test_consensus;
 vmm_consensus vote = new("Vote", "Main");

 initial begin
 vmm_xactor v1 =new("Voter", "#1");
 ...
 vote.register_xactor(v1);
 ...
 end
endprogram

 A- 137

VMM User Guide

vmm_consensus::request()

Requests that a consensus be reached.

SystemVerilog

task request(string why = “No reason specified”,
vmm_consensus requester = null);

OpenVera

Not supported

Description

Makes a request of all currently-opposing participants, in this
consensus instance that they consent to the consensus.

A request is made by indicating the vmm_consensus::REQUEST
notification on the vmm_consensus::notify notification interface
of this consensus instance, and all currently-opposing sub-
consensus instances. If a request is made on a consensus instance
that is a child of a vmm_unit instance, the
vmm_unit::consensus_requested() method is also invoked.

If this consensus forces through to a higher-level consensus, the
consensus request is propagated upward as well.

This task returns when the local consensus is reached.

A-138

VMM User Guide

vmm_consensus::unregister_channel()

Unregisters a channel participant.

SystemVerilog

function void unregister_channel(vmm_channel chan);

OpenVera

task unregister_channel(rvm_channel chan);

Description

Removes a previously registered channel from this consensus. If the
channel was the only participant that objected to the consensus, the
consensus will subsequently be reached.

Example

Example A-47
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 vmm_channel v1 =new("Voter", "#1");
 ...
 vote.register_channel(v1);
 ...
 vote.unregister_channel(v1);
 ...
 end

endprogram

 A- 139

VMM User Guide

vmm_consensus::unregister_consensus()

Unregisters a sub-consensus participant.

SystemVerilog

function void unregister_consensus(vmm_consensus vote);

OpenVera

task unregister_consensus(vmm_consensus vote);

Description

Removes a previously registered sub-consensus from this
consensus. If the sub-consensus was the only participant that
objected to the consensus, the consensus will subsequently be
reached. If the sub-consensus was forcing the consensus despite
other objections, the consensus will subsequently no longer be
reached.

Example

Example A-48
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 vmm_consensus c1;
 c1 = new("SubVote", "#1");
 vote.register_consensus(c1, 0);
 ...
 vote.unregister_consensus(c1);
 end
endprogram

A-140

VMM User Guide

vmm_consensus::unregister_notification()

Unregisters a notification participant.

SystemVerilog

function void unregister_notification(vmm_notify notify,
int notification);

OpenVera

task unregister_notification(rvm_notify notify,
integer notification);

Description

Removes a previously registered ON or OFF notification from this
consensus. The specified argument notify is the handle of
vmm_notify class under which specified notification is registered.
If the notification was the only participant that objected to the
consensus, the consensus will subsequently be reached.

Example

Example A-49
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 vmm_notify v1;
 vmm_log notify_log;
 notify_log = new ("Voter", "#1");
 v1 = new (notify_log);
 v1.configure(1, vmm_notify::ON_OFF);
 vote.register_notification(v1,1);

 A- 141

VMM User Guide

 vote.unregister_notification(v1,1);
 end
endprogram

A-142

VMM User Guide

vmm_consensus::unregister_voter()

Unregisters a general purpose participant.

SystemVerilog

function void unregister_voter(vmm_voter voter);

OpenVera

task unregister_voter(vmm_voter voter);

Description

Removes a previously registered general-purpose voter interface
from this consensus. If the voter was the only participant that
objected to the consensus, the consensus will subsequently be
reached.

Example

Example A-50
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 vmm_voter v1;
 ...
 v1 = vote.register_voter("Voter #1");
 ...
 vote.unregister_voter(v1);
 ...
 end

endprogram

 A- 143

VMM User Guide

vmm_consensus::unregister_xactor()

Unregisters a transactor participant.

SystemVerilog

function void unregister_xactor(vmm_xactor xact);

OpenVera

task unregister_xactor(rvm_xactor xact);

Description

Removes a previously registered transactor from this consensus. If
the transactor was the only participant that objected to the
consensus, then the consensus will subsequently be reached.

Example

Example A-51
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 vmm_xactor v1 =new("Voter", "#1");
 ...
 vote.register_xactor(v1);
 ...
 vote.unregister_xactor(v1);
 ...
 end

endprogram

A-144

VMM User Guide

vmm_consensus::wait_for_consensus()

Waits until a consensus is reached.

SystemVerilog

task wait_for_consensus();

OpenVera

task wait_for_consensus_t();

Description

Waits until all participants, which explicitly consent and none oppose.
There can be no abstentions.

If a consensus is already reached or forced, by the time this task is
called, this task will return immediately.

A consensus may be broken later (if the simulation is still running) by
any voter opposing the end of test, or a voter forcing the consensus
deciding to consent normally or oppose normally.

Example

Example A-52
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 vote.wait_for_consensus();
 end
endprogram

 A- 145

VMM User Guide

vmm_consensus::wait_for_no_consensus()

Waits until a consensus is no longer reached.

SystemVerilog

task wait_for_no_consensus();

OpenVera

task wait_for_no_consensus_t();

Description

Waits until a consensus is broken by no longer being forced and any
one participant opposing. If a consensus is not reached, nor forced
by the time this task is called, then this task will return immediately.

Example

Example A-53
program test_consensus;

 vmm_consensus vote = new("Vote", "Main");

 initial begin
 ...
 vote.wait_for_no_consensus();
 ...
 end

endprogram

A-146

VMM User Guide

vmm_consensus::yeas()

Returns a description of the consenting participants.

SystemVerilog

function void yeas(ref string who[],
ref string why[]);

OpenVera

task yeas(var string who[*],
var string why[*]);

Description

Returns a description of the testbench elements currently consenting
to the end of test, and their respective reasons.

Example

Example A-54
program test_consensus;

 string who[];
 string why[];
 vmm_consensus vote = new("Vote", "Main");

 initial begin
 ...
 vote.yeas(who,why);
 for(int i=0; i<who.size; i++)
 $display(" %s ------ %s",who[i],why[i]);
 ...
 end

endprogram

 A- 147

VMM User Guide

vmm_data

Models transactions efficiently.

SystemVerilog

int vmm_data::lineno = 0
string vmm_data::filename = ""

Description

The lineno and filename properties should be automatically set
by the create_instance() method, and the predefined
generators. Their content must be copied in the
vmm_data::copy_data() method. If set to non-default values,
their content should be displayed in the vmm_data::psdisplay()
method.

Data modeling can be done more quickly due to unified data
encapsulation, and by the presence of predefined methods for
allocating, copying, comparing, displaying, and byte packing or
unpacking of objects

This base class is to be used as the basis for all transaction
descriptors and data models. It provides a standard set of methods
expected to be found in all descriptors. It also creates a common
class (similar to void type in C language) that can be used to create
generic components.

The vmm_data class comes with shorthand macros that greatly
facilitate data member declaration, and provide a quick way to
implement the content of predefined methods. Implementing these
methods provides an environment for other classes, such as
vmm_channel, vmm_mss, vmm_scoreboard, and so on.

A-148

VMM User Guide

The ‘vmm_data_member_begin() method is used to start a
shorthand section. The class name specified must be the name of
the vmm_data extension class that is being implemented.

The shorthand section can only contain shorthand macros, and must
be terminated by the ‘vmm_data_member_end() method, as
shown in the following example.

class bus_trans extends vmm_data;
 typedef enum bit {READ=1'b0, WRITE=1'b1} kind_e;
 rand bit [31:0] addr;
 rand bit [31:0] data;
 rand kind_e kind;
 `vmm_data_member_begin(bus_trans)
 `vmm_data_member_scalar(addr, DO_ALL)
 `vmm_data_member_scalar(data, DO_ALL)
 `vmm_data_member_enum(kind, DO_ALL)
 `vmm_data_member_end(bus_trans)
endclass
`vmm_channel(bus_trans)
`vmm_scenario_gen(bus_trans, "Gen")

The above example is for a simple transaction that contains no
arrays. Note that appropriate macros should be used for arrays. Add
the specified scalar type, fixed array of scalars, dynamic array of
scalars, scalar-indexed associative array of scalars, or string-
indexed associative array of scalars data member to the default
implementation of the methods specified by the do_what argument.

class eth_frame extends vmm_data;
 vlan_frame vlan_fr_var[] ;
 ...
 `vmm_data_member_begin(eth_frame)
 `vmm_data_member_handle_da(vlan_fr_var, DO_ALL)
 ...
 `vmm_data_member_end(eth_frame)
 ...
endclass

 A- 149

VMM User Guide

vmm_data::do_what_e specifies which methods are to be
provided by a shorthand implementation.

enum {DO_PRINT, DO_COPY, DO_COMPARE, DO_PACK, DO_UNPACK,
 DO_ALL} do_what_e;

It is used to specify which methods are to include the specified data
members in their default implementation. Multiple methods can be
specified by using add in the individual symbolic values. All methods
are specified by specifying the DO_ALL symbol.

‘vmm_data_member_scalar(len, DO_PRINT + DO_COPY +
 DO_COMPARE);

It is possible to override the default implementation of methods
created by the vmm_data shorthand macros.
vmm_data::do_psdisplay() overrides the shorthand
psdisplay() method.

virtual function string do_psdisplay(string prefix = "")

This method overrides the default implementation of the
vmm_data::psdisplay() method created by the vmm_data
shorthand macros. If defined, it will be used instead of the default
implementation.

The default implementation of this method in the vmm_data base
class must not be called (for example, do not call
super.do_psdisplay()).

The following are shorthand macros and the default implementations
they replace:

Shorthand Macro: Overrides this default:
do_is_valid() is_valid()
do_allocate() allocate()
do_copy() copy()
do_compare() compare()
do_byte_size() byte_size()
do_max_byte_size() max_byte_size()
do_byte_pack() byte_pack()
do_byte_unpack() byte_unpack()

A-150

VMM User Guide

Summary

• vmm_data::byte_size() page A-177
• vmm_data::byte_unpack() page A-178
• vmm_data::do_byte_pack() page A-180
• vmm_data::do_byte_pack() page A-180
• vmm_data::do_byte_size() page A-182
• vmm_data::do_byte_unpack() page A-184
• vmm_data::do_compare() page A-186
• vmm_data::do_copy() page A-188
• vmm_data::do_how_e page A-190
• vmm_data::do_is_valid() page A-192
• vmm_data::do_max_byte_size() page A-194
• vmm_data::do_psdisplay() page A-195
• vmm_data::do_what_e page A-196
• vmm_data::is_valid() page A-197
• vmm_data::load() page A-198
• vmm_data::set_log() page A-199
• vmm_data::max_byte_size() page A-200
• vmm_data::new() page A-201
• vmm_data::notify page A-202
• vmm_data::psdisplay() page A-203
• vmm_data::save() page A-204
• vmm_data::scenario_id page A-205
• vmm_data::stream_id page A-206

 A- 151

VMM User Guide

‘vmm_data_byte_size()

The shorthand implementation packing size methods.

SystemVerilog

‘vmm_data_byte_size(max-expr, size-expr)

OpenVera

Not supported.

Description

Provides a default implementation of the byte_size() and
max_byte_size() methods. The first and second expressions
specify the value returned by the max_byte_size() and
byte_size() methods respectively. The expression must be a
valid SystemVerilog expression in the content of the class.

The shorthand implementation must be located immediately before
the “‘vmm_data_member_begin()” .

Example

Example A-55
class eth_frame extends vmm_data;
 ...
 ‘vmm_data_byte_size(1500, this.len_typ+16)
 ‘vmm_data_member_begin(eth_frame)
 ...
 ‘vmm_data_member_end(eth_frame)
...
endclass

A-152

VMM User Guide

‘vmm_data_member_begin()

Starts the shorthand section.

SystemVerilog

‘vmm_data_member_begin(class-name)

OpenVera

Not supported.

Description

Starts the shorthand section providing a default implementation for
the psdisplay(), is_valid(), allocate(), copy(),
compare(), byte_pack, and byte_unpack() methods. A
default implementation for the constructor is also provided, unless
the “‘vmm_data_new()” method is previously specified.

In addition, a default implementation for byte_size() and
max_byte_size()is also provided, unless the
“‘vmm_data_byte_size()” method is previously specified.

The specified class-name must be the name of the vmm_data
extension class that is being implemented.

The shorthand section can only contain shorthand macros, and must
be terminated by the “‘vmm_data_member_end()” method.

Example

Example A-56
class eth_frame extends vmm_data;

 A- 153

VMM User Guide

 ...
 ‘vmm_data_member_begin(eth_frame)
 ‘vmm_data_member_end(eth_frame)
endclass

A-154

VMM User Guide

‘vmm_data_member_end()

Terminates the shorthand section.

SystemVerilog

‘vmm_data_member_end(class-name)

OpenVera

Not supported.

Description

Terminates the shorthand section providing a default implementation
for the psdisplay(), is_valid(), allocate(), copy(),
compare(), byte_size(), max_byte_size(), byte_pack,
and byte_unpack() methods.

The class-name specified must be the name of the vmm_data
extension class that is being implemented.

The shorthand section must have been started by the
“‘vmm_data_member_begin()” method.

Example

Example A-57
class eth_frame extends vmm_data;
 ...
 ‘vmm_data_member_begin(eth_frame)
 ...
 ‘vmm_data_member_end(eth_frame)
 ...
endclass

 A- 155

VMM User Guide

‘vmm_data_member_enum*()

The shorthand implementation for an enumerated data member.

SystemVerilog

‘vmm_data_member_enum(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_enum_array(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_enum_da(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_enum_aa_scalar(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_enum_aa_string(member-name,
 vmm_data::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified enum-type, fixed array of enums, dynamic array
of enums, scalar-indexed associative array of enums, or string-
indexed associative array of enums data member to the default
implementation of the methods, specified by the do_what
argument.

The shorthand implementation must be located in a section started
by “‘vmm_data_member_begin()” .

A-156

VMM User Guide

Example

Example A-58
typedef enum bit[1:0] {NORMAL, VLAN, JUMBO } packet_type;

class eth_frame extends vmm_data;
 rand packet_type packet_type_var;
 ...
 `vmm_data_member_begin(eth_frame)
 `vmm_data_member_enum (packet_type_var, DO_ALL)
 ...
 `vmm_data_member_end(eth_frame)
 ...
endclass

 A- 157

VMM User Guide

‘vmm_data_member_handle*()

The shorthand implementation for a class handle data member.

SystemVerilog

‘vmm_data_member_handle(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_handle_array(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_handle_da(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_handle_aa_scalar(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_handle_aa_string(member-name,
 vmm_data::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified handle-type fixed array of handles, dynamic array
of handles, scalar-indexed associative array of handles, or string-
indexed associative array of handles data member to the default
implementation of the methods specified by the do_what argument.

The shorthand implementation must be located in a section started
by ‘vmm_data_member_begin().

A-158

VMM User Guide

Example

Example A-59
class vlan_frame;
 ...
endclass

class eth_frame extends vmm_data;
 vlan_frame vlan_fr_var ;
 ...
 `vmm_data_member_begin(eth_frame)
 `vmm_data_member_handle(vlan_fr_var, DO_ALL)
 ...
 `vmm_data_member_end(eth_frame)
 ...
endclass

 A- 159

VMM User Guide

‘vmm_data_new()

Starts the explicit constructor implementation.

SystemVerilog

‘vmm_data_new(class-name)

OpenVera

Not supported.

Description

Specifies that an explicit user-defined constructor is used instead of
the default constructor provided by the shorthand macros. Also,
declares a “vmm_log” instance that can be passed to the base
class constructor. Use this macro when data members must be
explicitly initialized in the constructor.

The class-name specified must be the name of the vmm_data
extension class that is being implemented.

This macro should be followed by the constructor declaration and
must precede the shorthand data member section i.e., be located
before the “‘vmm_data_member_begin()” macro.

Example

Example A-60
class eth_frame extends vmm_data;
 ...
 ‘vmm_data_new(eth_frame)
 function new();
 super.new(this.log)

A-160

VMM User Guide

 ...
 endfunction

 ‘vmm_data_member_begin(eth_frame)
 ...
 ‘vmm_data_member_end(eth_frame)
 ...
endclass

 A- 161

VMM User Guide

‘vmm_data_member_scalar*()

The shorthand implementation for a scalar data member.

SystemVerilog

‘vmm_data_member_scalar(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_scalar_array(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_scalar_da(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_scalar_aa_scalar(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_scalar_aa_string(member-name,
 vmm_data::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified scalar-type, fixed array of scalars, dynamic array
of scalars, scalar-indexed associative array of scalars, or string-
indexed associative array of scalars data member to the default
implementation of the methods specified by the do_what argument.

A scalar is an integral type, such as bit, bit vector, and packed
unions.

The shorthand implementation must be located in a section started
by “‘vmm_data_member_begin()” .

A-162

VMM User Guide

Example

Example A-61
class eth_frame extends vmm_data;
 rand bit [47:0] da;
 ...
 ‘vmm_data_member_begin(eth_frame)
 ‘vmm_data_member_scalar(da, DO_ALL);
 ...
 ‘vmm_data_member_end(eth_frame)
 ...
endclass

 A- 163

VMM User Guide

‘vmm_data_member_string*()

The shorthand implementation for a string data member.

SystemVerilog

‘vmm_data_member_string(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_string_array(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_string_da(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_string_aa_scalar(member-name,
 vmm_data::do_what_e do_what)

‘vmm_data_member_string_aa_string(member-name,
 vmm_data::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified string-type, fixed array of strings, dynamic array
of strings, scalar-indexed associative array of strings, or string-
indexed associative array of strings data member to the default
implementation of the methods specified by the do_what argument.

The shorthand implementation must be located in a section started
by “‘vmm_data_member_begin()” .

A-164

VMM User Guide

Example

Example A-62
class eth_frame extends vmm_data;
 string frame_name;
 ...
 `vmm_data_member_begin(eth_frame)
 `vmm_data_member_string(frame_name, DO_ALL)
 ...
 `vmm_data_member_end(eth_frame)
 ...
endclass

 A- 165

VMM User Guide

‘vmm_data_member_user_defined()

User-defined shorthand implementation data member.

SystemVerilog

‘vmm_data_member_user_defined(member-name)

OpenVera

Not supported.

Description

Adds the specified user-defined default implementation of the
member.

The shorthand implementation must be located in a section started
by “‘vmm_data_member_begin()” .

Example

Example A-63
class eth_frame extends vmm_data;
 rand bit [47:0] da;
 `vmm_data_member_begin(eth_frame)
 `vmm_data_member_user_defined(da)
 `vmm_data_member_end(eth_frame)
 function bit do_da (input vmm_data::do_what_e do_what)

 do_da = 1; // Success, abort by returning 0

 case (do_what)
 endcase
 endfunction
endclass

A-166

VMM User Guide

‘vmm_data_member_vmm_data*()

The shorthand implementation for a vmm_data-based data member.

SystemVerilog

‘vmm_data_member_vmm_data(member-name,
 vmm_data::do_what_e do_what,
 vmm_data::do_how_e do_how)

‘vmm_data_member_vmm_data_array(member-name,
 vmm_data::do_what_e do_what,
 vmm_data::do_how_e do_how)

‘vmm_data_member_vmm_data_da(member-name,
 vmm_data::do_what_e do_what,
 vmm_data::do_how_e do_how)

‘vmm_data_member_vmm_data_aa_scalar(member-name,
 vmm_data::do_what_e do_what,
 vmm_data::do_how_e do_how)

‘vmm_data_member_vmm_data_aa_string(member-name,
 vmm_data::do_what_e do_what,
 vmm_data::do_how_e do_how)

OpenVera

Not supported.

Description

Adds the specified vmm_data-type, fixed array of vmm_datas,
dynamic array of vmm_datas, scalar-indexed associative array of
vmm_datas, or string-indexed associative array of vmm_datas data
member to the default implementation of the methods specified by
the do_what argument. The do_how argument specifies whether
the vmm_data values must be processed deeply or shallowly.

 A- 167

VMM User Guide

The shorthand implementation must be located in a section started
by “‘vmm_data_member_begin()” .

Example

Example A-64
class vlan_frame extends vmm_data;
 ...
endclass

class eth_frame extends vmm_data;
 vlan_frame vlan_fr_var ;
 ...
 `vmm_data_member_begin(eth_frame)
 ̀ vmm_data_member_vmm_data(vlan_fr_var, DO_ALL, DO_DEEP)
 ...
 `vmm_data_member_end(eth_frame)
 ...
endclass

A-168

VMM User Guide

vmm_data::allocate()

Allocates a new instance.

SystemVerilog

virtual function vmm_data allocate();

OpenVera

Not supported.

Description

Allocates a new instance of the same type as the object instance.
Returns a reference to the new instance. Useful to implement class
factories to create instances of user-defined derived class in generic
code written using the base class type.

 A- 169

VMM User Guide

vmm_data::compare()

Compares the current object instance with the specified object
instance.

SystemVerilog

virtual function bit compare(input vmm_data to,
output string diff,
input int kind = -1);

OpenVera

Not supported.

Description

Compares the current value of the object instance with the current
value of the specified object instance, according to the specified
kind. Returns TRUE (non-zero) if the value is identical. Returns
FALSE, if the value is different, and a descriptive text of the first
difference found is returned in the specified string variable. The
kind argument may be used to implement different comparison
functions (for example, full compare, comparison of rand properties
only, comparison of all properties physically implemented in a
protocol, and so on.)

Example

Example A-65
function bit check(eth_frame actual)
 sb_where_to_find_frame where;
 eth_frame q[$];
 eth_frame expect;

A-170

VMM User Guide

 check = 0;
 if (!index_tbl[hash(actual)].exists()) return;
 where = index_tbl[hash(actual)];
 q = sb.port[where.port_no].queue[where.queue_no];
 expect = q.pop_front();
 if (actual.compare(expect)) check = 1;
endfunction: check

 A- 171

VMM User Guide

vmm_data::copy()

Copies the current value of the object instance.

SystemVerilog

virtual function vmm_data copy(vmm_data to = null);

OpenVera

Not supported.

Description

Copies the current value of the object instance to the specified object
instance. If no target object instance is specified, a new instance is
allocated. Returns a reference to the target instance.

Example

Example A-66

The following trivial implementation does not work. Constructor
copying is a shallow copy. The objects instantiated in the object
(such as those referenced by the log and notify properties) are not
copied, and both copies will share references to the same service
interfaces. Moreover, it does not properly handle the case when the
to argument is not null.

Invalid implementation of the vmm_data::copy() method:

function vmm_data atm_cell::copy(vmm_data to = null) copy =
new(this);
endfunction

A-172

VMM User Guide

The following implementation is usually preferable:

Proper implementation of the vmm_data::copy() method:

function vmm_data atm_cell::copy(vmm_data to = null)
 atm_cell cpy;

 if (to != null) begin
 if ($cast(cpy, to)) begin
 ‘vmm_fatal(log, "Not an atm_cell instance");
 return null;
 end
 end else cpy = new;

 this.copy_data(cpy);
 cpy.vpi = this.vpi;
 ...
 copy = cpy;
endfunction: copy

The base-class implementation of this method must not be called, as
it contains error detection code of a derived class that forgot to
supply an implementation. The vmm_data::copy_data() method
should be called, instead.

 A- 173

VMM User Guide

vmm_data::copy_data()

Copies the current value of all base class data properties.

SystemVerilog

virtual protected function void copy_data(vmm_data to);

OpenVera

Not supported.

Description

Copies the current value of all base class data properties in the
current data object, into the specified data object instance. This
method should be called by the implementation of the
vmm_data::copy() method, in classes immediately derived from
this base class.

A-174

VMM User Guide

vmm_data::data_id

Unique identifier for a data model or transaction descriptor instance.

SystemVerilog

int data_id;

OpenVera

Not supported.

Description

Specifies the offset of the descriptor within a sequence, and the
sequence offset within a stream. This property must be set by the
transactor that instantiates the descriptor. It is set by the predefined
generator, before randomization, so that it can be used to specify
conditional constraints to express instance-specific or stream-
specific constraints.

 A- 175

VMM User Guide

vmm_data::display()

Displays the current value of the transaction or data.

SystemVerilog

function void display(string prefix = "");

OpenVera

Not supported.

Description

Displays the current value of the transaction or data described by
this instance, in a human-readable format on the standard output.
Each line of the output will be prefixed with the specified prefix. This
method prints the value returned by the psdisplay() method.

A-176

VMM User Guide

vmm_data::byte_pack()

Packs the content of the transaction or data into a dynamic array of
bytes.

SystemVerilog

virtual function int unsigned byte_pack(
ref logic [7:0] bytes[],
input int unsigned offset = 0,
input int kind = -1);

OpenVera

Not supported.

Description

Packs the content of the transaction or data into the specified
dynamic array of bytes, starting at the specified offset in the array.
The array is resized appropriately. Returns the number of bytes
added to the array.

If the data can be interpreted or packed in different ways, the kind
argument can be used to specify which interpretation or packing to
use.

 A- 177

VMM User Guide

vmm_data::byte_size()

Returns the number of bytes required to pack the content of this
descriptor.

SystemVerilog

virtual function int unsigned byte_size(int kind = -1);

OpenVera

Not supported.

Description

Returns the number of bytes required to pack the content of this
descriptor. This method will be more efficient than the
vmm_data::byte_pack() method, for knowing how many bytes
are required by the descriptor, because no packing is actually done.

If the data can be interpreted or packed in different ways, the kind
argument can be used to specify which interpretation or packing to
use.

A-178

VMM User Guide

vmm_data::byte_unpack()

Unpacks the specified number of bytes of data.

SystemVerilog

virtual function int unsigned byte_unpack(
const ref logic [7:0] bytes[],
input int unsigned offset = 0,
input int len = -1,
input int kind = -1);

OpenVera

Not supported.

Description

Unpacks the specified number of bytes of data from the specified
offset, in the specified dynamic array into this descriptor. If the
number of bytes to unpack is specified as -1, the maximum number
of bytes will be unpacked. Returns the number of bytes unpacked. If
there is not enough data in the dynamic array to completely fill the
descriptor, the remaining properties are set to unknown and a
warning is generated.

If the data can be interpreted or unpacked in different ways, the kind
argument can be used to specify which interpretation or packing to
use.

Example

Example A-67
class eth_frame extends vmm_data;
 ...

 A- 179

VMM User Guide

 typedef enum {UNTAGGED, TAGGED, CONTROL}
 frame_formats_e;
 rand frame_formats_e format;
 ...
 rand bit [47:0] dst;
 rand bit [47:0] src;
 rand bit cfi;
 rand bit [2:0] user_priority;
 rand bit [11:0] vlan_id;
 ...
 virtual function int unsigned byte_unpack(
 const ref logic [7:0] array[],
 input int unsigned offset = 0,
 input int len = -1,
 input int kind = -1);
 integer i;

 i = offset;
 this.format = UNTAGGED;
 ...
 if ({array[i], array[i+1]} === 16’h8100) begin
 this.format = TAGGED;
 i += 2;
 ...
 {this.user_priority, this.cfi, this.vlan_id} =
 {array[i], array[i+2]};
 i += 2;
 ...
 end
 ...
 endfunction: byte_unpack
 ...
endclass: eth_frame

A-180

VMM User Guide

vmm_data::do_byte_pack()

Overrides the shorthand byte_pack() method.

SystemVerilog

virtual int function do_byte_pack(ref logic [7:0] bytes[],
 input int unsigned offset = 0,
 input int kind = -1);

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_data::byte_pack() method that is created by the
vmm_data shorthand macros. If defined, this method is used instead
of the default implementation.

The default implementation of this method in the vmm_data base
class must not be called (for example, do not call
super.do_byte_pack()).

The specified argument bytes is the dynamic array in which
transaction contents are packed, starting at the specified offset
value. The specified argument kind can be used to specify which
interpretation or packing to use.

Example

Example A-68
class eth_frame extends vmm_data;

 A- 181

VMM User Guide

 ...
 virtual int function do_byte_pack(ref logic [7:0]
 bytes[],input int unsigned offset = 0,
 input int kind = -1);
 int i;
 ...
 `ifdef ETH_USE_COMPOSITION
 {bytes[i], bytes[i+1]} = {this.vlan.user_priority,
 this.vlan.cfi, this.vlan.id};
 `else
 {bytes[i], bytes[i+1]} = {this.user_priority,
 this.cfi, this.vlan_id};
 `endif
 ...
 endfunction

endclass

A-182

VMM User Guide

vmm_data::do_byte_size()

Overrides the shorthand byte_size() method.

SystemVerilog

virtual int function do_byte_size(int kind = -1);

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_data::byte_size() method that is created by the
vmm_data shorthand macros. If defined, this method is used instead
of the default implementation.

The default implementation of this method in the vmm_data base
class must not be called (for example, do not call
super.do_byte_size()).

The returned value is the number of bytes required to pack the
content of this descriptor. The specified kind argument can be used
to specify which interpretation or packing to use.

Example

Example A-69
class eth_frame extends vmm_data;
 virtual int function do_byte_size(int kind = -1);
 `ifdef TAGGED

 do_byte_size = 14 + data.size();

 A- 183

VMM User Guide

 `else
 do_byte_size = 14 + data.size() + 4;

 `endif
 endfunction
endclass

A-184

VMM User Guide

vmm_data::do_byte_unpack()

Overrides the shorthand byte_unpack() method.

SystemVerilog

virtual int function do_byte_unpack(
 const ref logic [7:0] bytes[],
 input int unsigned offset = 0,
 input int len = -1,
 input int kind = -1);

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_data::byte_unpack() method that is created by the
vmm_data shorthand macros. If defined, this method is used instead
of the default implementation.

The default implementation of this method in the vmm_data base
class must not be called (for example, do not call
super.do_byte_unpack()).

The specified argument len is the number of data bytes to unpack,
starting at specified offset value. The unpacked data is stored in
the specified bytes dynamic array.

If the number of bytes to unpack is specified as -1, the maximum
number of bytes will be unpacked. This method returns the number
of bytes unpacked.

 A- 185

VMM User Guide

If the data can be interpreted or unpacked in different ways, the kind
argument can be used to specify which interpretation or packing to
used.

Example

Example A-70
class eth_frame extends vmm_data;
 ...
 virtual int function do_byte_unpack(const ref logic [7:0]
 bytes[],input int unsigned offset = 0,
 input int len = -1,input int kind = -1);
 ...
 `ifdef ETH_USE_COMPOSITION

 {this.vlan.user_priority, this.vlan.cfi,
 this.vlan.id} = {bytes[i], bytes[i+1]};
 `else

 {this.user_priority, this.cfi, this.vlan_id} =
 {bytes[i], bytes[i+1]};
 `endif
 ...
 endfunction
 ...
endclass

A-186

VMM User Guide

vmm_data::do_compare()

Overrides the shorthand compare() method.

SystemVerilog

virtual bit function do_compare(input vmm_data to,
 output string diff,
 input int kind=-1);

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_data::compare() method that is created by the vmm_data
shorthand macros. If defined, this method is used instead of the
default implementation.

The default implementation of this method in the vmm_data base
class must not be called (for example, do not call
super.do_compare()).

The specified argument to is transaction instance with which current
transaction is compared, returns TRUE if the value is identical. If the
value is different, FALSE is returned and a descriptive text of the first
difference found is returned in the specified string variable diff.

The kind argument may be used to implement different comparison
functions (for example, full compare, comparison of rand properties
only, comparison of all properties physically implemented in a
protocol and so on.)

 A- 187

VMM User Guide

Example

Example A-71
class eth_frame extends vmm_data;
 ...
 virtual bit function do_compare(input vmm_data to =
 null,output string diff, input int kind = -1);
 eth_frame fr;
 do_compare = 1;
 ...
 `ifdef ETH_USE_COMPOSITION

 if (fr.vlan == null) begin
 diff = "No vlan data";

 do_compare = 0;
 end

 if (fr.vlan.user_priority !==
 this.vlan.user_priority) begin
 $sformat(diff, "user_priority (3'd%0d !== 3'd%0d)",
 this.vlan.user_priority,
 fr.vlan.user_priority);

 do_compare = 0;
 end

 ...
 `else

 if (fr.user_priority !== this.user_priority) begin
 $sformat(diff, "user_priority (3'd%0d !== 3'd%0d)",
 this.user_priority, fr.user_priority);

 do_compare = 0;
 end

 ...
 `endif
 ...
 endfunction
endclass

A-188

VMM User Guide

vmm_data::do_copy()

Overrides the shorthand copy() method.

SystemVerilog

virtual vmm_data function copy(vmm_data to = null);

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_data::copy() method that is created by the vmm_data
shorthand macros. If defined, this method is used instead of the
default implementation.

The default implementation of this method in the vmm_data base
class must not be called (for example, do not call
super.do_copy()).

The optional to argument specifies the transaction on which copy
needs to be performed.

Example

Example A-72
class eth_frame extends vmm_data;
 ...
 virtual vmm_data function do_copy(vmm_data to = null);
 eth_frame cpy;
 if (to != null) begin

 A- 189

VMM User Guide

 if (!$cast(cpy, to)) begin
 ̀ vmm_error(this.log, "Cannot copy to non-eth_frame\n

 instance");
 return null;
 end

 end else cpy = new;
 ...
 `ifdef ETH_USE_COMPOSITION

 if (this.vlan != null) begin
 cpy.vlan = new;
 cpy.vlan.user_priority = this.vlan.user_priority;
 cpy.vlan.cfi = this.vlan.cfi;
 cpy.vlan.id = this.vlan.id;
 end
 `else
 cpy.user_priority = this.user_priority;
 cpy.cfi = this.cfi;
 cpy.vlan_id = this.vlan_id;
 `endif
 ...
 do_copy = cpy;
 endfunction
 ...
endclass

A-190

VMM User Guide

vmm_data::do_how_e

Specifies how vmm_data references are interpreted by a shorthand
implementation.

SystemVerilog

enum { DO_NOCOPY ='h001,
 DO_REFCOPY ='h002,
 DO_DEEPCOPY ='h004,
 HOW_TO_COPY ='h007,
 DO_NOCOMPARE ='h008,
 DO_REFCOMPARE ='h010,
 DO_DEEPCOMPARE ='h020,
 HOW_TO_COMPARE ='h038,
 DO_NONE ='h009,
 DO_REF ='h012,
 DO_DEEP ='h024,
 _DO_DUMMY} do_how_e;

OpenVera

Not supported.

Description

This method specifies how the copy and compare methods deal with
a reference to a vmm_data instance, in their default implementation.
Multiple mechanisms can be specified by using an add or an or, in
the individual symbolic values. Following are the meanings of the
DO_NONE, DO_REF, and DO_DEEP symbols:

• DO_NONE — Skips all comparison and copy operations

• DO_REF — Uses the reference itself, in comparison and copy
operations

 A- 191

VMM User Guide

• DO_DEEP — Does deep compare and deep copy operations

Example

Example A-73
‘vmm_data_member_vmm_data(parent, DO_ALL, DO_REF);

A-192

VMM User Guide

vmm_data::do_is_valid()

Overrides the shorthand is_valid() method.

SystemVerilog

virtual bit function do_is_valid(bit silent = 1,
 int kind = -1);

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_data::is_valid() method that is created by the vmm_data
shorthand macros. If defined, this method is used instead of the
default implementation. The default implementation of this method in
the vmm_data base class must not be called (for example, do not
call super.do_is_valid()).

If specified argument silent equals 1, no error or warning
messages are issued if the content is invalid. If silent is FALSE,
warning or error messages may be issued if the content is invalid.
The meaning and use of the argument kind argument is descriptor-
specific and defined by the user extension of this method.

Example

Example A-74
class eth_frame extends vmm_data;
 virtual bit function do_is_valid(bit silent = 1,
 int kind = -1);

 A- 193

VMM User Guide

 do_is_valid = 1;
 if (!do_is_valid && !silent) begin

 `vmm_error(this.log, "Ethernet Frame is not valid");
 end
 endfunction
endclass

A-194

VMM User Guide

vmm_data::do_max_byte_size()

Overrides the shorthand max_byte_size() method.

SystemVerilog

virtual int function do_max_byte_size(int kind = -1);

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_data::max_byte_size() method that is created by the
vmm_data shorthand macros. If defined, this method is used
instead of the default implementation.

The default implementation of this method in the vmm_data base
class must not be called (for example, do not call
super.do_max_byte_size()).

Example

Example A-75
class eth_frame extends vmm_data;
 virtual int function do_max_byte_size(int kind = -1);
 `ifdef JUMBO_PACKET

 do_max_byte_size = 9000;
 `else

 do_max_byte_size = 1500;
 `endif
 endfunction
endclass

 A- 195

VMM User Guide

vmm_data::do_psdisplay()

Overrides the shorthand psdisplay() method.

SystemVerilog

virtual function string do_psdisplay(string prefix = "")

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_data::psdisplay() method that is created by the
vmm_data shorthand macros. If defined, this method is used instead
of the default implementation.

The default implementation of this method in the vmm_data base
class must not be called (for example, do not call
super.do_psdisplay()).

Example

Example A-76
class eth_frame extends vmm_data;
 ...
 virtual function string do_psdisplay(string prefix = "")
 $sformat(psdisplay, "%sEthernet Frame #%0d.%0d.%0d:\n",
 prefix, this.stream_id, this.scenario_id,
 this.data_id);
 ...
 endfunction
endclass

A-196

VMM User Guide

vmm_data::do_what_e

Specifies which methods are to be provided by a shorthand
implementation.

SystemVerilog

enum {DO_PRINT, DO_COPY, DO_COMPARE,
 DO_PACK, DO_UNPACK, DO_ALL} do_what_e;

OpenVera

Not supported.

Description

This method specifies which methods are to include the specified
data members in their default implementation. Multiple methods can
be specified by using an add or an or, in the individual symbolic
values. All methods are specified by using the DO_ALL symbol.

Example

Example A-77
‘vmm_data_member_scalar(len,
 DO_PRINT + DO_COPY + DO_COMPARE);

 A- 197

VMM User Guide

vmm_data::is_valid()

Checks the current value of the transaction or data.

SystemVerilog

virtual function bit is_valid(bit silent = 1,
int kind = -1);

OpenVera

Not supported.

Description

Checks whether the current value of the transaction or data
described by this instance is valid and error free, according to the
optionally specified kind or format. Returns TRUE (non-zero), if the
content of the object is valid. Otherwise, it returns FALSE. The
meaning (and use) of the kind argument is descriptor-specific, and
defined by the user extension of this method.

If silent is TRUE (non-zero), and if the content is invalid, then no
error or warning messages are generated. If silent is FALSE, and
if the content is invalid, then warning or error messages may be
generated.

A-198

VMM User Guide

vmm_data::load()

Sets the content of this descriptor.

SystemVerilog

virtual function bit load(int file);

OpenVera

Not supported.

Description

Sets the content of this descriptor from the data, in the specified file.
The format is user defined, and may be binary. By default, interprets
a complete line as binary byte data and unpacks it.

Should return FALSE (zero), if the loading operation was not
successful.

 A- 199

VMM User Guide

vmm_data::set_log()

Replaces the message service interface for this instance of a data
model or transaction descriptor.

SystemVerilog

function vmm_log set_log(vmm_log log);

OpenVera

Not supported.

Description

Replaces the message service interface for this instance of a data
model or transaction descriptor, with the specified message service
interface. Also, it returns a reference to the previous message
service interface. This method can be used to associate a descriptor
with the message service interface of a transactor currently
processing the transaction, or to set the service when it was not
available during initial construction.

A-200

VMM User Guide

vmm_data::max_byte_size()

Returns the maximum number of bytes required to pack the content
of this descriptor.

SystemVerilog

virtual function int unsigned max_byte_size(
int kind = -1);

OpenVera

Not supported.

Description

Returns the maximum number of bytes, which are required to pack
the content of any instance of this descriptor. A value of 0 indicates
an unknown maximum size. Thsi method can be used to allocate
memory buffers in the DUT or verification environment of suitable
sizes.

If the data can be interpreted or packed in different ways, the kind
argument can be used to specify which interpretation or packing to
use.

 A- 201

VMM User Guide

vmm_data::new()

Creates a new instance of this data model or transaction descriptor.

SystemVerilog

function new(vmm_log log= null, vmm_object parent = null,
string name ="");

OpenVera

Not supported.

Description

Creates a new instance of this data model or transaction descriptor,
with the specified message service interface. The specified
message service interface is used when constructing the
vmm_data::notify property.

Example

Example A-78

Because of the potentially large number of instances of data objects,
a class-static message service interface should be used to
minimize memory usage and to control class-generic messages:

class eth_frame extends vmm_data {
 static vmm_log log = new(“eth_frame”, “class”);
 function new();
 super.new(this.log);
 ...
 endfunction
endclass: eth_frame

A-202

VMM User Guide

vmm_data::notify

A notification service interface with three pre-configured events.

SystemVerilog

vmm_notify notify;
enum {EXECUTE=999_999,

 STARTED=999_998,
 ENDED=999_997

 }notifications_e;

OpenVera

Not supported.

Description

The EXECUTE notification is ON or OFF, and indicated by default. It
can be used to prevent the execution of a transaction or the transfer
of data, if reset. The STARTED and ENDED notifications are ON or
OFF events, and indicated by the transactor at the start and end of
the transaction execution or data transfer. The meaning and timing
of notifications is specific to the transactor, which is executing the
transaction described by this instance.

 A- 203

VMM User Guide

vmm_data::psdisplay()

Returns an image of the current value of the transaction or data.

SystemVerilog

virtual function string psdisplay(string prefix = "");

OpenVera

Not supported.

Description

Returns an image of the current value of the transaction or data
described by this instance, in a human-readable format as a string.
The string may contain newline characters to split the image across
multiple lines. Each line of the output must be prefixed with the
specified prefix.

A-204

VMM User Guide

vmm_data::save()

Appends the content of this descriptor to the specified file.

SystemVerilog

virtual function void save(int file);

OpenVera

Not supported.

Description

Appends the content of this descriptor to the specified file. The
format is user defined, and may be binary. By default, packs the
descriptor and saves the value of the bytes, in sequence, as binary
values and terminated by a newline.

 A- 205

VMM User Guide

vmm_data::scenario_id

Unique identifier for a data model or transaction descriptor instance.

SystemVerilog

int scenario_id;

OpenVera

Not supported.

Description

Specifies the offset of the descriptor within a sequence, and the
sequence offset within a stream. This property must be set by the
transactor that instantiates the descriptor. It is set by the predefined
generator before randomization, so it can be used to specify
conditional constraints to express instance-specific or stream-
specific constraints.

A-206

VMM User Guide

vmm_data::stream_id

Unique identifier for a data model or transaction descriptor instance.

SystemVerilog

int stream_id;

OpenVera

Not supported.

Description

Specifies the offset of the descriptor within a sequence, and the
sequence offset within a stream. This property must be set by the
transactor that instantiates the descriptor. It is set by the predefined
generator before randomization, so it can be used to specify
conditional constraints to express instance-specific or stream-
specific constraints.

 A- 207

VMM User Guide

vmm_env

A base class used to implement verification environments.

Summary

• vmm_env::build() page A-208
• vmm_env::cfg_dut() page A-209
• vmm_env::cleanup() page A-210
• vmm_env::do_psdisplay() page A-211
• vmm_env::do_start() page A-212
• vmm_env::do_stop() page A-213
• vmm_env::do_vote() page A-214
• vmm_env::do_what_e page A-215
• vmm_env::end_test page A-216
• vmm_env::end_vote page A-217
• vmm_env::gen_cfg() page A-218
• vmm_env::log page A-219
• vmm_env::new() page A-220
• vmm_env::notify page A-221
• vmm_env::report() page A-222
• vmm_env::reset_dut() page A-223
• vmm_env::run() page A-224
• vmm_env::start() page A-225
• vmm_env::stop() page A-226
• vmm_env::wait_for_end() page A-227
• ‘vmm_env_member_begin() page A-228
• ‘vmm_env_member_channel*() page A-229
• ‘vmm_env_member_end() page A-231
• ‘vmm_env_member_enum*() page A-232
• ‘vmm_env_member_scalar*() page A-234
• ‘vmm_env_member_string*() page A-236
• ‘vmm_env_member_subenv*() page A-238
• ‘vmm_env_member_user_defined() page A-240
• ‘vmm_env_member_vmm_data*() page A-241
• ‘vmm_env_member_xactor*() page A-243

A-208

VMM User Guide

vmm_env::build()

Builds the verification environment.

SystemVerilog

virtual function void build();

OpenVera

Not supported.

Description

Builds the verification environment, according to the value of the test
configuration descriptor. If this method is not explicitly invoked in the
test program, it will be implicitly invoked by the
vmm_env::reset_dut() method.

Example

Example A-79
class my_test extends vmm_test;
 ...
 virtual task run(vmm_env env);
 tb_env my_env;
 $cast(my_env, env);
 my_env.build();
 my_env.gen[0].start_xactor();
 my_env.run();
 endtask
endclass

 A- 209

VMM User Guide

vmm_env::cfg_dut()

Configures the DUT.

SystemVerilog

virtual task cfg_dut();

OpenVera

Not supported.

Description

Configures the DUT, according to the value of the test configuration
descriptor. If this method is not explicitly invoked in the test program,
it will be implicitly invoked by the vmm_env::start() method.

A-210

VMM User Guide

vmm_env::cleanup()

Performs clean-up operations.

SystemVerilog

virtual task cleanup();

OpenVera

Not supported.

Description

Performs clean-up operations to terminate the simulation, gracefully.
Clean-up operations may include, letting the DUT drain off all
buffered data, reading statistics registers in the DUT, and sweeping
the scoreboard for leftover expected responses. If this method is not
explicitly invoked in the test program, it will be implicitly invoked by
the vmm_env::run() method.

 A- 211

VMM User Guide

vmm_env::do_psdisplay()

Overrides the shorthand psdisplay() method.

SystemVerilog

protected virtual function string do_psdisplay(string prefix
= "");

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_env::psdisplay() method that is created by the vmm_env
shorthand macros. If defined, this method is used instead of the
default implementation.

Example

Example A-80
class my_vmm_env extends vmm_env;
 ...

 virtual function string do_psdisplay(string prefix = "");
 $sformat(do_psdisplay,"%s Printing environment members",
 prefix);
 ...
 endfunction
 ...
endclass

A-212

VMM User Guide

vmm_env::do_start()

Overrides the shorthand start() method.

SystemVerilog

protected virtual task do_start()

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_env::start() method that is created by the vmm_env
shorthand macros. If defined, this method is used instead of the
default implementation.

Example

Example A-81
class my_vmm_env extends vmm_env;
 ...
 protected virtual task do_start();
 //vmm_env::start() operations
 ...
 endtask
 ...
endclass

 A- 213

VMM User Guide

vmm_env::do_stop()

Overrides the shorthand stop() method.

SystemVerilog

protected virtual task do_stop()

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_env::stop() method that is created by the vmm_env
shorthand macros. If defined, this method is used instead of the
default implementation.

Example

Example A-82
class my_vmm_env extends vmm_env;
 ...
 protected virtual task do_stop();
 //vmm_env::stop() operations
 ...
 endtask
 ...
endclass

A-214

VMM User Guide

vmm_env::do_vote()

Overrides the shorthand voter registration.

SystemVerilog

protected virtual task do_vote()

OpenVera

Not supported.

Description

This method overrides the default implementation of the voter
registration that is created by the vmm_env shorthand macros. If
defined, this method is used instead of the default implementation.

Example

Example A-83
class my_vmm_env extends vmm_env;
 ...
 protected virtual task do_vote();
 //Register with this.end_vote
 ...
 endtask
 ...
endclass

 A- 215

VMM User Guide

vmm_env::do_what_e

Specifies which methods should be provided by a shorthand
implementation.

SystemVerilog

enum {DO_PRINT, DO_START, DO_STOP, DO_RESET, DO_VOTE,
DO_ALL} do_what_e;

OpenVera

Not supported.

Description

Specifies which methods should include the specified data members
in their default implementation. "DO_PRINT" includes the member
in the default implementation of the psdisplay() method.
"DO_START" includes the member in the default implementation of
the start() method, if applicable. "DO_STOP" includes the
member in the default implementation of the stop() method, if
applicable. "DO_VOTE" automatically registers the member with the
vmm_env::end_vote consensus instance, if applicable.

Multiple methods can be specified by adding or using an or in the
individual symbolic values. All methods are specified by using the
"DO_ALL" symbol.

Example

Example A-84
‘vmm_env_member_subenv(tcpip_stack, DO_ALL - DO_STOP);

A-216

VMM User Guide

vmm_env::end_test

Causes the vmm_env::wait_for_end() method to return.

SystemVerilog

event end_test;

OpenVera

Not supported.

Description

Causes the vmm_env::wait_for_end() method to return, when
you trigger an event. It is up to the user-defined implementation of
the vmm_env::wait_for_end() method to detect that this event
is triggered and returned.

 A- 217

VMM User Guide

vmm_env::end_vote

End-of-test consensus object.

SystemVerilog

vmm_consensus end_vote;

OpenVera

vmm_consensus end_vote;

Description

Predefined end-of-test consensus instance that can be used in the
extension of the vmm_env::wait_for_end() method, to
determine that the simulation is reached its logical end. The name of
the consensus is the name of the environment specified in the
vmm_env constructor. The instance name of the consensus is "End-
of-test Consensus".

Triggering the vmm_env::end_test event does not force the
consensus. A consensus does not trigger the end_test event. This
class property and the end_test event are not functionally related
in the base class.

Example

Example A-85
initial begin
 apb_env env;
 vmm_voter test_voter = env.end_vote.register_voter("Test
case Stimulus");
 ...
end

A-218

VMM User Guide

vmm_env::gen_cfg()

Randomizes the test configuration descriptor.

SystemVerilog

virtual function void gen_cfg();

OpenVera

Not supported.

Description

If this method is not explicitly invoked in the test program, it will be
implicitly invoked by the vmm_env::build() method.

 A- 219

VMM User Guide

vmm_env::log

Message service interface for the verification environment.

SystemVerilog

vmm_log log;

OpenVera

Not supported.

Description

This property is set by the constructor, using the specified
environment name, and may be modified at run time.

A-220

VMM User Guide

vmm_env::new()

Creates an instance of the verification environment.

SystemVerilog

function new(string name = “Verif Env”);

OpenVera

Not supported.

Description

Creates an instance of the verification environment, with the
specified name. The name is used as the name of the message
service interface.

 A- 221

VMM User Guide

vmm_env::notify

Notification service interface and predefined notifications.

SystemVerilog

vmm_notify notify;
 enum{GEN_CFG = 1,
 BUILD,
 RESET_DUT,
 CFG_DUT,
 START,
 RESTART,
 WAIT_FOR_END,
 STOP,
 CLEANUP,
 REPORT,
 RESTARTED} notifications_e;

OpenVera

Not supported.

Description

Notification service interface and predefined notifications used to
indicate the progression of the verification environment. The
predefined notifications are used to signal the start of the
corresponding predefined virtual methods. All notifications are either
ON or OFF.

A-222

VMM User Guide

vmm_env::report()

Reports success or failure of the test, and closes all files.

SystemVerilog

virtual task report();

OpenVera

Not supported.

Description

Reports final success or failure of the test, and closes all files. If this
method is not explicitly invoked in the test program, it will be implicitly
invoked by the vmm_env::run() method.

 A- 223

VMM User Guide

vmm_env::reset_dut()

Resets the DUT to make it ready for configuration.

SystemVerilog

virtual task reset_dut();

OpenVera

Not supported.

Description

Physically resets the DUT to make it ready for configuration. If this
method is not explicitly invoked in the test program, it will be implicitly
invoked by the vmm_env::cfg_dut() method.

A-224

VMM User Guide

vmm_env::run()

Run the simulation.

SystemVerilog

task run()

OpenVera

Not supported.

Description

Runs all remaining steps of the simulation, including
vmm_env::stop(), vmm_env::cleanup(), and
vmm_env::report(). This method must be explicitly invoked in
the test programs.

 A- 225

VMM User Guide

vmm_env::start()

Starts the test.

SystemVerilog

virtual task start();

OpenVera

Not supported.

Description

Starts all the components of the verification environment to start the
actual test. If this method is not explicitly invoked in the test program,
it will be implictly invoked by the vmm_env::wait_for_end()
method.

A-226

VMM User Guide

vmm_env::stop()

Terminates the simulation, cleanly.

SystemVerilog

virtual task stop();

OpenVera

Not supported.

Description

Terminates all components of the verification environment to
terminate the simulation, cleanly. If this method is not explicitly
invoked in the test program, it will be implicitly invoked by the
vmm_env::cleanup() method.

 A- 227

VMM User Guide

vmm_env::wait_for_end()

Waits for an indication that the test is reached completion.

SystemVerilog

virtual task wait_for_end();

OpenVera

Not supported.

Description

Waits for an indication that the test is reached completion, or its
objective. When this task returns, it signals that the end of simulation
condition is detected. If this method is not explicitly invoked in the
test program, it will be implicitly invoked by the vmm_env::stop()
method.

Example

Example A-86
class tb_env extends vmm_env;
 ...
 virtual task wait_for_end();
 super.wait_for_end();
 ...
 wait (this.cfg.run_for_n_tx_frames == 0 &&
 this.cfg.run_for_n_tx_frames == 0);
 ...
 endtask: wait_for_end
 ...
endclass: tb_env

A-228

VMM User Guide

‘vmm_env_member_begin()

Start the shorthand section.

SystemVerilog

‘vmm_env_member_begin(class-name)

OpenVera

Not supported.

Description

Start the shorthand section, providing a default implementation for
the psdisplay(), start() and stop() methods.

The class-name specified must be the name of the vmm_env
extension class that is being implemented.

The shorthand section can only contain shorthand macros, and must
be terminated by the “‘vmm_env_member_end()” method.

Example

Example A-87
class tb_env extends vmm_env;
 ...
 ‘vmm_env_member_begin(tb_env)
 ...
 ‘vmm_env_member_end(tb_env)
 ...
endclass

 A- 229

VMM User Guide

‘vmm_env_member_channel*()

Shorthand implementation for a channel data member.

SystemVerilog

‘vmm_env_member_channel(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_channel_array(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_channel_aa_scalar(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_channel_aa_string(member-name,
 vmm_env::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified channel-type, array of channels, dynamic array of
channels, scalar-indexed associative array of channels, or string-
indexed associative array of channels data member to the default
implementation of the methods, specified by the ’do_what’
argument.

The shorthand implementation must be located in a section, which is
started by the “‘vmm_env_member_begin()” method.

A-230

VMM User Guide

Example

Example A-88
class my_vmm_env extends vmm_env;
 my_data_channel my_channel;
 ...
 `vmm_env_member_begin(my_vmm_env)
 `vmm_env_member_channel(my_channel,DO_ALL);
 ...
 `vmm_env_member_end(my_vmm_env)
 ...
endclass

 A- 231

VMM User Guide

‘vmm_env_member_end()

Terminates the shorthand section.

SystemVerilog

‘vmm_env_member_end(class-name)

OpenVera

Not supported.

Description

Terminate the shorthand section, providing a default implementation
for the psdisplay(), start(), and stop() methods.

The class-name specified must be the name of the vmm_env
extension class that is being implemented.

The shorthand section must have been started by the
“‘vmm_env_member_begin()” method.

Example

Example A-89
class my_env extends vmm_env;
 ...
 `vmm_env_member_begin(my_vmm_env)
 `vmm_env_member_end(my_vmm_env)
 ...
endclass

A-232

VMM User Guide

‘vmm_env_member_enum*()

Shorthand implementation for an enumerated data member.

SystemVerilog

‘vmm_env_member_enum(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_enum_array(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_enum_aa_scalar(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_enum_aa_string(member-name,
 vmm_env::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified enum-type, array of enums, scalar-indexed
associative array of enums, or string-indexed associative array of
enums data member to the default implementation of the methods,
specified by the ’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_env_member_begin()” method.

Example

Example A-90
typedef enum {blue,green,red,black} my_colors;

 A- 233

VMM User Guide

class my_vmm_env extends vmm_env;
 my_colors color;
 ...
 `vmm_env_member_begin(my_vmm_env)
 `vmm_env_member_enum(color,DO_PRINT)
 ...
 `vmm_env_member_end(my_vmm_env)
 ...
endclass

A-234

VMM User Guide

‘vmm_env_member_scalar*()

Shorthand implementation for a scalar data member.

SystemVerilog

‘vmm_env_member_scalar(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_scalar_array(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_scalar_aa_scalar(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_scalar_aa_string(member-name,
 vmm_env::do_what_e do_what)

OpenVera

Not supported.

Description

Add the specified scalar-type, array of scalars, scalar-indexed
associative array of scalars or string-indexed associative array of
scalars data member to the default implementation of the methods
specified by the ’do_what’ argument.

A scalar is an integral type, such as bit, bit vector, and packed
unions.

The shorthand implementation must be located in a section started
by the “‘vmm_env_member_begin()” method.

 A- 235

VMM User Guide

Example

Example A-91
class my_vmm_env extends vmm_env;
 bit [31:0] address;
 ...
 `vmm_env_member_begin(my_vmm_env)
 `vmm_env_member_scalar(address,DO_ALL)
 ...
 `vmm_env_member_end(my_vmm_env)
 ...
endclass

A-236

VMM User Guide

‘vmm_env_member_string*()

Shorthand implementation for a string data member.

SystemVerilog

‘vmm_env_member_string(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_string_array(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_string_aa_scalar(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_string_aa_string(member-name,
 vmm_env::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified string-type, array of strings, scalar-indexed
associative array of strings, or string-indexed associative array of
strings data member to the default implementation of the methods,
specified by the ’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_env_member_begin()” method.

Example

Example A-92
class my_vmm_env extends vmm_env;

 A- 237

VMM User Guide

 string name;
 ...
 `vmm_env_member_begin(my_vmm_env)
 `vmm_env_member_string(name,DO_PRINT)
 ...
 `vmm_env_member_end(my_vmm_env)
 ...
endclass

A-238

VMM User Guide

‘vmm_env_member_subenv*()

Shorthand implementation for a transactor data member.

SystemVerilog

‘vmm_env_member_subenv(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_subenv_array(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_subenv_aa_scalar(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_subenv_aa_string(member-name,
 vmm_env::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified sub-environment-type, array of sub-
environments, dynamic array of sub-environments, scalar-indexed
associative array of sub-environments, or string-indexed associative
array of sub-environments data member to the default
implementation of the methods, specified by the ’do_what’
argument.

The shorthand implementation must be located in a section started
by the “‘vmm_env_member_begin()” method.

 A- 239

VMM User Guide

Example

Example A-93
class my_subenv extends vmm_subenv
 ...
endclass

class my_vmm_env extends vmm_env;
 my_subenv subenv ;
 ...
 `vmm_env_member_begin(my_vmm_env)
 `vmm_env_member_subenv(sub_env,DO_ALL);
 ...
 `vmm_env_member_end(my_vmm_env)
endclass

A-240

VMM User Guide

‘vmm_env_member_user_defined()

User-defined shorthand implementation data member.

SystemVerilog

‘vmm_env_member_user_defined(member-name)

OpenVera

Not supported.

Description

Adds the specified user-defined default implementation of the
methods, specified by the ’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_env_member_begin()” method.

Example

Example A-94
class my_vmm_env extends vmm_env;
 bit [7:0] env_id;
 ...
 `vmm_env_member_begin(my_vmm_env)
 `vmm_env_member_user_defined(env_id);
 ...
 `vmm_env_member_end(my_vmm_env)

 function bit do_env_id(vmm_env::do_what_e do_what)
 do_env_id = 1;
 case(do_what)
 endfunction
endclass

 A- 241

VMM User Guide

‘vmm_env_member_vmm_data*()

Shorthand implementation for a vmm_data-based data member.

SystemVerilog

‘vmm_env_member_vmm_data(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_vmm_data_array(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_vmm_data_aa_scalar(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_vmm_data_aa_string(member-name,
 vmm_env::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified vmm_data-type, array of vmm_datas, scalar-
indexed associative array of vmm_datas, or string-indexed
associative array of vmm_datas data member to the default
implementation of the methods, specified by the ’do_what’
argument.

The shorthand implementation must be located in a section started
by the “‘vmm_env_member_begin()” method.

A-242

VMM User Guide

Example

Example A-95
class my_data extends vmm_data;
 ...
endclass : my_data

class my_vmm_env extends vmm_env;
 my_data data;
 ...
 `vmm_env_member_begin(my_vmm_env)
 `vmm_env_member_vmm_data(data,DO_PRINT)
 ...
 `vmm_env_member_end(my_vmm_env)
 ...
endclass

 A- 243

VMM User Guide

‘vmm_env_member_xactor*()

Shorthand implementation for a transactor data member.

SystemVerilog

‘vmm_env_member_xactor(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_xactor_array(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_xactor_aa_scalar(member-name,
 vmm_env::do_what_e do_what)

‘vmm_env_member_xactor_aa_string(member-name,
 vmm_env::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified transactor-type, array of transactors, dynamic
array of transactors, scalar-indexed associative array of transactors,
or string-indexed associative array of transactors data member to
the default implementation of the methods, specified by the
’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_env_member_begin()” method.

A-244

VMM User Guide

Example

Example A-96
class my_data_gen extends vmm_xactor;
 ...
endclass

class my_vmm_env extends vmm_env;
 my_data_gen my_xactor;
 ...
 `vmm_env_member_begin(my_vmm_env)
 `vmm_env_member_xactor(my_xactor,DO_ALL);
 ...
 `vmm_env_member_end(my_vmm_env)
 ...
endclass

 A- 245

VMM User Guide

vmm_group

Class to create structural elements.

SystemVerilog

virtual class vmm_group extends vmm_unit;

Description

This class is used as the base composition class for building
structural elements composed of transactors or other groups.

This class can be a leaf or a non-leaf component.

Example

class vip1 extends vmm_group;
endclass

Summary

• vmm_group::new() page A-246

A-246

VMM User Guide

vmm_group::new()

Acts as a constructor for vmm_group.

SystemVerilog

function vmm_group::new(string name =””, string inst =””,
 vmm_object parent = null);

Description

Constructs an instance of this class with the specified name,
instance name, and an optional parent.

The specified name is used as the name of the embedded vmm_log.

The specified instance name is used as the name of the underlying
vmm_object.

Example

class vip1 extends vmm_group;
 function new (string name, string inst);
 super.new (this,inst);
 endfunction
endclass

 A- 247

VMM User Guide

vmm_group_callbacks

Facade class for callback methods provided by the vmm_group.

Example

class group_callbacks extends vmm_group_callbacks;
 virtual function void my_f1();
 endfunction
 virtual function void my_f2();
 endfunction
endclass

Summary

• vmm_group::append_callback() page A-248
• vmm_group::prepend_callback() page A-250
• vmm_group::unregister_callback() page A-252

A-248

VMM User Guide

vmm_group::append_callback()

Appends the specified callback.

SystemVerilog

function void vmm_group::append_callback(
vmm_group_callbacks cb)

Description

Appends the specified callback extension cb to the callback registry
for this group.

Example

class group_callbacks extends vmm_group_callbacks;
 virtual function void my_f1();
 endfunction
endclass
class groupExtension extends vmm_group;
 function new (string name, string inst,
 vmm_unit parent=null);
 super.new(name,inst,parent);
 endfunction
 function void build_ph();
 `vmm_callback(group_callbacks,my_f1());
 endfunction:build_ph
 ...
endclass
class groupExtension_callbacks extends group_callbacks;
 int my_f1_counter++;
 virtual function void my_f1();
 my_f1_counter++;
 endfunction
endclass
initial begin
 groupExtension g1 = new ("my_group", "g1");

 A- 249

VMM User Guide

 groupExtension_callbacks cb1 = new();
 g1.append_callback(cb1);
 ...
end

A-250

VMM User Guide

vmm_group::prepend_callback()

Prepends the specified callback.

SystemVerilog

function void vmm_group::prepend_callback(
vmm_group_callbacks cb)

Description

Prepends the specified callback extension cb to the callback
registry, for this group.

Example

class group_callbacks extends vmm_group_callbacks;
 virtual function void my_f1();
 endfunction
endclass
class groupExtension extends vmm_group;
 function new (string name, string inst,
 vmm_unit parent=null);
 super.new(name,inst,parent);
 endfunction
 function void build_ph();
 `vmm_callback(group_callbacks,my_f1());
 endfunction:build_ph
 ...
endclass

class groupExtension_callbacks extends group_callbacks;
 int my_f1_counter++;
 virtual function void my_f1();
 my_f1_counter++;
 endfunction
endclass

 A- 251

VMM User Guide

initial begin
 groupExtension g1 = new ("my_group", "g1");
 groupExtension_callbacks cb1 = new();
 groupExtension_callbacks cb2 = new();
 g1.append_callback(cb1);
 g1.prepend_callback(cb2);
 ...
end

A-252

VMM User Guide

vmm_group::unregister_callback()

Unregisters a callback.

SystemVerilog

function void vmm_group::unregister_callback(
 vmm_group_callbacks cb);

Description

Removes the specified callback extension cb to the callback
registry, for this group.

Example

class group_callbacks extends vmm_group_callbacks;
 virtual function void my_f1();
 endfunction
endclass
class groupExtension extends vmm_group;
 function new (string name, string inst,
 vmm_unit parent=null);
 super.new(name,inst,parent);
 endfunction
 function void build_ph();
 `vmm_callback(group_callbacks,my_f1());
 endfunction:build_ph
 ...
endclass
class groupExtension_callbacks extends group_callbacks;
 int my_f1_counter++;
 virtual function void my_f1();
 my_f1_counter++;
 endfunction
endclass
initial begin
groupExtension g1 = new ("my_group", "g1");

 A- 253

VMM User Guide

 groupExtension_callbacks cb1 = new();
 groupExtension_callbacks cb2 = new();
 g1.append_callback(cb1);
 g1.append_callback(cb2);
 ...
 g1.unregister_callback(cb2);
 ...
end

A-254

VMM User Guide

vmm_log

The vmm_log class implements an interface to the message
service.

Several methods apply to multiple message service interfaces, not
just the one where the method is invoked. All message service
interfaces that match the specified name and instance name are
affected by these methods. If the name or instance name is enclosed
between slashes (for example, “/.../”), then they are interpreted as
sed-style regular expressions. If a value of “” is specified, then the
name or instance name of the current message service interface is
specified. If the recurse parameter is TRUE (non-zero), then all
interfaces that are logically under the matching message service
interfaces are also specified.

Summary

• vmm_log::add_watchpoint() page A-256
• vmm_log::append_callback() page A-257
• vmm_log::catch() page A-258
• vmm_log::copy() page A-260
• vmm_log::create_watchpoint() page A-261
• vmm_log::disable_types() page A-262
• vmm_log::enable_types() page A-264
• vmm_log::end_msg() page A-266
• vmm_log::enum(message-severity) page A-267
• vmm_log::enum(message-type) page A-268
• vmm_log::enum(simulation-handling-value) page A-270
• vmm_log::for_each() page A-272
• vmm_log::get_instance() page A-273
• vmm_log::get_message_count() page A-274
• vmm_log::get_name() page A-275
• vmm_log::get_verbosity() page A-276
• vmm_log::is_above page A-277
• vmm_log::kill() page A-278
• vmm_log::list() page A-279
• vmm_log::log_start() page A-280
• vmm_log::log_stop() page A-281
• vmm_log::modify() page A-282
• vmm_log::new() page A-283
• vmm_log::prepend_callback() page A-284
• vmm_log::remove_watchpoint() page A-285
• vmm_log::report() page A-286

 A- 255

VMM User Guide

• vmm_log::reset() page A-287
• vmm_log::set_instance() page A-288
• vmm_log::set_name() page A-289
• vmm_log::set_typ_image() page A-290
• vmm_log::set_sev_image() page A-291
• vmm_log::set_verbosity() page A-293
• vmm_log::start_msg() page A-294
• vmm_log::stop_after_n_errors() page A-296
• vmm_log::text() page A-297
• vmm_log::uncatch() page A-299
• vmm_log::uncatch_all() page A-300
• vmm_log::unmodify() page A-301
• vmm_log::unregister_callback() page A-302
• vmm_log::use_hier_inst_name() page A-303
• vmm_log::use_orig_inst_name() page A-305
• vmm_log::uses_hier_inst_name() page A-306
• vmm_log::set_format() page A-307
• vmm_log::wait_for_msg() page A-308
• vmm_log::wait_for_watchpoint() page A-309

A-256

VMM User Guide

vmm_log::add_watchpoint()

Adds the specified watchpoint to the specified message service
interfaces.

SystemVerilog

virtual function void
 add_watchpoint(int watchpoint_id,

string name = "",
string inst = "",
bit recurse = 0);

OpenVera

Not supported.

Description

Adds watchpoint as specified by watchpoint_id to the message
interface specified by name and inst arguments. If a message
matching the watchpoint specification is issued by one of the
specified message service interfaces associated with the
watchpoint, the watchpoint will be triggered. If the specified
argument recurse is set, then this method also applies to all the
message interfaces logically under the matching message service
interfaces.

 A- 257

VMM User Guide

vmm_log::append_callback()

Appends a callback façade instance with the message service.

SystemVerilog

virtual function void
 append_callback(vmm_log_callbacks cb);

OpenVera

Not supported.

Description

Globally appends the specified callback façade instance with the
message service. Callback methods are invoked in the order in
which they were registered.

A warning is generated, if the same callback façade instance is
registered more than once. Callback façade instances can be
unregistered and re-registered dynamically.

Example

Example A-97
class tb_env extends vmm_env;
 virtual function void build();
 ...
 begin
 sb_mac_cbs cb = new;
 this.mac.append_callback(cb);
 end
 endfunction: build
endclass: tb_env

A-258

VMM User Guide

vmm_log::catch()

Adds a user-defined message handler.

SystemVerilog

function int catch(
vmm_log_catcher catcher,
string name = "",
string inst = "",
bit recurse = 0,
int typs = ALL_TYPS,
int severity = ALL_SEVS,
string text = "");

OpenVera

Not supported.

Description

Installs the specified message handler to catch any message of the
specified type and severity, issued by the specified message service
interface instances specified by name and instance arguments,
which contains the specified text. By default, this method catches all
messages issued by this message service interface instance. A
unique message handler identifier is returned that can be used later
to uninstall the message handler using the vmm_log::uncatch()
method.

Messages are considered caught by the first found user-defined
handler that can handle the message. User-defined message
handlers are considered in reverse order of installation. This means
that the last handler installed will be considered first. Once caught,
messages are handed-off to the vmm_log_catcher::caught()

 A- 259

VMM User Guide

method, and will not be issued. A user-defined message handler
may choose to explicitly issue the message using the
vmm_log_catcher::issue() method, or throw the message back to
the message service by using the vmm_log_catcher::throw()
method, to be potentially caught by another suitable message
handler or be issued.

Watchpoints are triggered after message catching. If the message is
modified in the catcher, the modified message triggers applicable
watchpoints, if any. If the specified argument recurse is set, then
this method also applies to all the message interfaces logically under
the matching message service interfaces.

Example

Example A-98
class err_catcher extends vmm_log_catcher;
 ...
endclass

alu_env env;
err_catcher ctcher;

initial begin
 ...
 ctcher = new(10);
 ...
 env.build();
 env.sb.log.catch(ctcher,"","", ,vmm_log::ERROR_SEV,
 "/Mismatch/");
end

A-260

VMM User Guide

vmm_log::copy()

Copies the configuration of this message service interface to the
specified message service interface.

SystemVerilog

virtual function vmm_log copy(vmm_log to = null);

OpenVera

Not supported.

Description

Copies the configuration of this message service interface to the
specified message service interface (or a new interface, if none is
specified), and returns a reference to the interface copy. The current
configuration of the message service interface is copied, except the
hierarchical relationship information, which is not modified.

 A- 261

VMM User Guide

vmm_log::create_watchpoint()

Creates a watchpoint descriptor.

SystemVerilog

virtual function int
 create_watchpoint(int types = ALL_TYPS,

int severity = ALL_SEVS,
string text = "",
logic issued = 1'bx);

OpenVera

Not supported.

Description

Creates a watchpoint descriptor that will be triggered when the
specified message is used. The message can be specified by type,
severity, or by text pattern. By default, messages of all types,
severities, and text are specified. A message must match all
specified criteria to trigger the watchpoint. The issued parameter
specifies if the watchpoint is triggered when the message is
physically issued (1'b1), physically not issued (filtered out (1'b0)), or
regardless if the message is physically issued or not (1'bx).

A watchpoint will be repeatedly triggered, every time a message
matching the watchpoint specification is generated by a message
service interface associated with the watchpoint.

A-262

VMM User Guide

vmm_log::disable_types()

Specifies the message types to be disabled by the specified
message service interfaces.

SystemVerilog

virtual function void disable_types(int typs,
string name = "",
string inst = "",
bit recursive = 0);

OpenVera

Not supported.

Description

Specifies the message types to be disabled by the specified
message service interfaces. Message service interfaces are
specified by a value or regular expression, for both the name and
instance name. If no name and no instance are explicitly specified,
then this message service interface is implicitly specified.

If the name or instance named are specified between “/” characters,
then the specification is interpreted as a regular expression that must
be matched against all known names and instance names,
respectively. Both names must match to consider a message service
interface as specified. If the recursive argument is TRUE, then all
message service interfaces that are hierarchically below the
specified message service interfaces, are included in the
specification, whether their name and instance name matches or
not. A message service interface must exist to be specified.

 A- 263

VMM User Guide

The types argument specifies the message types to enable or
disable. Types are specified as the bitwise-or or sum of all relevant
types.

By default, all message types are enabled.

A-264

VMM User Guide

vmm_log::enable_types()

Specifies the message types to be displayed by the specified
message service interfaces.

SystemVerilog

virtual function void enable_types(int typs,
string name = "",
string inst = "",
bit recursive = 0);

OpenVera

Not supported.

Description

Specifies the message types to be displayed by the specified
message service interfaces. Message service interfaces are
specified by a value or regular expression for both the name and
instance name. If no name and no instance are explicitly specified,
then this message service interface is implicitly specified.

If the name or instance named are specified between “/” characters,
then the specification is interpreted as a regular expression that must
be matched against all known names and instance names,
respectively. Both names must match to consider a message service
interface, as specified. If the recursive argument is TRUE, all
message service interfaces that are hierarchically below the
specified message service interfaces are included in the
specification, whether their name and instance name matches or
not. A message service interface to be specified, must exist.

 A- 265

VMM User Guide

The types argument specifies the message types to enable or
disable. Types are specified as the bitwise-or or sum of all relevant
types.

By default, all message types are enabled.

A-266

VMM User Guide

vmm_log::end_msg()

Flushes and terminates the current message.

SystemVerilog

virtual function void end_msg();

OpenVera

Not supported.

Description

Flushes and terminates the current message, and triggers the
message display and the simulation handling. A message can be
flushed multiple times using the vmm_log::text("") method, but
the simulation handling and notification will only take effect on
message termination.

 A- 267

VMM User Guide

vmm_log::enum(message-severity)

Enumerated type defining symbolic values for message severities.

SystemVerilog

enum int {FATAL_SEV = 'h0001,
 ERROR_SEV = 'h0002,
 WARNING_SEV = 'h0004,
 NORMAL_SEV = 'h0008,
 TRACE_SEV = 'h0010,
 DEBUG_SEV = 'h0020,
 VERBOSE_SEV = 'h0040,
 HIDDEN_SEV = 'h0080,
 IGNORE_SEV = 'h0100,
 DEFAULT_SEV = -1,
 ALL_SEVS = 'hFFFF
 } severities_e;

OpenVera

Not supported.

Description

Enumerated type defining symbolic values for message severities
used, when specifying a message severity in properties or method
arguments. The vmm_log::DEFAULT_SEV and
vmm_log::ALL_SEVS are special symbolic values usable only with
some control methods, and are not used to issue actual messages.
Multiple message severities can be specified to some control
methods by combining the value of the required severities using the
bitwise-or or addition operator.

A-268

VMM User Guide

vmm_log::enum(message-type)

Enumerated type defining symbolic values for message types.

SystemVerilog

enum int {FAILURE_TYP = 'h0001,
 NOTE_TYP = 'h0002,
 DEBUG_TYP = 'h0004,
 REPORT_TYP = 'h0008,
 NOTIFY_TYP = 'h0010,
 TIMING_TYP = 'h0020,
 XHANDLING_TYP = 'h0040,
 PROTOCOL_TYP = 'h0080,
 TRANSACTION_TYP = 'h0100,
 COMMAND_TYP = 'h0200,
 CYCLE_TYP = 'h0400,
 USER_TYP_0 = 'h0800,
 USER_TYP_1 = 'h1000,
 USER_TYP_2 = 'h2000,
 INTERNAL_TYP = 'h4000,
 DEFAULT_TYP = -1,
 ALL_TYPS = 'hFFFF
 } types_e;

OpenVera

Not supported.

Description

Enumerated type defining symbolic values for message types used,
when specifying a message type in properties or method arguments.
The vmm_log::DEFAULT_TYP and vmm_log::ALL_TYPS are
special symbolic values usable only with some control methods, and

 A- 269

VMM User Guide

are not used to issue actual messages. Multiple message types can
be specified to some control methods by combining the value of the
required types, using the bitwise-or or addition operator.

A-270

VMM User Guide

vmm_log::enum(simulation-handling-value)

Symbolic values for simulation handling.

SystemVerilog

enum int {CONTINUE = 'h0001,
 COUNT_ERROR = 'h0002,
 DEBUGGER = 'h0004,
 DUMP_STACK = 'h0008,
 STOP_PROMPT = 'h0010,
 ABORT_SIM = 'h0020,
 IGNORE = 'h0040,
 DEFAULT_HANDLING = -1
 } handling_e;

OpenVera

Not supported.

Description

Enumerated type defining symbolic values for simulation handling
used, when specifying a new simulation handling when promoting or
demoting a message using the vmm_log::modify() method.

Unless this method is specified, message types are assigned the
default severity and simulation handling, as shown in Table A-8.

 A- 271

VMM User Guide

Table A-8 Default Message Severities and Handling
Table A-9

Message Type Default Severity Default Handling
FAILURE_TYP ERROR_SEV COUNT_ERROR

NOTE_TYP NORMAL_SEV CONTINUE

DEBUG_TYP DEBUG_SEV CONTINUE

TIMING_TYP XHANDLING_TYP WARNING_SEV CONTINUE

TRANSACTION_TYP COMMAND_TYP TRACE_SEV CONTINUE

REPORT_TYP PROTOCOL_TYP DEBUG_SEV CONTINUE

CYCLE_TYP VERBOSE_SEV CONTINUE

Any type FATAL_SEV ABORT_SIM

A-272

VMM User Guide

vmm_log::for_each()

Iterates over message service instances.

SystemVerilog

function vmm_log for_each();

OpenVera

function rvm_log for_each();

Description

Returns a reference to the next known message service interface
that matches the iterator specification, specified in the last invocation
of “vmm_log::reset()” method. Returns NULL, if no more
instances match.

There is one iterator per message service instance.

Example

Example A-99
env.log.reset();
for (vmm_log log = env.log.for_each();
 log != null;
 log = env.log.for_each()) begin
 ...
end

 A- 273

VMM User Guide

vmm_log::get_instance()

Returns the instance name of the message service interface.

SystemVerilog

virtual function string get_instance();

OpenVera

Not supported.

Description

This method returns the instance name of the message service
interface.

A-274

VMM User Guide

vmm_log::get_message_count()

Returns the total number of messages of the specified severities.

SystemVerilog

virtual function int
 get_message_count(int severity = ALL_SEVS,

string name = "",
string instance = "",
bit recurse = 0);

OpenVera

Not supported.

Description

Returns the total number of messages of the specified severities that
are issued from the specified message service interfaces. Message
severities can be specified as a sum of individual message severities
to specify more than one severity.

 A- 275

VMM User Guide

vmm_log::get_name()

Returns the nam of the message service interface.

SystemVerilog

virtual function string get_name();

OpenVera

Not supported.

Description

This method returns the name of the message service interface.

A-276

VMM User Guide

vmm_log::get_verbosity()

Returns the minimum message severity to be displayed.

SystemVerilog

virtual function int get_verbosity();

OpenVera

Not supported.

Description

Returns the minimum message severity to be displayed, when
sourced by this message service interface.

 A- 277

VMM User Guide

vmm_log::is_above

Specifies that this message service instance is hierarchically above
the specified message service interface.

SystemVerilog

virtual function void is_above(vmm_log log);

OpenVera

Not supported.

Description

This method is the corollary of the under argument of the
constructor, and need not be used if the specified message service
interface has already been constructed as being under this message
service interface.

A-278

VMM User Guide

vmm_log::kill()

Removes internal references to the message service interface.

SystemVerilog

virtual function void kill();

OpenVera

Not supported.

Description

Removes any internal reference to this message service interface,
so that it may be reclaimed by the garbage collection, once all use
references are also removed. Once this method is invoked, it is no
longer possible to control this message service interface by name.

 A- 279

VMM User Guide

vmm_log::list()

Lists message service interfaces that match a specified name and
instance name.

SystemVerilog

virtual function void list(string name = “/./”,
string instance = “/./”,
bit recurse = 0);

OpenVera

Not supported.

Description

Lists all message service interfaces that match the specified name
and instance name. If the recurse parameter is TRUE (non-zero),
then all interfaces that are logically under the matching message
service interface are also listed.

A-280

VMM User Guide

vmm_log::log_start()

Appends all messages produced by the specified message service
interfaces.

SystemVerilog

virtual function void log_start(int file,
string name = "",
string instance = "",
bit recurse = 0)

OpenVera

Not supported.

Description

Appends all messages produced by the specified message service
interfaces to the specified file. The file argument must be a file
descriptor, as returned by the $fopen() system task. By default, all
message service interfaces append their messages to the standard
output. Specifying a new output file does not stop messages from
being appended to previously specified files.

 A- 281

VMM User Guide

vmm_log::log_stop()

Stops logging messages from a specified message service interface.

SystemVerilog

virtual function void log_stop(int file,
string name = "",
string instance = "",
bit recurse = 0);

OpenVera

Not supported.

Description

Messages issued by the specified message service interfaces are no
longer appended to the specified file. The file argument must be a
file descriptor, as returned by the $fopen() system task. If the
specified file argument is 0, then messages are no longer sent to
the standard simulation output and transcript. If the file argument
is specified as –1, then appending to all files, except the standard
output, is stopped.

A-282

VMM User Guide

vmm_log::modify()

Modifies the specified type, severity, or simulation handling for a
message source.

SystemVerilog

virtual function int
 modify(string name = "",

string inst = "",
bit recursive = 0,
int typs = ALL_TYPS,
int severity = ALL_SEVS,
string text = "",
int new_typ = UNCHANGED,
int new_severity = UNCHANGED,
int handling = UNCHANGED);

OpenVera

Not supported.

Description

Modifies the specified message source by any of the specified
message service interfaces, with the new specified type, severity, or
simulation handling. The message can be specified by type, severity,
numeric ID, or by text pattern. By default, messages of any type,
severity, ID, or text is specified. A message must match all specified
criteria.

This method returns a unique message modifier identifier that can be
used to remove it using the vmm_log::unmodify() method. All
message modifiers are applied in the same order they were defined,
before a message is generated.

 A- 283

VMM User Guide

vmm_log::new()

Creates a new instance of a message service interface.

SystemVerilog

function new(string name,
string inst,
vmm_log under = null);

OpenVera

Not supported.

Description

Creates a new instance of a message service interface, with the
specified interface name and instance name. Moreover, a message
service interface can optionally be specified as hierarchically below
another message service instance, to create a logical hierarchy of
message service interfaces.

A-284

VMM User Guide

vmm_log::prepend_callback()

Prepends a callback façade instance with the message service.

SystemVerilog

virtual function void
 prepend_callback(vmm_log_callbacks cb);

OpenVera

Not supported.

Description

Globally prepends the specified callback façade instance with the
message service. Callback methods will be invoked in the order in
which they were registered.

A warning is generated if the same callback façade instance is
registered more than once. Callback façade instances can be
unregistered and re-registered dynamically.

Example

Example A-100
env.build();
begin
 gen_rx_errs cb = new;
 env.phy.prepend_callback(cb);
end

 A- 285

VMM User Guide

vmm_log::remove_watchpoint()

Removes the specified watchpoint from the specified message
service interfaces.

SystemVerilog

virtual function void remove_watchpoint(
 int watchpoint_id=-1,

string name = "",
 string inst = "",
 bit recurse = 0);

OpenVera

Not supported.

Description

Removes the specified watchpoint watchpoint_id from the
message interface specified by name and instance arguments. If
a message matching the watchpoint specification is issued by one of
the specified message service interfaces associated with the
watchpoint, the watchpoint will be triggered. If the specified
argument recurse is set, then this method also applies to all the
message interfaces logically under the matching message service
interfaces.

A-286

VMM User Guide

vmm_log::report()

Reports a failure, if a message service interface issued an error or
fatal message.

SystemVerilog

virtual task report(string name = “/./”,
string inst = “/./”,
bit recurse = 0);

OpenVera

Not supported.

Description

Reports a failure if any of the specified message service interfaces,
matched by name and inst arguments, have issued any error or
fatal messages. Reports a success otherwise. The text of the pass
or fail message is specified using the
vmm_log_format::pass_or_fail() method. If the specified
argument recurse is set, then this method also applies to all the
message interfaces logically under the matching message service
interfaces.

 A- 287

VMM User Guide

vmm_log::reset()

Initializes the message service instance iterator.

SystemVerilog

function void reset(string name = "/./",
string inst = "/./",
bit recurse = 0);

OpenVera

task reset(string name = "/./",
string inst = "/./",
bit recurse = 0);

Description

Resets the message service instance iterator for this instance of the
message service, and initialize it to iterator using the specified name,
instance name, and optional recursion.

It is then possible to iterate over all known instances of the message
service interface that match the specified pattern, using the
“vmm_log::for_each()” method.

There is one iterator per message service instance.

Example

Example A-101
env.log.reset();
for (vmm_log log = env.log.for_each();
 log != null;
 log = env.log.for_each()) begin
end

A-288

VMM User Guide

vmm_log::set_instance()

Sets the instance name of the message service interface.

SystemVerilog

virtual function void set_instance(string inst);

OpenVera

Not supported.

Description

This method sets the instance name of the message service
interface.

 A- 289

VMM User Guide

vmm_log::set_name()

 Sets the name of the message service interface.

SystemVerilog

virtual function void set_name(string name);

OpenVera

Not supported.

Description

This method sets the name of the message service interface.

A-290

VMM User Guide

vmm_log::set_typ_image()

Replaces the image, which is used to display the specified message.

SystemVerilog

virtual function string set_typ_image(int typ,
 string image);

OpenVera

Not supported.

Description

Globally replaces the image, which is used to display the specified
message type with the specified image. The previous image is
returned. Default images are provided.

Default colors for fatal, error, and warning messages can be
automatically selected by using +define+VMM_LOG_ANSI_COLOR.

Messages can be custom color coded by specifying the ANSI
escape characters with the set_sev_image() or
set_typ_image() methods.

For example,

log.set_sev_image(vmm_log::FATAL_SEV,
"\033[41m*FATAL*\033[0m");

 A- 291

VMM User Guide

vmm_log::set_sev_image()

Replaces the image, which is used to display the specified message
severity.

SystemVerilog

virtual function string set_sev_image(int severity,
 string image);

OpenVera

Not supported.

Description

Globally replaces the image, which is used to display the specified
message severity with the specified image. The previous image is
returned. Default images are provided.

Default colors for fatal, error, and warning messages can be
automatically selected by using +define+VMM_LOG_ANSI_COLOR.

Messages can be custom color coded by specifying the ANSI
escape characters with the set_sev_image() or
set_typ_image() methods.

For example,

log.set_sev_image(vmm_log::FATAL_SEV,
"\033[41m*FATAL*\033[0m");

A-292

VMM User Guide

Example

Example A-102

Following is an example for colorizing the severity display on ANSI
terminals.

log.set_sev_image(vmm_log::WARNING,
 "\033[33mWARNING\033[0m");
log.set_sev_image(vmm_log::ERROR_SEV,
 "\033[31mERROR\033[0m");
log.set_sev_image(vmm_log::FATAL_SEV,
 "\033[41m*FATAL*\033[0m");

 A- 293

VMM User Guide

vmm_log::set_verbosity()

Specifies the minimum message severity to be displayed.

SystemVerilog

virtual function void set_verbosity(int severity,
string name = "",
string inst = "",
bit recursive = 0);

OpenVera

Not supported.

Description

Specifies the minimum message severity to be displayed, when
sourced by the specified message service interfaces. For ore
information, see the documentation for the enable_types()
method for the interpretation of the name, inst, and recursive
arguments, and how they are used to specify message service
interfaces.

The default minimum severity can be changed by using the
+vmm_log_default=sev runtime command-line option, where
sev is the desired minimum severity and is one of the levels such as
error, warning, normal, trace, debug, or verbose. The
default verbosity level can be later modified using this method.

The minimum severity level can be globally forced by using the
+vmm_force_verbosity=sev runtime command-line option. The
specified verbosity overrides the verbosity level specified, using this
method.

A-294

VMM User Guide

vmm_log::start_msg()

Prepares to generate a message.

SystemVerilog

virtual function bit start_msg(int typ, int severity =
DEFAULT_SEV);

With +define VMM_LOG_FORMAT_FILE_LINE
virtual function bit start_msg(int typ,

int severity = DEFAULT_SEV,
string fname = "",
int line = -1);

OpenVera

virtual function bit (integer type,
integer severity = DEFAULT_TYP,
integer msg_id = -1);

Description

Prepares to generate a message of the specified type and severity.
If the message service interface instance is configured ignore
messages of the specified type or severity, then the function returns
FALSE.

When using SystemVerilog, the current filename and line number,
using fname and line arguments, where the message is created
can be supplied by using the ‘__FILE__ and ‘__LINE__ symbols.
For backward compatibility, the ‘VMM_LOG_FORMAT_FILE_LINE
symbol must be defined to enable the inclusion of the filename, and
line number to the message formatter.

 A- 295

VMM User Guide

Example

Example A-103
program test
 ...
 initial begin
 ...
 env.log.text.start_msg(vmm_log::NOTE_TYP,
 vmm_log::DEFAULT_SEV,
 `__FILE__,‘__LINE__);
 env.log.text("Starting Test My_Test");
 env.log.text();
 ...
 end

A-296

VMM User Guide

vmm_log::stop_after_n_errors()

Aborts the simulation, after a specified number of messages are
generated.

SystemVerilog

virtual function void stop_after_n_errors(int n);

OpenVera

Not supported.

Description

Aborts the simulation, after the specified number of messages with
a simulation handling of COUNT_ERROR is generated. This value is
global, and all messages from any message service interface count
toward this limit. A zero or negative value specifies no maximum.
The default value is 10. The message specified by the
vmm_log_format::abort_on_error() is displayed, before the
simulation is aborted.

 A- 297

VMM User Guide

vmm_log::text()

Adds the specified text to the message being constructed.

SystemVerilog

virtual function bit text(string msg = "");

OpenVera

Not supported.

Description

Adds the specified text to the message being constructed. This
method specifies a single line of message text. A newline character
is automatically appended when the message is issued. Additional
lines of messages can be produced by calling this method multiple
times, once per line. If an empty string is specified as message text,
all previously specified lines of text are flushed to the output, but the
message is not terminated. This method may return FALSE, if the
message is filtered out based on the text.

A message must be flushed and terminated by calling the
vmm_log::end_msg() method, to trigger the message display and
the simulation handling. A message can be flushed multiple times by
calling the vmm_log::text("") method, but the simulation
handling and notification will take effect on the message termination.

If additional lines are produced using the $display() system task
or other display mechanisms, they will not be considered by the
filters, nor included in explicit log files. They may also be displayed
out of order, if they are produced before the previous lines of the
message are flushed.

A-298

VMM User Guide

For single-line messages, the ‘vmm_fatal(), ‘vmm_error(),
‘vmm_warning(), ‘vmm_note(), ‘vmm_trace(),
‘vmm_debug(), ‘vmm_verbose(), ‘vmm_report(),
‘vmm_command(), ‘vmm_transaction(), ‘vmm_protocol(),
and ‘vmm_cycle() macros can be used as a shorthand notation.

Table A-10 Message Type and Severity for Shorthand Macros
Table A-11

Macro Message
Type

Message
Severity

‘vmm_fatal(vmm_log log, string txt); Failure Fatal

‘vmm_error(vmm_log log, string txt); Failure Error

‘vmm_warning(vmm_log log, string txt); Failure Warning

‘vmm_note(vmm_log log, string txt); Note Default

‘vmm_trace(vmm_log log, string txt); Debug Trace

‘vmm_debug(vmm_log log, string txt); Debug Debug

‘vmm_verbose(vmm_log log, string txt); Debug Verbose

‘vmm_report(vmm_log log, string txt); Report Default

‘vmm_command(vmm_log log, string txt); Command Default

‘vmm_transaction(vmm_log log, string txt); Transaction Default

‘vmm_protocol(vmm_log log, string txt); Protocol Default

‘vmm_cycle(vmm_log log, string txt); Cycle Default

 A- 299

VMM User Guide

vmm_log::uncatch()

Removes a user-defined message handler.

SystemVerilog

function bit uncatch(int catcher_id);

OpenVera

Not supported.

Description

Uninstalls the specified user-defined message handler. The
message handler is identified by the unique identifier that was
returned by the vmm_log::catch() method, when it was originally
installed.

Returns TRUE, if the specified message handler was successfully
uninstalled. Otherwise, it returns FALSE.

Example

Example A-104
class err_catcher extends vmm_log_catcher;
endclass
alu_env env;
err_catcher ctcher;
initial begin
 env.build();
 ctcher_id = env.sb.log.catch(ctcher, , , ,
 vmm_log::ERROR_SEV,"/Mismatch/");
 env.sb.log.uncatch(ctcher_id);
end

A-300

VMM User Guide

vmm_log::uncatch_all()

Removes all user-defined message handlers.

SystemVerilog

function void uncatch_all();

OpenVera

Not supported.

Description

Uninstalls all user-defined message handlers. All message handlers,
even those that were registered with or through a different message
service interface, are uninstalled.

Example

Example A-105
class err_catcher extends vmm_log_catcher;
endclass

alu_env env;
err_catcher ctcher1, ctcher2;

initial begin
 env.build();
 ctcher_id1 = env.log.catch(ctcher1, , , ,
 vmm_log::ERROR_SEV,"/MON_ERROR_008/");
 ctcher_id2 = env.log.catch(ctcher2, , , ,
 vmm_log::ERROR_SEV,"/MON_ERROR_010/");
 if(env.mon.error_cnt >10)
 env.log.uncatch_all();
end

 A- 301

VMM User Guide

vmm_log::unmodify()

Removes a message modification from the message service
interfaces.

SystemVerilog

virtual function void unmodify(int modification_id = -1,
string name = "",
string instance = "",
bit recursive = 0);

OpenVera

Not supported.

Description

Removes the specified message modification_id from the
specified message service interfaces. By default, all message
modifications are removed. If the specified argument recursive is
set, then this method also applies to all the message interfaces
logically under the matching message service interfaces.

A-302

VMM User Guide

vmm_log::unregister_callback()

Unregisters the specified callback façade instance.

SystemVerilog

virtual function void unregister_callback(
 vmm_log_callbacks cb);

OpenVera

Not supported.

Description

Globally unregisters the specified callback façade instance with the
message service. A warning is generated, if the specified façade
instance is not currently registered with the service. Callback façade
instances can later be re-registered.

 A- 303

VMM User Guide

vmm_log::use_hier_inst_name()

Switches to hierarchical instance names.

SystemVerilog

function void use_hier_inst_name();

OpenVera

Not supported.

Description

Rewrites the instance name of all message service interface
instances into a dot-separated hierarchical form. The original
instance names can later be restored using the
“vmm_log::use_orig_inst_name()” method.

An instance name is made hierarchical, if the message service
instance is specified as being under another message service
interface. Message service interface hierarchies can be built by
specifying the under argument to the constructor, or by using the
vmm_log::is_above() method.

For example, the code in Example A-106 results in instance names
such as top, top.m1, top.c1, and s1. The instance name for s1
is not modified, because it is not specified as being under another
message service interface, and thus creates a new hierarchical root.

A-304

VMM User Guide

Example

Example A-106
function tb_env::new();
 super.new("top");
endfunction

function void tb_env::build();
 super.build();
 this.chan = new("Master to slave", "c1");
 this.master = new("m1", this.chan);
 this.slave = new("s1", this.chan);
 this.log.is_above(this.master.log);
 this.log.is_above(this.chan);
 this.log.use_hier_inst_name();
endfunction

 A- 305

VMM User Guide

vmm_log::use_orig_inst_name()

Switches to original, flat instance names.

SystemVerilog

function void use_orig_inst_name();

OpenVera

Not supported.

Description

Rewrites the instance name of all message service interface
instances into the original and flat form specified, when the message
service instance was constructed.

Example

Example A-107
env.build();
if (env.log.uses_hier_inst_name())
 env.log.use_orig_inst_name();

A-306

VMM User Guide

vmm_log::uses_hier_inst_name()

Checks if hierarchical instance names are in use.

SystemVerilog

function bit uses_hier_inst_name();

OpenVera

Not supported.

Description

Returns TRUE, if the message service interface instances use
hierarchical instance name, as defined by calling the
“vmm_log::use_hier_inst_name()” method. Returns
FALSE, if the original and flat instance names are used, as defined
by calling the “vmm_log::use_orig_inst_name()” method.

Example

Example A-108
env.build();
if (!env.log.uses_hier_inst_name())
 env.log.use_hier_inst_name();

 A- 307

VMM User Guide

vmm_log::set_format()

Sets the message formatter to the specified message formatter
instance.

SystemVerilog

virtual function vmm_log_format
set_format(vmm_log_format fmt);

OpenVera

Not supported.

Description

Globally sets the message formatter to the specified message
formatter instance. A reference to the previously used message
formatter instance is returned. A default global message formatter is
provided.

A-308

VMM User Guide

vmm_log::wait_for_msg()

Waits for a one-time watchpoint for a specified message.

SystemVerilog

virtual task wait_for_msg(string name = "",
string inst = "",
bit recurse = 0,

int typs = ALL_TYPS,
int severity = ALL_SEVS,
string text = "",
logic issued = 1'bx,
ref vmm_log_msg msg);

OpenVera

Not supported.

Description

Sets up and waits for a one-time watchpoint for the specified
message (described by severity, message type typs, and string
text) on the specified message service interface (specified by inst
and name). The watchpoint is triggered only once and removed after
being triggered. If the specified argument recurse is set, then this
method also applies to all the message interfaces logically under the
matching message service interfaces.

A descriptor of the message that triggered the watchpoint will be
updated to the reference argument msg. Argument issued keeps
track whether the message is issued or not

 A- 309

VMM User Guide

vmm_log::wait_for_watchpoint()

Waits for the specified watchpoint to be triggered by a message.

SystemVerilog

virtual task wait_for_watchpoint(int watchpoint_id,
ref vmm_log_msg msg);

OpenVera

Not supported.

Description

Waits for the specified watchpoint to be triggered by a message
issued by one of the message service interfaces attached to the
watchpoint. A descriptor of the message that triggered the
watchpoint will be updated to the reference argument msg.

A-310

VMM User Guide

vmm_log_msg

This class describes a message issued by a message service
interface that caused a watchpoint to be triggered. It is returned by
the vmm_log::wait_for_watchpoint() and
vmm_log::wait_for_msg() method.

Summary

• vmm_log_msg::effective_severity page A-311
• vmm_log_msg::effective_typ page A-312
• vmm_log_msg::handling page A-313
• vmm_log_msg::issued page A-314
• vmm_log_msg::log page A-315
• vmm_log_msg::original_severity page A-316
• vmm_log_msg::original_typ page A-317
• vmm_log_msg::text[] page A-318
• vmm_log_msg::timestamp page A-319

 A- 311

VMM User Guide

vmm_log_msg::effective_severity

Effective message severity as potentially modified by the
vmm_log::modify() method.

SystemVerilog

int effective_severity;

OpenVera

Not supported.

A-312

VMM User Guide

vmm_log_msg::effective_typ

Effective message type as potentially modified by the
vmm_log::modify() method.

SystemVerilog

int effective_typ;

OpenVera

Not supported.

 A- 313

VMM User Guide

vmm_log_msg::handling

The simulation handling after the message is physically generated.

SystemVerilog

int handling;

OpenVera

Not supported.

A-314

VMM User Guide

vmm_log_msg::issued

Indicates if the message is physically generated or not.

SystemVerilog

logic issued;

OpenVera

Not supported.

Description

 If non-zero, then the message is generated.

 A- 315

VMM User Guide

vmm_log_msg::log

A reference to the message reporting interface that has generated
the message.

SystemVerilog

vmm_log log;

OpenVera

Not supported.

A-316

VMM User Guide

vmm_log_msg::original_severity

Original message severity, as specified in the code creating the
message.

SystemVerilog

int original_severity;

OpenVera

Not supported.

 A- 317

VMM User Guide

vmm_log_msg::original_typ

Original message type, as specified in the code creating the
message.

SystemVerilog

int original_typ;

OpenVera

Not supported.

A-318

VMM User Guide

vmm_log_msg::text[]

Formatted text of the message.

SystemVerilog

string text[$];

OpenVera

Not supported.

Description

Each element of the array contains one line of text, as built by
individual calls to the vmm_log::text() method.

 A- 319

VMM User Guide

vmm_log_msg::timestamp

The simulation time when the message was generated.

SystemVerilog

time timestamp;

OpenVera

Not supported.

A-320

VMM User Guide

vmm_log_callback

This class provides a facade for the callback methods provided by
the message service. Callbacks are associated with the message
service itself, but not a particular message service interface instance.

Summary

• vmm_log_callback::pre_abort() page A-321
• vmm_log_callback::pre_debug() page A-322
• vmm_log_callback::pre_finish() page A-323
• vmm_log_callback::pre_stop() page A-325

 A- 321

VMM User Guide

vmm_log_callback::pre_abort()

Aborts the condition callback.

SystemVerilog

virtual function void pre_abort(vmm_log log);

OpenVera

virtual function pre_abort(rvm_log log);

Description

This callback method is invoked by the message service when a
message was generated with an ABORT simulation handling, or the
maximum number of message with a COUNT_ERROR handling is
generated. This callback method is invoked before the
“vmm_log_callback::pre_finish()” callback method.

The message service interface provided as an argument may be
used to generate further messages.

A-322

VMM User Guide

vmm_log_callback::pre_debug()

Debugs condition callback.

SystemVerilog

virtual function void pre_debug(vmm_log log);

OpenVera

virtual function pre_debug(rvm_log log);

Description

This callback method is invoked by the message service when a
message was generated with a DEBUGGER simulation handling.

The message service interface provided as an argument may be
used to generate further messages.

 A- 323

VMM User Guide

vmm_log_callback::pre_finish()

Terminates the simulation callback.

SystemVerilog

virtual function void pre_finish(vmm_log log,
 ref bit finished);

OpenVera

Not supported.

Description

This callback method is invoked by the message service, after the
“vmm_log_callback::pre_abort()” callback method, and immediately
before the $finish() method is invoked to terminate the
simulation.

The value of the finished parameter is 0 by default. If its value is
returned as 1, by the sequence of callback methods, it indicates that
the callback method is taken the responsibility of terminating the
simulation. Therefore, the final report and the $finish() method
will not be called.

Use this callback method, if you wish to delay the termination of the
simulation, after an abort condition is detected.

Example

Example A-109 Terminating the Simulation of 100 Time Units
virtual function void pre_finish(vmm_log log,

 ref bit finished);

A-324

VMM User Guide

 fork
 begin
 #100;
 log.report();
 $finish();
 end
 join_none
 finished = 1;
endfunction

 A- 325

VMM User Guide

vmm_log_callback::pre_stop()

Stops the condition callback.

SystemVerilog

virtual function void pre_stop(vmm_log log);

OpenVera

virtual function pre_stop(rvm_log log);

Description

This callback method is invoked by the message service when a
message was issued with a STOP simulation handling.

The message service interface provided as an argument may be
used to issue further messages.

A-326

VMM User Guide

vmm_log_catcher

VMM provides a mechanism to execute user-specific code, if a
certain message is generated from the testbench environment, using
the vmm_log_catcher class.

The vmm_log_catcher class is based on regexp to specify
matching vmm_log messages.

If a message with the specified regexp is generated during
simulation, the user-specified code is executed.

The vmm_log_catcher::caught() method can be used to
modify the caught message, change its type and severity. You can
choose to ignore the message, in which case it is not displayed. The
message can be displayed as is, after executing user-specified
code. The updated message can be displayed by calling the
vmm_log_catcher::issue() method, in the caught method.

The caught message, modified or unmodified, can be passed to
other catchers that are registered, using the
vmm_log_catcher::throw function.

The messages to be caught are registered with the vmm_log class
using the vmm_log::catch() method.

class error_catcher extends vmm_log_catcher;

virtual function void caught(vmm_log_msg msg);
 msg.text[0] = {" Acceptable Error" , msg.text[0]};
 msg.effective_severity = vmm_log::WARNING_SEV;
 issue(msg);
endfunction
endclass

 A- 327

VMM User Guide

Registration should be done in the program block.

initial begin
 env = new();
 error_catcher catcher = new();
 env.build();
 catcher_id =
 env.sb.log.catch(catcher,,,1,,vmm_log::ERROR_SEV,"/
 Mismatch/");
 env.run();
end

The error_catcher class extends the vmm_log_catcher class
and implements the caught() method. The caught() method
prepends the "Acceptable Error" to the original message, and
changes the severity to WARNING_SEV.

In the initial block of the program block, an object of
error_catcher is created, and a handle passed to the catch()
method to register the catcher. Any vmm_log message from
scoreboard (sb), containing the ERROR_SEV severity, and including
the string "Mismatch" is caught and changed to WARNING_SEV with
"Acceptable Error" prepended to it.

If the message is to be caught from all vmm_log instances, the
catch() method can be called as:

env.sb.log.catch(catcher,"/./","/./
",1,vmm_log::ERROR_SEV,"/Mismatch/");

To unregister a catcher, the vmm_log::uncatch(catcher-id)
or vmm_log::uncatch_all() methods can be used.

Summary

• vmm_log_catcher::caught() page A-329

A-328

VMM User Guide

• vmm_log_catcher::issue() page A-331
• vmm_log_catcher::throw() page A-332

 A- 329

VMM User Guide

vmm_log_catcher::caught()

Handles a caught message.

SystemVerilog

virtual function void caught(vmm_log_msg msg);

OpenVera

Not supported.

Description

This method specifies how to handle a caught message. Unless re-
generated using the vmm_log_catcher::issue() method, or
thrown back to the message service using the
vmm_log_catcher::throw() method, this message will not be
generated.

It is up to you to decide how a message, once caught, is to be
handled. Handling a message is defined by whatever behavior is
specified in the extension of this method. If left empty, the message
will be ignored.

This method must be overloaded.

Example

Example A-110
virtual function void caught(vmm_log_msg msg);
 if (num_errors < max_errors) begin
 msg.text[0] = {"ACCEPTABLE ERROR: ", msg.text[0]};
 msg.effective_severity = vmm_log::WARNING_SEV;

A-330

VMM User Guide

 ...
 end
 else
 . .
endfunction

 A- 331

VMM User Guide

vmm_log_catcher::issue()

Generates a caught message.

SystemVerilog

protected function void issue(vmm_log_msg msg);

OpenVera

Not supported.

Description

Immediately generates the specified message. The message is not
subject to being caught any further by this or another user-defined
message handler.

The message described by the vmm_log_msg descriptor may be
modified before being generated.

Example

Example A-111
virtual function void caught(vmm_log_msg msg);
 if (num_errors > max_errors) begin
 issue(msg);
 end
 ...
endfunction

A-332

VMM User Guide

vmm_log_catcher::throw()

Throws back a caught message.

SystemVerilog

protected function void throw(vmm_log_msg msg);

OpenVera

Not supported.

Description

Throws the specified message back to the message service. The
message will be subject to being caught another user-defined
message handler, but not by this one.

The message described by the vmm_log_msg descriptor may be
modified before being thrown back.

Example

Example A-112
virtual function void caught(vmm_log_msg msg);
 if (num_errors < max_errors)
 throw(msg);
endfunction

 A- 333

VMM User Guide

vmm_log_format

This class is used to specify how messages are formatted, before
being displayed or logged to files. The default implementation of
these methods produces the default message format.

Summary

• vmm_log_format::abort_on_error() page A-334
• vmm_log_format::continue_msg() page A-335
• vmm_log_format::format_msg() page A-337
• vmm_log_format::pass_or_fail() page A-339

A-334

VMM User Guide

vmm_log_format::abort_on_error()

Called when the total number of COUNT_ERROR messages exceeds
the error message threshold.

SystemVerilog

virtual function string abort_on_error(int count,
int limit);

OpenVera

Not supported.

Description

The string returned by the method describes the cause of the
simulation aborting. If null is returned, then no explanation is
displayed.

This method is called and the returned string is displayed, before the
vmm_log_callbacks::pre_abort() callback methods are
invoked.

 A- 335

VMM User Guide

vmm_log_format::continue_msg()

Formats the continuation of a message.

SystemVerilog

virtual function string continue_msg(
 string name,
 string instance,
 string msg_typ,
 string severity,
 ref string lines[$]);

With +define VMM_LOG_FORMAT_FILE_LINE

virtual function string continue_msg(
 string name,
 string inst,
 string msg_typ,
 string severity,
 string fname,
 int line,
 ref string lines[$]);

OpenVera

virtual function string continue_msg(string name,
string instance,
string msg_typ,
string severity,
string lines[$]);

Description

This method is called by all message service interfaces to format the
continuation of a message, and subsequent calls to the
vmm_log::end_msg() method or empty vmm_log::text("")

A-336

VMM User Guide

method call. The first call to the vmm_log::end_msg() method or
empty vmm_log::text("") method uses the
vmm_log_format::format_msg() method.

 A message on subsequent occurrences of a call to the
"vmm_log::end_msg()" method or empty
"vmm_log::text()" method call after a call to
"vmm_log::start_msg()". The first call to these methods call
the "vmm_log_format::format_msg()" method.

For backward compatibility when using SystemVerilog, the
‘VMM_LOG_FORMAT_FILE_LINE symbol must be defined to enable
the inclusion of the filename and line number to the message
formatter.

Example

Example A-113
 ...
 string line[$];
 string str;
 super.build();
 str = "Continue Msg string";

 for(int idx = 0; idx < 5 ; idx++)
 line.push_back(str);
 `vmm_note(log,$psprintf("%0s",this.format.continue_msg
 ("msg","log","","DEBUG_SEV",line)));
 ...

 A- 337

VMM User Guide

vmm_log_format::format_msg()

Formats a message.

SystemVerilog

virtual function string format_msg(
 string name,

string instance,
string msg_typ,
string severity,
ref string lines[$]);

With +define VMM_LOG_FORMAT_FILE_LINE

virtual function string format_msg(string name,
 string inst,
 string msg_typ,
 string severity,
 string fname,
 int line,
 ref string lines[$]);

OpenVera

virtual function string format_msg(string name,
string instance,
string msg_typ,
string severity,
string lines[$]);

Description

Returns a fully formatted image of the message, as specified by the
arguments. The lines parameter contains one line of message text
for each non-empty call to the vmm_log::text() method. A line
may contain newline characters.

A-338

VMM User Guide

This method is called by all message service interfaces to format a
message on the first occurrence of a call to the
vmm_log::end_msg() method or empty vmm_log::text()
method call after a call to vmm_log::start_msg(). Subsequent
calls to these methods call the
vmm_log_format::continue_msg() method.

For backward compatibility when using SystemVerilog, the
‘VMM_LOG_FORMAT_FILE_LINE symbol must be defined to enable
the inclusion of the filename and line number to the message
formatter.

Example

Example A-114
class env_log_fmt extends vmm_log_format;
 function string format_msg(string name = "", string
instance = "",
 string msg_type, string severity,
 ref string lines[$]);
 for(int i=0;i<lines.size;i++)
 $sformat(format_msg,
 "%0t, (%s) (%s) [%0s:%0s] \n \t \t %s ",
 $time, name, instance, msg_type, severity, lines[i]);
 endfunction
endclass

class my_env extends vmm_env;
 ...
 env_log_fmt env_fmt = new();
 function new();
 this.log.set_format(env_fmt);
 `vmm_note(log,"Inside New");
 endfunction
endclass

 A- 339

VMM User Guide

vmm_log_format::pass_or_fail()

Formats the final pass or fail message at the end of simulation.

SystemVerilog

virtual function string pass_or_fail(bit pass,
string name,
string inst,
int fatals,
int errors,
int warnings,
int dem_errs,
int dem_warns);

OpenVera

Not supported.

Description

This method is called by the vmm_log::report() method to
format the final pass or fail message, at the end of simulation.

The pass argument, if true, indicates that the simulation was
successful.

The name and instance arguments are the specified name and
instance names specified to the vmm_log::report() method.

The fatals argument is the total number of
vmm_log::FATAL_SEV messages that were generated.

The errors argument is the total number of
vmm_log::ERROR_SEV messages that were generated.

A-340

VMM User Guide

The warnings argument is the total number of
vmm_log::WARNING_SEV messages that were generated.

The dem_errs argument is the total number of
vmm_log::ERROR_SEV messages that were demoted.

The dem_warns argument is the total number of
vmm_log::WARNING_SEV messages that were demoted.

 A- 341

VMM User Guide

vmm_ms_scenario

This is a base class for all user-defined multi-stream scenario
descriptors. This class extends from vmm_scenario.

Summary

• vmm_ms_scenario::execute() page A-342
• vmm_ms_scenario::get_channel() page A-344
• vmm_ms_scenario::get_context_gen() page A-346
• vmm_ms_scenario::get_ms_scenario() page A-348
• vmm_ms_scenario::new() page A-350

A-342

VMM User Guide

vmm_ms_scenario::execute()

Executes a multi-stream scenario.

SystemVerilog

virtual task execute(ref int n)

OpenVera

Not supported.

Description

Execute the scenario. Increments the argument "n" by the total
number of transactions that were executed in this scenario.

This method must be overloaded to procedurally define a multi-
stream scenario.

Example

Example A-115
class my_scenario extends vmm_ms_scenario;
 my_atm_cell_scenario atm_scenario;
 my_cpu_scenario cpu_scenario;
 ...
 function new;
 super.new(null);
 atm_scenario = new;
 cpu_scenario = new;
 endfunction: new

 task execute(ref int n);
 fork
 begin

 A- 343

VMM User Guide

 atm_cell_channel out_chan;
 int unsigned nn = 0;
 $cast(out_chan, this.get_channel(
 "ATM_SCENARIO_CHANNEL"));
 atm_scenario.randomize with {length == 1;};
 atm_scenario.apply(out_chan, nn);
 n += nn;
 end
 begin
 cpu_channel out_chan;
 int unsigned nn = 0;
 $cast(out_chan,this.get_channel(
 "CPU_SCENARIO_CHANNEL"));
 cpu_scenario.randomize with {length == 1;};
 cpu_scenario.apply(out_chan, nn);
 n += nn;
 end
 join
 endtask: execute
 ...
endclass: my_scenario

A-344

VMM User Guide

vmm_ms_scenario::get_channel()

Returns a registered output channel.

SystemVerilog

function vmm_channel get_channel(string name)

OpenVera

Not supported.

Description

Returns the output channel, which is registered under the specified
logical name in the multi-stream generator where the multi-stream
scenario generator is registered. Returns NULL, if no such channel
exists.

Example

Example A-116
`vmm_channel(atm_cell)
`vmm_scenario_gen(atm_cell, "atm trans")

program test_ms_scenario;
 vmm_ms_scenario_gen atm_ms_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_channel my_chan=new("MY_CHANNEL", "EXAMPLE");
 atm_cell_channel buffer_channel = new("MY_BUFFER",
"EXAMPLE");
 ...
 initial begin
 ...
 buffer_channel = atm_ms_gen.get_channel("MY_CHANNEL");
 if(buffer_channel != null)

 A- 345

VMM User Guide

 vmm_log(log,"Returned channel \n");
 ...
 else
 vmm_log(log,"Returned null value\n");
 ...
 end

endprogram

A-346

VMM User Guide

vmm_ms_scenario::get_context_gen()

Returns the multi-stream scenario generator that is executing this
scenario.

SystemVerilog

function vmm_ms_scenario_gen get_context_gen()

OpenVera

Not supported.

Description

Returns a reference to the multi-stream scenario generator that is
providing the context for the execution of this multi-stream scenario
descriptor. Returns NULL, if this multi-stream scenario descriptor is
not registered with a multi-stream scenario generator.

Example

Example A-117
`vmm_scenario_gen(atm_cell, "atm trans")

program test_ms_scenario;
 vmm_ms_scenario_gen atm_ms_gen =
 new("Atm Scenario Gen", 12);
 vmm_ms_scenario ms_scen = new;
 ...
 initial begin
 atm_ms_gen.register_ms_scenario(
 "FIRST SCEN",first_ms_scen);
 ...
 if(my_scen.get_context_gen())

 A- 347

VMM User Guide

 vmm_log(log,"This scenario has been registered\n");
 ...
 else
 vmm_log(log,"Scenario not yet registered \n");
 ...
 end
endprogram

A-348

VMM User Guide

vmm_ms_scenario::get_ms_scenario()

Returns a registered multi-stream scenario descriptor.

SystemVerilog

function vmm_ms_scenario get_ms_scenario(string scenario,
string gen = "")

OpenVera

Not supported.

Description

Returns a copy of the multi-stream scenario that is registered under
the specified scenario name, in the multi-stream generator that is
registered under the specified generator name. Returns NULL, if no
such scenario exists. Therefore, vmm_ms_scenario::copy()
should be overloaded for multistream scenarios to return the copy of
the scenario.

If no generator name is specified, searches the scenario registry of
the generator that is executing this scenario.

The scenario can then be executed within the context of the
generator where it is registered by calling its
vmm_ms_scenario::execute() method.

Example

Example A-118
`vmm_scenario_gen(atm_cell, "atm trans")
program test_ms_scenario;

 A- 349

VMM User Guide

 vmm_ms_scenario_gen atm_ms_gen =
 new("Atm Scenario Gen", 12);
 vmm_ms_scenario first_ms_scen = new;
 vmm_ms_scenario buffer_ms_scen = new;
 ...
 initial begin
 atm_ms_gen.register_ms_scenario("FIRST
SCEN",first_ms_scen);
 ...
 buffer_ms_scen = atm_ms_gen.get_ms_scenario("FIRST
SCEN");
 if(buffer_ms_scen != null)
 vmm_log(log,"Returned scenario \n");
 ...
 else
 vmm_log(log,"Returned null, scenario doesn't
exists\n");
 ...
 end

endprogram

A-350

VMM User Guide

vmm_ms_scenario::new()

Instantiates a multi-stream scenario descriptor.

SystemVerilog

function new(vmm_scenario parent = null)

OpenVera

Not supported.

Description

Creates a new instance of a multi-stream scenario descriptor.

If a parent scenario descriptor is specified, then this instance of a
multi-stream scenario descriptor is assumed to be instantiated inside
the specified scenario descriptor, creating a hierarchical multi-
stream scenario descriptor.

If no parent scenario descriptor is specified, then it is assumed to be
a top-level scenario descriptor.

Example

Example A-119
class my_scenario extends vmm_ms_scenario;
 function new;
 super.new(null);
 endfunction: new
endclass
program test;
 my_scenario sc0 = new;
endprogram

 A- 351

VMM User Guide

vmm_ms_scenario_gen

This class is a pre-defined multi-stream scenario generator.

VMM provides this class to model general purpose scenarios. It is
possible to generate heterogeneous scenarios, and have them
controlled by a unique transactor.

The multi-stream scenario generation mechanism provides an
efficient way of generating and synchronizing stimulus to various
BFMs. This helps you to reuse block level scenarios in subsystem
and system levels, and controlling or synchronizing the execution of
those scenarios of same or different streams. Single stream
scenarios can also be reused in multi-stream scenarios.
vmm_ms_scenario and vmm_ms_scenario_gen are the base
classes provided by VMM for this functionality. This section
describes the various usages of multi-stream scenario generation
with these base classes.

Generated scenarios can be transferred to any number of channels
of various types, anytime during simulation, making this solution very
scalable, dynamic and completely controllable. Moreoverer, it is
possible to model sub-scenarios that can be attached and controlled
by an overall scenario, in a hierarchical way. You can determine the
number of scenarios or the number of transactions to be generated,
either on a MSS basis or on a given scenario generator, making this
use model scalable from block to system level.

It is also possible to add or remove scenarios as simulation
advances, facilitating detection of corner cases or address other
constraints on the fly. If multiple scenario generators should access
a common channel, then it is possible to give the channel access to

A-352

VMM User Guide

only one generator on a given time slot. In this case, other
generators do wait until the channel is released, thereby making it a
blocking transaction.

The following methods are available.

Summary

• vmm_ms_scenario_gen::channel_exists() page A-353
• vmm_ms_scenario_gen::DONE page A-355
• vmm_ms_scenario_gen::GENERATED page A-356
• vmm_ms_scenario_gen::get_all_channel_names() page A-357
• vmm_ms_scenario_gen::get_all_ms_scenario_names() . page A-358
• vmm_ms_scenario_gen::get_all_ms_scenario_gen_names() page A-359
• vmm_ms_scenario_gen::get_channel() page A-360
• vmm_ms_scenario_gen::get_channel_name() page A-362
• vmm_ms_scenario_gen::get_ms_scenario_index() page A-363
• vmm_ms_scenario_gen::get_ms_scenario() page A-365
• vmm_ms_scenario_gen::get_ms_scenario_gen() page A-366
• vmm_ms_scenario_gen::get_ms_scenario_gen_name() .. page A-368
• vmm_ms_scenario_gen::get_ms_scenario_name() page A-369
• vmm_ms_scenario_gen::get_n_insts() page A-371
• vmm_ms_scenario_gen::get_n_scenarios() page A-372
• vmm_ms_scenario_gen::get_names_by_channel() page A-373
• vmm_ms_scenario_gen::get_names_by_ms_scenario() .. page A-375
• vmm_ms_scenario_gen::get_names_by_ms_scenario_gen() page A-377
• vmm_ms_scenario_gen::inst_count page A-379
• vmm_ms_scenario_gen::ms_scenario_exists() page A-381
• vmm_ms_scenario_gen::ms_scenario_gen_exists() page A-383
• vmm_ms_scenario_gen::register_channel() page A-385
• vmm_ms_scenario_gen::register_ms_scenario() page A-387
• vmm_ms_scenario_gen::register_ms_scenario_gen() .. page A-389
• vmm_ms_scenario_gen::replace_channel() page A-391
• vmm_ms_scenario_gen::replace_ms_scenario() page A-393
• vmm_ms_scenario_gen::replace_ms_scenario_gen() ... page A-395
• vmm_ms_scenario_gen::scenario_count page A-396
• vmm_ms_scenario_gen::scenario_set[$] page A-398
• vmm_ms_scenario_gen::select_scenario page A-400
• vmm_ms_scenario_gen::stop_after_n_insts page A-402
• vmm_ms_scenario_gen::stop_after_n_scenarios page A-404
• vmm_ms_scenario_gen::unregister_channel() page A-406
• vmm_ms_scenario_gen::unregister_channel_by_name() page A-408
• vmm_ms_scenario_gen::unregister_ms_scenario() page A-410
• vmm_ms_scenario_gen::unregister_ms_scenario_by_name() page A-412
• vmm_ms_scenario_gen::unregister_ms_scenario_gen() page A-414
• vmm_ms_scenario_gen::unregister_ms_scenario_gen_by_name() page A-

416

 A- 353

VMM User Guide

vmm_ms_scenario_gen::channel_exists()

Checks if a channel is registered under a specified name.

SystemVerilog

virtual function bit channel_exists(string name)

OpenVera

Not supported.

Description

Returns TRUE, if there is an output channel registered under the
specified name. Otherwise, it returns FALSE.

Use the vmm_ms_scenario_gen::get_channel() method to
retrieve a channel under a specified name.

Example

Example A-120
`vmm_channel(atm_cell)
`vmm_scenario_gen(atm_cell, "atm_trans")

program test_scen;
 vmm_ms_scenario_gen my_ms_gen =
 new("MS Scenario Gen", 11);
 atm_cell_channel ms_chan_1 =
 new("MS-CHANNEL-1", "MY_CHANNEL");
 ...
 initial begin
 vmm_log(log,"Registering channel \n");
 my_ms_gen.register_channel("MS-CHANNEL-1",ms_chan_1);
 ...

A-354

VMM User Guide

 if(my_ms_gen.channel_exists("MS_CHANNEL-1"))
 vmm_log(log,"Channel exists\n");
 else
 vmm_log(log,"Channel not yet registered\n");
 ...
 end
endprogram

 A- 355

VMM User Guide

vmm_ms_scenario_gen::DONE

Notifiies the completed generation.

SystemVerilog

typedef enum int {DONE} symbols_e

OpenVera

Not supported.

Description

Notification in vmm_xactor::notify that is indicated when the
generation process is completed, as specified by the
vmm_ms_scenario_gen::stop_after_n_scenarios and
vmm_ms_scenario_gen::stop_after_n_insts class
properties.

Example

Example A-121
program test_scen;
 ...
 vmm_ms_scenario_gen my_ms_gen = new(
 "MY MS SCENARIO",10);
 initial begin
 ...
 `vmm_note(log,"Waiting for notification : DONE \n");
 my_ms_gen.notify.wait_for(
 vmm_ms_scenario_gen::DONE);
 ...
 end
end

A-356

VMM User Guide

vmm_ms_scenario_gen::GENERATED

Notifies the newly generated scenario.

SystemVerilog

typedef enum int {GENERATED} symbols_e

OpenVera

Not supported.

Description

Notification in vmm_xactor::notify that is indicated, every time
a new multi-stream scenario is generated and about to be executed.

Example

Example A-122
program test_scen;
 ...
 vmm_ms_scenario_gen my_ms_gen= new("MY MS SCENARIO",10);
 ...
 initial begin
 ...
 `vmm_note(
 log,"Waiting for notification : GENERATED \n");
 my_ms_gen.notify.wait_for(
 vmm_ms_scenario_gen::GENERATED);
 ...
 end
end

 A- 357

VMM User Guide

vmm_ms_scenario_gen::get_all_channel_names()

Returns all names in the channel registry.

SystemVerilog

virtual function void get_all_channel_names(
ref string name[$])

OpenVera

Not supported.

Description

Appends the names under which an output channel is registered.
Returns the number of names that were added to the array.

Example

Example A-123
`vmm_channel(atm_cell)
`vmm_scenario_gen(atm_cell, "atm_trans")

program test_scen;
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen",
11);
 atm_cell_channel ms_chan_1=new("MS-CHANNEL-1",
"MY_CHANNEL");
 string channel_name_array[$];
 ...
 initial begin
 `vmm_note(log,"Registering channel \n");
 my_ms_gen.register_channel("MS-CHANNEL-1",ms_chan_1);
 my_ms_gen.get_all_channel_names(channel_name_array);
 end
endprogram

A-358

VMM User Guide

vmm_ms_scenario_gen::get_all_ms_scenario_names()

Returns all names in the scenario registry.

SystemVerilog

virtual function void get_all_ms_scenario_names(
 ref string name[$])

OpenVera

Not supported.

Description

Appends the names under which a multi-stream scenario descriptor
is registered. Returns the number of names that were added to the
array.

Example

Example A-124
class my_ms_scen extends vmm_ms_scenario;
endclass
program test_scenario;
 string scen_name_arr[$];
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen", 9);
 my_ms_scen ms_scen = new;
 initial begin
 `vmm_note(log,"Registering MS scenario \n");
 my_ms_gen.register_ms_scenario("MS-SCEN-1",ms_scen);
 my_ms_gen.register_ms_scenario("MS-SCEN-2",ms_scen);
 my_ms_gen.get_all_ms_scenario_names(scen_name_arr);
 end
endprogram

 A- 359

VMM User Guide

vmm_ms_scenario_gen::get_all_ms_scenario_gen_names()

Returns all names in the generator registry.

SystemVerilog

virtual function void get_all_ms_scenario_gen_names(
ref string name[$])

OpenVera

Not supported.

Description

Appends the names under which a sub-generator is registered.
Returns the number of names that were added to the array.

Example

Example A-125
program test_scenario;
 string ms_gen_names_arr[$];
 vmm_ms_scenario_gen parent_ms_gen =
 new("Parent-MS-Scen-Gen", 11);
 vmm_ms_scenario_gen child_ms_gen =
 new("Child-MS-Scen-Gen", 6);
 ...
 initial begin
 `vmm_note(log,"Registering sub MS generator \n");
 parent_ms_gen.register_ms_scenario_gen(
 "Child-MS-Scen-Gen",child_ms_gen);
 parent_ms_gen.get_all_ms_scenario_gen_names(
 ms_gen_names_arr);
 end
endprogram

A-360

VMM User Guide

vmm_ms_scenario_gen::get_channel()

Returns the channel that is registered under a specified name.

SystemVerilog

virtual function vmm_channel get_channel(
string name)

OpenVera

Not supported.

Description

Returns the output channel registered under the specified name.
Generates a warning message and returns NULL, if there are no
channels registered under that name.

Example

Example A-126
`vmm_channel(atm_cell)
`vmm_scenario_gen(atm_cell, "atm_trans")

program test_scen;
vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen",

11);
atm_cell_channel ms_chan_1=new("MS-CHANNEL-1",

"MY_CHANNEL");
atm_cell_channel buffer_chan = new("BUFFER","MY_BC");
...
initial begin

vmm_log(log,"Registering channel \n");
my_ms_gen.register_channel("MS-CHANNEL-

1",ms_chan_1);

 A- 361

VMM User Guide

...
buffer_chan = my_ms_gen.get_channel("MS-CHANNEL-

1");
...

end
endprogram

A-362

VMM User Guide

vmm_ms_scenario_gen::get_channel_name()

Returns a name under which a channel is registered.

SystemVerilog

virtual function string get_channel_name(vmm_channel chan)

OpenVera

Not supported.

Description

Return a name under which the specified channel is registered.
Returns "", if the channel is not registered.

Example

Example A-127
`vmm_channel(atm_cell)
`vmm_scenario_gen(atm_cell, "atm_trans")

program test_scen;
vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen",

11);
atm_cell_channel ms_chan_1=new("MS-CHANNEL-1",

"MY_CHANNEL");
string buffer_chan_name;
initial begin

vmm_log(log,"Registering channel \n");
my_ms_gen.register_channel("MS-CHANNEL-1",ms_chan_1);

buffer_chan_name =
my_ms_gen.get_channel_name(ms_chan_1);

end
endprogram

 A- 363

VMM User Guide

vmm_ms_scenario_gen::get_ms_scenario_index()

Returns the index of the specified scenario.

SystemVerilog

virtual function int get_ms_scenario_index(
vmm_ms_scenario scenario)

OpenVera

Not supported.

Description

Returns the index of the specified scenario descriptor in the
vmm_ms_scenario_gen::scenario_set[$] array. A warning
message is generated and returns -1, if the scenario descriptor is not
found in the scenario set.

Example

Example A-128
class my_ms_scen extends vmm_ms_scenario;
 ...
endclass

program test_scenario;
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen", 9);
 my_ms_scen ms_scen = new;
 int buffer_index;

 initial begin
 ...
 vmm_log(log,"Registering MS scenario \n");
 my_ms_gen.register_ms_scenario("MS-SCEN-1",ms_scen);

A-364

VMM User Guide

 ...
 buffer_index =
 my_ms_gen.get_ms_scenario_index(ms_scen);
 vmm_note(log,`vmm_sformatf(
 "Index for ms_scen is : %d\n",buffer_index));
 ...
 end
endprogram

 A- 365

VMM User Guide

vmm_ms_scenario_gen::get_ms_scenario()

Returns the scenario that is registered under a specified name.

SystemVerilog

virtual function vmm_ms_scenario get_ms_scenario(
string name)

OpenVera

Not supported.

Description

Returns a copy of the multi-stream scenario descriptor that is
registered under the specified name. Generates a warning message
and returns NULL, if there are no scenarios registered under that
name.

Example

Example A-129
class my_ms_scen extends vmm_ms_scenario;
endclass

program test_scenario;
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen", 9);
 my_ms_scen ms_scen = new;
 my_ms_scen buffer_scen = new;
 initial begin
 vmm_log(log,"Registering MS scenario \n");
 my_ms_gen.register_ms_scenario("MS-SCEN-1",ms_scen);
 buffer_scen = my_ms_gen.get_ms_scenario("MY-SCEN_1");
 end
endprogram

A-366

VMM User Guide

vmm_ms_scenario_gen::get_ms_scenario_gen()

Returns the sub-generator that is registered under a specified name.

SystemVerilog

virtual function vmm_ms_scenario_gen get_ms_scenario_gen(
string name)

OpenVera

Not supported.

Description

Returns the sub-generator that is registered under the specified
name. Generates a warning message and returns NULL, if there are
no generators registered under that name.

Example

Example A-130
program test_scenario;
 vmm_ms_scenario_gen parent_ms_gen =
 new("Parent-MS-Scen-Gen", 11);
 vmm_ms_scenario_gen child_ms_gen =
 new("Child-MS-Scen-Gen", 6);
 vmm_ms_scenario_gen buffer_ms_gen =
 new("Buffer-MS-Scen-Gen", 6);
 ...
 initial begin
 vmm_log(log,"Registering sub MS generator \n");
 parent_ms_gen.register_ms_scenario_gen(
 "Child-MS-Scen-Gen", child_ms_gen);
 ...
 buffer_ms_gen = parent_ms_gen.get_ms_scenario_gen(

 A- 367

VMM User Guide

 "Child-MS-Scen-Gen");
 ...
 end
endprogram

A-368

VMM User Guide

vmm_ms_scenario_gen::get_ms_scenario_gen_name()

Returns a name under which a generator is registered.

SystemVerilog

virtual function string get_ms_scenario_gen_name(
vmm_ms_scenario_gen scenario_gen)

OpenVera

Not supported.

Description

Returns a name under which the specified sub-generator is
registered. Returns "", if the generator is not registered.

Example

Example A-131
program test_scenario;
 string buffer_ms_gen_name;
 vmm_ms_scenario_gen parent_ms_gen =
 new("Parent-MS-Scen-Gen", 11);
 vmm_ms_scenario_gen child_ms_gen =
 new("Child-MS-Scen-Gen", 6);
 initial begin
 vmm_log(log,"Registering sub MS generator \n");
 parent_ms_gen.register_ms_scenario_gen(
 "Child-MS-Scen-Gen",child_ms_gen);
 buffer_ms_gen_name =
 parent_ms_gen.get_ms_scenario_gen_name(
 child_ms_gen);
 end
endprogram

 A- 369

VMM User Guide

vmm_ms_scenario_gen::get_ms_scenario_name()

Returns a name under which a scenario is registered.

SystemVerilog

virtual function string get_ms_scenario_name(
vmm_ms_scenario scenario)

OpenVera

Not supported.

Description

Returns a name under which the specified multi-stream scenario
descriptor is registered. Returns "", if the scenario is not registered.

Example

Example A-132
class my_ms_scen extends vmm_ms_scenario;
 ...
endclass

program test_scenario;
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen", 9);
 my_ms_scen ms_scen = new;
 string buffer_name;

 initial begin
 ...
 vmm_log(log,"Registering MS scenario \n");
 my_ms_gen.register_ms_scenario("MS-SCEN-1",ms_scen);
 ...
 buffer_name = my_ms_gen.get_ms_scenario_name(ms_scen);

A-370

VMM User Guide

 vmm_note(log,
 `vmm_sformatf(
 "Registered name for ms_scen is: %s\n",
 buffer_name));
 ...
 end
endprogram

 A- 371

VMM User Guide

vmm_ms_scenario_gen::get_n_insts()

Returns the number of transaction descriptors generated so far.

SystemVerilog

function int unsigned get_n_insts()

OpenVera

Not supported.

Description

Returns the current value of the
vmm_ms_scenario_gen::inst_count property.

Example

Example A-133
class my_ms_scen extends vmm_ms_scenario_gen;
 ...
 function void print_ms_gen_fields();
 ...
 `vmm_note(log,$psprintf(
 "Present instance count is %d\n",
 this.get_n_insts()));
 endfunction
endclass

program test_scen;
 my_ms_scen my_gen= new("MY MS SCENARIO",10);
 initial begin
 my_gen.print_ms_gen_fields();
 end
end

A-372

VMM User Guide

vmm_ms_scenario_gen::get_n_scenarios()

Returns the number of multi-stream scenarios generated so far.

SystemVerilog

function int unsigned get_n_scenarios()

OpenVera

Not supported.

Description

Returns the current value of the
vmm_ms_scenario_gen::scenario_count property.

Example

Example A-134
class my_ms_scen extends vmm_ms_scenario_gen;
 ...
 function void print_ms_gen_fields();
 ...
 `vmm_note(log,$psprintf(
 "Present scenario count is %d\n",
 this.get_n_scenarios()));
 endfunction
endclass

program test_scen;
 my_ms_scen my_gen= new("MY MS SCENARIO",10);
 initial begin
 my_gen.print_ms_gen_fields();
 end
end

 A- 373

VMM User Guide

vmm_ms_scenario_gen::get_names_by_channel()

Returns the names under which a channel is registered.

SystemVerilog

virtual function void get_names_by_channel(
vmm_channel chan,
ref string name[$])

OpenVera

Not supported.

Description

Appends the names under which the specified output channel is
registered. Returns the number of names that were added to the
array.

Example

Example A-135
`vmm_channel(atm_cell)
`vmm_scenario_gen(atm_cell, "atm_trans")

program test_scen;
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen",
11);
 atm_cell_channel ms_chan_1=new("MS-CHANNEL-1",
"MY_CHANNEL");
 string channel_name_array[$];
 ...
 initial begin
 `vmm_note(log,"Registering channel \n");
 my_ms_gen.register_channel("MS-CHANNEL-1",ms_chan_1);

A-374

VMM User Guide

 ...

my_ms_gen.get_names_by_channel(ms_chan_1,channel_name_arra
y);
 ...
 end
endprogram

 A- 375

VMM User Guide

vmm_ms_scenario_gen::get_names_by_ms_scenario()

Returns the names under which a scenario is registered.

SystemVerilog

virtual function void get_names_by_ms_scenario(
vmm_ms_scenario scenario,
ref string name[$])

OpenVera

Not supported.

Description

Appends the names under which the specified multi-stream scenario
descriptor is registered. Returns the number of names that were
added to the array.

Example

Example A-136
class my_ms_scen extends vmm_ms_scenario;
 ...
endclass

program test_scenario;
 string scen_name_arr[$];
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen", 9);
 my_ms_scen ms_scen = new;
 ...
 initial begin
 ...
 `vmm_note(log,"Registering MS scenario \n");
 my_ms_gen.register_ms_scenario("MS-SCEN-1",ms_scen);

A-376

VMM User Guide

 my_ms_gen.register_ms_scenario("MS-SCEN-2",ms_scen);
 ...
 my_ms_gen.get_names_by_ms_scenario(
 ms_scen,scen_name_arr);
 ...
 end
endprogram

 A- 377

VMM User Guide

vmm_ms_scenario_gen::get_names_by_ms_scenario_gen()

Returns the names under which a generator is registered.

SystemVerilog

virtual function void
 get_names_by_ms_scenario_gen(vmm_ms_scenario_gen
scenario_gen, ref string name[$])

OpenVera

Not supported.

Description

Appends the names under which the specified sub-generator is
registered. Returns the number of names that were added to the
array.

Example

Example A-137
program test_scenario;
 string ms_gen_names_arr[$];
 vmm_ms_scenario_gen parent_ms_gen =
 new("Parent-MS-Scen-Gen", 11);
 vmm_ms_scenario_gen child_ms_gen =
 new("Child-MS-Scen-Gen", 6);
 ...
 initial begin
 `vmm_note(log,"Registering sub MS generator \n");
 parent_ms_gen.register_ms_scenario_gen(
 "Child-MS-Scen-Gen", child_ms_gen);
 ...

A-378

VMM User Guide

parent_ms_gen.get_names_by_ms_scenario_gen(child_ms_gen,
 ms_gen_names_arr);
 ...
 end

endprogram

 A- 379

VMM User Guide

vmm_ms_scenario_gen::inst_count

Returns the number of transaction descriptor generated so far.

SystemVerilog

protected int inst_count;

OpenVera

Not supported.

Description

Returns the current count of the number of individual transaction
descriptor instances generated by the multi-stream scenario
generator. When it reaches or surpasses the value in
vmm_ms_scenario_gen::stop_after_n_insts, the generator
stops.

The number of transaction descriptor instances generated by the
execution of a multi-stream scenario is the number of transactions
reported by the vmm_ms_scenario::execute() method, when it
returns.

Example

Example A-138
class my_ms_scen extends vmm_ms_scenario_gen;
 ...
 function void print_ms_gen_fields();
 ...
 `vmm_note(log,$psprintf(
 "Present instance count is %d\n", this.inst_count));

A-380

VMM User Guide

 endfunction
 ...
endclass

program test_scen;
 ...
 my_ms_scen my_gen= new("MY MS SCENARIO",10);
 ...
 initial begin
 ...
 my_gen.print_ms_gen_fields();
 ...
 end
end

 A- 381

VMM User Guide

vmm_ms_scenario_gen::ms_scenario_exists()

Checks if a scenario is registered under a specified name.

SystemVerilog

virtual function bit ms_scenario_exists(string name)

OpenVera

Not supported.

Description

Returns TRUE, if there is a multi-stream scenario registered under
the specified name. Otherwise, it returns FALSE.

Use the vmm_ms_scenario_gen::get_ms_scenario()
method to retrieve a scenario under a specified name.

Example

Example A-139
class my_ms_scen extends vmm_ms_scenario;
 ...
endclass

program test_scenario;
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen", 9);
 my_ms_scen ms_scen = new;
 ...
 initial begin
 ...
 vmm_log(log,"Registering MS scenario \n");
 my_ms_gen.register_ms_scenario("MS SCEN-1",ms_scen);
 ...

A-382

VMM User Guide

 if(my_ms_gen.ms_scenario_exists("MS-SCEN-1"))
 `vmm_note(log, "Scenario MS-SCEN-1 is registered");
 else
 `vmm_note(log,
 "Scenario MS-SCEN-1 is not yet registered");
 ...
 end
endprogram

 A- 383

VMM User Guide

vmm_ms_scenario_gen::ms_scenario_gen_exists()

Checks if a generator is registered under a specified name.

SystemVerilog

virtual function bit ms_scenario_gen_exists(string name)

OpenVera

Not supported.

Description

Returns TRUE, if there is a sub-generator registered under the
specified name. Otherwise, it returns FALSE.

Use the vmm_ms_scenario_gen::get_ms_scenario_gen() to
retrieve a sub-generator under a specified name.

Example

Example A-140
program test_scen;
 vmm_ms_scenario_gen parent_ms_gen =
 new("Parent-MS-Scen-Gen", 11);
 vmm_ms_scenario_gen child_ms_gen =
 new(" Child-MS-Scen-Gen", 6);
 ...
 initial begin
 vmm_log(log,"Registering sub MS generator \n");
 parent_ms_gen.register_ms_scenario_gen(
 "Child-MS-Scen-Gen",child_ms_gen);
 ...
 if(parent_ms_gen.ms_scenario_gen_exists(
 "Child-MS-Scen-Gen"))

A-384

VMM User Guide

 `vmm_note(log, "Generator exists in registry");
 else
 `vmm_note(log,
 "Generator doesn't exist in registry");
 ...
 end
endprogram

 A- 385

VMM User Guide

vmm_ms_scenario_gen::register_channel()

Registers an output channel.

SystemVerilog

virtual function void register_channel(string name,
vmm_channel chan)

OpenVera

Not supported.

Description

Registers the specified output channel under the specified logical
name. The same channel may be registered multiple times under
different names, thus creating an alias to the same channel.

Once registered, the output channel is available under the specified
logical name to multi-stream scenarios through the
vmm_ms_scenario::get_channel() method.

It is an error to register a channel under a name that already exists.
Use the vmm_ms_scenario_gen::replace_channel() to
replace a registered scenario.

Example

Example A-141
`vmm_channel(atm_cell)
`vmm_scenario_gen(atm_cell, "atm_trans")

program test_scen;

A-386

VMM User Guide

 vmm_ms_scenario_gen my_ms_gen =
 new("MS Scenario Gen", 11);
 atm_cell_channel ms_chan_1 =
 new("MS-CHANNEL-1", "MY_CHANNEL");
 ...
 initial begin
 ...
 vmm_log(log,"Registering channel \n");
 my_ms_gen.register_channel("MS-channel-1",ms_chan_1);
 ...
 end
endprogram

 A- 387

VMM User Guide

vmm_ms_scenario_gen::register_ms_scenario()

Registers a multi-stream scenario descriptor

SystemVerilog

virtual function void register_ms_scenario(string name,
vmm_ms_scenario scenario)

OpenVera

Not supported.

Description

Registers the specified multi-stream scenario under the specified
name. The same scenario may be registered multiple times under
different names, thus creating an alias to the same scenario.

Registering a scenario implicitly appends it to the scenario set, if it is
not already in the vmm_ms_scenario_gen::scenario_set[$]
array.

It is an error to register a scenario under a name that already exists.
Use the vmm_ms_scenario_gen::replace_ms_scenario() to
replace a registered scenario.

Example

Example A-142
class my_ms_scen extends vmm_ms_scenario;

...
endclass

A-388

VMM User Guide

program test_scenario;
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen", 9);
 my_ms_scen ms_scen = new;

...
 initial begin
 ...
 vmm_log(log,"Registering MS scenario \n");
 my_ms_gen.register_ms_scenario("MS SCEN-1",ms_scen);
 ...

end
endprogram

 A- 389

VMM User Guide

vmm_ms_scenario_gen::register_ms_scenario_gen()

Registers a sub-generator

SystemVerilog

virtual function void register_ms_scenario_gen(string name,
vmm_ms_scenario_gen scenario_gen)

OpenVera

Not supported.

Description

Registers the specified sub-generator under the specified logical
name. The same generator may be registered multiple times under
different names, therefore creating an alias to the same generator.

Once registered, the multi-stream generator becomes available
under the specified logical name to multi-stream scenarios via the
vmm_ms_scenario::get_ms_scenario() method to create
hierarchical multi-stream scenarios.

It is an error to register a generator under a name that already exists.
Use the
vmm_ms_scenario_gen::replace_ms_scenario_gen()
method to replace a registered generator.

Example

Example A-143
program test_scen;

vmm_ms_scenario_gen parent_ms_gen = new("Parent-MS-

A-390

VMM User Guide

Scen-Gen", 11);
vmm_ms_scenario_gen child_ms_gen = new(" Child-MS-Scen-

Gen", 6);
...
initial begin

vmm_log(log,"Registering sub MS generator \n");
parent_ms_gen.register_ms_scenario_gen("Child-MS-

Scen-

Gen",child_ms_gen);
...

end
endprogram

 A- 391

VMM User Guide

vmm_ms_scenario_gen::replace_channel()

Replaces an output channel.

SystemVerilog

virtual function void replace_channel(string name,
vmm_channel chan)

OpenVera

Not supported.

Description

Registers the specified output channel under the specified name,
replacing the channel that is previously registered under that name
(if any). The same channel may be registered multiple times under
different names, thus creating an alias to the same output channel.

Example

Example A-144
`vmm_channel(atm_cell)
`vmm_scenario_gen(atm_cell, "atm_trans")

program test_scen;
vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen",

11);
atm_cell_channel ms_chan_1=new("MS-CHANNEL-1",

"MY_CHANNEL");
...
initial begin

vmm_log(log,"Registering channel \n");
my_ms_gen.register_channel("MS-CHANNEL-

1",ms_chan_1);

A-392

VMM User Guide

my_ms_gen.register_channel("MS-CHANNEL-
2",ms_chan_1);

...
vmm_log(log,"Replacing the channel \n");
my_ms_gen.replace_channel("MS-CHANNEl-

1",ms_chan_1);
...

end
endprogram

 A- 393

VMM User Guide

vmm_ms_scenario_gen::replace_ms_scenario()

Replaces a scenario descriptor.

SystemVerilog

virtual function void replace_ms_scenario(string name,
vmm_ms_scenario scenario)

OpenVera

Not supported.

Description

Registers the specified multi-stream scenario under the specified
name, replacing the scenario that is previously registered under that
name (if any). The same scenario may be registered multiple times,
under different names, thus creating an alias to the same scenario.

Registering a scenario implicitly appends it to the scenario set, if it is
not already in the vmm_ms_scenario_gen::scenario_set[$]
array. The replaced scenario is removed from the
vmm_ms_scenario_gen::scenario_set[$] array, if it is not
also registered under another name.

Example

Example A-145
class my_ms_scen extends vmm_ms_scenario;
 ...
endclass

program test_scenario;
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen", 9);

A-394

VMM User Guide

 my_ms_scen ms_scen = new;
 ...
 initial begin
 ...
 my_ms_gen.register_ms_scenario("MS SCEN-1",ms_scen);
 my_ms_gen.register_ms_scenario("MS SCEN-2",ms_scen);
 ...
 vmm_log(log,"Replacing MS scenario \n");
 my_ms_gen.replace_ms_scenario("MS SCEN-1",ms_scen);
 ...
 end
endprogram

 A- 395

VMM User Guide

vmm_ms_scenario_gen::replace_ms_scenario_gen()

Replaces a sub-generator.

SystemVerilog

virtual function void replace_ms_scenario_gen(string name,
vmm_ms_scenario_gen scenario_gen)

OpenVera

Not supported.

Description

Registers the specified sub-generator under the specified name,
replacing the generator that is previously registered under that name
(if any). The same generator may be registered multiple times under
different names, thus creating an alias to the same sub-generator.

A-396

VMM User Guide

vmm_ms_scenario_gen::scenario_count

Returns the number of multi-stream scenarios generated so far.

SystemVerilog

protected int scenario_count;

OpenVera

Not supported.

Description

Returns the current count of the number of top-level multi-stream
scenarios generated the multi-stream scenario generator. When it
reaches or surpasses the value in
vmm_ms_scenario_gen::stop_after_n_scenarios, the
generator stops.

Only the multi-stream scenarios that are explicitly executed by this
instance of the multi-stream scenario generator are counted. Sub-
scenarios executed as part of a higher-level multi-stream scenario
are not counted.

Example

Example A-146
class my_ms_scen extends vmm_ms_scenario_gen;
 ...
 function void print_ms_gen_fields();
 ...
 `vmm_note(log,$psprintf(
 "Present scenario count is %d\n",

 A- 397

VMM User Guide

 this.scenario_count));
 endfunction
 ...
endclass

program test_scen;
 ...
 my_ms_scen my_gen= new("MY MS SCENARIO",10);
 ...
 initial begin
 fork
 begin
 @event;
 my_gen.print_ms_gen_fields();
 end
 ...
 join
 ...
 end
end

A-398

VMM User Guide

vmm_ms_scenario_gen::scenario_set[$]

Multi-stream scenarios available for execution.

SystemVerilog

vmm_ms_scenario scenatio_set[$]

OpenVera

Not supported.

Description

Multi-stream scenarios available for execution by this generator. The
scenario executed next, is selected by randomizing the
vmm_ms_scenario_gen::select_scenario class property.

Multi-stream scenario instances in this array should be managed
through the
vmm_ms_scenario_gen::register_ms_scenario(),
vmm_ms_scenario_gen::replace_ms_scenario() and
vmm_ms_scenario_gen::unregister_ms_scenario()
methods.

Example

Example A-147
class my_ms_scen extends vmm_ms_scenario;
 ...
endclass

program test_scenario;
 vmm_ms_scenario_gen parent_ms_gen =

 A- 399

VMM User Guide

 new("Parent-MS-Scen-Gen", 11);
 my_ms_scen ms_scen_1 = new;
 my_ms_scen ms_scen_2 = new;
 ...
 initial begin
 parent_ms_gen.register_ms_scenario(
 "MS-Scen-1",ms_scen_1);
 parent_ms_gen.register_ms_scenario(
 "MS-Scen-2",ms_scen_2);
 ...
 buffer_ms_gen =
 parent_ms_gen.unregister_ms_scenario(ms_scen_1);
 current_size = parent_ms_gen.scenario_set.size();
 `vmm_note(log, `vmm_sformatf(
 "Current size of scenario set is %d\n",current_size);
 end
endprogram

A-400

VMM User Guide

vmm_ms_scenario_gen::select_scenario

Selects the scenario factory.

SystemVerilog

vmm_ms_scenario_election select_scenario

OpenVera

Not supported.

Description

Randomly selects the next multi-stream scenario, to execute from
the vmm_ms_scenario_gen::scenario_set[$] array. The
selection is performed by calling the randomize() method on this
class property, and then executing the multi-stream scenario found
in the vmm_ms_scenario_gen::scenario_set[$] array at the
index specified by the vmm_ms_scenario_election::select
class property.

The default election instance may be replaced by a user-defined
extension to modify the scenario election policy.

Example

Example A-148
program test_scenario;
 vmm_ms_scenario_gen parent_ms_gen =
 new("Parent-MS-Scen-Gen", 11);
 my_ms_scen ms_scen_1 = new;
 ...
 initial begin

 A- 401

VMM User Guide

 parent_ms_gen.register_ms_scenario(
 "MS-Scen-1",ms_scen_1);
 ...
 parent_ms_gen.select_scenario.round_robin.constraint_
 mode(0);
 ...
 end
endprogram

A-402

VMM User Guide

vmm_ms_scenario_gen::stop_after_n_insts

Returns the number of transaction descriptor to generate.

SystemVerilog

int unsigned stop_after_n_insts

OpenVera

Not supported.

Description

Automatically stops the multi-stream scenario generator, when the
number of generated transaction descriptors reaches or surpasses
the specified value. A value of zero indicates an infinite number of
transaction descriptors.

The number of transaction descriptor instances generated by the
execution of a multi-stream scenario is the number of transactions
reported by the vmm_ms_scenario::execute() method, when it
returns. Entire scenarios are executed before the generator is
stopped, so that the actual number of transaction descriptors
generated may be greater than the specified value.

Example

Example A-149
`vmm_scenario_gen(atm_cell, "atm trans")

class my_ms_scenario extends vmm_ms_scenario;
 ...
endclass

 A- 403

VMM User Guide

program test_ms_scenario;
 ...
 vmm_ms_scenario_gen ms_gen = new("MS Scenario Gen", 10);
 my_ms_scenario ms_scen = new;
 ...
 initial begin
 ...
 ms_gen.stop_after_n_instances = 100;
 ...
 end

endprogram

A-404

VMM User Guide

vmm_ms_scenario_gen::stop_after_n_scenarios

Returns the number of multi-stream scenarios to generate.

SystemVerilog

int unsigned stop_after_n_scenarios

OpenVera

Not supported.

Description

Automatically stops the multi-stream scenario generator, when the
number of generated multi-streams scenarios reaches or surpasses
the specified value. A value of zero specifies an infinite number of
multi-stream scenarios.

Only the multi-stream scenarios explicitly executed by this instance
of the multi-stream scenario generator are counted. Sub-scenarios
executed as part of a higher-level multi-stream scenario are not
counted.

Example

Example A-150
`vmm_scenario_gen(atm_cell, "atm trans")

class my_ms_scenario extends vmm_ms_scenario;
 ...
endclass
program test_ms_scenario;
 ...
 vmm_ms_scenario_gen ms_gen = new("MS Scenario Gen", 10);

 A- 405

VMM User Guide

 my_ms_scenario ms_scen = new;
 ...
 initial begin
 ...
 ms_gen.stop_after_n_scenarios = 10;
 ...
 end

endprogram

A-406

VMM User Guide

vmm_ms_scenario_gen::unregister_channel()

Unregisters an output channel.

SystemVerilog

virtual function bit unregister_channel(
vmm_channel chan)

OpenVera

Not supported.

Description

Completely unregisters the specified output channel and returns
TRUE, if it exists in the registry.

Example

Example A-151
`vmm_channel(atm_cell)
`vmm_scenario_gen(atm_cell, "atm_trans")

program test_scen;
vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen",

11);
atm_cell_channel ms_chan_1=new("MS-CHANNEL-1",

"MY_CHANNEL");
...
initial begin

vmm_log(log,"Registering channel \n");
my_ms_gen.register_channel("MS-CHANNEL-

1",ms_chan_1);
...
if(my_ms_gen.unregister_channel(ms_chan_1)

vmm_log(log,"Channel has been

 A- 407

VMM User Guide

unregistered\n");
...

end
endprogram

A-408

VMM User Guide

vmm_ms_scenario_gen::unregister_channel_by_name()

Unregisters an output channel

SystemVerilog

virtual function vmm_channel unregister_channel_by_name(
string name)

OpenVera

Not supported.

Description

Unregisters the output channel under the specified name, and
returns the unregistered channel. Returns NULL, if there is no
channel registered under the specified name.

Example

Example A-152
`vmm_channel(atm_cell)
`vmm_scenario_gen(atm_cell, "atm_trans")

program test_scen;
vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen",

11);
atm_cell_channel ms_chan_1=new("MS-CHANNEL-1",

"MY_CHANNEL");
atm_cell_channel buffer_chan = new("BUFFER","MY_BC");
...
initial begin

vmm_log(log,"Registering channel \n");
my_ms_gen.register_channel("MS-CHANNEL-

1",ms_chan_1);

 A- 409

VMM User Guide

...
vmm_log(log,"Unregistered channel by name \n");
buffer_chan =

my_ms_gen.unregister_channel_by_name("MS-CHANNEL-

1");
...

end
endprogram

A-410

VMM User Guide

vmm_ms_scenario_gen::unregister_ms_scenario()

Unregisters a scenario descriptor.

SystemVerilog

virtual function bit unregister_ms_scenario(
vmm_ms_scenario scenario)

OpenVera

Not supported.

Description

Completely unregisters the specified multi-stream scenario
descriptor and returns TRUE, if it exists in the registry. The
unregistered scenario is also removed from the
vmm_ms_scenario_gen::scenario_set[$] array.

Example

Example A-153
class my_ms_scen extends vmm_ms_scenario;
 ...
endclass

program test_scenario;
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen", 9);
 my_ms_scen ms_scen = new;
 ...
 initial begin
 my_ms_gen.register_ms_scenario("MS SCEN-1",ms_scen);
 ...
 if(my_ms_gen.unregister_ms_scenario(ms_scen)
 vmm_log(log,"Scenario unregistered \n");

 A- 411

VMM User Guide

 else
 vmm_log(log,"Unable to unregister \n");
 ...
 end
endprogram

A-412

VMM User Guide

vmm_ms_scenario_gen::unregister_ms_scenario_by_name()

Unregisters a scenario descriptor.

SystemVerilog

virtual function vmm_ms_scenario
unregister_ms_scenario_by_name(

string name)

OpenVera

Not supported.

Description

Unregisters the multi-stream scenario under the specified name, and
returns the unregistered scenario descriptor. Returns NULL, if there
is no scenario registered under the specified name.

The unregistered scenario descriptor is removed from the
vmm_ms_scenario_gen::scenario_set[$] array, if it is not
also registered under another name.

Example

Example A-154
class my_ms_scen extends vmm_ms_scenario;
 ...
endclass

program test_scenario;
 vmm_ms_scenario_gen my_ms_gen = new("MS Scenario Gen", 9);
 my_ms_scen ms_scen = new;
 my_ms_scen buffer_scen =new;

 A- 413

VMM User Guide

 ...
 initial begin
 my_ms_gen.register_ms_scenario("MS SCEN-1",ms_scen);
 ...
 buffer_scen =
 my_ms_gen.unregister_ms_scenario_by_name(
 "MY-SCEN-1",ms_scen);
 if(buffer_scen == null)
 vmm_log(log,"Returned null value \n");
 ...
 end
endprogram

A-414

VMM User Guide

vmm_ms_scenario_gen::unregister_ms_scenario_gen()

Unregisters a sub-generator

SystemVerilog

virtual function bit
unregister_ms_scenario_gen(vmm_ms_scenario_gen
scenario_gen)

OpenVera

Not supported.

Description

Completely unregisters the specified sub-generator and returns
TRUE, if it exists in the registry.

Example

Example A-155
program test_scenario;
 string buffer_ms_gen_name;
 vmm_ms_scenario_gen parent_ms_gen =
 new("Parent-MS-Scen-Gen", 11);
 vmm_ms_scenario_gen child_ms_gen =
 new("Child-MS-Scen-Gen", 6);
 ...
 initial begin
 vmm_log(log,"Registering sub MS generator \n");
 parent_ms_gen.register_ms_scenario_gen(
 "Child-MS-Gen-1",child_ms_gen);
 ...
 if(parent_ms_gen.unregister_ms_scenario_gen(
 child_ms_gen))

 A- 415

VMM User Guide

 vmm_log(log,"Scenario unregistered \n");
 else
 vmm_log(log,"Unable to unregister \n");
 end

endprogram

A-416

VMM User Guide

vmm_ms_scenario_gen::unregister_ms_scenario_gen_by_n
ame()

Unregisters a sub-generator.

SystemVerilog

virtual function vmm_ms_scenario_gen
 unregister_ms_scenario_gen_by_name(

string name)

OpenVera

Not supported.

Description

Unregisters the generator under the specified name, and returns the
unregistered generator. Returns NULL, if there is no generator
registered under the specified name.

Example

Example A-156
program test_scenario;
 vmm_ms_scenario_gen parent_ms_gen =
 new("Parent-MS-Scen-Gen", 11);
 vmm_ms_scenario_gen child_ms_gen =
 new("Child-MS-Scen-Gen", 6);
 vmm_ms_scenario_gen buffer_ms_gen =
 new("Buffer-MS-Scen-Gen", 6);
 ...
 initial begin
 vmm_log(log,"Registering sub MS generator \n");
 parent_ms_gen.register_ms_scenario_gen(
 "Child-MS-Gen-1",child_ms_gen);

 A- 417

VMM User Guide

 parent_ms_gen.register_ms_scenario_gen(
 "Child-MS-Gen-2",child_ms_gen);
 ...
 buffer_ms_gen =
 parent_ms_gen.unregister_ms_scenario_gen_by_name(
 "Child-MS-Gen-1");
 end
endprogram

A-418

VMM User Guide

vmm_notification

This class is used to describe a notification that can be
autonomously indicated or reset based on a user-defined behavior,
such as the composition of other notifications or external events.
Notification descriptors are attached to notifications, using the
vmm_notify::set_notification() method.

Summary

• vmm_notification::indicate() page A-419
• vmm_notification::reset() page A-421

 A- 419

VMM User Guide

vmm_notification::indicate()

Define a method that causes the notification attached to the
descriptor to be indicated.

SystemVerilog

virtual task indicate(ref vmm_data status);

OpenVera

Not supported.

Description

Defines a method that, when it returns, causes the notification
attached to the descriptor to be indicated. The value of the status
argument is used as the indicated notification status descriptor. This
method is automatically invoked by the notification service interface
when a notification descriptor is attached to a notification, using the
vmm_notify::set_notification() method.

This method must be overloaded in a user-defined class extensions.
It can be used to implement arbitrary notification mechanisms, such
as notifications based on a complex composition of other indications
(for example, notification expressions) or external events.

Example

Example A-157
class bus_mon extends vmm_xactor;
 static int OBSERVED;
 my_trans tr;

A-420

VMM User Guide

 function new(...);
 super.new(...);
 this.notify.configure(OBSERVED,vmm_notify::ON_OFF);
 endfunction
 ...
 virtual task main();
 ...
 forever begin
 tr=new();
 ...
 this.notify.indicate(OBSERVED,tr);
 ...
 end
 endtask: main
endclass: bus_mon

 A- 421

VMM User Guide

vmm_notification::reset()

Defines a method that causes the ON or OFF notification, which is
attached to the notification descriptor to be reset.

SystemVerilog

virtual task reset();

OpenVera

Not supported.

Description

Defines a method that, when it returns, causes the ON or OFF
notification, which is attached to the notification descriptor to be
reset. This method is automatically invoked by the notification
service interface, when a notification definition is attached to a
vmm_notify::ON_OFF notification.

This method must be overloaded in user-defined class extensions.

Example

Example A-158

Example of notification indicated when two other notifications are
indicated:

class bus_mon extends vmm_xactor;

 static int OBSERVED;
 my_trans tr;

A-422

VMM User Guide

 function new(...);
 super.new(...);
 this.notify.configure(OBSERVED,vmm_notify::ON_OFF);
 endfunction
 ...
 virtual task main();
 ...
 forever begin
 tr=new();
 ...
 this.notify.indicate(OBSERVED,tr);
 ...
 this.notify.reset();

 end
 endtask: main
endclass: bus_mon

 A- 423

VMM User Guide

vmm_notify

The vmm_notify class implements an interface to the notification
service. The notification service provides a synchronization
mechanism for concurrent threads or transactors. Unlike event
variables, the operation of the notification is defined at configuration
time. Moreover, notification can include status and timestamp
information attached to their indication.

Summary

• vmm_notify::append_callback() page A-424
• vmm_notify::configure() page A-426
• vmm_notify::copy() page A-428
• vmm_notify::get_notification() page A-429
• vmm_notify::indicate() page A-430
• vmm_notify::is_configured() page A-431
• vmm_notify::is_on() page A-432
• vmm_notify::is_waited_for() page A-433
• vmm_notify::new() page A-435
• vmm_notify::register_vmm_sb_ds() page A-436
• vmm_notify::reset() page A-437
• vmm_notify::set_notification() page A-439
• vmm_notify::status() page A-440
• vmm_notify::terminated() page A-441
• vmm_notify::timestamp() page A-442
• vmm_notify::unregister_callback() page A-443
• vmm_notify::unregister_vmm_sb_ds() page A-445
• vmm_notify::wait_for() page A-446
• vmm_notify::wait_for_off() page A-447
• vmm_notify_callbacks::indicated() page A-449
• `vmm_notify_observer page A-453
• vmm_notify_observer::new() page A-454

A-424

VMM User Guide

vmm_notify::append_callback()

Registers a callback extension.

SystemVerilog

function void append_callback(int
notification_id,

vmm_notify_callbacks cbs);

OpenVera

task append_callback(integer event_id,
rvm_notify_callbacks cbs);

Description

Appends the specified callback extension to the list of registered
callbacks, for the specified notification. All registered callback
extensions are invoked, when the specified notification is indicated.

Example

Example A-159
class my_callbacks extends vmm_notify_callbacks;
 virtual function void indicated(vmm_data status);
 ...
 endfunction
endclass

program vmm_notify_test;
 initial begin
 int EVENT_A = 1;
 vmm_log log = new("Notify event", "vmm_notify_test");
 vmm_notify notify = new(log);
 my_callbacks my_callbacks_inst = new;
 void'(notify.configure(EVENT_A));

 A- 425

VMM User Guide

 ...
 `vmm_note(log, "Appending vmm notify call back");
 notify.append_callback(EVENT_A,my_callbacks_inst);
 ...
 end
endprogram

A-426

VMM User Guide

vmm_notify::configure()

Defines a new notification.

SystemVerilog

virtual function int
 configure(int notification_id = -1,

sync_e sync = ONE_SHOT);

OpenVera

Not supported.

Description

Defines a new notification associated with the specified unique
identifier. If a negative identifier value is specified, a new, unique
identifier greater than 1,000,000 is returned. The thread
synchronization mode of a notification is defined when the
notification is configured, and not when it is triggered or waited upon,
using one of the vmm_notify::ONE_SHOT,
vmm_notify::BLAST, or vmm_notify::ON_OFF synchronization
types. This definition timing prevents a notification from being
misused by the triggering or waiting threads.

 A- 427

VMM User Guide

Table A-12 Notification Synchronization Mode Enumerated Values
Table A-13

Enumerated Value Broadcasting Operation
vmm_notify::ONE_SHOT Only threads currently waiting for the notification to be indicated

are notified.

vmm_notify::BLAST All threads waiting for the notification to be indicated in the same
timestep at the indication are notified. This mode eliminates
certain types of race conditions.

vmm_notify::ON_OFF The notification is level-sensitive. Notifications remain notified
until explicitly reset. Threads waiting for a notification that is still
notified will not wait. This mode eliminates certain types of race
conditions.

A warning may be generated, if a notification is configured more than
once.

Notification identifiers numbered from 1,000,000 and above are
reserved for automatically generated notification identifiers.
Predefined notification identifiers in the VMM base classes use
identifiers from 999,999 and below. User-defined notification
identifiers can thus use values from 0 and above.

A-428

VMM User Guide

vmm_notify::copy()

Copies the current configuration of this notification service interface.

SystemVerilog

virtual function vmm_notify copy(vmm_notify to = null);

OpenVera

Not supported.

Description

Copies the current configuration of this notification service interface
to the specified instance. If no instance is specified, a new instance
is allocated using the same message service interface as the original
one. A reference to the copied target instance is returned.

Only the notification configuration information is copied and merged
with any pre-configured notification in the destination instance.
Copied notification configuration replaces any pre-existing
configuration for the same notification identifier. Status and
timestamp information is not copied.

 A- 429

VMM User Guide

vmm_notify::get_notification()

Gets the notification descriptor associated with the notification.

SystemVerilog

virtual function vmm_notification
 get_notification(int notification_id);

OpenVera

Not supported.

Description

Gets the notification descriptor associated with the specified
notification, if any. If no notification descriptor is associated with the
specified notification, then it returns null.

A-430

VMM User Guide

vmm_notify::indicate()

Indicates the specified notification with the optional status descriptor.

SystemVerilog

virtual function void indicate(int notification_id,
vmm_data status = null);

OpenVera

Not supported.

Example

Example A-160
class consumer extends vmm_xactor;
 ...
 virtual task main();
 ...
 forever begin
 ...
 this.in_chan.get(tr);
 tr.notify.indicate(vmm_data::STARTED);
 ...
 end
 endtask: main
endclass: consumer

 A- 431

VMM User Guide

vmm_notify::is_configured()

Checks whether the specified notification is configured or not.

SystemVerilog

virtual function int is_configured(int notification_id);

OpenVera

Not supported.

Description

Checks whether the specified notification is currently configured or
not. If this method returns 0, then the notification is not configured.
Otherwise, it returns an integer value corresponding to the current
vmm_notify::ONE_SHOT, vmm_notify::BLAST, or
vmm_notify::ON_OFF configuration.

A-432

VMM User Guide

vmm_notify::is_on()

Check whether the specified vmm_notify::ON_OFF notification is
currently in the notify state or not.

SystemVerilog

virtual function bit is_on(int notification_id);

OpenVera

Not supported.

Description

 If this method returns TRUE, then the notification is in the notify
state, and any call to the vmm_notify::wait_for() method will
not block. A warning is generated, if this method is called on any
other types of notifications.

 A- 433

VMM User Guide

vmm_notify::is_waited_for()

Checks whether a thread is currently waiting for the specified
notification or not.

SystemVerilog

virtual function bit is_waited_for(int notification_id);

OpenVera

Not supported.

Description

Checks whether a thread is currently waiting for the specified
notification or not, including waiting for an ON or OFF notification to
be reset. It is an error to specify an unconfigured notification. The
function returns TRUE, if there is a thread known to be waiting for the
specified notification.

Note that the knowledge about the number of threads waiting for a
particular notification is not definitive, and may be out of date. As
threads call the vmm_notify::wait_for() method, the fact that
they are waiting for the notification is recorded. Once the notification
is indicated and each thread returns from the method call, the fact
that they are no longer waiting is also recorded. However, if the
threads are externally terminated through the disable statement or
a timeout, the fact that they are no longer waiting cannot be
recorded. In this case, it is up to the terminated threads to report that
they are no longer waiting, by calling the
vmm_notify::terminated() method.

A-434

VMM User Guide

When a notification is reset with a hard reset, no threads are
assumed to be waiting for any notification.

 A- 435

VMM User Guide

vmm_notify::new()

Creates a new instance of this class.

SystemVerilog

function new(vmm_log log);

OpenVera

Not supported.

Description

Creates a new instance of this class, using the specified message
service interface to generate an error and debug messages.

A-436

VMM User Guide

vmm_notify::register_vmm_sb_ds()

For more information on this class, refer to the VMM Scoreboard
User Guide.

 A- 437

VMM User Guide

vmm_notify::reset()

Resets the specified notification.

SystemVerilog

virtual function void reset(int notification_id = -1,
reset_e rst_typ = SOFT);

OpenVera

Not supported.

Description

A vmm_notify::SOFT reset clears the specified ON_OFF
notification, and restarts the vmm_notification::indicate()
and vmm_notification::reset() methods on any attached
notification descriptor. A vmm_notify::HARD reset clears all
status information and attached notification descriptor on the
specified event, and further assumes that no threads are waiting for
that notification. If no notification is specified, all notifications are
reset.

Example

Example A-161

The following example shows definitions of three user-defined
notifications:

class bus_mon extends vmm_xactor;
 static int EVENT_A = 0;
 static int EVENT_B = 1;
 static int EVENT_C = 2;

A-438

VMM User Guide

 function new(...);
 super.new(...);
 super.notify.configure(this.EVENT_A);
 super.notify.configure(this.EVENT_B,
 vmm_notify::ON_OFF);
 super.notify.configure(this.EVENT_C,
 vmm_notify::BLAST);
 endfunction
 ...
 virtual task main();
 ...
 forever begin
 ...
 super.notify.indicate(this.EVENT_A);
 ...
 super.notify.reset(this.EVENT_A);
 ...
 end
 endtask: main
endclass: bus_mon

 A- 439

VMM User Guide

vmm_notify::set_notification()

Defines the notification, using the notification descriptor.

SystemVerilog

virtual function void
 set_notification(int notification_id,

vmm_notification ntfy = null);

OpenVera

Not supported.

Description

Defines the specified notification, using the specified notification
descriptor. If the descriptor is null, then the notification is undefined
and can only be indicated using the vmm_notify::indicate()
method. If a notification is already defined, the new definition
replaces the previous definition.

A-440

VMM User Guide

vmm_notify::status()

Returns the status descriptor that is associated with the notification.

SystemVerilog

virtual function vmm_data status(int notification_id);

OpenVera

Not supported.

Description

Returns the status descriptor that is associated with the specified
notification, when it was last indicated. It is an error to specify an
unconfigured notification.

 A- 441

VMM User Guide

vmm_notify::terminated()

Indicates that a thread waiting for the specified notification is
disabled.

SystemVerilog

virtual function void terminated(int notification_id);

OpenVera

Not supported.

Description

Indicates to the notification service interface that a thread waiting for
the specified notification is disabled, and is no longer waiting.

A-442

VMM User Guide

vmm_notify::timestamp()

Returns the simulation time when the notification was last indicated.

SystemVerilog

virtual function time timestamp(int notification_id);

OpenVera

Not supported.

Description

Returns the simulation time when the specified notification was last
indicated. It is an error to specify an unconfigured notification.

 A- 443

VMM User Guide

vmm_notify::unregister_callback()

Unregisters a callback extension.

SystemVerilog

function void unregister_callback(
int notification_id,
vmm_notify_callbacks sb);

OpenVera

task unregister_callback(integer event_id,
rvm_notify_callbacks sb);

Description

Unregisters the specified callback extension from the notification
service interface, for the specified notification. An error is generated,
if the specified callback extension was not previously registered with
the specified notification.

Example

Example A-162
class my_callbacks extends vmm_notify_callbacks;
 virtual function void indicated(vmm_data status);
 ...
 endfunction
endclass

program vmm_notify_test;
 initial begin
 int EVENT_A = 1;
 vmm_log log = new("Notify event", "vmm_notify_test");
 vmm_notify notify = new(log);

A-444

VMM User Guide

 my_callbacks my_callbacks_inst = new;
 void'(notify.configure(EVENT_A));
 ...
 `vmm_note(log, "Unregistering vmm notify call back");
 notify.unregister_callback(EVENT_A,my_callbacks_inst);
 ...
 end
endprogram

 A- 445

VMM User Guide

vmm_notify::unregister_vmm_sb_ds()

For more information on this class, refer to the VMM Scoreboard
User Guide.

A-446

VMM User Guide

vmm_notify::wait_for()

Suspends the execution thread, until the specified notification is
notified.

SystemVerilog

virtual task wait_for(int notification_id);

OpenVera

Not supported.

Description

It is an error to specify an unconfigured notification. Use the
vmm_notify::status() function to retrieve any status descriptor
attached to the indicated notification.

Example

Example A-163
class consumer extends vmm_xactor;
 ...
 virtual task main();
 ...
 while (1) begin
 ...
 this.in_chan.peek(tr);
 tr.notify.wait_for(vmm_data::ENDED);
 this.in_chan.get(tr);
 ...
 end
 endtask: main
endclass: consumer

 A- 447

VMM User Guide

vmm_notify::wait_for_off()

Suspends the execution thread, until the specified
vmm_notify::ON_OFF notification is reset.

SystemVerilog

virtual task wait_for_off(int notification_id);

OpenVera

Not supported.

Description

It is an error to specify an unconfigured or a non-ON or OFF
notification. The status returned by subsequent calls to the
vmm_notify::status() function is undefined.

A-448

VMM User Guide

vmm_notify_callbacks

Facade class for callback methods provided by the notification
service. User-defined extensions of this class must be registered
with specific instances of the notification service interface and for
specific notifications, using the
vmm_notify::append_callback() method.

This class is a virtual class and cannot be instantiated on its own.

Summary

• vmm_notify_callbacks::indicated() page A-449

 A- 449

VMM User Guide

vmm_notify_callbacks::indicated()

Reports that a notification is indicated.

SystemVerilog

virtual function void indicated(vmm_data status);

OpenVera

virtual task indicated(rvm_data status);

Description

This method is invoked whenever the notification corresponding to
the callback extension is indicated. The status is a reference to the
status descriptor, which is specified to the
vmm_notify::indicate() method that caused the notification to
be indicated.

The purpose of this callback is similar to the
vmm_notify::wait_for() method. However, unlike the
vmm_notify:;wait_for() method, it reliably reports multiple
indications of the same notification during the same timestep.

Example

class my_callbacks extends vmm_notify_callbacks;

 virtual function void indicated(vmm_data status);
 ...
 endfunction

endclass

A-450

VMM User Guide

class bus_mon extends vmm_xactor;
 static int OBSERVED;
 my_trans tr;

 function new(...);
 super.new(...);
 this.notify.configure(OBSERVED,vmm_notify::ON_OFF);
 endfunction
 ...
 virtual task main();
 ...
 forever begin
 tr=new();
 ...
 this.notify.indicate(OBSERVED,tr);
 ...
 end
 endtask: main
endclass: bus_mon

class env extends vmm_env;
 my_callbacks my_callbacks_inst = new();
 bus_mon mon=new();

 function void build();
 ...
 `vmm_note(log, "Appending vmm notify call back");
 mon.notify.append_callback (bus_mon::OBSERVED,
my_callbacks_inst);
 ...
 endfunction : build

endclass

 A- 451

VMM User Guide

vmm_notify_observer#(T,D)

Simplifies subscription to a notification callback method.

SystemVerilog

class vmm_notify_observer #(type T, type D = vmm_data)
 extends vmm_notify_callbacks

Description

The vmm_notify_observer class is a parameterized extension of
vmm_notify_callbacks. Any subscriber (scoreboard, coverage
model, and so on) can get the transaction status whenever a
notification event is indicated. The `vmm_notify_observer
macro is provided to specify the observer and its method name to be
called.

Example

class scoreboard;
 virtual function void observe_trans(ahb_trans tr);
 ...
 endfunction
endclass
`vmm_notify_observer(scoreboard, observe_trans)

Instantiate parameterized vmm_notify_observer, passing the
subscriber handle, vmm_notify handle and the notification ID.

scoreboard sb = new();
vmm_notify_observer#(scoreboard, ahb_trans)
 observe_start = new(sb, mon.notify, mon.TRANS_START);

A-452

VMM User Guide

Summary

• `vmm_notify_observer page A-453
• vmm_notify_observer::new() page A-454

 A- 453

VMM User Guide

`vmm_notify_observer

Defines a parameterized class in the style of the
vmm_notify_observer class.

SystemVerilog

`define vmm_notify_observer(classname, methodname)

Description

Defines a parameterized class in the style of the
vmm_notify_observer class, with the specified name, and
calling the specified T::methodname(D.status) method. Useful
for defining a subscription class for an observer with a different
observation method.

Example

class scoreboard;
 virtual function void observe_trans(ahb_trans tr);
 ...
 endfunction
endclass
`vmm_notify_observer(scoreboard, observe_trans)

A-454

VMM User Guide

vmm_notify_observer::new()

Appends a callback method to invoke the
T::observe(D.status) method in the specified instance.

SystemVerilog

function vmm_notify_observer::new(T observer,
 vmm_notify ntfy, int notification_id)

Description

Appends a callback method to invoke the T::observe(D) method
in the specified instance, whenever the specified indication is notified
on the specified Notification Service Interface.

Example

vmm_notify_observer#(scoreboard, ahb_trans)
 observe_start = new(sb, mon.notify, mon.TRANS_START);

 A- 455

VMM User Guide

vmm_object

The vmm_object class is a virtual class that is used as the common
base class for all VMM related classes. This helps to provide parent
or child relationships for class instances. Additionally, it provides
local, relative, and absolute hierarchical naming.

Summary

• vmm_object::create_namespace() page A-456
• vmm_object::display() page A-457
• vmm_object::find_child_by_name() page A-458
• vmm_object::find_object_by_name() page A-459
• vmm_object::get_hier_inst_name() page A-460
• vmm_object::get_log() page A-461
• vmm_object::get_namespaces() page A-462
• vmm_object::get_num_children() page A-463
• vmm_object::get_num_roots() page A-464
• vmm_object::get_nth_child() page A-465
• vmm_object::get_nth_root() page A-466
• vmm_object::get_object_hiername() page A-467
• vmm_object::get_object_name() page A-468
• vmm_object::get_parent() page A-469
• vmm_object::get_parent_object() page A-470
• vmm_object::get_root_object() page A-471
• vmm_object::get_type() page A-472
• vmm_object::get_typename() page A-473
• vmm_object::implicit_phasing() page A-474
• vmm_object::is_implicitly_phased() page A-475
• vmm_object::is_parent_of() page A-476
• vmm_object::kill_object() page A-477
• vmm_object::new() page A-478
• vmm_object::print_hierarchy() page A-479
• vmm_object::psdisplay() page A-481
• vmm_object::set_object_name() page A-482
• vmm_object::set_parent() page A-483
• vmm_object::set_parent_object() page A-485
• vmm_object::type_e page A-486
• `foreach_vmm_object() page A-488
• `foreach_vmm_object_in_namespace() page A-489

A-456

VMM User Guide

vmm_object::create_namespace()

Defines a namespace with specified default object inclusion policy.

SystemVerilog

function bit create_namespace(string name, namespace_typ_e
typ = OUT_BY_DEFAULT);

Description

Defines a namespace with the specified default object inclusion
policy. A namespace must be previously created using this method,
before it can be used or referenced. Returns true, if the namespace
was successfully created. The empty name space ("") is reserved
and cannot be defined.

Example

class A extends vmm_object;
 function new (string name, vmm_object parent=null);
 super.new (parent, name);
 vmm_object::create_namesapce("NS1",
 vmm_object::IN_BY_DEFAULT);
 endfunction
endclass

 A- 457

VMM User Guide

vmm_object::display()

Displays a description of the object to the standard output.

SystemVerilog

virtual function void display(string prefix = "");

OpenVera

Not supported.

Description

Displays the image returned by “vmm_object::type_e” to the
standard output. Each line of the output will be prefixed with the
specified argument prefix.

If this method conflicts with a previously declared method in a class,
which is now based on the vmm_object class, it can be removed
by defining the ‘VMM_OBJECT_NO_DISPLAY symbol at compile-
time.

Example

Example A-164
class trans_data extends vmm_data;
 byte data;
 ...
endclass

initial begin
 trans_data trans;
 trans.display("Test Trans: ");
end

A-458

VMM User Guide

vmm_object::find_child_by_name()

Finds the named object relative to this object.

SystemVerilog

function vmm_object vmm_object::find_child_by_name(
 string name, string space = "");

Description

Finds the named object, interpreting the name as a hierarchical
name relative to this object in the specified namespace. If the name
is a match pattern or regular expression, the first object matching the
name is returned. Returns null, if no child was found under the
specified name.

Example

class D extends vmm_object;
 ...
endclass
class E extends vmm_object;
 D d1;
 function new(string name, vmm_object parent=null);
 ...
 d1 = new ("d1",this);
 endfunction
endclass
...
initial begin
 vmm_object obj;
 E e1= new ("e1");
 ...
 obj = e1.find_child_by_name ("d1");
 ...
end

 A- 459

VMM User Guide

 vmm_object::find_object_by_name()

Finds the named object in the specified namespace.

SystemVerilog

static function vmm_object
vmm_object::find_object_by_name(string name,
 string space = "");

Description

Finds the named object, interpreting the name as an absolute name
in the specified namespace. If the name is a match pattern or regular
expression, the first object matching the name is returned.

Returns null, if no object was found under the specified name.

Example

class D extends vmm_object;
 ...
endclass
class E extends vmm_object;
 D d1;
 function new(string name, vmm_object parent=null);
 ...
 d1 = new ("d1");
 endfunction
endclass
...
initial begin
 vmm_object obj;
 ...
 obj = E :: find_object_by_name ("d1");
 ...
end

A-460

VMM User Guide

vmm_object::get_hier_inst_name()

Returns the hierarchical instance name of the object.

SystemVerilog

function string get_hier_inst_name();

OpenVera

Not supported.

Description

Returns the hierarchical instance name of the object. The instance
name is composed of the dot-separated instance names of the
message service interface of all the parents of the object.

The hierarchical name is returned, whether or not the message
services interfaces are using hierarchical or flat names.

Example

Example A-165
class tb_env extends vmm_env;
 tr_scenario_gen gen1;
 ...
endclass
initial begin
 string str;
 tb_env env;
 ...
 str = env.s1.gen1.get_hier_inst_name();
 `vmm_note(log, str);
end

 A- 461

VMM User Guide

 vmm_object::get_log()

Returns the vmm_log instance of this object.

SystemVerilog

virtual function vmm_log vmm_object::get_log();

Description

Returns the vmm_log instance of this object, or the nearest
enclosing object. If no vmm_log instance is available in the object
genealogy, a default global vmm_log instance is returned.

Example

class ABC extends vmm_object;
 vmm_log log = new("ABC", "class");
 ...
 function vmm_log get_log();
 return this.log;
 endfunction
...
endclass

vmm_log test_log;
ABC abc_inst = new("test_abc");
initial begin
 test_log = abc_inst.get_log();
 ...
end

A-462

VMM User Guide

vmm_object::get_namespaces()

Returns all namespaces created by the create_namespace()
method.

SystemVerilog

function void get_namespaces(output string names[]);

Description

This method returns all namespaces created by the
create_namespace() method that belong to a dynamic array of
strings as specified by names[].

Example

initial begin
 string ns_array[];
 ...
 vmm_object::get_namespaces(ns_array);
 ...
end

 A- 463

VMM User Guide

vmm_object::get_num_children()

Gets the total number of children for this object.

SystemVerilog

function int vmm_object::get_num_children();

Description

Gets the total number of children object for this object.

Example

class C extends vmm_object;
 ...
endclass
class D extends vmm_object;
 ...
endclass
class E extends vmm_object;
 C c1;
 D d1;
 D d2;
 function new(string name, vmm_object parent=null);
 ...
 c1 = new ("c1",this);
 d1 = new ("d1");
 d2 = new ("d2",this);
 endfunction
endclass
int num_children;
 initial begin
 E e1 = new ("e1");
 ...
 num_children = e1.get_num_children;
 ...
end

A-464

VMM User Guide

 vmm_object::get_num_roots()

Gets the total number of root objects in the specified namespace.

SystemVerilog

static function int vmm_object::get_num_roots(
 string space = "");

Description

Gets the total number of root objects in the specified namespace.

Example

class D extends vmm_object;
 ...
endclass
class E extends vmm_object;
 D d1;
 D d2;
 function new(string name, vmm_object parent=null);
 ...
 d1 = new ("d1");
 d2 = new ("d2");
 endfunction
endclass
...
int num_roots;
initial begin
 E e1 = new ("e1");
 ...
 num_roots = E :: get_num_roots(); //Returns 2
 ...
end

 A- 465

VMM User Guide

vmm_object::get_nth_child()

Returns the nth child of this object.

SystemVerilog

function vmm_object vmm_object::get_nth_child(int n);

Description

Returns the nth child of this object. Returns null, if there is no child.

Example

class C extends vmm_object;
 ...
endclass
class D extends vmm_object;
 ...
endclass
class E extends vmm_object;
 C c1;
 D d1;
 D d2;
 function new(string name, vmm_object parent=null);
 c1 = new ("c1",this);
 d1 = new ("d1");
 d2 = new ("d2",this);
 endfunction
endclass
initial begin
 vmm_object obj;
 string name;
 E e1 = new ("e1");
 obj = e1.get_nth_child(0);
 name = obj.get_object_name(); //Returns c1
 ...
end

A-466

VMM User Guide

vmm_object::get_nth_root()

Returns the nth root object in the specified namespace.

SystemVerilog

static function vmm_object vmm_object::get_nth_root(int n,
 string space = "");

Description

Returns the nth root object in the specified namespace. Returns null,
if there is no such root.

Example

class D extends vmm_object;
 ...
endclass
class E extends vmm_object;
 D d1;
 D d2;
 function new(string name, vmm_object parent=null);
 ...
 d1 = new ("d1");
 d2 = new ("d2");
 endfunction
endclass
...
int num_roots;
initial begin
 vmm_object root;
 E e1 = new ("e1");
 ...
 root= E :: get_nth_root(0); //Returns d1
 ...
end

 A- 467

VMM User Guide

vmm_object::get_object_hiername()

Gets the complete hierarchical name of this object.

SystemVerilog

function string vmm_object::get_object_hiername(
 vmm_object root = null, string space = "");

Description

Gets the complete hierarchical name of this object in the specified
namespace, relative to the specified root object. If no root object is
specified, returns the complete hierarchical name of the object. The
instance name is composed of the period-separated instance names
of the message service interface of all the parents of the object.

Example

class D extends vmm_object;
 ...
endclass
class E extends vmm_object;
 D d1;
 function new(string name, vmm_object parent=null);
 ...
 d1 = new ("d1",this);
 endfunction
endclass
...
initial begin
 string hier_name;
 E e1 = new ("e1");
 ...
 hier_name = e1.d1.get_object_hiername();
 ...
end

A-468

VMM User Guide

vmm_object::get_object_name()

Gets the local name of this object

SystemVerilog

function string vmm_object::get_object_name(
 string space = "");

Description

Gets the local name of this object, in the specified namespace. If no
namespace is specified, then returns the actual name of the object.

Example

class C extends vmm_object;
 function new(string name, vmm_object parent=null);
 super.new (parent,name);
 endfunction
endclass
...
initial begin
 string obj_name;
 C c1 = new ("c1");
 ...
 obj_name = c1.get_object_name(); //Returns c1
 ...
end

 A- 469

VMM User Guide

vmm_object::get_parent()

Returns a parent object.

SystemVerilog

function vmm_object get_parent(
vmm_object::type_e typ = VMM_OBJECT);

OpenVera

Not supported.

Description

Returns the parent object of the specified type, if any. Returns NULL,
if no such parent is found. Specifying VMM_OBJECT returns the
immediate parent of any type.

Example

Example A-166
class tb_env extends vmm_env;
 tr_scenario_gen gen1;
 function new(string inst, vmm_consensus end_vote);
 gen1.set_parent_object(this);
 endfunction
endclass
initial begin
 tb_env env;
 if (env.gen1.randomized_obj.get_parent() != env.gen1)
begin
 ̀ vmm_error(log, "Factory instance in atomic_gen returns
wrong parent");
 end
end

A-470

VMM User Guide

vmm_object::get_parent_object()

Returns the parent of this object.

SystemVerilog

function vmm_object vmm_object::get_parent_object(string
space = "");

Description

Returns the parent object of this object for specified namespace, if
any. Returns null, if no parent is found. A root object contains no
parent.

Example

class C extends vmm_object;
 ...
endclass
class D extends vmm_object;
 C c1;
 function new(string name, vmm_object parent=null);
 c1 = new ("c1",this);
 endfunction
endclass

initial begin
 vmm_object parent;
 D d1 = new ("d1");
 parent = d1.c1.get_parent_object;
end

 A- 471

VMM User Guide

vmm_object::get_root_object()

Gets the root parent of this object.

SystemVerilog

function vmm_object vmm_object::get_root_object(
 string space = "");

Description

Gets the root parent of this object, for the specified namespace.

Example

class C extends vmm_object;
 ...
endclass
class D extends vmm_object;
 C c1;
 function new(string name, vmm_object parent=null);
 c1 = new ("c1",this);
 endfunction
endclass
class E extends vmm_object;
 D d1;
 function new(string name, vmm_object parent=null);
 ...
 d1 = new ("d1",this);
 endfunction
endclass
...
initial begin
 vmm_object root;
 E e1 = new ("e1");
 root = e1.d1.c1.get_root_object;
 ...
end

A-472

VMM User Guide

vmm_object::get_type()

Returns the type of the object.

SystemVerilog

function vmm_object::type_e get_type();

OpenVera

Not supported.

Description

Returns the type of this vmm_object extension.

Returns the VMM_OBJECT, if it is not one of the known VMM class
extensions. VMM_UNKNOWN is purely an internal value, and is never
returned.

Example

Example A-167
class tb_env extends vmm_env;
 tr_scenario_gen gen1;
 gen1.set_parent_object(this);
endclass

initial begin
 tb_env env;
 if (env.get_type() != vmm_object::VMM_ENV)
 begin
 `vmm_error(log, "Wrong type returned from vmm_env
 instance");
 end
end

 A- 473

VMM User Guide

vmm_object::get_typename()

Returns the name of the actual type of this object.

SystemVerilog

pure virtual function string vmm_object::get_typename();

Description

This function is implemented in the `vmm_typename(string
name) macro. It returns the type of this vmm_object extension.
However, it will not return an appropriate vmm_object if
`vmm_typename(name) is not used in the corresponding class.

Example

class ahb_gen extends vmm_group;
 `vmm_typename (ahb_gen)
 function new (string name);
 super.new (get_typename(), name);
 endfunction
endclass

A-474

VMM User Guide

vmm_object::implicit_phasing()

If the is_on argument is false, inhibits the implicit phasing for this
object and all of its children objects.

SystemVerilog

virtual function void vmm_object::implicit_phasing(
 bit is_on);

Description

If the is_on argument is false, inhibits the implicit phasing for this
object and all of its children objects. Used to prevent a large object
hierarchy that does not require phasing from being needlessly
walked by the implicit phaser (for example, a RAL model). By default,
implicit phasing is enabled.

Example

class subsys_env extends vmm_subenv;
 ...
endclass

class sys_env extends vmm_subenv;
 subsys_env subenv1;
 ...
 function void build();
 ...
 subenv1 = new ("subenv1", "subenv1");
 subenv1.set_parent_object(this);
 subenv1.implicit_phasing(0);
 ...
 endfunction
 ...
endclass

 A- 475

VMM User Guide

vmm_object::is_implicitly_phased()

Returns true, if the implicit phasing is enabled for this object.

SystemVerilog

virtual function bit vmm_object::is_implicitly_phased();

Description

Returns true, if the implicit phasing is enabled for this object.

Example

class subsys_env extends vmm_subenv;
 ...
endclass

class sys_env extends vmm_env;
 subsys_env subenv1;
 ...
 function void build();
 ...
 subenv1 = new ("subenv1", "subenv1");
 subenv1.set_parent_object(this);
 subenv1.implicit_phasing(0);
 if(subenv1.is_implicitly_phased)
 `vmm_error(log, "Implict Phasing for subenv1 not
 disabled");
 ...
 endfunction
 ...
endclass

A-476

VMM User Guide

vmm_object::is_parent_of()

Returns true, if the specified object is a parent of this object.

SystemVerilog

function bit vmm_object::is_parent_of(vmm_object obj,
 string space ="");

Description

Returns true, if the specified object is a parent of this object under
specified argument space namespace.

Example

class sub extends vmm_subenv;
 ...
endclass

class tb_env extends vmm_env;
 sub s1 ;
 ...
 virtual function void build();
 super.build();
 s1 = new ("s1");
 s1.set_parent_object(this);
 if (!this.is_parent_of(s1))
 `vmm_error(log, "Unable to set parent for s1");
 ...
 endfunction
endclass

 A- 477

VMM User Guide

vmm_object::kill_object()

Clears cross-references to this object and its children.

SystemVerilog

Virtual function void vmm_object::kill_object();

Description

Clears cross-references to this object and all its children, so that the
entire object hierarchy rooted at the object can be garbage collected.
Killing the root object enables the garbage collection of the entire
object hierarchy underneath it, unless there are other references to
an object within that hierarchy. Any external reference to any object
in a hierarchy, prevents the garbage collection of that object.

Example

class C extends vmm_object;
 function new(string name, vmm_object parent=null);
 super.new (parent,name);
 endfunction
endclass
class D extends vmm_object;
 C c1;
 function new(string name, vmm_object parent=null);
 super.new (parent,name);
 c1 = new ("c1",this);
 endfunction
endclass
initial begin
 D d1 = new ("d1");
 d1.kill_object;
end

A-478

VMM User Guide

 vmm_object::new()

Constructs a new instance of this object.

SystemVerilog

function void vmm_object::new(vmm_object parent = null,
 string name = "[Anonymous]", bit disable_hier_insert = 0);

Description

Constructs a new instance of this object, optionally specifying
another object as its parent. The specified name cannot contain any
colons (:). Specified argument disable_hier_insert indicates
whether hierarchical insertion needs to be enabled or not.

To add an object to the parent-child hierarchical structure, set
disable_hier_insert argument to 1.

Example

class A extends vmm_object;
 function new (string name, vmm_object parent=null);
 super.new (parent, name);
 endfunction
endclass

 A- 479

VMM User Guide

vmm_object::print_hierarchy()

Prints the object hierarchy.

SystemVerilog

function void print_hierarchy(vmm_object root = null, bit
verbose=0);

Description

Prints the object hierarchy that is rooted at the specified object.
Prints the hierarchy for all roots, if no root is specified.

This method shows the desired object hierarchy, when you ensure
that the parent-child relationship is created across different
components, either at instantiation time or through
vmm_object::set_parent_object. verbose could be passed
as 1 to enabled the verbose option while displaying.

Example

class D extends vmm_object;
 ...
endclass
class E extends vmm_object;
 D d1;
 function new(string name, vmm_object parent=null);
 ...
 d1 = new ("d1",this);
 endfunction
endclass
initial begin
 E e1 = new ("e1");
 ...
 E :: print_hierarchy();
 ...

A-480

VMM User Guide

end

 A- 481

VMM User Guide

 vmm_object::psdisplay()

Creates a description of the object.

SystemVerilog

virtual function string vmm_object::psdisplay(
 string prefix = "");

Description

Creates a human-readable description of the content of this object.
Each line of the image is prefixed with the specified prefix.

Example

class D extends vmm_object;
 ...
 function string psdisplay(string prefix = "");
 ...
 endfuntion
endclass
...
vmm_log log = new ("Test", "main");
initial begin
 D d1 = new ("d1");
 ...
 `vmm_note (log, d1.psdisplay);
 ...
end

A-482

VMM User Guide

vmm_object::set_object_name()

Sets or replaces the name of this object in the specified namespace.

SystemVerilog

function void vmm_object::set_object_name(string name,
 string space = "");

Description

This method is used to set or replace the name of this object in the
specified namespace. If no namespace is specified, the name of the
object is replaced. If a name is not specified for a namespace, it
defaults to the object name. Names in a named namespace may
contain colons (:) to create additional levels of hierarchy, or may be
empty to skip a level of hierarchy. A name starting with a caret (^)
indicates that it is a root in the specified namespace. However, this
does not apply to the object name where parentless objects create
roots in the default namespace.

Example

class E extends vmm_object;
 ...
endclass
initial begin
 vmm_object obj;
 E e1 = new ("e1");
 vmm_object::create_namespace("NS1",
 vmm_object::IN_BY_DEFAULT);
 ...
 obj = e1;
 obj.set_object_name ("new_e1","NS1");
 ...
end

 A- 483

VMM User Guide

vmm_object::set_parent()

Specifies a parent object.

SystemVerilog

function void set_parent(vmm_object parent);

OpenVera

Not supported.

Description

Specifies a new parent object to this object. Specifying a NULL
parent breaks any current parent or child relationship. An object may
contain only one parent, but the identity of a parent can be changed
dynamically.

If this object and the parent object are known to contain their own
instance of the message service interface, then the vmm_log
instance in the parent is specified as being above the vmm_log
instance in the child by calling parent.is_above(this). The
instance names of the message service interfaces can then be
subsequently made hierarchical by using the
“vmm_log::use_hier_inst_name()” method.

The presence of the vmm_object base class being optional, it is
not possible to call this method in code designed to be reusable with
and without this base class. To that effect, the
‘VMM_OBJECT_SET_PARENT(_parent, _child) macro should
be used instead. This macro calls this method, if the vmm_object
base class is present, but do nothing if not.

A-484

VMM User Guide

Examples

Example A-168
this.notify = new(this.log);
this.notify.set_parent_object(this);

Example A-169
this.notify = new(this.log);
‘VMM_OBJECT_SET_PARENT(this.notify, this)

 A- 485

VMM User Guide

 vmm_object::set_parent_object()

Sets or replaces the parent of this object.

SystemVerilog

function void vmm_object::set_parent_object(
 vmm_object parent);

Description

Specifies a new parent object to this object. Specifying a null parent,
breaks any current parent or child relationship. An object may
contain only one parent, but the identity of a parent can be changed
dynamically.

Example

class C extends vmm_object;
 function new(string name, vmm_object parent=null);
 super.new (parent,name);
 endfunction
endclass
class D extends vmm_object;
 C c1;
 function new(string name, vmm_object parent=null);
 super.new (parent,name);
 c1 = new ("c1",this);
 endfunction
endclass

initial begin
 D d1 = new ("d1");
 D d2 = new ("d2");
 d1.c1.set_parent_object (d2);
end

A-486

VMM User Guide

vmm_object::type_e

Returns the type of this object.

SystemVerilog

typedef enum {
VMM_UNKNOWN, VMM_OBJECT, VMM_DATA, VMM_SCENARIO,
VMM_MS_SCENARIO, VMM_CHANNEL, VMM_NOTIFY, VMM_XACTOR,
VMM_SUBENV, VMM_ENV, VMM_CONSENSUS, VMM_TEST

} type_e

OpenVera

Not supported.

Description

Value returned by the “vmm_object::type_e” method to identify
the type of this vmm_object extension. Once the type is known, a
reference to a vmm_object can be cast into the corresponding
class type.

The VMM_UNKNOWN type is an internal value, and never returned by
the “vmm_object::type_e” method.

The VMM_OBJECT is returned when the type of the object cannot
be determined, or to specify any object type to the
“vmm_object::type_e” method.

Example

Example A-170
program test;
 class tb_env extends vmm_env;

 A- 487

VMM User Guide

 type_e env_c_type;
 function new();
 super.new("tb_env");
 end_vote.set_parent_object(this);
 env_c_type = get_type();
 endfunction
 endclass
 initial
 begin
 string disp_str;
 ...
 $sformat(disp_str,"Type of env class is :
%s",env.env_c_type.name());
 `vmm_note(log,disp_str);
 end
endprogram

A-488

VMM User Guide

`foreach_vmm_object()

Shorthand macro to iterate over all objects.

SystemVerilog

`foreach_vmm_object(classtype, string name, vmm_root root);

Description

This is a shorthand macro to iterate over all objects of a specified
type and name, under a specified root.

Example

class E extends vmm_object;
 ...
endclass
...
initial begin
 E e11 = new ("e11");
 vmm_object_iter my_iter;
 ...
 `foreach_vmm_object(vmm_object, "@%*", e11)
 begin
 ...
 end
end

 A- 489

VMM User Guide

`foreach_vmm_object_in_namespace()

Shorthand macro to iterate over all objects of a specified type and
name, within a specified namespace.

SystemVerilog

`foreach_vmm_object_in_namespace(classtype, string name,
 string space, vmm_root root);

Description

Shorthand macro to iterate over all objects of a specified type with
the specified name, in the specified namespace under a specified
root.

Example

class C extends vmm_object;
 function new(string name, vmm_object parent=null);
 super.new(parent, name);
 ...
 vmm_object::create_namespace("NS1",
 vmm_object::IN_BY_DEFAULT);
 ...
 endfunction
endclass

C c1 = new("c1");
int I;

initial begin
 `foreach_vmm_object_in_namespace(vmm_object, "@%*",
 "NS1", c1)
 begin
 end
end

A-490

VMM User Guide

vmm_object_iter

This is the vmm_object hierarchy traversal iterator class.

The vmm_object_iter class traverses the hierarchy rooted at the
specified object, looking for objects whose relative hierarchical name
matches the specified name. Beginning at a specific object, you can
traverse through the hierarchy through the different methods like the
first() and next() methods.

Example

class E extends vmm_object;
 ...
endclass
...
initial begin
 E e11 = new ("e1");
 vmm_object obj;
 vmm_object_iter iter = new (e11, "/a1/");
 ...
 obj = iter.first();
 while (obj != null)
 begin
 ...
 obj = iter.next;
 end
 ...
 end

Summary

• vmm_object_iter::first() page A-491
• vmm_object_iter::new() page A-492
• vmm_object_iter::next() page A-493

 A- 491

VMM User Guide

vmm_object_iter::first()

Resets the state of the iterator to the first object.

SystemVerilog

function vmm_object vmm_object_iter::first();

Description

Resets the state of the iterator to the first object in the vmm_object
hierarchy. Returns null, if the specified hierarchy contains no child
objects.

Example

class E extends vmm_object;
 ...
endclass
...
initial begin
 E e11 = new ("e1");
 vmm_object obj;
 vmm_object_iter iter = new (e11, "/a1/");
 ...
 obj = iter.first();
 ...
end

A-492

VMM User Guide

vmm_object_iter::new()

Instantiates an vmm_object iterator that traverses the hierarchy
rooted at the specified root object.

SystemVerilog

function new(vmm_object root = null, string name = "",
 string space = "");

Description

Traverses the hierarchy rooted at the specified root object, looking
for objects whose relative hierarchical name in the specified
namespace matches the specified name. The object name is relative
to the specified root object. If no object is specified, traverses all
hierarchies and the hierarchical name is absolute. The specified root
(if any) is not included in the iteration.

Example

/ Match pattern - /a1/, with root object e11 vmm_object_iter
 iter = new (e11, "/a1/");

 A- 493

VMM User Guide

vmm_object_iter::next()

SystemVerilog

function vmm_object vmm_object_iter::next();

Description

Returns the next object in the vmm_object hierarchy. Returns null,
if there are no more child objects. Objects are traversed depth first.

Example

class E extends vmm_object;
 ...
endclass
...
initial begin
 E e11 = new ("e1");
 vmm_object obj;
 vmm_object_iter iter = new(e11, "/a1/");
 ...
 obj = iter.first();
 while (obj != null)
 begin
 ...
 obj = iter.next;
 end
 ...
end

A-494

VMM User Guide

vmm_opts

Utility class that provides the facility to pass values from the
command line during runtime, or from the source code, across
hierarchies.

Summary

• vmm_opts::get_bit() page A-495
• vmm_opts::get_help() page A-496
• vmm_opts::get_int() page A-497
• vmm_opts::get_obj() page A-498
• vmm_opts::get_object_bit() page A-499
• vmm_opts::get_object_int() page A-500
• vmm_opts::get_object_obj() page A-502
• vmm_opts::get_object_range() page A-504
• vmm_opts::get_object_string() page A-506
• vmm_opts::get_range() page A-508
• vmm_opts::get_string() page A-510
• vmm_opts::set_bit() page A-511
• vmm_opts::set_int() page A-513
• vmm_opts::set_object() page A-515
• vmm_opts::set_range() page A-517
• vmm_opts::set_string() page A-519
• ‘vmm_unit_config* page A-521

 A- 495

VMM User Guide

vmm_opts::get_bit()

Returns true, if specified option is set using the command-line.
Otherwise, it returns false.

SystemVerilog

static function bit vmm_opts::get_bit(string name,
 string doc = "", int verbosity = 0, string fname = "",
 int lineno = 0);

Description

Returns true, if the argument name is specified on the command-
line. Otherwise, it returns false. The option is specified using the
command-line +vmm_name or +vmm_opts+name. You can specify a
description of the option using doc, and the verbosity level of the
option using verbosity. A verbosity value must be within the range
0 to 10. The fname and lineno arguments are used to track the
file name and the line number, where the option is specified. These
optional arguments are used for providing information to the user
through vmm_opts::get_help().

Example

bit b;
b = vmm_opts::get_bit(
 "FOO", "Value set for 'b' from command line");

Command line:

simv +vmm_FOO or simv +vmm_opts+FOO

A-496

VMM User Guide

 vmm_opts::get_help()

Displays the list of available or specified VMM runtime options.

SystemVerilog

static function void vmm_opts::get_help(
vmm_object root = null,

 int verbosity = 0);

Description

Displays the known options used by the verification environment with
the specified vmm_object hierarchy, with verbosity lower than or
equal to the absolute value of the specified verbosity. If no
vmm_unit root is specified, the options used by all object
hierarchies are displayed. A verbosity value must be within the range
-10 to 10. If the specified verbosity value is negative, the hierarchical
name of each vmm_unit instance that uses an option is also
displayed.

Example

 vmm_opts::get_help(this_object);

 A- 497

VMM User Guide

vmm_opts::get_int()

Returns an integer value, if specified using the command-line.
Otherwise, it returns the default value.

SystemVerilog

static function int vmm_opts::get_int(string name,
 int dflt = 0, string doc = "", int verbosity = 0,
 string fname = "", int lineno = 0);

Description

Returns an integer value, if the argument name and its integer value
are specified on the command line. Otherwise, returns the default
value specified in the dflt argument. The option is specified using
the command line +vmm_name=value or
+vmm_opts+name=value. You can specify a description of the
option using doc, and the verbosity level of the option using
verbosity. A verbosity value must be within the range 0 to 10. The
fname and lineno arguments are used to track the file name and
the line number, where the option is specified. These optional
arguments are used to provide information through the
vmm_opts::get_help() method.

Example

int i;
i = vmm_opts::get_int ("FOO", 0,
 "Value set for 'i' from command line");

Command line:

simv +vmm_FOO=100 or simv +vmm_opts+FOO=100

A-498

VMM User Guide

vmm_opts::get_obj()

Returns the vmm_object instance, if specified through the
vmm_opts::set_object() method.

SystemVerilog

static function vmm_object vmm_opts::get_obj(
output bit is_set,
input string name,
input vmm_object dflt = null,
input string fname = "",
input int lineno = 0);

Description

If an explicit value is specified, returns the globally named object
type option and sets the is_set argument to true. If no object
matches the expression specified by name, returns the default
object specified by argument dflt.Object type options can only be
set using the vmm_opts::set_object() method. The fname
and lineno arguments can be used to track the file name and the
line number where the get_obj is invoked from.

Example

class A extends vmm_object;
endclass

initial begin
 A a = new ("a");
 vmm_object obj;
 bit is_set;
 obj = vmm_opts :: get_obj(is_set, "OBJ", a);
end

 A- 499

VMM User Guide

vmm_opts::get_object_bit()

Returns true, if the named option is set for the hierarchy. Otherwise,
it returns false.

SystemVerilog

static function bit vmm_opts::get_object_bit(output bit
 is_set, input vmm_object obj, string name, string doc =
 "", int verbosity = 0, string fname = "", int lineno = 0);

Description

If an explicit value is specified, returns the named boolean type
option for the specified object instance, and sets the is_set
argument to true. You can specify a description of the option using
doc, and the verbosity level of the option using verbosity. The
verbosity value must be within the range 0 to 10, with 10 being the
highest. The fname and lineno arguments are used to track the
file name and the line number, where the option is specified. These
optional arguments are used to provide information to the user
through the vmm_opts::get_help() method.

Example

class B extends vmm_object;
 bit foo, is_set;
 function new(string name, vmm_object parent=null);
 foo = vmm_opts::get_object_bit(is_set, this, "FOO",
 "SET foo value", 0);
 endfunction
endclass

Command line:

simv +vmm_FOO@A:%:b

A-500

VMM User Guide

vmm_opts::get_object_int()

Returns an integer value, if the named integer option is set for the
hierarchy. Otherwise, it returns the default value.

SystemVerilog

static function int vmm_opts::get_object_int(
 output bit is_set,

input vmm_object obj,
input string name,

 input int dflt = 0,
input string doc = "",
input int verbosity = 0,

 input string fname = "",
input int lineno = 0);

Description

If an explicit value is specified, returns the named integer type option
for the specified object instance and sets the is_set argument to
true. You can specify a description of the option using doc, and the
verbosity level of the option using verbosity. The verbosity value
must be within the range 0 to 10. The fname and lineno arguments
are used to track the file name and the line number, where the option
is specified. These optional arguments are used to provide
information through the vmm_opts::get_help() method.

Example

class B extends vmm_object;
 int foo;
 function new(string name, vmm_object parent=null);
 bit is_set;
 super.new(parent,name);
 foo = vmm_opts::get_object_int(is_set, this, "FOO",

 A- 501

VMM User Guide

 2, "SET foo value", 0);
 endfunction
endclass

Command line:

simv +vmm_FOO=25@%:X:b

A-502

VMM User Guide

vmm_opts::get_object_obj()

Returns the vmm_object instance for the specified hierarchical
name.

SystemVerilog

static function vmm_object get_object_obj(
output bit is_set,
input vmm_object obj,
input string name,
input vmm_object dflt = null,
input string doc = "",

 input int verbosity = 0,
 input string fname = "",
 input int lineno = 0);

Description

Iif an explicit value is specified, returns the named object type option
for the specified object instance and set the is_set argument to
true. If no object matches the expression specified by name, returns
the default object specified by argument dflt. You can specify a
description of the option using doc, and the verbosity level of the
option using verbosity. Object type options can only be set using
the vmm_opts::set_object() method. The fname and lineno
arguments can be used to track the file name and the line number
where the get_object_obj is invoked from.

Example

class A extends vmm_object;
 int foo = 11;
 function new(vmm_object parent=null, string name);
 super.new(parent, name);
 endfunction

 A- 503

VMM User Guide

endclass

class B extends vmm_object;
 A a1, a2;
 function new(vmm_object parent=null, string name);
 bit is_set;
 super.new(parent, name);
 a1 = new(null, "a1");
 a2 = new(null, "a2");
 a2.foo = 22;
 $cast(a1, vmm_opts::get_object_obj(is_set, this,
 "OBJ_F1",a2,"SET OBJ", 0));
 endfunction
endclass

A-504

VMM User Guide

vmm_opts::get_object_range()

Returns the integer range for the specified hierarchy.

SystemVerilog

static function void vmm_opts::get_object_range(
output bit is_set,
input vmm_object obj,
input string name,
output int min,max,
input int dflt_min, dflt_max,
input string doc = "", int verbosity = 0,
input string fname = "", int lineno = 0);

Description

If an explicit range is specified, sets the min and max parameters to
the values of the named integer-range-type option for the specified
object instance, and sets the is_set argument to true. A range
option is specified using the syntax +vmm_name=[min:max]. You
can specify a description of the option using doc, and the verbosity
level of the option using verbosity. A verbosity value must be
within the range 0 to 10. The fname and lineno arguments are
used to track the file name and the line number, where the option is
specified. These optional arguments are used to provide information
through the vmm_opts::get_help() method.

If no explicit values are provided for integer range of the specified
hierarchy, sets the default range values to specified arguments
dflt_min & dflt_max to the min and max arguments respectively.
The fname and lineno arguments are used to track the file name and
the line number where the get_object_range is invoked.

 A- 505

VMM User Guide

Example

class B extends vmm_object;
 int min_val = -1;
 int max_val = -1;
 function new(string name, vmm_object parent=null);
 bit is_set;
 super.new(parent,name);
 vmm_opts::get_object_range(is_set, this,
 "FOO", min_val, max_val,-1,-1, "SET foo value", 0);
 endfunction
endclass

Command line:

simv +vmm_FOO=[5:10]@%:X:b

A-506

VMM User Guide

vmm_opts::get_object_string()

Returns a string value, if the named string option is set for the
hierarchy. Otherwise, it returns the default value.

SystemVerilog

static function string get_object_string(output bit is_set,
input vmm_object obj, string name, string dflt, string doc
= "", int verbosity = 0, string fname = "", int lineno = 0);

Description

If an explicit value is specified, returns the named string type option
for the specified object instance, and sets the is_set argument to
true. If no explicit value is specified, specified default string name
dftl is assigned to string name. You can specify a description of the
option using doc, and the verbosity level of the option using
verbosity. The verbosity value must be within the range 0 to 10.
The fname and lineno arguments are used to track the file name
and the line number, where the option is specified. These optional
arguments are used to provide information through the
vmm_opts::get_help() method. The fname and lineno
arguments are used to track the file name and the line number where
the get_object_string is invoked.

Example

class B extends vmm_object;
 string foo="ZERO";
 function new(string name, vmm_object parent=null);
 bit is_set;
 super.new(parent,name);
 foo = vmm_opts::get_object_string(is_set, this,
 "FOO", "DEF_VAL", "SET foo value", 0);

 A- 507

VMM User Guide

 endfunction
endclass

Command line:

simv +vmm_FOO=HELLO@%:X:b

A-508

VMM User Guide

vmm_opts::get_range()

Returns an integer range, if specified using the command-line.
Otherwise, it returns the default range.

SystemVerilog

static function void vmm_opts::get_range(string name,
 output int min,max, input int dflt_min, dflt_max,
 string doc = "", int verbosity = 0, string fname = "",
 int lineno = 0);

Description

Returns the named integer range option. A range option is specified
using the syntax +vmm_name=[min:max] or
+vmm_opts+name=[min:max]. You can specify a description of
the option using doc, and the verbosity level of the option using
verbosity. A verbosity value must be within the range 0 to 10. The
fname and lineno arguments are used to track the file name and
the line number, where the option is specified. These optional
arguments are used to provide information through the
vmm_opts::get_help() method.

If no explicit values are provided for integer range of the specified
hierarchy, sets the default range values to specified arguments
dflt_min & dflt_max to the min and max arguments respectively.
The fname and lineno arguments are used to track the file name and
the line number where the get_object_range is invoked.

Example

int min_val;
int max_val;

 A- 509

VMM User Guide

vmm_opts::get_range("FOO", min_val, max_val,
 -1, -1, "SET range", 0);

Command line:

simv +vmm_FOO=[5:10] or simv +vmm_opts+FOO=[5:10]

A-510

VMM User Guide

vmm_opts::get_string()

Returns the string value, if specified using the command-line.
Otherwise, it returns the default value.

SystemVerilog

static function string vmm_opts::get_string(string name,
 string dflt, string doc = "", int verbosity = 0,
 string fname = "", int lineno = 0);

Description

Returns string value, if the argument name and its string value are
specified on the command-line. Otherwise, it returns the default
value specified in the dflt argument. The option is specified using
the command line +vmm_name=value or
+vmm_opts+name=value. You can specify a description of the
option using doc, and the verbosity level of the option using
verbosity. A verbosity value must be within the range 0 to 10. The
fname and lineno arguments are used to track the file name and
the line number, where the option is specified. These optional
arguments are used to providing information through the
vmm_opts::get_help() method.

Example

string str;
str = vmm_opts :: get_string ("FOO", "DEF",
 "str value from command line");

Command line:

simv +vmm_FOO=HELLO or simv +vmm_opts+FOO=HELLO

 A- 511

VMM User Guide

vmm_opts::set_bit()

Sets the hierarchically named boolean type option.

SystemVerilog

static function void vmm_opts::set_bit(string name,
 bit val,
 vmm_unit root = null,
 string fname = "",
 int lineno = 0);

With +define NO_VMM12

static function void vmm_opts::set_bit(string name,
 bit val,
 string fname = "",
 int lineno = 0);

Description

Sets the hierarchically named boolean type option for the specified
vmm_object instances as specified by val. If no vmm_unit root is
specified, the hierarchical option name is assumed to be absolute.
The argument name can be a pattern. When
vmm_opts::get_object_bit() is called in any object whose
hierarchical name matches the pattern, the option is set for that
boolean variable. The fname and lineno arguments are used to
track the file name and the line number, where the option is specified
from.

Example

class B extends vmm_object;
 bit foo;
 function new(string name, vmm_object parent=null);

A-512

VMM User Guide

 bit is_set;
 super.new(parent,name);
 foo = vmm_opts::get_object_bit(is_set, this, "FOO",
 "SET foo value", 0);
 endfunction
endclass

B b2;
initial begin
 vmm_opts::set_bit("b2:FOO",null);
 b2 = new("b2", null);
end

 A- 513

VMM User Guide

vmm_opts::set_int()

Sets the hierarchically named integer type option.

SystemVerilog

static function void vmm_opts::set_int(string name,
 int val,
 vmm_unit root = null,
 string fname = "",
 int lineno = 0);

With +define NO_VMM12
static function void vmm_opts::set_int(string name,
 int val,
 string fname = "",
 int lineno = 0);

Description

Sets the hierarchically named integer type option for the specified
vmm_object instances as specified by val. If no vmm_unit root is
specified, the hierarchical option name is assumed to be absolute.
The argument name can be a pattern. When
vmm_opts::get_object_bit() is called in any object whose
hierarchical name matches the pattern, the option is set for that
integer variable. The fname and lineno arguments are used to
track the file name and the line number, where the option is specified
from.

Example

class A extends vmm_object;
 int a_foo;
 function new(vmm_object parent=null, string name);
 bit is_set;

A-514

VMM User Guide

 super.new(parent, name);
 a_foo = vmm_opts::get_object_int(is_set, this,
 "A_FOO", 2 , "SET a_foo value", 0);
 endfunction
endclass

class D extends vmm_object;
 A a1;
 ...
endclass

initial begin
 D d2;
 vmm_opts::set_int("d2:a1:A_FOO", 99,null);
 d2 = new (null, "d2");
end

 A- 515

VMM User Guide

vmm_opts::set_object()

Sets the hierarchically named vmm_object type option.

SystemVerilog

static function void vmm_opts::set_object(string name,
 vmm_object obj,
 vmm_unit root = null,
 string fname = "",
 int lineno = 0);

With +define NO_VMM12

static function void vmm_opts::set_object(string name,
 vmm_object obj,
 string fname = "",
 int lineno = 0);

Description

Sets the hierarchically named type-specific option for the specified
vmm_object instances. If no vmm_unit root is specified, the
hierarchical option name is assumed to be absolute. When called
from the vmm_unit::configure_ph() method, the root unit must
always be specified as this, because vmm_unit instances can
only configure lower-level instances during the configure phase.
The hierarchical option name is specified by prefixing the option
name with a hierarchical vmm_unit name and a colon (:).

The hierarchical option name may be specified using a match
pattern or a regular expression, except for the last part of the
hierarchical name (the name of the option itself). The hierarchical
option name may specify a namespace. An error is reported, if the
option value is not eventually used.

A-516

VMM User Guide

The fname and lineno arguments are used to track the file name
and the line number, where the option is specified from.

Example

class A extends vmm_object;
 int foo = 11;
 function new(vmm_object parent=null, string name);
 bit is_set;
 super.new(parent, name);
 endfunction
endclass

class B extends vmm_object;
 A a1;
 A a2;
 function new(vmm_object parent=null, string name);
 bit is_set;
 super.new(parent, name);
 a1 = new(null, "a1");
 a2 = new(null, "a2");
 a2.foo = 22;
 $cast(a1, vmm_opts::get_object_obj(is_set, this,
 "OBJ_F1",a2,"SET OBJ", 0));
 endfunction
endclass

B b2;
A a3;
initial begin
 a3 = new(null, "a3");
 a3.foo = 99;
 vmm_opts::set_object("b2:OBJ_F1", a3,null,,);
 b2 = new(null, "b2");
end

 A- 517

VMM User Guide

vmm_opts::set_range()

Sets the hierarchically named integer range type option.

SystemVerilog

static function void vmm_opts::set_range(string name,
 int min, max,
 vmm_unit root = null,
 string fname = "",
 int lineno = 0);

With +define NO_VMM12

static function void vmm_opts::set_range(string name,
 int min, max,
 string fname = "",
 int lineno = 0);

Description

Sets the hierarchically named integer range type option, for the
specified vmm_object instances. If no vmm_unit root is specified,
then the hierarchical option name is assumed to be absolute. The
name argument can be a pattern. When
vmm_opts::get_object_range() is called in an object whose
hierarchical name matches the pattern, then min and max are
returned.

The fname and lineno arguments are used to track the file name
and the line number, where the range is specified from.

Example

class B extends vmm_object;

A-518

VMM User Guide

 int min_val = -1;
 int max_val = -1;
 function new(string name, vmm_object parent=null);
 bit is_set;
 super.new(parent,name);
 vmm_opts::get_object_range(is_set, this,
 "FOO",min_val, max_val, -1,-1, "SET foo value", 0);
 endfunction
endclass
initial begin
 B b2;
 vmm_opts::set_range("b2:FOO", 1, 99, null);
 b2 = new("b2", null);
end

 A- 519

VMM User Guide

vmm_opts::set_string()

Sets the hierarchical named string type option.

SystemVerilog

static function void vmm_opts::set_string(string name,
 string val,
 vmm_unit root = null,
 string fname = "",
 int lineno = 0);

With +define NO_VMM12

static function void vmm_opts::set_string(string name,
 string val,
 string fname = "",
 int lineno = 0);

Description

Sets the hierarchically named string type option, for the specified
vmm_object instances as specified by name. If no vmm_unit root
is specified, then the hierarchical option name is assumed to be
absolute. The argument name can be a pattern. When the
vmm_opts::get_object_string() method is called in any
object whose hierarchical name matches the pattern, then val is
returned for that string variable.

The fname and lineno arguments are used to track the file name
and the line number, where the option is specified from.

Example

class B extends vmm_object;

A-520

VMM User Guide

 string foo="ZERO";
 function new(string name, vmm_object parent=null);
 bit is_set;
 super.new(parent,name);
 foo = vmm_opts::get_object_string(is_set, this,
 "FOO","DEF_VAL", "SET foo value", 0);
 endfunction
endclass

initial begin
 B b2;
 vmm_opts::set_string("b2:FOO", "NEW_VAL", null);
 b2 = new("b2", null);
end

 A- 521

VMM User Guide

‘vmm_unit_config*

This section describes the following macros:

• “`vmm_unit_config_begin(<classname>)”

• “`vmm_unit_config_boolean(name, descr, verbosity, attribute)”

• “`vmm_unit_config_end(<classname>)”

• “`vmm_unit_config_int(name, dflt, descr, verbosity, attribute)”

• “`vmm_unit_config_obj(name, dflt, descr, verbosity, attribute)”

• “`vmm_unit_config_rand_boolean(name, descr, verbosity,
attribute)”

• “`vmm_unit_config_rand_int(name, dflt, descr, verbosity,
attribute)”

• “`vmm_unit_config_rand_obj(name, dflt, descr, verbosity,
attribute)”

• “`vmm_unit_config_string(name, dflt, descr, verbosity, attribute)”

`vmm_unit_config_begin(<classname>)
Macro, which indicates the beginning of the structural configuration
parameters setting in the vmm_unit::configure_ph() phase.

`vmm_unit_config_boolean(name, descr, verbosity, attribute)
Macro for setting Boolean value to the variable, with the name
specified in the argument.

It internally calls vmm_opts::get_object_bit, which uses
description and verbosity arguments as well.

A-522

VMM User Guide

The attribute argument is for future enhancements.

`vmm_unit_config_end(<classname>)
Macro, which indicates the end of the structural configuration.

`vmm_unit_config_int(name, dflt, descr, verbosity, attribute)
Macro for setting integer value to the variable, with the name
specified in the argument.

It internally calls vmm_opts::get_object_int, which uses
default value, description, and verbosity arguments as well.

The attribute argument is for future enhancements.

`vmm_unit_config_obj(name, dflt, descr, verbosity, attribute)
Macro for setting object value to the variable, with the name
specified in the argument.

It internally calls vmm_opts::get_object_obj, which uses
default value and verbosity arguments as well.

The description and attribute arguments are for future
enhancements.

`vmm_unit_config_rand_boolean(name, descr, verbosity,
attribute)
Macro for setting Boolean value to the variable, with the name
specified in the argument.

It internally calls vmm_opts::get_object_bit, which uses
description and verbosity arguments as well.

 A- 523

VMM User Guide

It also sets the rand_mode of the variable to 0, so that the value set
through configuration will not change due to randomization.

The attribute argument is for future enhancements.

`vmm_unit_config_rand_int(name, dflt, descr, verbosity,
attribute)
Macro for setting integer value to the variable, with the name
specified in the argument.

It internally calls vmm_opts::get_object_int, which uses
default value, description, and verbosity arguments as well.

It also sets the rand_mode of the variable to 0, so that the value set
through configuration will not change due to randomization.

The attribute argument is for future enhancements.

`vmm_unit_config_rand_obj(name, dflt, descr, verbosity,
attribute)
Macro for setting object value to the variable, with the name
specified in the argument.

It internally calls vmm_opts::get_object_obj, which uses
default value and verbosity arguments as well.

It also sets the rand_mode of the variable to 0, so that the value set
through configuration will not change due to randomization.

The description and attribute arguments are for future
enhancements.

A-524

VMM User Guide

`vmm_unit_config_string(name, dflt, descr, verbosity, attribute)
Macro for setting string value to the variable, with the name specified
in the argument.

It internally calls vmm_opts::get_object_string, which uses
default value, description, and verbosity arguments as well.

The attribute argument is for future enhancements.

Example A-171
class my_driver extends vmm_xactor;
 string my_name;
 rand int my_int;
 bit my_bool;

 `vmm_unit_config_begin(my_driver)
 `vmm_unit_config_string(my_name, "HELLO",
 "Sets string value", 0, DO_ALL)
 `vmm_unit_config_rand_int(my_int, 5, "Sets int value and
 switches off rand_mode", 0, DO_ALL)
 `vmm_unit_config_boolean(my_bool, "Sets/Resets boolean
 value", 0, DO_ALL)
 ‘vmm_unit_config_end(my_driver)

endclass

 B- 1

VMM User Guide

B
Standard Library Classes (Part 2) A

This appendix provides detailed information about the OpenVera
and SystemVerilog classes that compose the VMM Standard Library.
The functionality of OpenVera and SystemVerilog classes is
identical, except for the following difference:

• OpenVera methods have a prefix of rvm

• SystemVerilog methods have a prefix of vmm

Note:
Each method, explained in this appendix, uses the SystemVerilog
name in the heading to introduce it. Additionally, there are a few
instances where a _t suffix is appended to indicate that it may be
a blocking method.

B-2

VMM User Guide

Usage examples are specified in a single language, but that should
not prevent the use of the other language, as both the languages are
almost identical. Rather than providing usage examples that are
almost identical, this appendix provides different examples for each
language.

The classes are documented in alphabetical order. The methods in
each class are documented in a logical order, where methods that
accomplish similar results are documented sequentially. A summary
of all available methods, with cross-references to the page where
their detailed documentation can be found, is provided at the
beginning of each class specification.

VMM Standard Library Class List

• “vmm_phase”

• “vmm_phase_def”

• “vmm_rtl_config_DW_format”

• “vmm_rtl_config”

• “vmm_rtl_config_file_format”

• “vmm_scenario”

• “vmm_scenario_gen#(T, text)”

• “<class-name>_scenario”

• “<class-name>_atomic_scenario”

• “<class-name>_scenario_election”

• “<class-name>_scenario_gen_callbacks”

 B- 3

VMM User Guide

• “vmm_scheduler”

• “vmm_scheduler_election”

• “vmm_ss_scenario#(T)”

• “vmm_simulation”

• “vmm_subenv”

• “vmm_test”

• “vmm_test_registry”

• “vmm_timeline”

• “vmm_timeline_callbacks”

• “vmm_tlm”

• “vmm_tlm_generic_payload”

• “vmm_tlm_analysis_port#(I,D)”

• “vmm_tlm_analysis_export#(T,D)”

• “‘vmm_tlm_analysis_export(SUFFIX)”

• “vmm_tlm_b_transport_export#(T,D)”

• “vmm_tlm_b_transport_port #(I,D)”

• “vmm_tlm_export_base #(D,P)”

• “vmm_tlm_nb_transport_bw_export#(T,D,P)”

• “vmm_tlm_nb_transport_bw_port#(I,D,P)”

• “vmm_tlm_nb_transport_export#(T,D,P)”

• “vmm_tlm_nb_transport_fw_export#(T,D,P)”

B-4

VMM User Guide

• “vmm_tlm_nb_transport_fw_port#(I,D,P)”

• “vmm_tlm_nb_transport_port#(I,D,P)”

• “vmm_tlm_port_base#(D,P)”

• “vmm_tlm_initiator_socket#(I,D,P)”

• “vmm_tlm_target_socket#(T,D,P)”

• “vmm_unit”

• “vmm_version”

• “vmm_voter”

• “vmm_xactor”

• “vmm_xactor_callbacks”

• “vmm_xactor_iter”

 B- 5

VMM User Guide

vmm_phase

The vmm_phase class is used as a container for phase descriptors,
and their associated statistical information.

Summary

• vmm_phase::completed page B-6
• vmm_phase::started page B-7
• vmm_phase::get_name() page B-8
• vmm_phase::get_timeline() page B-9
• vmm_phase::is_aborted() page B-10
• vmm_phase::is_done() page B-12
• vmm_phase::is_running() page B-13
• vmm_phase::is_skipped() page B-14
• vmm_phase::next_phase() page B-16
• vmm_phase::previous_phase() page B-17

B-6

VMM User Guide

vmm_phase::completed

Phase execution completion event.

Description

This event is triggered when the execution of this phase is
completed.

Example

vmm_timeline top;
vmm_phase ph;

initial begin
 top = new("top", "top");
 ph = top.get_phase("connect");
 @(ph.completed);
 `vmm_log (log, "Completed execution of phase connect");
 ...
end

 B- 7

VMM User Guide

vmm_phase::started

Phase execution start event.

Description

This event is triggered when the execution of this phase starts.

Example

vmm_timeline top;
vmm_phase ph;

initial begin
 top = new("top", "top");
 ph = top.get_phase("connect");
 ...
 @(ph.started);
 `vmm_note(log," connect phase execution started");
 ...
end

B-8

VMM User Guide

vmm_phase::get_name()

Method to get the phase descriptor name.

SystemVerilog

function string vmm_phase::get_name()

Description

Returns the name of the phase descriptor.

Example

vmm_timeline top;
vmm_phase ph;
string ph_name;

initial begin
 top = new("top", "top");
 ph = top.get_phase("connect");
 ...
 ph_name = ph.get_name(); //returns string "connect"
 ...
end

 B- 9

VMM User Guide

vmm_phase::get_timeline()

Method to get the enclosing timeline.

SystemVerilog

function vmm_timeline vmm_phase::get_timeline()

Description

Returns the timeline, which contains this phase.

Example

vmm_timeline top;
vmm_phase ph;

initial begin
 vmm_timeline t;
 top = new("top", "top");
 ph = top.get_phase("connect");
 ...
 t = ph.get_timeline;
 ...
end

B-10

VMM User Guide

vmm_phase::is_aborted()

Method to check aborted status of the phase.

SystemVerilog

function int vmm_phase::is_aborted()

Description

Returns the number of times that the phase is aborted.

Example

class myTest extends vmm_timeline;
 function new(string name, string inst,
 vmm_object parent = null);
 super.new(name, inst, parent);
 endfunction

 task reset_ph;
 $display("%t:Starting Reset", $time);
 #5;
 $display("%t:Finishing Reset", $time);
 endtask

 task training_ph;
 #5;
 endtask

 task run_ph;
 #5;
 endtask

endclass

vmm_log log = new("test", "main");
myTest top;

 B- 11

VMM User Guide

initial begin
 vmm_phase ph_reset;

 top = new("top", "top");
 ph_reset = top.get_phase("reset");

 fork
 top.run_phase();
 join_none
 #7 top.abort_phase("training"); //aborting training
 #1 top.reset_to_phase("reset"); //aborting run
 #1 top.jump_to_phase("run"); //aborting reset,
 // skipping training-start_of_test

 #10;

 if(ph_reset.is_aborted() != 2)
 `vmm_error(log,`vmm_sformatf(
 $psprintf("Expected reset to abort 2 times,
 is_aborted returns %d",ph_reset.is_aborted))
);

B-12

VMM User Guide

vmm_phase::is_done()

Method to check completion status of the phase.

SystemVerilog

function int vmm_phase::is_done()

Description

Returns the number of times that the phase is completed.

 B- 13

VMM User Guide

vmm_phase::is_running()

Method to get execution status of the phase.

SystemVerilog

function bit vmm_phase::is_running()

Description

Returns true, if the phase is currently being executed. Always returns
false for function phases, unless called from within the phase
implementation function itself.

Example

vmm_timeline top;
vmm_phase ph;

initial
 begin
 top = new("top", "top");
 ph = top.get_phase("connect");
 ...
 wait(ph.is_running == 0);
 ...
 end

B-14

VMM User Guide

vmm_phase::is_skipped()

Returns the number of times that the phase is skipped.

SystemVerilog

function int vmm_phase::is_skipped()

Description

Returns the number of times that the phase is skipped.

Example

class myTest extends vmm_timeline;
 function new(string name, string inst,
 vmm_object parent = null);
 super.new(name, inst, parent);
 endfunction

 task reset_ph;
 $display("%t:Starting Reset", $time);
 #5;
 $display("%t:Finishing Reset", $time);
 endtask

 task training_ph;
 #5;
 endtask

 task run_ph;
 #5;
 endtask

endclass

vmm_log log = new("test", "main");
myTest top;

 B- 15

VMM User Guide

initial begin
 vmm_phase ph_training;
 top = new("top", "top");
 ph_training = top.get_phase("training");

 fork
 top.run_phase();
 join_none
 #9 top.jump_to_phase("run"); //aborting reset,
 //skipping training-start_of_test
 #10;

 if(ph_training.is_skipped() != 1)
 `vmm_error(log,`vmm_sformatf(
 $psprintf("Expected training to abort 1 times,
 is_skipped returns %d",ph_training.is_skipped))
);

B-16

VMM User Guide

vmm_phase::next_phase()

Method to get the following phase descriptor.

SystemVerilog

function vmm_phase vmm_phase::next_phase()

Description

Returns the following phase in the timeline containing this phase.
Returns null, if this is the last phase in the timeline.

Example

vmm_timeline top;
vmm_phase ph;

initial begin
 vmm_phase nx_ph;
 top = new("top", "top");
 ph = top.get_phase("connect");
 ...
 nx_ph = ph.next_phase(); //returns phase configure_test
 `vmm_note(log,`vmm_sformatf("
 %s will execute after connect",nx_ph.get_name());
 ...
end

 B- 17

VMM User Guide

vmm_phase::previous_phase()

Method to get the preceding phase descriptor.

SystemVerilog

function vmm_phase vmm_phase::previous_phase()

Description

Returns the preceding phase in the timeline containing this phase.
Returns null, if this is the first phase in the timeline.

Example

vmm_timeline top;
vmm_phase ph;

initial begin
 vmm_phase prv_ph;
 top = new("top", "top");
 ph = top.get_phase("connect");
 ...
 prv_ph = ph.previous_phase(); //returns phase configure
 `vmm_note(log,`vmm_sformatf(
 "connect will execute after %s ",prv_ph.get_name());
 ...
end

B-18

VMM User Guide

vmm_phase_def

The vmm_phase_def virtual class is extended to create a user-
defined phase.

Summary

• vmm_bottomup_function_phase_def page B-19
• vmm_bottomup_function_phase_def::do_function_phase() page B-20
• vmm_fork_task_phase_def#(T) page B-21
• vmm_fork_task_phase_def::do_task_phase() page B-22
• vmm_null_phase_def page B-23
• vmm_phase_def::is_function_phase() page B-24
• vmm_phase_def::is_task_phase() page B-25
• vmm_phase_def::run_function_phase() page B-26
• vmm_phase_def::run_task_phase() page B-27
• vmm_reset_xactor_phase_def page B-28
• vmm_start_xactor_phase_def page B-30
• vmm_stop_xactor_phase_def page B-32
• vmm_topdown_function_phase_def page B-34
• vmm_topdown_function_phase_def::do_function_phase() page B-35
• vmm_xactor_phase_def page B-36

 B- 19

VMM User Guide

vmm_bottomup_function_phase_def

Predefined bottom-up phase definition.

SystemVerilog

class vmm_bottomup_function_phase_def #(type T)
 extends vmm_function_phase_def

Description

Implements the vmm_phase_def::run_function_phase(). To
call the
vmm_bottomup_function_phase_def::do_function_phas
e() method on any object of specified type, within the vmm_object
hierarchy under the specified root, in a bottom-up order.

B-20

VMM User Guide

vmm_bottomup_function_phase_def::do_function_phase()

Method to execute an object for particular phase execution.

SystemVerilog

virtual function void
 vmm_bottomup_function_phase_def::do_function_phase(T obj)

Description

Implementation of the function phase on an object of the specified
type. You can choose to execute some non-delay processes of a
specified object in this method, of a new phase definition class
extended from this class.

Example

class udf_phase_def extends
 vmm_bottomup_function_phase_def;
 function void do_function_phase(vmm_unit un1);
 un1.my_method();
 endfunction
endclass

 B- 21

VMM User Guide

vmm_fork_task_phase_def#(T)

Predefined task based phase definition.

class vmm_fork_task_phase_def #(type T) extends
 vmm_task_phase_def

SystemVerilog

Description

Implements the vmm_phase_def::run_task_phase(). To make
a call to the vmm_fork_task_phase_def::do_task_phase()
method on any object of a specified type, within the vmm_object
hierarchy, under the specified root in a top-down order.

B-22

VMM User Guide

vmm_fork_task_phase_def::do_task_phase()

Method to execute on object for particular phase execution.

SystemVerilog

virtual task vmm_fork_task_phase_def::do_task_phase(T obj)

Description

Implementation of the task phase on an object of the specified type.
You can choose to execute time-consuming processes in this
method, of a new phase definition class extended from this class.

Example

class udf_phase_def extends vmm_fork_task _phase_def;
 task do_task_phase(vmm_unit un1);
 un1.my_method();
 endtask
endclass

 B- 23

VMM User Guide

vmm_null_phase_def

Predefined null phase definition.

SystemVerilog

class vmm_null_phase_def extends vmm_phase_def

Description

Implements empty vmm_phase_def::run_function_phase()
and vmm_phase_def::run_task_phase(). Typically used to
override a predefined phase to skip its predefined implementation for
a specific vmm_unit instance.

Example

class myphase_def extends
 vmm_null_phase_def #(groupExtension);
endclass : myphase_def
myphase_def null_ph = new();
group_extension m1 = new("groupExtension","m1");
`void(m1.override_phase("configure",null_ph));
//nothing to de done for this component in configure phase

B-24

VMM User Guide

vmm_phase_def::is_function_phase()

Method to check the type of phase definition (check if it is a function).

SystemVerilog

virtual function bit vmm_phase_def::is_function_phase()

Description

Returns true, if this phase is executed by calling the
vmm_phase_def::run_function_phase() method. Otherwise,
it returns false.

Example

virtual class user_function_phase_def #(
 user_function_phase_def) extends
 vmm_topdown_function_phase_def;
 function bit is_function_phase();
 return 1;
 endfunction:is_function_phase
endclass

 B- 25

VMM User Guide

vmm_phase_def::is_task_phase()

Method to check type of phase definition (check if it is a task).

SystemVerilog

virtual function bit vmm_phase_def::is_task_phase()

Description

Returns true, if this phase is executed by calling the
vmm_phase_def::run_task_phase() method. Otherwise, it
returns false.

Example

virtual class user_task_phase_def #(user_task_phase_def)
 extends vmm_fork_task_phase_def;
 function bit is_task_phase();
 return 1;
 endfunction:is_task_phase
endclass

B-26

VMM User Guide

vmm_phase_def::run_function_phase()

Method to execute phase definition, used by timeline.

SystemVerilog

virtual function void run_function_phase(string name,
 vmm_object obj,
 vmm_log log);

Description

Executes the function phase, under the specified name on the
specified object. This method must be overridden, if the
vmm_phase_def::is_function_phase() method returns true.

The argument log is the message interface instance to be used by
the phase for reporting information.

Example

virtual class user_function_phase_def #(
 user_function_phase_def)
 extends vmm_topdown_function_phase_def;
 function bit is_function_phase();
 return 1;
 endfunction:is_function_phase

 function run_function_phase(string name,
 vmm_object root, vmm_log log);
 `vmm_note(log,`vmm_sformatf(
 "Executing phase %s for %s", name,
 root.get_object_name());
 endfuction
endclass

 B- 27

VMM User Guide

vmm_phase_def::run_task_phase()

Method to execute phase definition, used by timeline.

SystemVerilog

virtual task run_task_phase(string name,
 vmm_object obj,
 vmm_log log);

Description

Executes the task phase, under the specified name on the specified
root object. This method must be overridden if the
vmm_phase_def::is_task_phase() method returns true.

The argument log is the message interface instance to be used by
the phase for reporting information.

Example

virtual class user_task_phase_def #(user_task_phase_def)
 extends vmm_fork_task_phase_def;
 function bit is_task_phase();
 return 1;
 endfunction:is_task_phase
 task run_task_phase(string name, vmm_object root,
 vmm_log log);
 `vmm_note(log,`vmm_sformatf(
 "Executing phase %s for %s", name,
 root.get_object_name());
 endtask

endclass

B-28

VMM User Guide

vmm_reset_xactor_phase_def

Predefined vmm_reset_xactor phase definition class.

SystemVerilog

class vmm_reset_xactor_phase_def extends
 vmm_xactor_phase_def;

Description

Implements the
vmm_reset_xactor_phase_def::do_function_phase().
This function calls the reset_xactor() function, on a specified
object of type vmm_xactor.

Example

class consumer extends vmm_xactor ;
 packet_channel in_chan;
 function new(string inst, packet_channel in_chan);
 super.new("consumer", inst);
 this.in_chan = in_chan;
 endfunction
 ...
 ...

class consumer_timeline #(string phase = "reset") extends
 vmm_timeline;
 `vmm_typename(consumer_timeline)
 consumer xactor;
 packet_channel chan;

 function new (string inst, packet_channel chan,
 vmm_unit parent = null);
 super.new(get_typename(),inst, parent);
 this.chan = chan;

 B- 29

VMM User Guide

 endfunction

 function void build_ph;
 xactor = new("xactor", chan);
 xactor.set_parent_object(this);
 endfunction

 function void connect_ph;
 vmm_reset_xactor_phase_def reset = new(
 "consumer","xactor");
 void’(this.insert_phase(phase,phase, reset));
 endfunction
 ...
 ...
endclass

consumer_timeline #("reset") ctl = new("ctl", chan);

B-30

VMM User Guide

vmm_start_xactor_phase_def

Predefined vmm_start_xactor phase definition class.

SystemVerilog

class vmm_start_xactor_phase_def extends
 vmm_xactor_phase_def;

Description

Implements the
vmm_start_xactor_phase_def::do_function_phase().
This function calls the start_xactor() function, on specified
object of type vmm_xactor.

Example

class consumer extends vmm_xactor ;
 packet_channel in_chan;
 function new(string inst, packet_channel in_chan);
 super.new("consumer", inst);
 this.in_chan = in_chan;
 endfunction
 ...
 ...

class consumer_timeline #(string phase = "start") extends
 vmm_timeline;
 `vmm_typename(consumer_timeline)
 consumer xactor;
 packet_channel chan;

 function new (string inst, packet_channel chan,
 vmm_unit parent = null);
 super.new(get_typename(),inst, parent);
 this.chan = chan;

 B- 31

VMM User Guide

 endfunction

 function void build_ph;
 xactor = new("xactor", chan);
 xactor.set_parent_object(this);
 endfunction

 function void connect_ph;
 vmm_start_xactor_phase_def start = new(
 "consumer","xactor");
 void’(this.insert_phase(phase, phase, start));
 enfunction
 ...
 ...
 endclass

consumer_timeline #("start") ctl = new("ctl", chan);

B-32

VMM User Guide

vmm_stop_xactor_phase_def

Predefined vmm_stop_xactor phase definition class.

SystemVerilog

class vmm_stop_xactor_phase_def extends
 vmm_xactor_phase_def;

Description

Implements the
vmm_stop_xactor_phase_def::do_function_phase().
This function calls the stop_xactor() function on a specified
object of type vmm_xactor.

Example

class consumer extends vmm_xactor ;
 packet_channel in_chan;
 function new(string inst, packet_channel in_chan);
 super.new("consumer", inst);
 this.in_chan = in_chan;
 endfunction
 ...
 ...

class consumer_timeline #(string phase = "stop") extends
 vmm_timeline;
 `vmm_typename(consumer_timeline)
 consumer xactor;
 packet_channel chan;

 function new (string inst, packet_channel chan,
 vmm_unit parent = null);
 super.new(get_typename(),inst, parent);
 this.chan = chan;

 B- 33

VMM User Guide

 endfunction

 function void build_ph;
 xactor = new("xactor", chan);
 xactor.set_parent_object(this);
 endfunction

 function void connect_ph;
 vmm_stop_xactor_phase_def stop = new(
 "consumer","xactor");
 void’(this.insert_phase(phase,phase, stop));
 endfunction
 ...
 ...
endclass

consumer_timeline #("shutdown") ctl = new("ctl", chan);

B-34

VMM User Guide

vmm_topdown_function_phase_def

Predefined top-down phase definition.

SystemVerilog

class vmm_topdown_function_phase_def #(type T=vmm_object)
extends vmm_phase_def;

Description

Implements the vmm_phase_def::run_function_phase(). To
call the
vmm_topdown_function_phase_def::do_function_phase
() method on any object of specified type within the vmm_object
hierarchy under the specified root in a top-down order.

 B- 35

VMM User Guide

vmm_topdown_function_phase_def::do_function_phase()

Method to execute an object for particular phase execution.

SystemVerilog

virtual function void
 vmm_topdown_function_phase_def::do_function_phase(T obj)

Description

Implementation of the function phase on an object of the specified
type.

You can choose to execute some non-delay processes of the
specified object in this method, of a new phase definition class
extended from this class.

Example

class udf_phase_def extends vmm_topdown_function_phase_def;
 function void do_function_phase(vmm_unit un1);
 un1.my_method();
 endfunction
endclass

B-36

VMM User Guide

vmm_xactor_phase_def

Predefined vmm_xactor phase definition class.

SystemVerilog

class vmm_xactor_phase_def #(type T=vmm_xactor) extends
vmm_phase_def;

Description

Implements the
vmm_xactor_phase_def::run_function_phase(), to call
the vmm_xactor_phase_def::do_function_phase() method
on any object of specified type within the vmm_object hierarchy,
with specified name or instance.

 B- 37

VMM User Guide

vmm_rtl_config_DW_format

Predefined implementation for an RTL configuration parameter,
using the DesignWare Implementation IP file format.

SystemVerilog

class vmm_rtl_config_DW_format extends
 vmm_rtl_config_file_format

B-38

VMM User Guide

vmm_rtl_config

This is the base class for RTL configuration and extends
vmm_object. This class is for specifying RTL configuration
parameters. A different class from other parameters that use the
vmm_opts class is used, because these parameters must be
defined at compile time and may not be modified at runtime.

Example

class ahb_master_config extends vmm_rtl_config;
 rand int addr_width;
 rand bit mst_enable;
 string kind = "MSTR";

 constraint cst_mst {
 addr_width == 64;
 mst_enable == 1;
 }
 `vmm_rtl_config_begin(ahb_master_config)
 `vmm_rtl_config_int(addr_width, mst_width)
 `vmm_rtl_config_boolean(mst_enable, mst_enable)
 `vmm_rtl_config_string(kind, kind)
 `vmm_rtl_config_end(ahb_master_config)

 function new(string name = "", vmm_rtl_config parent =
 null);
 super.new(name, parent);
 endfunction
endclass

Summary

• vmm_rtl_config::build_config_ph() page B-40
• vmm_rtl_config::default_file_fmt page B-41
• vmm_rtl_config::file_fmt page B-42
• vmm_rtl_config::get_config() page B-43
• vmm_rtl_config::get_config_ph() page B-44
• ‘vmm_rtl_config_* page B-45
• vmm_rtl_config::map_to_name() page B-46

 B- 39

VMM User Guide

• vmm_rtl_config::save_config_ph() page B-48

B-40

VMM User Guide

vmm_rtl_config::build_config_ph()

Builds RTL configuration parameters.

SystemVerilog

virtual function void vmm_rtl_config::build_config_ph()

Description

Builds the structure of RTL configuration parameters for hierarchical
RTL designs.

Example

class env_config extends vmm_rtl_config;
 rand ahb_master_config mst_cfg;
 rand ahb_slave_config slv_cfg;
 ...
 function void build_config_ph();
 mst_cfg = new("mst_cfg", this);
 slv_cfg = new("slv_cfg", this);
 endfunction
 ...
endclass

 B- 41

VMM User Guide

vmm_rtl_config::default_file_fmt

Default RTL configuration file format.

SystemVerilog

static vmm_rtl_config_file_format
 vmm_rtl_config::default_file_fmt

Description

Default RTL configuration file format writer or parser. Used if the
vmm_rtl_config::file_fmt is null.

Example

class def_rtl_config_file_format extends
 vmm_rtl_config_file_format;
endclass

intial begin
 def_rtl_config_file_format dflt_fmt = new();
 vmm_rtl_config::default_file_fmt = dflt_fmt;
end

B-42

VMM User Guide

vmm_rtl_config::file_fmt

RTL configuration file format.

SystemVerilog

protected vmm_rtl_config_file_format
 vmm_rtl_config::file_fmt

Description

The RTL configuration file format writer or parser for this instance.

Example

//protected vmm_rtl_config_file_format vmm_rtl_config ::
 file_fmt
class ahb_rtl_config_file_format extends
 vmm_rtl_config_file_format;
endclass

class env_config extends vmm_rtl_config;
 rand ahb_master_config mst_cfg;
 ahb_rtl_config_file_format ahb_file_fmt;

 function void build_config_ph();
 mst_cfg = new("mst_cfg", this);
 ahb_file_fmt = new;
 mst_cfg.file_fmt = ahb_file_format;
 endfunction
endclass

 B- 43

VMM User Guide

vmm_rtl_config::get_config()

Returns a vmm_rtl_config object for the specified vmm_object.

SystemVerilog

static function vmm_rtl_config::get_config(vmm_object obj,
 string fname = "", int lineno = 0)

Description

Gets the instance of the specified class extended from the
vmm_rtl_config class, whose hierarchical name in the “VMM RTL
Config” namespace is identical to the hierarchical name of the
specified object. This allows a component to retrieve its instance-
configuration, without having to know where it is located in the
testbench hierarchy.

The fname and lineno arguments are used to track the file name
and the line number where get_config is invoked from.

Example

class ahb_master extends vmm_group;
 ahb_master_config cfg;
 function void configure_ph();
 $cast(cfg, vmm_rtl_config::get_config(this,
 `__FILE__, `__LINE__));
 endfunction
endclass

B-44

VMM User Guide

vmm_rtl_config::get_config_ph()

Sets the RTL configuration parameters.

SystemVerilog

virtual function void vmm_rtl_config::get_config_ph()

Description

Reas a configuration file and sets the current value of members to
the corresponding RTL configuration parameters. The filename may
be computed using the value of the +vmm_rtl_config option,
using the vmm_opts::get_string("rtl_config”") method
and the hierarchical name of this vmm_object instance.

A default implementation of this method is created, if the
`vmm_rtl_config_*() shorthand macros are used.

 B- 45

VMM User Guide

‘vmm_rtl_config_*

`vmm_rtl_config_begin(classname)
`vmm_rtl_config_boolean(name, fname)
`vmm_rtl_config_int(name, fname)
`vmm_rtl_config_string(name, fname)
`vmm_rtl_config_obj(name)
`vmm_rtl_config_end(classname)

Macros for accessing RTL configuration parameters with default
implementations.

Description

Type-specific, shorthand macros providing a default implementation
for setting, randomizing, and saving RTL parameter members. The
name is the name of the member in the class. The fname is the
name of the RTL configuration parameter in the RTL configuration
file.

Example

class ahb_master_config extends vmm_rtl_config;
 rand int addr_width;
 rand bit mst_enable;
 string kind = "MSTR";
 `vmm_rtl_config_begin(ahb_master_config)
 `vmm_rtl_config_int(addr_width, mst_width)
 `vmm_rtl_config_boolean(mst_enable, mst_enable)
 `vmm_rtl_config_string(kind, kind)
 `vmm_rtl_config_end(ahb_master_config)
endclass

B-46

VMM User Guide

vmm_rtl_config::map_to_name()

Maps the specified name to the object name.

SystemVerilog

function void vmm_rtl_config::map_to_name(string name)

Description

Use the specified name for this instance of the configuration
descriptor, instead of the object name, when looking for relevant
vmm_rtl_config instances in the RTL configuration hierarchy.
The specified name is used as the object name in the “VMM RTL
Config” namespace. When argument name is passed as caret (^) for
any particular configuration descriptor, that configuration descriptor
becomes a root object under "VMM RTL Config".

Example

class ahb_master_config extends vmm_rtl_config;
 function new(string name = "", vmm_rtl_config parent =
 null);
 super.new(name, parent);
 endfunction
endclass

class env_config extends vmm_rtl_config;
 rand ahb_master_config mst_cfg;
 function void build_config_ph();
 mst_cfg = new("mst_cfg", this);
 endfunction
endclass

initial begin
 env_config env_cfg = new("env_cfg");
 env_cfg.mst_cfg.map_to_name("env:mst");

 B- 47

VMM User Guide

end

B-48

VMM User Guide

vmm_rtl_config::save_config_ph()

Saves the RTL configuration parameters in a file.

SystemVerilog

virtual function void vmm_rtl_config::save_config_ph()

Description

Creates a configuration file that specifies the RTL configuration
parameters corresponding to the current value of the class
members. The filename may be computed using the value of the
+vmm_rtl_config option, using the
vmm_opts::get_string("rtl_config") method and the
hierarchical name of this vmm_object instance.

A default implementation of this method is created, if the
`vmm_rtl_config_*() shorthand macros are used.

 B- 49

VMM User Guide

vmm_rtl_config_file_format

Base class for RTL configuration file format.

SystemVerilog

virtual class vmm_rtl_config_file_format

Description

This is the base class for RTL configuration file writer or parser. May
be used to simplify the task of implementing the
vmm_rtl_config::get_config_ph() and
vmm_rtl_config::save_config_ph() methods.

Example

class rtl_config_file_format extends
vmm_rtl_config_file_format;
 virtual function bit fopen(vmm_rtl_config cfg,
 string mode,string fname = "",int lineno = 0);
 string filename = {cfg.prefix, ":",
 cfg.get_object_hiername(), ".rtl_conf"};
 vmm_rtl_config::file_ptr = $fopen(filename, mode);
 if (vmm_rtl_config::file_ptr == 0) return 0;
 else return 1;
 endfunction

 function string get_val(string str);
 if (`vmm_str_match(str, " : ")) begin
 string fname = `vmm_str_prematch(str);
 string fval = `vmm_str_postmatch(str);
 if (`vmm_str_match(fval, ";")) begin
 fval = `vmm_str_prematch(fval);
 end
 return fval;
 end

B-50

VMM User Guide

 endfunction

 virtual function bit read_int(string name,
 output int value);
 int r;
 string str;
 $display("Calling read_int for %s", name);
 r = $freadstr(str, vmm_rtl_config::file_ptr);
 str = get_val(str);
 value = str.atoi();
 $display("Got %0d for %s", value, name);
 return (r != 0);
 endfunction

 virtual function bit write_int(string name, int value);
 $fwrite(vmm_rtl_config::file_ptr, "%s : %0d;\n",
 name, value);
 return 1;
 endfunction

 virtual function void fclose();
 $fclose(vmm_rtl_config::file_ptr);
 endfunction

endclass

Summary

• vmm_rtl_config_file_format ::fclose() page B-51
• vmm_rtl_config_file_format::fname() page B-52
• vmm_rtl_config_file_format::fopen() page B-53
• vmm_rtl_config_file_format::get_fname() page B-54
• vmm_rtl_config_file_format::read_bit() page B-55
• vmm_rtl_config_file_format::read_int() page B-56
• vmm_rtl_config_file_format::read_string() page B-57
• vmm_rtl_config_file_format::write_bit() page B-58
• vmm_rtl_config_file_format::write_int() page B-59
• vmm_rtl_config_file_format::write_string() page B-60

 B- 51

VMM User Guide

vmm_rtl_config_file_format ::fclose()

Closes the RTL configuration file.

SystemVerilog

pure virtual function void vmm_rtl_config_file_format
 ::fclose()

Description

Closes the configuration file that was previously opened. An
implementation may choose to internally cache the information
written to the file using the write_*() methods, and physically
write the file just before closing it.

Example

class rtl_config_file_format extends
 vmm_rtl_config_file_format;
 ...
 virtual function void fclose();
 $fclose(vmm_rtl_config::Xfile_ptrX);
 endfunction
 ...
endclass

B-52

VMM User Guide

vmm_rtl_config_file_format::fname()

Computes the filename that contains the RTL configuration
parameter for the specified instance of the RTL configuration
descriptor.

SystemVerilog

virtual protected function string
 vmm_rtl_config_file_format::fname(vmm_rtl_config cfg)

Description

Computes the filename that contains the RTL configuration
parameter for the specified instance of the RTL configuration
descriptor. By default, concatenates the value of the
+vmm_rtl_config option and the hierarchical name of the
specified RTL configuration descriptor, separating the two parts with
a slash (/) and appending a .cfg suffix.

 B- 53

VMM User Guide

vmm_rtl_config_file_format::fopen()

Opens an RTL config file.

SystemVerilog

pure virtual function bit vmm_rtl_config_file_format ::
 fopen(vmm_rtl_config cfg, string mode,
 string fname = "", int lineno = 0)

Description

Opens the configuration file corresponding to the specified RTL
configuration descriptor in the specified mode (r or w). The filename
may be computed using the value of the +vmm_rtl_config option,
using the vmm_opts::get_string("rtl_config") method
and the name of specified RTL configuration descriptor. Returns
true, if the file was successfully opened. If the file is open for read, it
may be immediately parsed and its content internally cached. The
fname and lineno arguments are used to track the file name and
the line number where get_config is invoked from.

Example

class rtl_config_file_format extends
 vmm_rtl_config_file_format;
 virtual function bit fopen(vmm_rtl_config cfg,
 string mode,string fname = "", int lineno = 0);
 string filename = {cfg.prefix, ":",
 cfg.get_object_hiername(), ".rtl_conf"};
 vmm_rtl_config::Xfile_ptrX = $fopen(filename, mode);
 if (vmm_rtl_config::file_ptr == 0) return 0;
 else return 1;
 endfunction
 ...
endclass

B-54

VMM User Guide

vmm_rtl_config_file_format::get_fname()

Returns the name of the configuration file, which is currently opened.
Returns "", if the file is not opened.

SystemVerilog

pure virtual function string vmm_rtl_config_file_format
 ::get_fname()

Description

Returns the name of the configuration file, which is currently opened.
Return "", if the file is not opened.

 B- 55

VMM User Guide

vmm_rtl_config_file_format::read_bit()

Reads a boolean variable from the RTL configuration file.

SystemVerilog

pure virtual function bit vmm_rtl_config_file_format
 ::read_bit(string name, output bit value)

Description

Returns a boolean value with the specified name, from the RTL
configuration file.

Example

class rtl_config_file_format extends
vmm_rtl_config_file_format;
 ...
 virtual function bit read_bit(string name,
 output bit value);
 int r;
 string str;
 r = $freadstr(str, vmm_rtl_config::Xfile_ptrX);
 str = get_val(str);
 value = str.atoi();
 $display("Got %b for %s", value, name);
 return (r != 0);
 endfunction
 ...
endclass

B-56

VMM User Guide

vmm_rtl_config_file_format::read_int()

Reads an integer variable from the RTL configuration file.

SystemVerilog

pure virtual function bit vmm_rtl_config_file_format
 ::read_int(string name, output int value)

Description

Returns an integer value with the specified name, from the RTL
configuration file.

Example

class rtl_config_file_format extends
vmm_rtl_config_file_format;
 ...
 virtual function bit read_int(string name,
 output int value);
 int r;
 string str;
 $display("Calling read_int for %s", name);
 r = $freadstr(str, vmm_rtl_config::Xfile_ptrX);
 str = get_val(str);
 value = str.atoi();
 $display("Got %0d for %s", value, name);
 return (r != 0);
 endfunction
 ...
endclass

 B- 57

VMM User Guide

vmm_rtl_config_file_format::read_string()

Returns a string value with the specified name, from the RTL
configuration file.

SystemVerilog

pure virtual function bit vmm_rtl_config_file_format
 ::read_string(string name, output string value)

Description

Sets the value argument to the value of the named RTL
configuration parameter, as specified in the file. Returns true, if a
value for the parameter was found in the file. Otherwise, it returns
false. An implementation may require that the parameters be read in
the same order, as they are found in the file.

Example

class rtl_config_file_format extends
vmm_rtl_config_file_format;
 ...
 virtual function bit read_string(string name,
 output string value);
 int r;
 string str;
 $display("Calling read_string for %s", name);
 r = $freadstr(str, vmm_rtl_config::Xfile_ptrX);
 value = get_val(str);
 $display("Got %s for %s", value, name);
 return (r != 0);
 endfunction
 ...
endclass

B-58

VMM User Guide

vmm_rtl_config_file_format::write_bit()

Writes a boolean name and value to the RTL config file.

SystemVerilog

pure virtual function bit vmm_rtl_config_file_format
 ::write_bit(string name, bit value)

Description

Writes a name and boolean value to the RTL configuration file.
Returns true, if the parameter was not previously written. Otherwise,
it returns false. An implementation may physically write the
parameter values in the file in a different order, than if they were
written using these methods.

Example

class rtl_config_file_format extends
 vmm_rtl_config_file_format;
 ...
 virtual function bit write_bit(string name, bit value);
 $fwrite(vmm_rtl_config::Xfile_ptrX, "%s : %b;\n",
 name, value);
 return 1;
 endfunction
 ...
endclass

 B- 59

VMM User Guide

vmm_rtl_config_file_format::write_int()

Writes an integer name and value to the RTL config file.

SystemVerilog

pure virtual function bit vmm_rtl_config_file_format
::write_int(string name, int value)

Description

Writes the name and integer value in the RTL configuration file.
Returns true, if the parameter was not previously written. Otherwise,
it returns false. An implementation may physically write the
parameter values in the file in a different order, than if they were
written using these methods.

Example

class rtl_config_file_format extends
 vmm_rtl_config_file_format;
 ...
 virtual function bit write_int(string name, int value);
 $fwrite(vmm_rtl_config::Xfile_ptrX, "%s : %0d;\n",
 name, value);
 return 1;
 endfunction
 ...
endclass

B-60

VMM User Guide

vmm_rtl_config_file_format::write_string()

Writes the specified value for the named RTL configuration
parameter.

SystemVerilog

pure virtual function bit vmm_rtl_config_file_format
 ::write_string(string name, string value)

Description

Writes the specified value for the named RTL configuration
parameter. Returns true, if the parameter was not previously written.
Otherwise, it returns false. An implementation may physically write
the parameter values in the file in a different order, than if they were
written using these methods.

Example

class rtl_config_file_format extends
 vmm_rtl_config_file_format;
 ...
 virtual function bit write_string(string name,
 string value);
 $fwrite(vmm_rtl_config::Xfile_ptrX, "%s : %s;\n",
 name, value);
 return 1;
 endfunction
 ...
endclass

 B- 61

VMM User Guide

vmm_scenario

Base class for all user-defined scenarios. This class extends from
vmm_data.

Summary

• vmm_scenario::get_parent_scenario() page B-62
• vmm_scenario::define_scenario() page B-64
• vmm_scenario::length page B-66
• vmm_scenario::psdisplay() page B-67
• vmm_scenario::redefine_scenario() page B-68
• vmm_scenario::repeat_thresh page B-69
• vmm_scenario::repeated page B-70
• vmm_scenario::repetition page B-72
• vmm_scenario::scenario_id page B-73
• vmm_scenario::scenario_kind page B-74
• vmm_scenario::scenario_name() page B-75
• vmm_scenario::set_parent_scenario() page B-76
• vmm_scenario::stream_id page B-77
• ‘vmm_scenario_new() page B-78
• ‘vmm_scenario_member_begin() page B-80
• ‘vmm_scenario_member_end() page B-82
• ‘vmm_scenario_member_enum*() page B-83
• ‘vmm_scenario_member_handle*() page B-85
• ‘vmm_scenario_member_scalar*() page B-87
• ‘vmm_scenario_member_string*() page B-89
• ‘vmm_scenario_member_vmm_data*() page B-91
• ‘vmm_scenario_member_user_defined() page B-93
• ‘vmm_scenario_member_vmm_scenario() page B-94

B-62

VMM User Guide

vmm_scenario::get_parent_scenario()

Returns the higher-level hierarchical scenario.

SystemVerilog

function vmm_scenario get_parent_scenario()

OpenVera

Not supported.

Description

Returns the single stream or multiple-stream scenario that was
specified as the parent of this scenario. A scenario with no parent is
a top-level scenario.

Example

Example B-1
class atm_cell extends vmm_data;
 ...
endclass

`vmm_scenario_gen(atm_cell, "atm trans")

program test_scenario;
 ...
 atm_cell_scenario parent_scen = new;
 atm_cell_scenario child_scen = new;
 ...
 initial begin
 ...
 vmm_log(log,"Setting parent to a child scenarion \n");
 child.scen.set_parent_scenario(parent_scen);

 B- 63

VMM User Guide

 ...
 if(child_scen.get_parent_scenario() == parent_scen)
 vmm_log(log,"Child scenario has proper parent \n");
 ...
 else
 vmm_log(log,"Child scenario has improper parent \n");
 ...
 end
endprogram

B-64

VMM User Guide

vmm_scenario::define_scenario()

Defines a new scenario kind.

SystemVerilog

function int unsigned define_scenario(string name,
int unsigned max_len=0);

OpenVera

Not supported.

Description

Defines a new scenario kind that is included in this scenario
descriptor, and returns a unique scenario kind identifier. The
“vmm_scenario::scenario_kind” data member randomly
selects one of the defined scenario kinds. The new scenario kind
may contain up to the specified number of random transactions.

The scenario kind identifier should be stored in a state variable that
can then be subsequently used to specify the kind-specific
constraints.

Example

Example B-2
`vmm_scenario_gen(atm_cell, "atm trans")

class my_scenario extends atm_cell_scenario;
 int unsigned START_UP_SEQ;
 int unsigned RESET_SEQ;
 ...
 function new()

 B- 65

VMM User Guide

 START_UP_SEQ = define_scenario("START_UP_SEQ",5);
 RESET_SEQ = define_scenario("RESET_SEQ",11);
 ...
 endfunction
 ...
endclass

B-66

VMM User Guide

vmm_scenario::length

Length of the scenario.

SystemVerilog

rand int unsigned length

OpenVera

Not supported.

Description

Random number of transaction descriptor in this random scenario.
Constrained to be less than or equal to the maximum number of
transactions in the selected scenario kind.

Example

Example B-3
`vmm_scenario_gen(atm_cell, "atm trans")

class my_scenario extends atm_cell_scenario;
 ...
 constraint scen_length {
 if (scenario_kind == START_UP_SEQ)
 { length == 2 } ;
 ... }
endclass

 B- 67

VMM User Guide

vmm_scenario::psdisplay()

Creates an image of the scenario descriptor.

SystemVerilog

virtual function string psdisplay(string prefix = "")

OpenVera

Not supported.

Description

Creates human-readable image of the content of the scenario
descriptor.

Example

Example B-4
class my_scenario extends atm_cell_scenario;
 int unsigned START_UP_SEQ;
 function new()
 redefine_scenario(this.START_UP_SEQ,"WAKE_UP_SEQ",5);
 ...
 endfunction
 ...
endclass
initial begin
 ...
 my_scenario scen_inst = new();
 ...
 $display("Data of the redefined scenario is %s \n",
 scen_inst.psdisplay());
 ...
end

B-68

VMM User Guide

vmm_scenario::redefine_scenario()

Redefines an existing scenario kind.

SystemVerilog

function void redefine_scenario(int unsigned scenario_kind,
string name, int unsigned max_len=0);

OpenVera

Not supported.

Description

Redefines an existing scenario kind, which is included in this
scenario descriptor. The scenario kind may be redefined with a
different name, or maximum number of random transactions.

Use this method to modify, refine, or replace an existing scenario
kind, in a pre-defined scenario descriptor.

Example

Example B-5
class my_scenario extends atm_cell_scenario;
 int unsigned START_UP_SEQ;
 ...
 function new()
 redefine_scenario(this.START_UP_SEQ,"WAKE_UP_SEQ",5);
 ...
 endfunction
 ...
endclass

 B- 69

VMM User Guide

vmm_scenario::repeat_thresh

Repetition warning threshold.

SystemVerilog

static int unsigned repeat_thresh

OpenVera

Not supported.

Description

Specifies a threshold value that triggers a warning about possibly
unconstrained “vmm_scenario::repeated” data member.
Defaults to 100.

Example

Example B-6
`vmm_scenario_gen(atm_cell, "atm trans")

class my_scenario extends atm_cell_scenario;
 ...
 constraint scen_rep_thresh
 {
 if (scenario_kind == START_UP_SEQ)
 { //Note: Default constraint is 100 for repeat_thresh.
 repeat_thresh < 120 } ;
 ...
 }
endclass

B-70

VMM User Guide

vmm_scenario::repeated

Scenario identifier of the randomizing generator.

SystemVerilog

rand int unsigned repeated

OpenVera

Not supported.

Description

The number of time the entire scenario is repeated. A repetition
value of zero specifies that the scenario will not be repeated, and will
be applied only once.

Constrained to zero, by default, by the
“vmm_scenario::repetition” constraint block.

Note:It is best to repeat the same transaction, instead of creating a
scenario of many transactions constrained to be identical.

Example

Example B-7
`vmm_scenario_gen(atm_cell, "atm trans")

class my_scenario extends atm_cell_scenario;
 ...
 constraint scen_repetitions
 {
 if (scenario_kind == START_UP_SEQ)
 { //Note: Default constraint is 0 for repeated.

 B- 71

VMM User Guide

 repeated < 4 } ;
 ...
 }
endclass

B-72

VMM User Guide

vmm_scenario::repetition

Constraint preventing the scenario, from being repeated.

SystemVerilog

constraint repetition {
 repeated == 0;
}

OpenVera

Not supported.

Description

The “vmm_scenario::repeated” data member specifies the
number of times a scenario is repeated. It is not often used, but if left
unconstrained, can cause stimulus to be erroneously repeatedly
applied over two billion times on an average.

This constraint block constrains this data member to prevent
repetition, by default. To have a scenario be repeated a random
number of times, override this constraint block.

Example

Example B-8
class many_atomic_scenario
 extends eth_frame_atomic_scenario;
 constraint repetition {repeated < 10;}
endclass

 B- 73

VMM User Guide

vmm_scenario::scenario_id

Scenario identifier of the randomizing generator.

SystemVerilog

int scenario_id

OpenVera

Not supported.

Description

This data member is set by the scenario generator, before
randomization to the current scenario counter value of the generator.
This state variable can be used to specifiy scenario-specific
constraints, or to identify the order of different scenarios within a
stream.

Example

Example B-9
class atm_cell extends vmm_data;
 rand int payload[3];
 ...
endclass
`vmm_scenario_gen(atm_cell, "atm trans")
class atm_cell_ext extends atm_cell;
 ...
 constraint test {
 payload[1] == scenario_id;
 ...
 }
endclass

B-74

VMM User Guide

vmm_scenario::scenario_kind

Scenario kind identified.

SystemVerilog

rand int unsigned scenario_kind

OpenVera

Not supported.

Description

Used to randomly select one of the scenario kinds, which is defined
in this random scenario descriptor.

Example

Example B-10
`vmm_scenario_gen(atm_cell, "atm trans")

class my_scenario extends atm_cell_scenario;
 ...
 constraint start_up_const {
 (trans_type == 0) -> {scenario_kind inside
 {RESET_SEQ,START_UP_SEQ}};
 ...
 }
endclass

 B- 75

VMM User Guide

vmm_scenario::scenario_name()

Returns the name of a scenario kind.

SystemVerilog

function string scenario_name(int unsigned scenario_kind);

OpenVera

Not supported.

Description

Returns the name of the specified scenario kind, as defined by the
“vmm_scenario::define_scenario()” or
“vmm_scenario::redefine_scenario()” methods.

Example

Example B-11
class my_scenario extends atm_cell_scenario;
 int unsigned START_UP_SEQ;
 ...
 function new()
 redefine_scenario(this.START_UP_SEQ,"WAKE_UP_SEQ",5);
 ...
 endfunction
 ...
 function post_randomize();
 $display("Name of the redefined scenario is %s \n",
 scenario_name(scenario_kind));
 ...
 endfunction
endclass

B-76

VMM User Guide

vmm_scenario::set_parent_scenario()

Defines higher-level hierarchical scenario.

SystemVerilog

function void set_parent_scenario(
vmm_scenario parent)

OpenVera

Not supported.

Description

Specifies the single stream or multiple-stream scenario that is the
parent of this scenario. This allows this scenario to grab a channel
that is already grabbed by the parent scenario.

Example

Example B-12
class atm_cell extends vmm_data;
 rand int payload[3];
endclass

`vmm_scenario_gen(atm_cell, "atm trans")

program test_scenario;
 atm_cell_scenario parent_scen = new;
 atm_cell_scenario child_scen = new;
 initial begin
 vmm_log(log,"Setting parent to a child scenarion \n");
 child.scen.set_parent_scenario(parent_scen);
 end
endprogram

 B- 77

VMM User Guide

vmm_scenario::stream_id

Stream identifier of the randomizing generator.

SystemVerilog

int stream_id

OpenVera

Not supported.

Description

This data member is set by the scenario generator, before
randomization to the stream identifier of generator. This state
variable can be used to specific stream-specific constraints, or to
differentiate stimulus from different streams in a scoreboard.

Example

Example B-13
class atm_cell extends vmm_data;
 rand int payload[3];
 ...
endclass

`vmm_scenario_gen(atm_cell, "atm trans")

class atm_cell_ext extends atm_cell;
 ...
 constraint test {
 payload[0] == stream_id;
 ...}
endclass

B-78

VMM User Guide

‘vmm_scenario_new()

Start of explicit constructor implementation.

SystemVerilog

‘vmm_scenario_new(class-name)

OpenVera

Not supported.

Description

Specifies that an explicit user-defined constructor is used, instead of
the default constructor provided by the shorthand macros. Also,
declares a “vmm_log” instance that can be passed to the base
class constructor. Use this macro when data members must be
explicitly initialized in the constructor.

The class-name specified must be the name of the vmm_scenario
extension class that is being implemented.

This macro should be followed by the constructor declaration, and
must precede the shorthand data member section. This means that
it should be located before the
“‘vmm_scenario_member_begin()” macro.

Example

Example B-14
class my_scenario extends vmm_ms_scenario;
 ...
 ‘vmm_scenario_new(my_scenario)

 B- 79

VMM User Guide

 function new(vmm_scenario parent = null);
 super.new(parent)
 ...
 endfunction

 ‘vmm_scenario_member_begin(my_scenario)
 ...
 ‘vmm_scenario_member_end(my_scenario)
 ...
endclass

B-80

VMM User Guide

‘vmm_scenario_member_begin()

Start of shorthand section.

SystemVerilog

‘vmm_scenario_member_begin(class-name)

OpenVera

Not supported.

Description

Starts the shorthand section providing a default implementation for
the psdisplay(), is_valid(), allocate(), copy(), and
compare() methods. A default implementation for the constructor
is also provided unless the “‘vmm_scenario_new()” macro as
been previously specified.

The class-name specified must be the name of the vmm_scenario
extension class that is being implemented.

The shorthand section can only contain shorthand macros and must
be terminated by the “‘vmm_scenario_member_end()”
method.

Example

Example B-15
class my_scenario extends vmm_data;
 ...
 ‘vmm_scenario_member_begin(my_scenario)
 ...
 ‘vmm_scenario_member_end(my_scenario)

 B- 81

VMM User Guide

endclass

B-82

VMM User Guide

‘vmm_scenario_member_end()

End of shorthand section.

SystemVerilog

‘vmm_scenario_member_end(class-name)

OpenVera

Not supported.

Description

Terminates the shorthand section, by providing a default
implementation for the psdisplay(), is_valid(), allocate(),
copy(), and compare() methods.

The class-name specified must be the name of the vmm_scenario
extension class that is being implemented.

The shorthand section must be started by the
“‘vmm_scenario_member_begin()” method.

Example

Example B-16
class eth_scenario extends vmm_data;
 ...
 ‘vmm_scenario_member_begin(eth_scenario)
 ...
 ‘vmm_scenario_member_end(eth_scenario)
 ...
endclass

 B- 83

VMM User Guide

‘vmm_scenario_member_enum*()

The shorthand implementation for an enumerated data member.

SystemVerilog

‘vmm_scenario_member_enum(member-name,
 vmm_data::do_what_e do_what)

‘vmm_scenario_member_enum_array(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_enum_da(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_enum_aa_scalar(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_enum_aa_string(member-name,

vmm_data::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified enum-type, fixed array of enums, dynamic array
of enums, scalar-indexed associative array of enums, or string-
indexed associative array of enums data member to the default
implementation of the methods that are specified by the do_what
argument.

The shorthand implementation must be located in a section started
by “‘vmm_scenario_member_begin()” .

B-84

VMM User Guide

Example

Example B-17
typedef enum bit[1:0] {NORMAL, VLAN, JUMBO } frame_type;

class eth_scenario extends vmm_data;
 rand frame_type frame_var;
 ...
 `vmm_scenario_member_begin(eth_scenario)
 `vmm_scenario_member_enum(frame_var, DO_ALL)
 ...
 `vmm_scenario_member_end(eth_scenario)
 ...
endclass

 B- 85

VMM User Guide

‘vmm_scenario_member_handle*()

The shorthand implementation for a class handle data member.

SystemVerilog

‘vmm_scenario_member_handle(member-name,
vmm_data::do_what_e do_what)

‘vmm_scenario_member_handle_array(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_handle_da(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_handle_aa_scalar(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_handle_aa_string(member-name,

vmm_data::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified handle-type fixed array of handles, dynamic array
of handles, scalar-indexed associative array of handles, or string-
indexed associative array of handles data member to the default
implementation of the methods that are specified by the do_what
argument.

The shorthand implementation must be located in a section started
by “‘vmm_scenario_member_begin()” .

B-86

VMM User Guide

Example

Example B-18
class vlan_frame;
 ...
endclass

class eth_scenario extends vmm_data;
 vlan_frame vlan_fr_var ;
 ...
 `vmm_scenario_member_begin(eth_scenario)
 `vmm_scenario_member_vmm_handle(vlan_fr_var,
 DO_ALL,DO_DEEP)
 ...
 `vmm_scenario_member_end(eth_scenario)
 ...
endclass

 B- 87

VMM User Guide

‘vmm_scenario_member_scalar*()

The shorthand implementation for a scalar data member.

SystemVerilog

‘vmm_scenario_member_scalar(member-name,
vmm_data::do_what_e do_what)

‘vmm_scenario_member_scalar_array(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_scalar_da(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_scalar_aa_scalar(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_scalar_aa_string(member-name,

vmm_data::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified scalar-type, fixed array of scalars, dynamic array
of scalars, scalar-indexed associative array of scalars, or string-
indexed associative array of scalars data member to the default
implementation of the methods that are specified by the do_what
argument.

A scalar is an integral type, such as bit, bit vector, and packed
unions.

B-88

VMM User Guide

The shorthand implementation must be located in a section started
by “‘vmm_scenario_member_begin()” .

Example

Example B-19
class eth_scenario extends vmm_data;
 rand bit [47:0] da;
 ...
 ‘vmm_scenario_member_begin(eth_scenario)
 ‘vmm_scenario_member_scalar(da, DO_ALL);
 ...
 ‘vmm_scenario_member_end(eth_scenario)
 ...
endclass

 B- 89

VMM User Guide

‘vmm_scenario_member_string*()

The shorthand implementation for a string data member.

SystemVerilog

‘vmm_scenario_member_string(member-name,
vmm_data::do_what_e do_what)

‘vmm_scenario_member_string_array(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_string_da(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_string_aa_scalar(member-name,

vmm_data::do_what_e do_what)

‘vmm_scenario_member_string_aa_string(member-name,

vmm_data::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified string-type, fixed array of strings, dynamic array
of strings, scalar-indexed associative array of strings, or string-
indexed associative array of strings data member to the default
implementation of the methods that are specified by the do_what
argument.

The shorthand implementation must be located in a section started
by “‘vmm_scenario_member_begin()” .

B-90

VMM User Guide

Example

Example B-20
class eth_scenario extends vmm_data;
 string scen_name;
 ...
 `vmm_scenario_member_begin(eth_scenario)
 `vmm_scenario_member_string(scen_name, DO_ALL)
 ...
 `vmm_scenario_member_end(eth_scenario)
 ...
endclass

 B- 91

VMM User Guide

‘vmm_scenario_member_vmm_data*()

The shorthand implementation for a vmm_data-based data member.

SystemVerilog

‘vmm_scenario_member_vmm_data(member-name,
vmm_data::do_what_e do_what,

 vmm_data::do_how_e do_how)

‘vmm_scenario_member_vmm_data_array(member-name,

vmm_data::do_what_e do_what,
vmm_data::do_how_e do_how)

‘vmm_scenario_member_vmm_data_da(member-name,

vmm_data::do_what_e do_what,
vmm_data::do_how_e do_how)

‘vmm_scenario_member_vmm_data_aa_scalar(member-name,

vmm_data::do_what_e do_what,
vmm_data::do_how_e do_how)

‘vmm_scenario_member_vmm_data_aa_string(member-name,

vmm_data::do_what_e do_what,
vmm_data::do_how_e do_how)

OpenVera

Not supported.

Description

Adds the specified vmm_data-type, fixed array of vmm_datas,
dynamic array of vmm_datas, scalar-indexed associative array of
vmm_datas, or string-indexed associative array of vmm_datas data
member to the default implementation of the methods that are

B-92

VMM User Guide

specified by the do_what argument. The do_how argument
specifies whether the vmm_data values must be processed deeply
or shallowly.

The shorthand implementation must be located in a section started
by “‘vmm_scenario_member_begin()” .

Example

Example B-21
class vlan_frame extends vmm_data;
 ...
endclass

class eth_scenario extends vmm_data;
 vlan_frame vlan_fr_var ;
 ...
 `vmm_scenario_member_begin(eth_scenario)
 `vmm_scenario_member_vmm_data(vlan_fr_var,
 DO_ALL,DO_DEEP)
 ...
 `vmm_scenario_member_end(eth_scenario)
 ...
endclass

 B- 93

VMM User Guide

‘vmm_scenario_member_user_defined()

User-defined shorthand implementation data member.

SystemVerilog

‘vmm_scenario_member_user_defined(member-name,
vmm_data::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified user-defined default implementation of the
methods that are specified by the do_what argument.

The shorthand implementation must be located in a section started
by “‘vmm_scenario_member_begin()” .

Example

Example B-22
class eth_scenario extends vmm_data;
 rand bit[47:0] da;
 `vmm_scenario_member_begin(eth_scenario)
 `vmm_scenario_member_user_defined(da, DO_ALL)
 `vmm_scenario_member_end(eth_scenario)

 function bit do_da (input vmm_data::do_what_e do_what)
 do_da = 1; // Success, abort by returning 0
 case (do_what)
 endcase
 endfunction
endclass

B-94

VMM User Guide

‘vmm_scenario_member_vmm_scenario()

The shorthand implementation for a sub-scenario.

SystemVerilog

‘vmm_scenario_member_vmm_scenario(member-name,
vmm_data::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified vmm_scenario-type sub-scenario member to the
default implementation of the methods that are specified by the
do_what argument.

The shorthand implementation must be located in a section started
by “‘vmm_scenario_member_begin()” .

Example

Example B-23
class vlan_scenario extends vmm_data;
 ...
endclass

class eth_scenario extends vmm_data;
 vlan_scenario vlan_scen ;
 `vmm_scenario_member_begin(eth_scenario)
 `vmm_scenario_member_vmm_scenario(vlan_scen,
 DO_ALL)
 `vmm_scenario_member_end(eth_scenario)
endclass

 B- 95

VMM User Guide

vmm_scenario_gen#(T, text)

Parameterized version of the VMM scenario generator.

SystemVerilog

class vmm_scenario_gen #(type T=vmm_data,string text= “”)
extends vmm_scenario_gen_base;

Description

The ̀ vmm_scenario_generator macro creates a parameterized
scenario generator. This generator can generate non-vmm_data
transactions as well.

A macro is used to define a class-name_scenario_gen class,
for any user-specified class derived from vmm_data1, using a
process similar to the ‘vmm_channel macro.

The scenario generator class is an extension of the vmm_xactor
class and as such, inherits all the public interface elements provided
in the base class.

Example

class ahb_trans extends vmm_data;
 rand bit [31:0] addr;
 rand bit [31:0] data;
endclass

`vmm_channel(ahb_trans)
`vmm_scenario_gen(ahb_trans, "AHB Scenario Gen")

1. With a constructor callable without any arguments.

B-96

VMM User Guide

ahb_trans_channel chan0 = new("ahb_trans_chan", "chan0");
ahb_trans_scenario_gen gen1 = new("AhbGen1", 0, chan0);

Is the same as:

vmm_channel_typed#(ahb_trans) chan0 = new("ahb_trans_chan",
 "chan0");
vmm_scenario_gen #(ahb_trans, AHB Scenario Gen") gen1 =
new("AhbGen1", 0, chan0);

Summary

• vmm_scenario_gen::define_scenario() page B-97
• vmm_scenario_gen::enum {DONE} page B-98
• vmm_scenario_gen::enum {GENERATED} page B-100
• vmm_scenario_gen::get_all_scenario_names() page B-102
• vmm_scenario_gen::get_n_insts() page B-103
• vmm_scenario_gen::get_n_scenarios() page B-104
• vmm_scenario_gen::get_names_by_scenario() page B-105
• vmm_scenario_gen::get_scenario() page B-106
• vmm_scenario_gen::get_scenario_index() page B-107
• vmm_scenario_gen::get_scenario_name() page B-109
• vmm_scenario_gen::inject() page B-110
• vmm_scenario_gen::inject_obj() page B-112
• vmm_scenario_gen::inst_count page B-114
• vmm_scenario_gen::new() page B-115
• vmm_scenario_gen::out_chan page B-117
• vmm_scenario_gen::replace_scenario() page B-118
• vmm_scenario_gen::register_scenario() page B-120
• vmm_scenario_gen::scenario_count page B-122
• vmm_scenario_gen::scenario_exists() page B-123
• vmm_scenario_gen::scenario_set[$] page B-125
• vmm_scenario_gen::select_scenario page B-127
• vmm_scenario_gen::stop_after_n_insts page B-129
• vmm_scenario_gen::stop_after_n_scenarios page B-131
• vmm_scenario_gen::unregister_scenario() page B-133
• vmm_scenario_gen::unregister_scenario_by_name() .. page B-134
• ‘vmm_scenario_gen page B-136
• ‘vmm_scenario_gen_using() page B-138

 B- 97

VMM User Guide

vmm_scenario_gen::define_scenario()

Defines a new scenario kind.

SystemVerilog

function int unsigned define_scenario(string name,
int unsigned max-len);

OpenVera

Not supported.

Description

Defines a new scenario kind that is included in this scenario
descriptor, and returns a unique scenario kind identifier. The
“vmm_scenario::scenario_kind” data member randomly
selects one of the defined scenario kinds. The new scenario kind
may contain up to the specified number of random transactions.

The scenario kind identifier should be stored in a state variable that
can then be subsequently used to the specified kind-specific
constraints.

B-98

VMM User Guide

vmm_scenario_gen::enum {DONE}

Notification identifier for the vmm_xactor::notify notification
service interface.

SystemVerilog

enum {DONE};

OpenVera

Not supported.

Description

Notification identifier for the vmm_xactor::notify notification
service interface provided by the vmm_xactor base class. It is
configured as a vmm_notify::ON_OFF notification, and is
indicated when the generator stops, because the specified number
of instances or scenarios are generated. No status information is
specified.

Example

Example B-24
program test_scenario;
 ...
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 ...
 initial
 begin
 ...
 atm_gen.stop_after_n_scenarios = 10;
 atm_gen.start_xactor();

 B- 99

VMM User Guide

 ...
 atm_gen.notify.wait_for(atm_cell_scenario_gen::DONE);
 $finish;
 end
 ...
endprogram

B-100

VMM User Guide

vmm_scenario_gen::enum {GENERATED}

Notification identifier for the vmm_xactor::notify notification
service interface.

SystemVerilog

enum {GENERATED};

OpenVera

Not supported.

Description

Notification identifier for the vmm_xactor::notify notification
service interface provided by the vmm_xactor base class. It is
configured as a vmm_notify::ONE_SHOT notification, and is
indicated immediately before a scenario is applied to the output
channel. The randomized scenario is specified as the status of the
notification.

Example

Example B-25
program test_scenario;
 ...
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 ...
 initial
 begin
 ...
 atm_gen.stop_after_n_scenarios = 10;
 atm_gen.start_xactor();

 B- 101

VMM User Guide

 ...
 atm_gen.notify.wait_for(
 atm_cell_scenario_gen::GENERATED);
 end
 ...
endprogram

B-102

VMM User Guide

vmm_scenario_gen::get_all_scenario_names()

Returns all names in the scenario registry.

SystemVerilog

virtual function void get_all_scenario_names(
ref string name[$])

OpenVera

Not supported.

Description

Appends the names under which a scenario descriptor is registered.
Returns the number of names that were added to the array.

Example

Example B-26
class atm_cell extends vmm_data;
 ...
endclass
`vmm_scenario_gen(atm_cell, "atm trans")
program test_scenario;
 string scen_names_arr[$];
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_scenario atm_scenario = new;
 ...
 initial begin
 ...
 atm_gen.get_all_scenario_names(scen_names_arr);
 end
endprogram

 B- 103

VMM User Guide

vmm_scenario_gen::get_n_insts()

Returns the actual number of instances generated.

SystemVerilog

function int unsigned get_n_insts();

OpenVera

Not supported.

Description

The generator stops after the stop_after_n_insts limit on the
number of instances is reached, and only after entire scenarios are
applied. Hence, it can generate a few more instances than
configured. This method returns the actual number of instances that
were generated.

Example

Example B-27
program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 initial
 begin
 atm_gen.stop_after_n_insts = 10;
 atm_gen.start_xactor();
 `vmm_note(log,$psprintf(
 "Total Instances Generated: %0d",
 atm_gen.get_n_insts()));
 end
endprogram

B-104

VMM User Guide

vmm_scenario_gen::get_n_scenarios()

Returns the actual number of scenarios generated.

SystemVerilog

function int unsigned get_n_scenarios();

OpenVera

Not supported.

Description

The generator stops after the stop_after_n_scenarios limit on
the number of scenarios is reached, and only after entire scenarios
are applied. Hence, it can generate a few less scenarios than
configured. This method returns the actual number of scenarios that
were generated.

Example

Example B-28
program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 initial
 begin
 atm_gen.stop_after_n_scenarios = 10;
 atm_gen.start_xactor();
 `vmm_note(log,$psprintf("Total Scenarios Generated:
 %0d", atm_gen.get_n_scenarios()));
 end
 ...
endprogram

 B- 105

VMM User Guide

vmm_scenario_gen::get_names_by_scenario()

Returns the names under which a scenario is registered.

SystemVerilog

virtual function void get_names_by_scenario(
vmm_ss_scenario_base scenario,ref string name[$])

OpenVera

Not supported.

Description

Appends the names under which the specified scenario descriptor is
registered. Returns the number of names that were added to the
array.

Example

Example B-29
class atm_cell extends vmm_data;
endclass
`vmm_scenario_gen(atm_cell, "atm trans")
program test_scenario;
 string scen_names_arr[$];
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_scenario atm_scenario = new;
 initial begin
 atm_gen.get_names_by_scenario(
 atm_scenario,scen_names_arr);
 end
endprogram

B-106

VMM User Guide

vmm_scenario_gen::get_scenario()

Returns the scenario registered under a specified name.

SystemVerilog

virtual function vmm_scenario get_scenario(string name)

OpenVera

Not supported.

Description

Returns the scenario descriptor registered under the specified
name. Generates a warning message and returns NULL, if there are
no scenarios registered under that name.

Example

Example B-30
class atm_cell extends vmm_data;
endclass

`vmm_scenario_gen(atm_cell, "atm trans")

program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_scenario atm_scenario = new;
 ...
 initial begin
 if(atm_gen.get_scenario("PARENT SCEN") == atm_scenario)
 vmm_log(log,"Scenario matching \n");
 end
endprogram

 B- 107

VMM User Guide

vmm_scenario_gen::get_scenario_index()

Returns the index of the specified scenario.

SystemVerilog

virtual function int get_scenario_index(
vmm_ss_scenario_base scenario)

OpenVera

Not supported.

Description

Returns the index of the specified scenario descriptor, which is in the
scenario set array. A warning message is generated and returns -1,
if the scenario descriptor is not found in the scenario set.

Example

Example B-31
class atm_cell extends vmm_data;
 ...
endclass

`vmm_scenario_gen(atm_cell, "atm trans")

program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_scenario atm_scenario = new;
 ...
 initial begin
 ...
 scen_index = atm_gen.get_scenario_index(atm_scenario);

B-108

VMM User Guide

 if(scen_index == 5)
 `vmm_note(log, `vmm_sformatf(
 "INDEX MATCHED %0d", index));
 else
 `vmm_error(log,`vmm_sformatf(
 "INDEX NOT MATCHING %0d", index));
 ...
 end
endprogram

 B- 109

VMM User Guide

vmm_scenario_gen::get_scenario_name()

Returns the name of the specified scenario.

SystemVerilog

virtual function int get_scenario_name(vmm_scenario
scenario)

OpenVera

Not supported.

Description

Returns a name under which the specified scenario descriptor is
registered. Returns "", if the scenario is not registered.

Example

Example B-32
class atm_cell extends vmm_data;
endclass

`vmm_scenario_gen(atm_cell, "atm trans")

program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_scenario atm_scenario = new;
 initial begin
 scenario_name =
atm_gen.get_scenario_name(atm_scenario);
 vmm_note(log,`vmm_sformatf("Registered name for
atm_scenario is : %s\n",scenario_name));
 end
endprogram

B-110

VMM User Guide

vmm_scenario_gen::inject()

Injects the specified scenario descriptor in the output stream.

SystemVerilog

virtual task inject(vmm_ss_scenario#(T) scenario);

OpenVera

Not supported.

Description

Unlike injecting the descriptors directly in the output channel, it
counts toward the number of instances and scenarios generated by
this generator, and will be subjected to the callback methods. The
method returns once the scenario is consumed by the output
channel, or it is dropped by the callback methods.

This method can be used to inject directed stimulus while the
generator is running (with unpredictable timing), or when the
generated is stopped.

Example

Example B-33
class my_scenario extends atm_cell_scenario
 ...
 virtual task apply(atm_cell_channel channel,
 ref int unsigned n_insts);
 ...
 this.randomize();
 super.apply(channel, n_insts);
 ...

 B- 111

VMM User Guide

 endtask
...
endclass

program test_scenario;
 ...
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 my_scenario scen;
 ...
 initial
 begin
 ...
 atm_gen.stop_after_n_scenarios = 10;
 atm_gen.start_xactor();
 ...
 atm_gen.inject(scen);
 ...
 end
 ...
endprogram

B-112

VMM User Guide

vmm_scenario_gen::inject_obj()

Injects the specified descriptor in the output stream.

SystemVerilog

virtual task inject_obj(class-name obj);

OpenVera

Not supported.

Description

Unlike injecting the descriptor directly in the output channel, it counts
toward the number of instances and scenarios generated by this
generator, and will be subjected to the callback methods as an
atomic scenario. The method returns once the descriptor is
consumed by the output channel, or it is dropped by the callback
methods.

This method can be used to inject directed stimulus while the
generator is running (with unpredictable timing), or when the
generated is stopped.

Example

Example B-34
program test_scenario;
 ...
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12, genchan);
 atm_cell tr = new();
 ...

 B- 113

VMM User Guide

 initial
 begin
 ...
 tr.addr = 64'ha0;
 tr.data = 64'h50;
 atm_gen.stop_after_n_scenarios = 10;
 atm_gen.start_xactor();
 ...
 atm_gen.inject_obj(tr);
 ...
 end
 ...
endprogram

B-114

VMM User Guide

vmm_scenario_gen::inst_count

Returns the number of instances generated so far.

SystemVerilog

protected int inst_count;

OpenVera

protected integer inst_count;

Description

Returns the current count of the number of individual instances
generated by or injected through the scenario generator. When it
reaches or surpasses the value in
vmm_scenario_gen::stop_after_n_insts, the generator
stops.

Example

Example B-35
class generator_ext extends pkt_scenario_gen;
 ...
 function void reset_xactor(reset_e rst_typ = SOFT_RST);
 this.inst_count = 0;
 ...
 endfunction
endclass

 B- 115

VMM User Guide

vmm_scenario_gen::new()

Creates a new instance of a scenario generator transactor.

SystemVerilog

function new(string instance,
int stream_id = -1, class-name_channel out_chan =

null,vmm_object parent = null);

OpenVera

Not supported.

Description

Creates a new instance of a scenario generator transactor, with the
specified instance name and optional stream identifier. The
generator can be optionally connected to the specified output
channel. If no output channel is specified, one will be created
internally in the class-name_scenario_gen::out_chan
property.

The name of the transactor is defined as the user-defined class
description string, which is specified in the class implementation
macro appended with the “Scenario Generator”. Specified parent
argument indicates the parent of this generator.

Example

Example B-36
program test_scenario;
 ...
 atm_cell_scenario_gen atm_gen =

B-116

VMM User Guide

 new("Atm Scenario Gen", 12);
endprogram

 B- 117

VMM User Guide

vmm_scenario_gen::out_chan

References the output channel for the instances generated by this
transactor.

SystemVerilog

class-name_channel out_chan;

OpenVera

Not supported.

Description

The output channel may be specified through the constructor. If no
output channel was specified, a new instance is automatically
created. The reference in this property may be dynamically replaced,
but the generator should be stopped during the replacement.

Example

Example B-37
program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 initial
 begin
 atm_gen.stop_after_n_insts = 10;
 atm_gen.start_xactor();
 while (1) begin
 atm_gen.out_chan.get(c);
 end
 end
endprogram

B-118

VMM User Guide

vmm_scenario_gen::replace_scenario()

Replaces a scenario descriptor.

SystemVerilog

virtual function void replace_scenario(string name,
<class-name>_scenario scenario);

OpenVera

Not supported.

Description

Registers the specified scenario under the specified name, replacing
the scenario that is previously registered under that name, if any.
The name under which a scenario is registered does not need to be
the same as the name of a kind of scenario, which is defined in the
scenario descriptor using the
vmm_scenario_gen::define_scenario() method. The same
scenario may be registered multiple times under different names,
therefore creating an alias to the same scenario.

Registering a scenario implicitly appends it to the scenario set, if it is
not already in the vmm_scenario_gen::scenario_set[$]
array. The replaced scenario is removed from the scenario set, if it is
not also registered under another name.

Example

Example B-38
`vmm_scenario_gen(atm_cell, "atm trans")

 B- 119

VMM User Guide

program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_scenario parent_scen = new;
 ...
 initial begin
 ...
 atm_gen.register_scenario("MY SCENARIO", parent_scen);
 atm_gen.register_scenario("PARENT SCEN", parent_scen);
 ...
 if(atm_gen.scenario_exists("MY SCENARIO")
 begin
 atm_gen.replace_scenario(
 "MY SCENARIO", parent_scen);
 vmm_log(log,
 "Scenario exists and has been replaced\n");
 ...
 end
 end
endprogram

B-120

VMM User Guide

vmm_scenario_gen::register_scenario()

Registers a scenario descriptor.

SystemVerilog

virtual function void register_scenario(string name,
vmm_ss_scenario_base scenario);

OpenVera

Not supported.

Description

Registers the specified scenario under the specified name. The
name under which a scenario is registered does not need to be the
same as the name of a kind of scenario, which is defined in the
scenario descriptor using the
vmm_scenario_gen::define_scenario() method. The same
scenario may be registered multiple times under different names,
therefore creating an alias to the same scenario.

Registering a scenario implicitly appends it to the scenario set, if it is
not already in the vmm_scenario_gen::scenario_set[$]
array.

It is an error to register a scenario under a name that already exists.
Use the vmm_scenario_gen::replace_scenario() method to
replace a registered scenario.

 B- 121

VMM User Guide

Example

Example B-39
class atm_cell extends vmm_data;
 ...
endclass

`vmm_scenario_gen(atm_cell, "atm trans")

program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_scenario parent_scen = new;
 ...
 initial begin
 ...
 vmm_log(log,"Registering scenario \n");
 atm_gen.register_scenario("PARENT SCEN", parent_scen);
 ...
 end
endprogram

B-122

VMM User Guide

vmm_scenario_gen::scenario_count

Returns the number of scenarios generated so far.

SystemVerilog

protected int scenario_count;

OpenVera

protected integer scenario_count;

Description

Returns the current count of the number of scenarios generated by
or injected through the scenario generator. When it reaches or
surpasses the value in
vmm_scenario_gen::stop_after_n_scenarios, the
generator stops.

Example

Example B-40
class generator_ext extends pkt_scenario_gen;
 ...
 virtual task inject(pkt_scenario scenario);
 scenario.scenario_id = this.scenario_count;
 ...
 endtask
endclass

 B- 123

VMM User Guide

vmm_scenario_gen::scenario_exists()

Checks whether a scenario is registered under a specified name or
not.

SystemVerilog

virtual function bit scenario_exists(string name)

OpenVera

Not supported.

Description

Returns TRUE, if there is a scenario registered under the specified
name. Otherwise, it returns FALSE.

Use the vmm_scenario_gen::get_scenario() method to
retrieve a scenario under a specified name.

Example

Example B-41
class atm_cell extends vmm_data;
 ...
endclass

`vmm_scenario_gen(atm_cell, "atm trans")

program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_scenario parent_scen = new;
 ...

B-124

VMM User Guide

 initial begin
 ...
 vmm_log(log,"Registering scenario \n");
 atm_gen.register_scenario("PARENT SCEN", parent_scen);
 ...
 if(atm_gen.scenario_exists("PARENT SCEN") begin
 vmm_log(log,"Scenario exists and you can use \n");
 ...
 end
 end
endprogram

 B- 125

VMM User Guide

vmm_scenario_gen::scenario_set[$]

Sets-of available scenario descriptors that may be repeatedly
randomized.

SystemVerilog

vmm_ss_scenario(T) scenario_set[$];

OpenVera

Not supported.

Description

Sets-of available scenario descriptors that may be repeatedly
randomized, to create the random content of the output stream. The
class-name_scenario_gen::select_scenario property is
used to determine which scenario descriptor, out of the available set
of descriptors, is randomized next. The individual instances of the
output stream are then created, by calling the class-
name_scenario::apply() method of the randomized scenario
descriptor.

By default, this property contains one instance of the atomic scenario
descriptor class-name_atomic_scenario. Out of the box, the
scenario generator generates individual random descriptors.

The vmm_data::stream_id property of the randomized instance
is assigned the value of the stream identifier of the generator, before
randomization. The vmm_data::scenario_id property of the
randomized instance is assigned a unique value, before
randomization. It will be reset to 0, when the generator is reset, and
after the specified number of instances or scenarios are generated.

B-126

VMM User Guide

Example

Example B-42
program test_scenario;
 ...
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 my_scenario test_scen = new();
 ...
 initial
 begin
 ...
 atm_gen.scenario_set.delete();
 atm_gen.scenario_set.push_back(test_scen);
 atm_gen.stop_after_n_scenarios = 10;
 atm_gen.start_xactor();
 ...
 end
 ...
endprogram

 B- 127

VMM User Guide

vmm_scenario_gen::select_scenario

Determines which scenario descriptor will be randomized next.

SystemVerilog

vmm_scenario_election#(T,text) select_scenario;

OpenVera

Not supported.

Description

References the scenario descriptor selector that is repeatedly
randomized to determine which scenario descriptor, out of the
available set of scenario descriptors, will be randomized next.

By default, a round-robin selection process is used. The constraint
blocks or randomized properties in this instance can be turned-off, or
the instance can be replaced with a user-defined extension, to
modify the election rules.

Example

Example B-43
program test_scenario;
 ...
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 my_scenario scen;
 ...
 initial
 begin
 atm_gen.scenario_set.push_back(scen);

B-128

VMM User Guide

 atm_gen.stop_after_n_scenarios = 10;
 atm_gen.start_xactor();
 ...
 if(atm_gen.select_scenario == null)
 `vmm_note(log,"Failed to create select_scenario
 instance for ATM Scenario Generator.");
 end
 ...
endprogram

 B- 129

VMM User Guide

vmm_scenario_gen::stop_after_n_insts

Stops generation, after the specified number of transaction or data
descriptor instances are generated.

SystemVerilog

int unsigned stop_after_n_insts;

OpenVera

Not supported.

Description

The generator stops after the specified number of transaction or data
descriptor instances are generated, and consumed by the output
channel. The generator must be reset, before it can be restarted. If
the value of this property is 0, the generator does not stop on its own,
based on the number of generated instances (but may still stop,
based on the number of generated scenarios).

The default value of this property is 0.

Example

Example B-44
program test_scenario;
 ...
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 ...
 initial
 begin
 atm_gen.stop_after_n_insts = 10;

B-130

VMM User Guide

 atm_gen.start_xactor();
 ...
 end
 ...
endprogram

 B- 131

VMM User Guide

vmm_scenario_gen::stop_after_n_scenarios

Stops generation, after the specified number of scenarios are
generated.

SystemVerilog

int unsigned stop_after_n_scenarios;

OpenVera

Not supported.

Description

The generator stops after the specified number of scenarios are
generated, and entirely consumed by the output channel. The
generator must be reset, before it can be restarted. If the value of this
property is 0, the generator does not stop on its own, based on the
number of generated scenarios (but may still stop, based on the
number of generated instances).

The default value of this property is 0.

Example

Example B-45
program test_scenario;
 ...
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 ...
 initial
 begin
 atm_gen.stop_after_n_scenarios = 10;

B-132

VMM User Guide

 atm_gen.start_xactor();
 ...
 end
 ...
endprogram

 B- 133

VMM User Guide

vmm_scenario_gen::unregister_scenario()

Unregisters a scenario descriptor.

SystemVerilog

virtual function bit unregister_scenario(
vmm_ss_scenario_base scenario);

OpenVera

Not supported.

Description

Completely unregisters the specified scenario descriptor and returns
TRUE, if it exists in the registry. The unregistered scenario is also
removed from the scenario set.

Example

Example B-46
`vmm_scenario_gen(atm_cell, "atm trans")

program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_scenario atm_scenario = new;
 ...
 initial begin
 if(atm_gen.unregister_scenario(atm_scenario))
 vmm_log(log,"Scenario has been unregistered \n");
 else
 vmm_log(log,"Unable to unregister scenario\n");
 end
endprogram

B-134

VMM User Guide

vmm_scenario_gen::unregister_scenario_by_name()

Unregisters a scenario descriptor.

SystemVerilog

virtual function vmm_scenario
unregister_scenario_by_name(string name)

OpenVera

Not supported.

Description

Unregisters the scenario under the specified name, and returns the
unregistered scenario descriptor. Returns NULL, if there is no
scenario registered under the specified name.

The unregistered scenario descriptor is removed from the scenario
set, if it is not also registered under another name.

Example

Example B-47
`vmm_scenario_gen(atm_cell, "atm trans")

program test_scenario;
 atm_cell_scenario_gen atm_gen =
 new("Atm Scenario Gen", 12);
 atm_cell_scenario atm_scenario = new;
 atm_cell_scenario buffer_scenario = new;
 ...
 initial begin
 ...
 buffer_scenario =

 B- 135

VMM User Guide

atm_gen.unregister_scenario_by_name("PARENT SCEN");
 if(buffer_scenario != null)
 vmm_log(log,"Scenario has been unregistered \n");
 ...
 else
 vmm_log(log,"Returned null value\n");
 ...
 end
endprogram

B-136

VMM User Guide

‘vmm_scenario_gen

Macro to define a scenario generator class to generate sequences
of related instances.

SystemVerilog

‘vmm_scenario_gen(class_name, "Class Description")

OpenVera

Not supported.

Description

Defines a scenario generator class to generate sequences of related
instances of the specified class. The specified class must be derived
from the vmm_data class, and the class-name_channel class
must exist. It must also contain a constructor with no arguments, or
that contain default values for all of its arguments.

The macro defines classes named

• class-name_scenario_gen

• class-name_scenario

• class-name_scenario_election

class-name_scenario_gen_callbacks

Example

Example B-48
class atm_cell extends vmm_data;

 B- 137

VMM User Guide

 ...
endclass

`vmm_scenario_gen(atm_cell, "atm trans")

B-138

VMM User Guide

‘vmm_scenario_gen_using()

Defines a scenario generator class to generate sequences of related
instances.

SystemVerilog

‘vmm_scenario_gen_using(class-name , channel-type,
 "Class Description")

OpenVera

Not supported.

Description

Defines a scenario generator class to generate sequences of related
instances of the specified class, using the specified class-
name_channel output channel. The generated class must be
compatible with the specified channel type, and both must exist.

This macro should be used only when generating instances of a
derived class that must be applied to a channel of the base class.

Example

Example B-49
class atm_cell extends vmm_data;
 ...
endclass
// `vmm_scenario_gen(atm_cell, "atm trans")
// You cannot use both `vmm_scenario_gen and
// `vmm_scenario_gen_using.
`vmm_scenario_gen_using(atm_cell,atm_cell_channel,
 "atm_cell")

 B- 139

VMM User Guide

<class-name>_scenario

This class implements a base class for describing scenarios or
sequences of transaction descriptors. This class named class-
name_scenario is automatically declared and implemented for any
user-specified class named class-name by the scenario generator
macro, using a process similar to the ‘vmm_channel macro.

Summary

• <class-name>_scenario::allocate_scenario() page B-140
• <class-name>_scenario::apply() page B-142
• <class-name>_scenario::define_scenario() page B-143
• <class-name>_scenario::fill_scenario() page B-144
• <class-name>_scenario::items[] page B-145
• <class-name>_scenario::length page B-147
• <class-name>_scenario::log page B-148
• <class-name>_scenario::redefine_scenario() page B-149
• <class-name>_scenario::repeat_thresh page B-151
• <class-name>_scenario::repeated page B-152
• <class-name>_scenario::scenario_id page B-153
• <class-name>_scenario::scenario-kind page B-154
• <class-name>_scenario::scenario_name() page B-155
• <class-name>_scenario::stream_id page B-156
• <class-name>_scenario::using page B-157

B-140

VMM User Guide

<class-name>_scenario::allocate_scenario()

Allocates a new set of instances in the items property.

SystemVerilog

function void
 allocate_scenario(class-name using = null);

OpenVera

Not supported.

Description

Allocates a new set of instances in the items property, up to the
maximum number of items that are in the maximum-length scenario.
Any instance previously located in the items array is replaced. If a
reference to an instance is specified in the using argument, the
array is filled by calling the vmm_data::copy() method on the
specified instance. Otherwise, the array is filled with new instance of
the class-name class.

Example

Example B-50
class my_scenario extends atm_cell_scenario;
 ...
 rand write_scenario scen1;
 ...
 constraint test {
 if (scenario_kind == ATM) {
 repeated == 4;
 foreach(items[i]) {
 ...

 B- 141

VMM User Guide

 items[i].kind == atm_cell::WRITE;
 items[i].addr == 64'hfff;
 ...
 }
 }
 }
 ...
 virtual task apply(atm_cell_channel chan,
 ref int unsigned n_insts);
 super.apply(chan,n_insts);
 this.allocate_scenario(tr);
 scen1.apply(chan, n_insts);
 ...
 endtask
 ...
endclass

B-142

VMM User Guide

<class-name>_scenario::apply()

Applies the items in the scenario descriptor to an output channel.

SystemVerilog

virtual task apply(class-name_channel channel,
ref int unsigned n-insts);

OpenVera

Not supported.

Description

Applies the items in the scenario descriptor to the specified output
channel, and returns when they are consumed by the channel. The
n-insts argument is set to the number of instances that were
consumed by the channel. By default, copies the values of the
items array using the vmm_data::copy() method.

This method may be overloaded to define procedural scenarios.

Example

Example B-51
class dut_ms_sequence;
 rand eth_frame_sequence to_phy;
 rand eth_frame_sequence to_mac;
 rand wb_cycle_sequence to_host;
 virtual task apply(eth_frame_channel to_phy_chan,
 eth_frame_channel to_mac_chan,
 wb_cycle_channel wb_chan);
 endtask
endclass: dut_ms_sequence

 B- 143

VMM User Guide

<class-name>_scenario::define_scenario()

Defines a new scenario.

SystemVerilog

function int unsigned
 define_scenario(string name,

int unsigned max-len = 0);

OpenVera

Not supported.

Description

Defines a new scenario with the specified name, and the specified
maximum number of transactions or data descriptors. Returns a
unique scenario identifier that should be assigned to an int
unsigned property.

Example

Example B-52
class my_scenario extends atm_cell_scenario;
 ...
 function new();
 ...
 this.ATM = define_scenario("ATM read write", 6);
 ...
 endfunction
 ...
endclass

B-144

VMM User Guide

<class-name>_scenario::fill_scenario()

Allocates new instances in the items property.

SystemVerilog

function void fill_scenario(class-name using = null);

OpenVera

Not supported.

Description

Allocates new instances in the items property, up to the maximum
number of items in the maximum-length scenario, in any null
element of the array. Any instance, which is previously located in the
items array is left untouched. If a reference to an instance is
specified in the using argument, the array is filled by calling the
vmm_data::copy() method on the specified instance. Otherwise,
the array is filled with a new instance of the class-name class.

Example

Example B-53
class my_scenario extends atm_cell_scenario;
 ...
 rand write_scenario scen1;
 ...
 virtual task apply(atm_cell_channel chan,
 ref int unsigned n_insts);
 this.fill_scenario(tr);
 scen1.apply(chan, n_insts);
 endtask
endclass

 B- 145

VMM User Guide

<class-name>_scenario::items[]

Instances that are randomized to form the scenarios.

SystemVerilog

rand class-name items[];

OpenVera

Not supported.

Description

Instances of user-specified class-name that are randomized to
form the scenarios. Only elements from index 0 to class-
name_scenario::length-1 are part of the scenario.

The constraint blocks and rand attributes of the instances in the
randomized array may be turned ON or OFF to modify the constraints
on scenario items. They can also be replaced with extensions.

By default, the output stream is formed by copying the values of the
items in this array, onto the output channel.

Example

Example B-54
class my_scenario extends atm_cell_scenario;
 ...
 constraint test {
 if (scenario_kind == ATM) {
 length == 4;
 foreach(items[i]) {
 ...

B-146

VMM User Guide

 items[i].kind == atm_cell::WRITE;
 items[i].addr == 64'hfff;
 ...
 }
 }
 }
 ...
endclass

 B- 147

VMM User Guide

<class-name>_scenario::length

Defines the randomized number of items in the scenario.

SystemVerilog

rand int unsigned length;

OpenVera

Not supported.

Description

Defines how many instances in the class-
name_scenario::items[] property are part of the scenario.

Example

Example B-55
class my_scenario extends atm_cell_scenario;
 ...
 constraint test {
 if (scenario_kind == ATM) {
 ...
 length == 4;
 ...
 }
 }
 ̀ vmm_note(log,$psprintf("Scenario Length %0d.",length));
 ...
endclass

B-148

VMM User Guide

<class-name>_scenario::log

Message service interface to be used to issue generic messages.

SystemVerilog

static vmm_log log = new(“class-name”,“class”);

OpenVera

Not supported.

Description

Message service interface to be used to issue generic messages,
when the message service interface of the scenario generator is not
available or in scope.

Example

Example B-56
class atm_cell extends vmm_data;
 ...
endclass

`vmm_scenario_gen(atm_cell, "atm trans")

class my_scenario extends atm_cell_scenario;
 ...
 function new();
 `vmm_note(log,
 "Display is coming from atm_cell_scenario class.");
 ...
 endfunction
endclass

 B- 149

VMM User Guide

<class-name>_scenario::redefine_scenario()

Redefines the name and maximum number of descriptors in a
scenario.

SystemVerilog

function void
 redefine_scenario(int unsigned scenario-kind,

string name,
int unsigned max-len);

OpenVera

Not supported.

Description

Redefines the name and maximum number of descriptors in a
previously defined scenario. Used to redefine an existing scenario
instead of creating a new one, and constrain the original scenario out
of existence.

Example

Example B-57
class my_scenario extends atm_cell_scenario;
 ...
 function new();
 ...
 this.ATM = define_scenario("ATM read write", 6);
 ...
 endfunction
 ...
 redefine_scenario(scenario_kind,"Redefined our scenario",
 10);

B-150

VMM User Guide

 ...
 `vmm_note(log,$psprintf({"After Redefining the
 scenario=>\n Scenario Name:","
 %0s and Max scenarios:
 %0d"},scenario_name(scenario_kind),
 get_max_length()));
 ...
endclass

 B- 151

VMM User Guide

<class-name>_scenario::repeat_thresh

Threshold for the number of times to repeat a scenario.

SystemVerilog

static int unsigned repeat_thresh;

OpenVera

Not supported.

Description

To avoid accidentally repeating a scenario many times, because the
repeated property was left unconstrained. A warning message is
generated, if the value of the repeated property is greater than the
value specified in this property. The default value is 100.

Example

Example B-58
class my_scenario extends atm_cell_scenario;
 function new();
 ...
 this.ATM = define_scenario("ATM read write", 6);
 repeat_thresh = 2;
 endfunction
 constraint test {
 repeated == 5;
 }
 // Here repeated > repeat_thresh so warning will be issued.
 // Warning: A scenario will be repeated 5 times...
 `vmm_note(log,$psprintf(
 "repeat_thresh scenarios: %0d.",repeat_thresh));
endclass

B-152

VMM User Guide

<class-name>_scenario::repeated

Returns the number of times the items in the scenario are repeated.

SystemVerilog

rand int unsigned repeated;

OpenVera

Not supported.

Description

A value of 0 indicates that the scenario is not repeated, hence is
applied only once. The repeated instances in the scenario count
toward the total number of instances generated, but only one
scenario is considered generated, regardless of the number of times
it is repeated.

Example

Example B-59
class my_scenario extends atm_cell_scenario;
 ...
 constraint test {
 if (scenario_kind == ATM) {
 repeated == 4;
 }
 }
 `vmm_note(log,$psprintf(
 "Repeated Scenarios %0d.",repeated));
 ...
endclass

 B- 153

VMM User Guide

<class-name>_scenario::scenario_id

Identifies the scenario.

SystemVerilog

int scenario_id;

OpenVera

Not supported.

Description

Identifies the scenario within the stream. It is set by the scenario
generator before the scenario descriptor is randomized, and
incremented after each randomization. Can be used to express
scenario-specific constraints. The scenario identifier is reset to 0
when the scenario generator is reset, or when the specified number
of scenarios are generated.

Example

Example B-60
class my_scenario extends atm_cell_scenario;
 ...
 `vmm_note(log,$psprintf("Scenario ID for
 atm_cell_scenario #%0d.",scenario_id));
 ...
endclass

B-154

VMM User Guide

<class-name>_scenario::scenario-kind

Selects the identifier of the scenario that is generated.

SystemVerilog

rand int unsigned scenario-kind;

OpenVera

Not supported.

Description

When randomized, selects the identifier of the scenario that is
generated. Constrained to the known scenario identifiers defined,
using the class-name_scenario::define_scenario()
method. Can be constrained to modify the distribution of generated
scenarios.

Example

Example B-61
class my_scenario extends atm_cell_scenario;
 ...
 function new();
 this.ATM = define_scenario("ATM read write", 6);
 scenario_kind = this.ATM;
 ...
 endfunction
 ...
 `vmm_note(log,$psprintf(
 "Scenario Kind: %0d.",scenario_kind));
 ...
endclass

 B- 155

VMM User Guide

<class-name>_scenario::scenario_name()

Returns the name associated with the specified scenario identifier.

SystemVerilog

function string
 scenario_name(int unsigned scenario-kind);

OpenVera

Not supported.

Example

Example B-62
class my_scenario extends atm_cell_scenario;
 ...
 function new();
 ...
 this.ATM = define_scenario("ATM read write", 6);
 scenario_kind = this.ATM;
 ...
 endfunction
 ...
 `vmm_note(log,$psprintf("Scenario Name:
 %0s",scenario_name(scenario_kind)));
 ...
endclass

B-156

VMM User Guide

<class-name>_scenario::stream_id

Identifies the stream.

SystemVerilog

int stream_id;

OpenVera

Not supported.

Description

Identifies the stream. It is set by the scenario generator, before the
scenario descriptor is randomized. Can be used to express stream-
specific constraints.

Example

Example B-63
class my_scenario extends atm_cell_scenario;
 ...
 function new();
 ...
 this.ATM = define_scenario("ATM read write", 6);
 ...
 endfunction
 ...
 `vmm_note(log,$psprintf(
 "Stream ID for atm_cell_scenario #%0d.",stream_id));
 ...
endclass

 B- 157

VMM User Guide

<class-name>_scenario::using

Instance used in pre_randomize() when invoking the
fill_scenario() method.

SystemVerilog

class-name using;

OpenVera

Not supported.

Description

Instance used in the default implementation of the
pre_randomize() method, when invoking the
fill_scenario() method. Sets to null, by default. Can be
replaced by an instance of a derived class, to subject the items of the
scenario to different constraints or content.

Example

Example B-64
class my_scenario extends atm_cell_scenario;
 function new(atm_cell tr);
 ...
 this.ATM = define_scenario("ATM read write", 6);
 this.using = tr;
 ...
 endfunction
endclass
my_scenario atm;
// It will call the fill_scenario method with using object.
atm.pre_randomize();

B-158

VMM User Guide

<class-name>_atomic_scenario

This class implements a predefined atomic scenario descriptor. An
atomic scenario is composed of a single, unconstrained transaction
or data descriptor. The class-name_atomic_scenario class is
automatically implemented for any user-specified class, class-name,
by the scenario generator macro, using a process similar to the
‘vmm_channel macro.

Summary

• <class-name>_atomic_scenario::ATOMIC page B-159
• <class-name>_atomic_scenario::atomic-scenario page B-160

 B- 159

VMM User Guide

<class-name>_atomic_scenario::ATOMIC

Identifier for the atomic scenario.

SystemVerilog

int unsigned ATOMIC;

OpenVera

Not supported.

Description

Symbolic scenario identifier for the atomic scenario, described by
this descriptor. The atomic scenario is a single, random,
unconstrained, and transaction descriptor (that is, an atomic
descriptor).

Example

Example B-65
class my_scenario extends atm_cell_atomic_scenario;
 ...
 constraint repetition {
 if (scenario_kind == ATOMIC) {
 length == 2;
 repeated < 122;
 }
 }
 function new();
 ...
 redefine_scenario(this.ATOMIC, "my_scenario", 2);
 ...
 endfunction
endclass

B-160

VMM User Guide

<class-name>_atomic_scenario::atomic-scenario

Constraints of the atomic scenario.

SystemVerilog

constraint atomic_scenario;

OpenVera

Not supported.

Description

Specifies the constraints of the atomic scenario. By default, the
atomic scenario is a single, unrepeated, and unconstrained item.
This constraint block may be overridden to redefine the atomic
scenario.

Example

Example B-66
class my_scenario extends atm_cell_atomic_scenario;
 constraint atomic_scenario {
 if (scenario_kind == ATOMIC) {
 length == 2;
 repeated < 122;
 }
 }
 // If you do not overwrite atomic_scenario constraint then
 // Scenario Length = 1
 // Repeated Scenario = 0
 `vmm_note(log,$psprintf("
 Scenario Length: %0d & Repeated Scenario: %0d",
 length,repeated);
endclass

 B- 161

VMM User Guide

<class-name>_scenario_election

This class implements a random selection process for selecting the
next scenario descriptor, from a set of available descriptors, to be
randomized next. The class-name_scenario_election class
is automatically implemented for any user-specified class, class-
name, by the scenario generator macros, using a process similar to
the ‘vmm_channel macro.

Summary

• <class-name>_scenario_election::last_selected[$] . page B-162
• <class-name>_scenario_election::n_scenarios page B-163
• <class-name>_scenario_election::next_in_set page B-164
• <class-name>_scenario_election::round_robin page B-165
• <class-name>_scenario_election::scenario_id page B-166
• <class-name>_scenario_election::scenario_set[$] .. page B-167
• <class-name>_scenario_election::select page B-168
• <class-name>_scenario_election::stream_id page B-169

B-162

VMM User Guide

<class-name>_scenario_election::last_selected[$]

Returns the history of the last scenario selections.

SystemVerilog

int unsigned last_selected[$];

OpenVera

Not supported.

Description

Returns the history (maximum of 10) of last scenario selections. Can
be used to express constraints based on the historical distribution of
the selected scenarios (for example, “Never select the same
scenario twice in a row.”).

Example

Example B-67
class scen_election extends atm_cell_scenario_election;
 ...
endclass

program test_scenario;
 scen_election elect;
 ...
 initial
 begin
 elect.last_selected =
 gen.select_scenario.last_selected;
 end
 ...
endprogram

 B- 163

VMM User Guide

<class-name>_scenario_election::n_scenarios

Number of available scenario descriptors in the scenario set.

SystemVerilog

int unsigned n_scenarios;

OpenVera

Not supported.

Description

The final value of the select property must be in the
[0:n_scenarios-1] range.

Example

Example B-68
class scen_election extends atm_cell_scenario_election;
 ...
endclass

program test_scenario;
 scen_election a_scen;
 initial
 begin
 a_scen.n_scenarios = 5;
 ...
 end
 ...
endprogram

B-164

VMM User Guide

<class-name>_scenario_election::next_in_set

The next scenario in a round-robin selection process.

SystemVerilog

int unsigned next_in_set;

OpenVera

Not supported.

Description

The next scenario descriptor index that would be selected in a round-
robin selection process. Used by the round_robin constraint
block.

Example

Example B-69
class scen_election extends atm_cell_scenario_election;
 ...
 constraint round_robin {
 select == next_in_set;
 }
 ...
endclass

 B- 165

VMM User Guide

<class-name>_scenario_election::round_robin

Constrains the scenario selection process to a round-robin selection.

SystemVerilog

constraint round_robin;

OpenVera

Not supported.

Description

This constraint block may be turned-off to produce a random
scenario selection process, or allow a different constraint block to
define a different scenario selection process.

Example

Example B-70
class scen_election extends atm_cell_scenario_election;
 ...
 constraint round_robin {
 select == next_in_set;
 }
 ...
endclass

B-166

VMM User Guide

<class-name>_scenario_election::scenario_id

Identifies the scenario within the stream.

SystemVerilog

int scenario_id;

OpenVera

Not supported.

Description

It is set by the scenario generator before the scenario selector is
randomized, and incremented after each randomization. Can be
used to express scenario-specific constraints. The scenario identifier
is reset to 0 when the scenario generator is reset, or when the
specified number of scenarios are generated.

Example

Example B-71
`vmm_scenario_gen(atm_cell, "ATM Cell")
class scen_election extends atm_cell_scenario_election;
 constraint con_select {
 if (this.scenario_id % 5 == 0)
 begin
 select dist {
 0 := 3,
 1 := 1
 };
 end
 }
endclass

 B- 167

VMM User Guide

<class-name>_scenario_election::scenario_set[$]

The set of scenario descriptors.

SystemVerilog

class-name_scenario scenario_set[$];

OpenVera

Not supported.

Description

The available set of scenario descriptors. Can be used to
procedurally determine, which scenario to select or to express
constraints based on the scenario descriptors.

Example

Example B-72
class scen_election extends atm_cell_scenario_election;
 ...
endclass

program test_scenario;
 ...
 initial
 begin
 scen_election elect;
 atm_cell_scenario_gen gen = new("Scenario Gen");
 gen.select_scenario.scenario_set =
 elect.scenario_set;
 ...
 end
endprogram

B-168

VMM User Guide

<class-name>_scenario_election::select

The index of the selected scenario to be randomized next.

SystemVerilog

rand int select;

OpenVera

Not supported.

Description

The index, within the scenario_set array, of the selected scenario
descriptor to be randomized next.

Example

Example B-73
class scen_election extends atm_cell_scenario_election;
 ...
 constraint distribution{
 select dist {0 := 3,
 1 := 1
 };
 }
 ...
endclass

 B- 169

VMM User Guide

<class-name>_scenario_election::stream_id

Stream identifier.

SystemVerilog

int stream_id;

OpenVera

Not supported.

Description

It is set by the scenario generator to the value of the generator
stream identifier, before the scenario selector is randomized. Can be
used to express stream-specific constraints.

Example

Example B-74
`vmm_scenario_gen(atm_cell, "ATM Cell")

class scen_election extends atm_cell_scenario_election;
 ...
endclass

program test_scenario;
 scen_election elect;
 ...
 initial
 begin
 elect.stream_id =0;
 ...
 end
endprogram

B-170

VMM User Guide

<class-name>_scenario_gen_callbacks

This class implements a façade for callback containments for the
scenario generator transactor. The class-
name_scenario_gen_callbacks class is automatically
implemented for any user-specified class, class-name, by the
scenario generator macro, using a process similar to the
‘vmm_channel macro.

Summary

• <class-name>_scenario_gen_callbacks::post_scenario_gen() page B-
171

• <class-name>_scenario_gen_callbacks::pre_scenario_randomize() page
B-173

 B- 171

VMM User Guide

<class-name>_scenario_gen_callbacks::post_scenario_gen()

Callback invoked by the generator, after a scenario is randomized.

SystemVerilog

virtual task post_scenario_gen(
class-name_scenario_gen gen,
class-name_scenario scenario,
ref bit dropped);

OpenVera

Not supported.

Description

Callback method invoked by the generator after a new scenario is
randomized, but before it is applied to the output channel. The gen
argument refers to the generator instance that is invoking the
callback method. The scenario argument refers to the newly
randomized scenario that can be modified. Note that any
modifications of the randomization state of the scenario descriptor,
such as turning constraint blocks ON or OFF, remains in effect the
next time the scenario descriptor is selected to be randomized. If the
value of the dropped argument is set to non-zero, then the
generated instance is not applied to the output channel.

Example

Example B-75
`vmm_scenario_gen(atm_cell, "ATM Cell")
class atm_scen_callbacks extends
atm_cell_scenario_gen_callbacks;

B-172

VMM User Guide

 virtual task post_scenario_gen(atm_cell_scenario_gen gen,
 atm_cell_scenario scenario,
 ref bit dropped);
 ...
 endtask
 ...
endclass

 B- 173

VMM User Guide

<class-
name>_scenario_gen_callbacks::pre_scenario_randomize()

Callback invoked by the generator after a scenario is selected.

SystemVerilog

virtual task pre_scenario_randomize(
class-name_scenario_gen gen,
ref class-name_scenario scenario);

OpenVera

Not supported.

Description

Callback method invoked by the generator after a new scenario is
selected, but before it is randomized. The gen argument refers to the
generator instance that is invoking the callback method. The
scenario argument refers to the newly selected scenario
descriptor, which can be modified. Note that any modifications of the
randomization state of the scenario descriptor, such as turning
constraint blocks ON or OFF, remains in effect the next time the
scenario descriptor is selected to be randomized. If the reference to
the scenario descriptor is set to null, then the scenario will not be
randomized and a new scenario will be selected.

To minimize memory allocation and collection, it is possible that the
elements of the scenarios may not be allocated. Use the class-
name_scenario::allocate_scenario() or the class-
name_scenario::fill_scenario() to allocate the elements of
the scenario, if necessary.

B-174

VMM User Guide

Example

Example B-76
`vmm_scenario_gen(atm_cell, "ATM Cell")
 class atm_scen_callbacks extends
 atm_cell_scenario_gen_callbacks;

 virtual task pre_scenario_randomize(
 atm_cell_scenario_gen gen,
 ref atm_cell_scenario scenario);
 ...
 endtask
 ...
endclass

 B- 175

VMM User Guide

vmm_scheduler

Channels are point-to-point transaction descriptor transfer
mechanisms. If multiple sources are adding descriptors to a single
channel, then the descriptors are interleaved with the descriptors
from the other sources, in a fair but uncontrollable way. If a multi-
point-to-point mechanism is required to follow a specific scheduling
algorithm, a vmm_scheduler component can be used to identify
which source stream should next be forwarded to the output stream.

This class is based on the vmm_xactor class.

Summary

• vmm_scheduler::log page B-178
• vmm_scheduler::new() page B-179
• vmm_scheduler::new_source() page B-180
• vmm_scheduler::out_chan page B-181
• vmm_scheduler::randomized_sched page B-182
• vmm_scheduler::reset_xactor() page B-183
• vmm_scheduler::sched_off() page B-184
• vmm_scheduler::sched_on page B-185
• vmm_scheduler::schedule() page B-186
• vmm_scheduler::set_output() page B-188
• vmm_scheduler::start_xactor() page B-189
• vmm_scheduler::stop_xactor() page B-190

B-176

VMM User Guide

vmm_scheduler::get_object()

Extracts the next scheduled transaction descriptor.

SystemVerilog

virtual protected task get_object(
 output vmm_data obj,
 input vmm_channel source,
 input int unsigned input_id,
 input int offset);

OpenVera

Not supported.

Description

This method is invoked by the default implementation of the
vmm_scheduler::schedule() method to extract the next
scheduled transaction descriptor from the specified input channel, at
the specified offset within the channel. Overloading this method
allows access to or replacement of the descriptor that is about to be
scheduled. User-defined extensions can be used to introduce errors
by modifying the object, interfere with the scheduling algorithm by
substituting a different object, or recording of the schedule into a
functional coverage model.

Any object that is returned by this method, through the obj
argument, must be either internally created or physically removed
from the input source using the vmm_channel::get() method. If
a reference to the object remains in the input channel (for example,
by using the vmm_channel::peek() or

 B- 177

VMM User Guide

vmm_channel::activate() method), then it is liable to be
scheduled more than once, as the mere presence of an instance in
any of the input channel makes it available to the scheduler.

Example

Example B-77
vmm_data data_obj;
int unsigned input_ids[$];
...
task start();
 ...
 #1;
 scheduler.start_xactor();
 input_ids = {0,1};
 scheduler.schedule(data_obj,sources,input_ids);
 scheduler.get_object(data_obj,chan_2,1,0);
 ...
endtask

B-178

VMM User Guide

vmm_scheduler::log

Message service interface for this scheduler.

SystemVerilog

vmm_log log;

OpenVera

Not supported.

Description

Sets by the constructor, and uses the name and instance name
specified in the constructor.

Example

Example B-78
class atm_scheduler extends vmm_scheduler ;
 vmm_log log;
 function new(string name, string instance,
 vmm_channel out_chan, int instance_id = -1);
 super.new(name,instance,out_chan,instance_id);
 log = new (name, instance);
 ...
 endfunction
 ...
endclass

 B- 179

VMM User Guide

vmm_scheduler::new()

Creates an instance of a channel scheduler.

SystemVerilog

function new(string name,
string instance,
vmm_channel destination,
int instance_id = -1, vmm_object parent = null);

OpenVera

Not supported.

Description

Creates a new instance of a channel scheduler object with the
specified name, instance name, destination channel, and optional
instance identifier. The destination can be assigned to null and set
later by using “vmm_scheduler::set_output()” .

Example

Example B-79
class atm_subenv extends vmm_subenv;
 atm_scheduler scheduler;
 atm_cell_channel chan_2;
 ...
 task sub_build();
 chan_2 = new("chan_2", "gen");
 scheduler = new("schedular","subenv",chan_2,1);
 ...
 endtask
endclass

B-180

VMM User Guide

vmm_scheduler::new_source()

Adds the channel instance to the scheduler.

SystemVerilog

virtual function int new_source(vmm_channel chan);

OpenVera

Not supported.

Description

Adds the specified channel instance, as a new input channel to the
scheduler. This method returns an identifier for the input channel that
must be used to modify the configuration of the input channel or -1,
if an error occurred.

Any user extension of this method must call the
super.new_source() method.

Example

Example B-80
int int_id;
atm_cell_channel sources[$];
function build();
 ...
 sources.push_back(chan_2);
 sources.push_back(chan_3);
 int_id = scheduler.new_source(chan_1);
 int_id = scheduler.new_source(chan_2);
 ...
endfunction

 B- 181

VMM User Guide

vmm_scheduler::out_chan

Reference to the output channel.

SystemVerilog

protected vmm_channel out_chan;

OpenVera

Not supported.

Description

Set by the constructor.

Example

Example B-81
class atm_scheduler extends vmm_scheduler ;
 function new(string name, string instance,
 vmm_channel out_chan, int instance_id = -1);
 ...
 this.out_chan = out_chan;
 ...
 endfunction
 ...
endclass

B-182

VMM User Guide

vmm_scheduler::randomized_sched

Factory instance randomized by the default implementation of the
vmm_scheduler::schedule() method.

SystemVerilog

vmm_scheduler_election randomized_sched;

OpenVera

Not supported.

Description

Can be replaced with user-defined extensions, to modify the election
rules.

Example

Example B-82
class atm_scheduler extends vmm_scheduler ;
 ...
 function new(string name, string instance,
 vmm_channel out_chan, int instance_id = -1);
 ...
 randomized_sched.id_history[instance_id] = instance_id;
 ...
 endfunction
 ...
endclass

 B- 183

VMM User Guide

vmm_scheduler::reset_xactor()

Resets this vmm_scheduler instance.

SystemVerilog

virtual function void
 reset_xactor(vmm_xactor::reset_e rst_typ = SOFT_RST);

OpenVera

Not supported.

Description

The output channel and all input channels are flushed. If a
HARD_RST reset type is specified, then the scheduler election
factory instance in the randomized_sched property is replaced
with a new default instance.

Example

Example B-83
class atm_env extends vmm_env;
 ...
 task reset_dut();
 scheduler.reset_xactor();
 ...
 endtask
 ...
endclass

B-184

VMM User Guide

vmm_scheduler::sched_off()

Turns-off scheduling from the specified input channel.

SystemVerilog

virtual function void sched_off(int unsigned input-id);

OpenVera

Not supported.

Description

By default, scheduling from an input channel is on. When scheduling
is turned off, the input channel is not flushed and the scheduling of
new transaction descriptors from that source channel is inhibited.
The scheduling of descriptors from that source channel is resumed,
as soon as scheduling is turned on.

Any user extension of this method should call the
super.sched_off() method.

 B- 185

VMM User Guide

vmm_scheduler::sched_on

Turns-on scheduling from the specified input channel.

SystemVerilog

virtual function void sched_on(int unsigned input-id);

OpenVera

Not supported.

Description

By default, scheduling from an input channel is on. When scheduling
is turned off, the input channel is not flushed and the scheduling of
new transaction descriptors from that source channel is inhibited.
The scheduling of descriptors from that source channel is resumed,
as soon as scheduling is turned on.

Any user extension of this method should call the
super.sched_on() method.

B-186

VMM User Guide

vmm_scheduler::schedule()

Creates scheduling components with different rules.

SystemVerilog

virtual protected task
 schedule(output vmm_data obj,
 input vmm_channel sources[$],
 int unsigned input_ids[$]);

OpenVera

Not supported.

Description

Overloading this method allows the creation of scheduling
components with different rules. It is invoked for each scheduling
cycle. The transaction descriptor returned by this method in the obj
argument is added to the output channel. If this method returns
null, no descriptor is added for this scheduling cycle. The input
channels provided in the sources argument are all the currently
non-empty ON input channels. Their corresponding input identifier is
found in the input_ids argument.

New scheduling cycles are attempted, whenever the output channel
is not full. If no transaction descriptor is scheduled from any of the
currently non-empty source channels, then the next scheduling cycle
will be delayed until an additional ON source channel becomes non-
empty. Lock-up occurs, if there are no empty input channels and no
OFF channels.

 B- 187

VMM User Guide

The default implementation of this method randomizes the instance
found in the randomized_sched property.

Example

Example B-84
vmm_data data_obj;
int unsigned input_ids[$];
...
task start();
 ...
 #1;
 scheduler.start_xactor();
 input_ids = {0,1};
 scheduler.schedule(data_obj,sources,input_ids);
 ...
endtask
...

B-188

VMM User Guide

vmm_scheduler::set_output()

Specifies the channel as the destination if not set previously.

System Verilog

function void set_output(vmm_channel destination);

Open Vera

Not supported

Description

Identifies the channel as the destination of the scheduler if the
destination is not set previously. If destination is already set, then a
warning is issued stating that this particular call has been ignored.

Example

Example B-85
class atm_env extends vmm_group;
...
void function build_ph();
 scheduler = new("schedular","subenv",null,1);
 ...
 endfunction
...
void function connect_ph();
 scheduler.set_output(out_chan);
...
endfunction
 ...
endclass

 B- 189

VMM User Guide

vmm_scheduler::start_xactor()

Starts this vmm_scheduler instance.

SystemVerilog

virtual function void start_xactor();

OpenVera

Not supported.

Description

The scheduler can be stopped. Any extension of this method must
call super.start_xactor().

Example

Example B-86
class atm_env extends vmm_env;
 ...
 task start();
 scheduler.start_xactor();
 ...
 endtask
 ...
endclass

B-190

VMM User Guide

vmm_scheduler::stop_xactor()

Suspends this vmm_scheduler instance.

SystemVerilog

virtual function void stop_xactor();

OpenVera

Not supported.

Description

The scheduler can be restarted. Any extension of this method must
the call super.stop_xactor() method.

Example

Example B-87
class atm_env extends vmm_env;
 ...
 task stop();
 scheduler.stop_xactor();
 ...
 endtask
 ...
endclass

 B- 191

VMM User Guide

vmm_scheduler_election

This class implements a round-robin election process by default. In
its current form, turning it into a random election process requires
that this class be extended. To simplify this process, you need to just
turn-off the default_round_robin constraint block.

The following class properties should be read or added:

• “vmm_scheduler_election::next_idx”

• “vmm_scheduler_election::source_idx”

• “vmm_scheduler_election::obj_offset”

Summary

• vmm_scheduler_election::default_round_robin page B-192
• vmm_scheduler_election::election_id page B-193
• vmm_scheduler_election::id_history[$] page B-194
• vmm_scheduler_election::ids[$] page B-195
• vmm_scheduler_election::instance_id page B-196
• vmm_scheduler_election::n_sources page B-197
• vmm_scheduler_election::next_idx page B-198
• vmm_scheduler_election::obj_history[$] page B-199
• vmm_scheduler_election::obj_offset page B-200
• vmm_scheduler_election::post_randomize() page B-201
• vmm_scheduler_election::source_idx page B-202
• vmm_scheduler_election::sources[$] page B-203

B-192

VMM User Guide

vmm_scheduler_election::default_round_robin

Constraints required by the default round-robin election process.

SystemVerilog

constraint default_round_robin;

OpenVera

Not supported.

Example

Example B-88
class atm_scheduler_election extends
vmm_scheduler_election;
 ...
 constraint default_round_robin {
 source_idx == next_idx;
 }

 constraint vmm_scheduler_election_valid {
 obj_offset == 0;
 source_idx >= 0;
 source_idx < n_sources;
 }
 ...
endclass

 B- 193

VMM User Guide

vmm_scheduler_election::election_id

Incremented by the vmm_scheduler instance.

SystemVerilog

int unsigned election_id;

OpenVera

Not supported.

Description

Incremented by the vmm_scheduler instance that is randomizing
this object instance before every election cycle. Can be used to
specified election-specific constraints.

Example

Example B-89
class atm_scheduler extends vmm_scheduler ;
 ...
 function void my_disp();
 `vmm_note(log,$psprintf("election_id method
 %0d ",randomized_sched.election_id));
 endfunction
 ...
endclass

B-194

VMM User Guide

vmm_scheduler_election::id_history[$]

A queue of input identifiers.

SystemVerilog

int unsigned id_history[$];

OpenVera

Not supported.

Description

A queue of the (up to) 10 last input identifiers that were elected.

Example

Example B-90
class atm_scheduler extends vmm_scheduler ;
 ...
 function void my_disp();
 `vmm_note(log,$psprintf(
 "id_history.size method %0d ",
 randomized_sched.id_history.size));
 foreach(randomized_sched.id_history[i])
 `vmm_note(log,$psprintf("ids[%0d] = %0d ",i,
 randomized_sched.id_history[i]));
 endfunction
 ...
endclass

 B- 195

VMM User Guide

vmm_scheduler_election::ids[$]

Input identifiers corresponding to the source channels.

SystemVerilog

int unsigned ids[$];

OpenVera

Not supported.

Description

Unique input identifiers corresponding to the source channels, at the
same index, in the sources array.

Example

Example B-91
class atm_scheduler extends vmm_scheduler ;
 ...
 function void my_disp();
 `vmm_note(log,$psprintf(
 "ids.size method %0d ",
 randomized_sched.ids.size));
 foreach(randomized_sched.ids[i])
 `vmm_note(log,$psprintf(
 "ids[%0d] = %0d ",i,
 randomized_sched.ids[i]));
 endfunction
 ...
endclass

B-196

VMM User Guide

vmm_scheduler_election::instance_id

Instance identifier of a vmm_scheduler class instance.

SystemVerilog

int instance_id;

OpenVera

Not supported.

Description

Instance identifier of the vmm_scheduler class instance that is
randomizing this object instance. Can be used to specify the
instance-specific constraints.

Example

Example B-92
class atm_scheduler extends vmm_scheduler ;
 ...
 function void my_disp();
 `vmm_note(log,$psprintf(
 "instance_id method %0d ",
 randomized_sched.instance_id));
 endfunction
 ...
endclass

 B- 197

VMM User Guide

vmm_scheduler_election::n_sources

Number of sources.

SystemVerilog

int unsigned n_sources;

OpenVera

Not supported.

Description

Similar to the vmm_scheduler_election::sources.size()
method.

Example

Example B-93
class atm_scheduler extends vmm_scheduler ;
 ...
 function void my_disp();
 `vmm_note(log,$psprintf(
 "n_sources method %0d ",
 randomized_sched.n_sources));
 endfunction
 ...
endclass

B-198

VMM User Guide

vmm_scheduler_election::next_idx

Assign to source_idx for a round-robin process.

SystemVerilog

int unsigned next_idx;

OpenVera

Not supported.

Description

This is the value to assign to source_idx, to implement a round-
robin election process.

Example

Example B-94
class atm_scheduler extends vmm_scheduler ;
 ...
 function void my_disp();
 `vmm_note(log,$psprintf(
 "next_idx = %0d ",
 randomized_sched.next_idx));
 endfunction
 ...
endclass

 B- 199

VMM User Guide

vmm_scheduler_election::obj_history[$]

A list of transaction descriptors.

SystemVerilog

vmm_data obj_history[$];

OpenVera

Not supported.

Description

A list of the (up to) 10 last transaction descriptors that were elected.

Example

Example B-95
class atm_scheduler extends vmm_scheduler ;
 ...
 function void my_disp();
 `vmm_note(log,$psprintf(
 "obj_history.size method %0d ",
 randomized_sched.obj_history.size));
 foreach(randomized_sched.obj_history[i])
 `vmm_note(log,$psprintf(
 "obj_history[%0d] = %0d ",i,
 randomized_sched.obj_history[i]));
 endfunction
 ...
endclass

B-200

VMM User Guide

vmm_scheduler_election::obj_offset

Offset of the elected transaction descriptor, within the elected source
channel.

SystemVerilog

rand int unsigned obj_offset;

OpenVera

Not supported.

Description

Offset, within the source channel indicated by the source_idx
property of the elected transaction descriptor, within the elected
source channel. This property is constrained to be 0 in the
vmm_scheduler_election_valid constraint block, to preserve
ordering of the input streams.

Example

Example B-96
class atm_scheduler extends vmm_scheduler ;
 ...
 function void my_disp();
 `vmm_note(log,$psprintf(
 "obj_offset = %0d",randomized_sched.obj_offset));
 endfunction
 ...
endclass

 B- 201

VMM User Guide

vmm_scheduler_election::post_randomize()

Performs the round-robin election.

SystemVerilog

function void post_randomize();

OpenVera

Not supported.

Description

The default implementation of this method helps to perform the
round-robin election.

Example

Example B-97
class atm_scheduler_election extends
 vmm_scheduler_election;
 function void pre_randomize();
 default_round_robin.constraint_mode(0);
 vmm_scheduler_election_valid.constraint_mode(0);
 ...
 endfunction
endclass

class atm_scheduler extends vmm_scheduler ;
 atm_scheduler_election randomized_sched;
 ...
 function new(...)
 randomized_sched = new();
 endfunction
endclass

B-202

VMM User Guide

vmm_scheduler_election::source_idx

Index in the sources array of the elected source channel.

SystemVerilog

rand int unsigned source_idx;

OpenVera

Not supported.

Description

An index of –1 indicates no election. The
vmm_scheduler_election_valid constraint block constrains
this property to be in the 0 to sources.size()-1 range.

Example

Example B-98
class atm_scheduler extends vmm_scheduler ;
 ...
 function void my_disp();
 `vmm_note(log,$psprintf(
 "source_idx = %0d",randomized_sched.source_idx));
 endfunction
 ...
endclass

 B- 203

VMM User Guide

vmm_scheduler_election::sources[$]

Input source channels with transaction descriptors available to be
scheduled.

SystemVerilog

vmm_channel sources[$];

OpenVera

Not supported.

Example

Example B-99
class atm_scheduler extends vmm_scheduler ;
 ...
 function void my_disp();
 `vmm_note(log,$psprintf(
 "sources.size method %0d ",
 randomized_sched.sources.size));
 endfunction
 ...
endclass

B-204

VMM User Guide

vmm_ss_scenario#(T)

Parameterized version of the VMM single stream scenario.

SystemVerilog

class vmm_ss_scenario #(type T) extends
vmm_ss_scenario_base;

Description

The parameterized single stream scenario is used by the
parameterized scenario generator. It extends the vmm_scenario.
You can extend this class to create a scenario.

Example

class ahb_trans extends vmm_data;
 rand bit [31:0] addr;
 rand bit [31:0] data;
endclass

`vmm_channel(ahb_trans)
`vmm_scenario_gen(ahb_trans, "AHB Scenario Gen")

class user_scenario extends ahb_trans_scenario;
endclass

Is the same as:

class user_scenario extends vmm_ss_scenario#(ahb_trans);
endclass

 B- 205

VMM User Guide

vmm_simulation

The vmm_simulation class extending from vmm_unit is a top-
level singleton module that manages the end-to-end simulation
timelines. It includes pre-test and post-test timelines with predefined
pre-test and post-test phases. The predefined pre-test phases are
build, configure, and connect. The predefined post-test
phase is final.

Example

program tb_top;
 class my_test extends vmm_test;
 ...
 endclass

 class my_env extends vmm_group;
 ...
 endclass

 initial begin
 my test test1 = new("test1");
 my_env env = new("env");
 vmm_simulation my_sim;
 my_sim = vmm_simulation :: get_sim();
 ...
 end
endprogram

Summary

• vmm_simulation::allow_new_phases() page B-206
• vmm_simulation::display_phases() page B-207
• vmm_simulation::get_post_timeline() page B-208
• vmm_simulation::get_pre_timeline() page B-209
• vmm_simulation::get_sim() page B-210
• vmm_simulation::get_top_timeline() page B-211
• vmm_simulation::run_tests() page B-212

B-206

VMM User Guide

vmm_simulation::allow_new_phases()

Enables the addition of user-defined phases in timelines.

SystemVerilog

static function void vmm_simulation::allow_new_phases(
 bit allow = 1)

Description

Enables the addition of user-defined phases in timelines, if allow is
true. If the insertion of a user-defined phase is attempted, when new
phases are not allowed, an error message is issued.

By default, addition of user-defined phases are not allowed.

Example

program tb_top;
 class my_test extends vmm_test;
 ...
 endclass
 class my_env extends vmm_group;
 ...
 endclass

 initial begin
 my test test1 = new("test1");
 my_env env = new("env");
 ...
 vmm_simulation::allow_new_phases();
 // insert new phases using
 // vmm_timeline::insert_phase();
 end
endprogram

 B- 207

VMM User Guide

vmm_simulation::display_phases()

Displays how various phases in the various timelines will be
executed.

SystemVerilog

static function void vmm_simulation::display_phases()

Description

Displays how various phases in the various timelines will be
executed (that is, in sequence or in parallel). Should be invoked after
the build phase.

Example

program tb_top;
 class my_test extends vmm_test;
 virtual function void start_of_sim_ph();
 vmm_simulation::display_phases();
 endfunction
 endclass

 class my_env extends vmm_group;
 endclass

 initial begin
 my test test1 = new("test1");
 my_env env = new("env");
 ...
 vmm_simulation::run_tests();
 end
endprogram

B-208

VMM User Guide

vmm_simulation::get_post_timeline()

Returns the post-test timeline.

SystemVerilog

static function vmm_timeline
 vmm_simulation::get_post_timeline()

Description

Returns the post-test timeline.

 B- 209

VMM User Guide

vmm_simulation::get_pre_timeline()

Returns the pre-test timeline.

SystemVerilog

static function vmm_timeline
 vmm_simulation::get_pre_timeline()

Description

Returns the pre-test timeline.

B-210

VMM User Guide

 vmm_simulation::get_sim()

Returns the vmm_simulation singleton.

SystemVerilog

static function vmm_simulation vmm_simulation::get_sim()

Description

Returns the vmm_simulation singleton.

Example

program tb_top;
 class my_test extends vmm_test;
 ...
 endclass

 class my_env extends vmm_group;
 ...
 endclass

 initial begin
 my test test1 = new("test1");
 my_env env = new("env");
 vmm_simulation my_sim;
 ...
 my_sim = vmm_simulation :: get_sim();
 ...
 end
endprogram

 B- 211

VMM User Guide

vmm_simulation::get_top_timeline()

Returns the top-level test timeline.

SystemVerilog

static function vmm_timeline
 vmm_simulation::get_top_timeline()

Description

Returns the top-level test timeline.

Example

program tb_top;
 class my_test extends vmm_test;
 ...
 endclass

 class my_env extends vmm_group;
 ...
 endclass

 initial begin
 my test test1 = new("test1");
 my_env env = new("env");
 vmm_timeline my_tl;
 ...
 my_tl = vmm_simulation::get_top_timeline();
 ...
 end
endprogram

B-212

VMM User Guide

vmm_simulation::run_tests()

Run tests specified at runtime.

SystemVerilog

task vmm_simulation::run_tests()

Description

Run tests specified at runtime using the +vmm_test or
+vmm_test_file, or runs default test

The following is the usage of +vmm_test_file and +vmm_test to
specify testcase at runtime:

+vmm_test_file+<file name> - will run list of tests
specified in the file (if concatenation is allowed, otherwise
issues a fatal message)
+vmm_test=<testname>+<testname>+...
Run list of specified tests
+vmm_test=<test name>
- run specific test
+vmm_test=ALL_TESTS - run all the registered tests (if
concatenation is allowed, otherwise issues a fatal message)

Example

program tb_top;
 class my_test extends vmm_test;
 endclass
 class my_env extends vmm_group;
 endclass
 initial begin
 my test test1 = new("test1");
 my_env env = new("env");
....
 vmm_simulation::run_tests();

 B- 213

VMM User Guide

 end
endprogram

B-214

VMM User Guide

vmm_subenv

This is a base class used to encapsulate a reusable sub-
environment.

Summary

• vmm_subenv::cleanup() page B-215
• vmm_subenv::configured() page B-216
• vmm_subenv::do_psdisplay() page B-217
• vmm_subenv::do_start() page B-218
• vmm_subenv::do_stop() page B-219
• vmm_subenv::do_vote() page B-220
• vmm_subenv::do_what_e page B-221
• vmm_subenv::end_test page B-222
• vmm_subenv::log page B-223
• vmm_subenv::new() page B-224
• vmm_subenv::report() page B-226
• vmm_subenv::start() page B-227
• vmm_subenv::stop() page B-228
• ‘vmm_subenv_member_begin() page B-229
• ‘vmm_subenv_member_channel*() page B-230
• ‘vmm_subenv_member_end() page B-232
• ‘vmm_subenv_member_enum*() page B-233
• ‘vmm_subenv_member_scalar*() page B-235
• ‘vmm_subenv_member_string*() page B-237
• ‘vmm_subenv_member_subenv*() page B-239
• ‘vmm_subenv_member_user_defined() page B-241
• ‘vmm_subenv_member_vmm_data*() page B-242
• ‘vmm_subenv_member_xactor*() page B-244

 B- 215

VMM User Guide

vmm_subenv::cleanup()

Verifies end-of-test conditions.

SystemVerilog

virtual task cleanup();

OpenVera

virtual task cleanup_t();

Description

Stops the sub-environment (if not already stopped), and then verifies
any end-of-test conditions.

The base implementation must be called using the
super.cleanup(), by any extension of this method, in a user-
defined extension of this base class.

Example

Example B-100
class my_vmm_subenv extends vmm_subenv;
 ...
 virtual task cleanup()
 super.cleanup();
 ...
 endtask
 ...
endclass

B-216

VMM User Guide

vmm_subenv::configured()

Indicates that the DUT is configured.

SystemVerilog

protected function void configured();

OpenVera

protected task configured();

Description

Reports to the base class that the sub-environment and associated
DUT are configured appropriately, and that the sub-environment is
ready to be started.

This method must be called by a user-defined configured()
method in the extension of this base class.

Example

Example B-101
class my_vmm_subenv extends vmm_subenv;
 ...
 protected function void configured(...);
 // Configuration of sub environment and corresponding
 // portion of DUT
 ...
 super.configured();
 endfunction
 ...
endclass

 B- 217

VMM User Guide

vmm_subenv::do_psdisplay()

Overrides the shorthand psdisplay() method.

SystemVerilog

virtual function string do_psdisplay(string prefix = "")

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_subenv::psdisplay() method, created by the
vmm_subenv shorthand macros. If defined, it will be used instead of
the default implementation.

Example

Example B-102
class my_vmm_subenv extends vmm_subenv;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 virtual function string do_psdisplay(string prefix = "");
 $sformat(do_psdisplay,"%s Printing sub environment
 members \n",prefix);
 ...
 endfunction
 ...
endclass

B-218

VMM User Guide

vmm_subenv::do_start()

Overrides the shorthand start() method.

SystemVerilog

protected virtual task do_start()

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_subenv::start() method created by the vmm_subenv
shorthand macros. If defined, it will be used instead of the default
implementation.

Example

Example B-103
class my_vmm_subenv extends vmm_subenv;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 protected virtual task do_start();
 //vmm_subenv::start() operations
 ...
 endtask
 ...
endclass

 B- 219

VMM User Guide

vmm_subenv::do_stop()

Overrides the shorthand stop() method.

SystemVerilog

protected virtual task do_stop()

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_subenv::stop() method created by the vmm_subenv
shorthand macros. If defined, it will be used instead of the default
implementation.

Example

Example B-104
class my_vmm_subenv extends vmm_subenv;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 protected virtual task do_stop();
 //vmm_subenv::stop() operations
 ...
 endtask
 ...
endclass

B-220

VMM User Guide

vmm_subenv::do_vote()

Overrides the shorthand voter registration.

SystemVerilog

protected virtual task do_vote()

OpenVera

Not supported.

Description

This method overrides the default implementation of the voter
registration, created by the vmm_subenv shorthand macros. If
defined, it will be used instead of the default implementation.

Example

Example B-105
class my_vmm_subenv extends vmm_subenv;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 protected virtual task do_vote();
 //Register with this.end_vote
 ...
 endtask
 ...
endclass

 B- 221

VMM User Guide

vmm_subenv::do_what_e

Specifies which methods are to be provided by a shorthand
implementation.

SystemVerilog

enum {DO_PRINT, DO_START, DO_STOP,
 DO_VOTE, DO_ALL} do_what_e;

OpenVera

Not supported.

Description

Used to specify which methods are to include the specified data
members in their default implementation. "DO_PRINT" includes the
member in the default implementation of the psdisplay() method.
"DO_START" includes the member in the default implementation of
the start() method, if applicable. "DO_STOP" includes the
member in the default implementation of the stop() method, if
applicable. "DO_VOTE" automatically registers the member with the
vmm_subenv::end_test consensus instance, if applicable.

Multiple methods can be specified by adding or using the or
symbolic values. All methods are specified by specifying the
"DO_ALL" symbol.

Example

Example B-106
‘vmm_subenv_member_subenv(idler, DO_ALL - DO_STOP);

B-222

VMM User Guide

vmm_subenv::end_test

End-of-test consensus interface.

SystemVerilog

protected vmm_consensus end_test;

OpenVera

protected vmm_consensus end_test;

Description

Local copy of the vmm_consensus reference supplied to the
constructor. It may be used to indicate if the sub-environment and its
components consent to or oppose the ending of the test.

Unless an objection is indicated, the sub-environment will consent by
default.

Example

Example B-107
class my_vmm_subenv extends vmm_subenv;
 ...
 function new(string name,string inst,
 vmm_consensus end_test);
 super.new(name,inst,end_test);
 ...
 endfunction
 ...
endclass

 B- 223

VMM User Guide

vmm_subenv::log

Message service interface for the sub-environment.

SystemVerilog

vmm_log log;

OpenVera

rvm_log log;

Description

This property is set by the constructor, using the specified name and
instance name. These names may be modified, afterward, using the
vmm_log::set_name() or vmm_log::set_instance()
methods.

Example

Example B-108
class my_vmm_subenv extends vmm_subenv;
 vmm_log log;
 ...
 function new(string name,string inst,
 vmm_consensus end_test);
 ...
 `vmm_debug(log,"Sub Environment new done");
 endfunction
 ...
endclass

B-224

VMM User Guide

vmm_subenv::new()

Creates a new instance of this sub-environment base class.

SystemVerilog

function new(string name,
 string inst,

vmm_consensus end_test,
 vmm_object parent = null);

With +define NO_VMM12
function new(string name,
 string inst,
 vmm_consensus end_test);

OpenVera

task new(string name,
 string inst,

vmm_consensus end_test);

Description

Creates a new instance of this base class with the specified name
and instance name. The specified name and instance names are
used as the name and instance names of the log class property.

The specified end-of-test consensus object is assigned to the
end_test class property, and may be used by the sub-environment
to indicate that it opposes or consents to the ending of the test.

 B- 225

VMM User Guide

Example

Example B-109
class my_vmm_subenv extends vmm_subenv;
 ...
 function new(string name,string inst,
 vmm_consensus end_test, vmm_object parent = null);
 super.new(name,inst,end_test, parent);
 endfunction
endclass

B-226

VMM User Guide

vmm_subenv::report()

Reports information collected by the sub-environment.

SystemVerilog

virtual function void report();

OpenVera

virtual task report();

Description

Reports status, coverage, or statistical information collected by the
sub-environment, but not pass or fail of the test or sub-environment.

This method needs to be extended. It may also be invoked multiple
times during the simulation.

Example

Example B-110
class my_vmm_subenv extends vmm_subenv;
 ...
 virtual function void report()
 super.report();
 ...
 endfunction
 ...
endclass

 B- 227

VMM User Guide

vmm_subenv::start()

Starts the sub-environment.

SystemVerilog

virtual task start();

OpenVera

virtual task start_t();

Description

Starts the sub-environment. An error is reported, if this method is
called before the sub-environment and DUT is reported as
configured to the sub-environment base class, using the
“vmm_consensus::unregister_voter()” method.

A stopped sub-environment may be restarted.

The base implementation must be called using the super.start()
method, by any extension of this method in a user-defined
extension of this base class.

Example

Example B-111
class my_vmm_subenv extends vmm_subenv;
 ...
 virtual task start()
 super.start();
 this.my_xactor.start_xactor();
 endtask
endclass

B-228

VMM User Guide

vmm_subenv::stop()

Stops the sub-environment.

SystemVerilog

virtual task stop();

OpenVera

virtual task stop_t();

Description

Stops the sub-environment to terminate the test cleanly. An error is
generated, if the sub-environment is not previously started.

The base implementation must be called using the super.stop()
method, by any extension of this method in a user-defined extension
of this base class.

Example

Example B-112
class my_vmm_subenv extends vmm_subenv;
 ...
 virtual task stop()
 super.stop();
 this.my_xactor.stop_xactor();
 ...
 endtask
 ...
endclass

 B- 229

VMM User Guide

‘vmm_subenv_member_begin()

Starts of shorthand section.

SystemVerilog

‘vmm_subenv_member_begin(class-name)

OpenVera

Not supported.

Description

Starts the shorthand section providing a default implementation for
the psdisplay(), start() and stop() methods.

The class-name specified must be the name of the vmm_subenv
extension class that is being implemented.

The shorthand section can only contain shorthand macros, and must
be terminated by the “‘vmm_subenv_member_end()” method.

Example

Example B-113
class tcpip_stack extends vmm_subenv;
 ...
 ‘vmm_subenv_member_begin(tcpip_stack)
 ...
 ‘vmm_subenv_member_end(tcpip_stack)
 ...
endclass

B-230

VMM User Guide

‘vmm_subenv_member_channel*()

Shorthand implementation for a channel data member.

SystemVerilog

‘vmm_subenv_member_channel(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_channel_array(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_channel_aa_scalar(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_channel_aa_string(member-name,
 vmm_subenv::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified channel-type, array of channels, dynamic array of
channels, scalar-indexed associative array of channels, or string-
indexed associative array of channels data member to the default
implementation of the methods specified by the ’do_what’
argument.

The shorthand implementation must be located in a section started
by the “‘vmm_subenv_member_begin()” method.

 B- 231

VMM User Guide

Example

Example B-114
class my_vmm_subenv extends vmm_subenv;
 data_channel subenv_channel;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 `vmm_subenv_member_channel(subenv_channel,DO_ALL)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 ...
endclass

B-232

VMM User Guide

‘vmm_subenv_member_end()

End of shorthand section.

SystemVerilog

‘vmm_subenv_member_end(class-name)

OpenVera

Not supported.

Description

Terminates the shorthand section providing a default implementation
for the psdisplay(), start() and stop() methods.

The class-name specified must be the name of the vmm_subenv
extension class that is being implemented.

The shorthand section must be started by the
“‘vmm_subenv_member_begin()” method.

Example

Example B-115
class my_vmm_subenv extends vmm_subenv;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 ...
endclass

 B- 233

VMM User Guide

‘vmm_subenv_member_enum*()

Shorthand implementation for an enumerated data member.

SystemVerilog

‘vmm_subenv_member_enum(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_enum_array(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_enum_aa_scalar(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_enum_aa_string(member-name,
 vmm_subenv::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified enum-type, array of enums, scalar-indexed
associative array of enums, or string-indexed associative array of
enums data member to the default implementation of the methods
specified by the ’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_subenv_member_begin()” method.

Example

Example B-116
typedef enum {blue,green,red,black} my_colors;

B-234

VMM User Guide

class my_vmm_subenv extends vmm_subenv;
 my_colors color;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 `vmm_subenv_member_enum(color,DO_ALL)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 ...
endclass

 B- 235

VMM User Guide

‘vmm_subenv_member_scalar*()

Shorthand implementation for a scalar data member.

SystemVerilog

‘vmm_subenv_member_scalar(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_scalar_array(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_scalar_aa_scalar(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_scalar_aa_string(member-name,
 vmm_subenv::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified scalar-type, array of scalars, scalar-indexed
associative array of scalars or string-indexed associative array of
scalars data member to the default implementation of the methods
specified by the ’do_what’ argument.

A scalar is an integral type, such as bit, bit vector, and packed
unions.

The shorthand implementation must be located in a section started
by the “‘vmm_subenv_member_begin()” method.

B-236

VMM User Guide

Example

Example B-117
class my_vmm_subenv extends vmm_subenv;
 bit [31:0] address;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 `vmm_subenv_member_scalar(address,DO_ALL)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 ...
endclass

 B- 237

VMM User Guide

‘vmm_subenv_member_string*()

Shorthand implementation for a string data member.

SystemVerilog

‘vmm_subenv_member_string(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_string_array(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_string_aa_scalar(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_string_aa_string(member-name,
 vmm_subenv::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified string-type, array of strings, scalar-indexed
associative array of strings, or string-indexed associative array of
strings data member to the default implementation of the methods
specified by the ’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_subenv_member_begin()” method.

Example

Example B-118
class my_vmm_subenv extends vmm_subenv;

B-238

VMM User Guide

 string xactor_name;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 `vmm_subenv_member_string(xactor_name,DO_ALL)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 ...
endclass

 B- 239

VMM User Guide

‘vmm_subenv_member_subenv*()

Shorthand implementation for a transactor data member.

SystemVerilog

‘vmm_subenv_member_subenv(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_subenv_array(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_subenv_aa_scalar(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_subenv_aa_string(member-name,
 vmm_subenv::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified sub-environment-type, array of sub-
environments, dynamic array of sub-environments, scalar-indexed
associative array of sub-environments, or string-indexed associative
array of sub-environments data member to the default
implementation of the methods specified by the ’do_what’
argument.

The shorthand implementation must be located in a section started
by the “‘vmm_subenv_member_begin()” method.

B-240

VMM User Guide

Example

Example B-119
class sub_subenv extends vmm_subenv;
 function new(....);
 super.new(...);
 ...
 endfunction
endclass

class my_vmm_subenv extends vmm_subenv;
 sub_subenv sub_subenv_inst;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 `vmm_subenv_member_subenv(sub_subenv_inst,DO_ALL)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 ...
endclass

 B- 241

VMM User Guide

‘vmm_subenv_member_user_defined()

User-defined shorthand implementation data member.

SystemVerilog

‘vmm_subenv_member_user_defined(member-name)

OpenVera

Not supported.

Description

Adds the specified user-defined default implementation of the
methods specified by the ’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_subenv_member_begin()” method.

Example

Example B-120
class my_vmm_subenv extends vmm_subenv;
 bit [7:0] subenv_id;
 ...
 `vmm_env_member_begin(my_vmm_subenv)
 `vmm_subenv_member_user_defined(subenv_id)
 ...
 `vmm_env_member_end(my_vmm_subenv)

 function bit do_subenv_id(vmm_subenv::do_what_e do_what)
 do_subenv_id = 1;
 case(do_what)
 endfunction
endclass

B-242

VMM User Guide

‘vmm_subenv_member_vmm_data*()

Shorthand implementation for a vmm_data-based data member.

SystemVerilog

‘vmm_subenv_member_vmm_data(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_vmm_data_array(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_vmm_data_aa_scalar(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_vmm_data_aa_string(member-name,
 vmm_subenv::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified vmm_data-type, array of vmm_datas, scalar-
indexed associative array of vmm_datas, or string-indexed
associative array of vmm_datas data member to the default
implementation of the methods specified by the ’do_what’
argument.

The shorthand implementation must be located in a section started
by the “‘vmm_subenv_member_begin()” method.

 B- 243

VMM User Guide

Example

Example B-121
class my_data extends vmm_data;
 ...
endclass

class my_vmm_subenv extends vmm_subenv;
 my_data subenv_data;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 `vmm_subenv_member_vmm_data(subenv_data,DO_ALL)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 ...
endclass

B-244

VMM User Guide

‘vmm_subenv_member_xactor*()

Shorthand implementation for a transactor data member.

SystemVerilog

‘vmm_subenv_member_xactor(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_xactor_array(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_xactor_aa_scalar(member-name,
 vmm_subenv::do_what_e do_what)

‘vmm_subenv_member_xactor_aa_string(member-name,
 vmm_subenv::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified transactor-type, array of transactors, dynamic
array of transactors, scalar-indexed associative array of transactors,
or string-indexed associative array of transactors data member to
the default implementation of the methods specified by the
’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_subenv_member_begin()” method.

 B- 245

VMM User Guide

Example

Example B-122
class my_vmm_subenv extends vmm_subenv;
 data_gen subenv_xactor;
 ...
 `vmm_subenv_member_begin(my_vmm_subenv)
 `vmm_subenv_member_xactor(subenv_xactor,DO_ALL)
 ...
 `vmm_subenv_member_end(my_vmm_subenv)
 ...
endclass

B-246

VMM User Guide

vmm_test

The vmm_test class is an extension of vmm_timeline, and
handles the test execution timeline with all of the default predefined
phases. This is used as the base class for all tests.

Instances of this class must be either root objects or children of
vmm_test objects.

Example

class my_test1 extends vmm_test;
 `vmm_typename(my_test1)
 function new(string name);
 super.new(name);
 endfunction

 function void config_ph;
 cfg cfg1 = new;
 if (cfg1.randomize)
 `vmm_note (log, "CFG randomized successfully");
 else
 `vmm_error (log, "CFG randomization failed");
 endfunction
endclass

Summary

• vmm_test::get_doc() page B-247
• vmm_test::get_name() page B-248
• vmm_test::log page B-249
• vmm_test::new() page B-251
• vmm_test::run() page B-252
• vmm_test::set_config() page B-253
• ‘vmm_test_begin() page B-254
• ‘vmm_test_end() page B-256

 B- 247

VMM User Guide

vmm_test::get_doc()

Returns the description of a test.

SystemVerilog

virtual function string get_doc();

OpenVera

Not supported.

Description

Returns the short description of the test that was specified in the
constructor.

Example

Example B-123
class my_test extends vmm_test;
 function new();
 super.new("my_test");
 endfunction
 static my_test this_test = new();
 virtual task run(vmm_env env);
 ‘vmm_note(this.log,
 {"Running test ", this.get_doc()});
 ...
 endtask
endclass

B-248

VMM User Guide

vmm_test::get_name()

Returns the name of a test.

SystemVerilog

virtual function string get_name();

OpenVera

Not supported.

Description

Returns the name of the test that was specified in the constructor.

Example

Example B-124
class my_test extends vmm_test;
 function new();
 super.new("my_test");
 endfunction
 static my_test this_test = new();
 virtual task run(vmm_env env);
 ‘vmm_note(this.log,
 {"Running test ", this.get_name()});
 ...
 endtask
endclass

 B- 249

VMM User Guide

vmm_test::log

Message service interface for the testcase.

SystemVerilog

vmm_log log;

OpenVera

Not supported.

Description

Message service interface instance that can be used to generate
messages in the vmm_test::run() method.

The name of the message service interface is "Testcase", and the
instance name is the name specified to the vmm_test::new()
method.

Example

Example B-125
program test;
 class test_100 extends vmm_test;
 vmm_env env;
 function new();
 super.new("test_100", "Single Read");
 endfunction
 task run(vmm_env env1);
 `vmm_note(log,"Test Started");
 $cast(env, env1);
 endtask
 endclass

B-250

VMM User Guide

 initial begin
 test_100 T;
 T = new;
 T.run(T.env);
 end
endprogram

 B- 251

VMM User Guide

vmm_test::new()

Creates an instance of the testcase.

SystemVerilog

function new(string name,
string doc = "",
vmm_object parent = null);

OpenVera

Not supported.

Description

Creates an instance of the testcase, its message service interface,
and registers it in the global testcase registry under the specified
name. A short description of the testcase may also be specified.

Example

Example B-126
class my_test extends vmm_test;
 function new();
 super.new("my_test");
 endfunction
 static my_test this_test = new();
 virtual task run(vmm_env env);
 ...
 endtask
endclass

B-252

VMM User Guide

vmm_test::run()

Runs a testcase.

SystemVerilog

virtual task run(vmm_env env);

OpenVera

Not supported.

Description

The test itself.

The default implementation of this method calls env.run(). If a
different test implementation is required, the default implementation
of this method must not be invoked using the super.run()
method.

This method should not call vmm_log::report().

Example

Example B-127
class my_test extends vmm_test;
 virtual task run(vmm_env env);
 tb_env my_env;
 $cast(my_env, env);
 my_env.start();
 my_env.gen[0].start_xactor();
 my_env.run();
 endtask
endclass

 B- 253

VMM User Guide

 vmm_test::set_config()

SystemVerilog

virtual function void vmm_test::set_config()

Description

This method may be used to set vmm_unit factory instances and
configuration parameters in vmm_unit instances outside of the
scope of the test module, using the
classname::override_with_*() and vmm_opts::set_*()
methods.

This method can only be used if tests are executed one per
simulation. When this method is used, tests cannot be concatenated.

Example

class my_ahb_trans extends vmm_object;
 ...
 `vmm_class_factory(my_ahb_trans)
endclass

class my_test1 extends vmm_test;
 `vmm_typename(my_test1)
 function new(string name);
 super.new(name);
 endfunction

 function set_config();
 ahb_trans::override_with_new("@%*",
 my_ahb_trans::this_type, log, `__FILE__,
 `__LINE__);
 endfunction
 ...
endclass

B-254

VMM User Guide

‘vmm_test_begin()

Shorthand macro to define a testcase class.

SystemVerilog

‘vmm_test_begin(testclassname, envclassname, doc)

OpenVera

Not supported.

Description

Shorthand macro that may be used to define a user-defined testcase
implemented using a class based on the vmm_test class. The first
argument is the name of the testcase class that will also be used as
the name of the testcase in the global testcase registry. The second
argument is the name of the environment class that will be used to
execute the testcase. A data member of that type named "env" will
be defined and assigned, ready to be used. The third argument is a
string, which is used to document the purpose of the test.

This macro can be used to create the testcase class up to and
including the declaration of the vmm_test::run() method. This
macro can then be followed by variable declarations and procedural
statements. The instance of the verification environment of the
specified type can be accessed as "this.env". It must be
preceded by any import statement required by the test
implementation.

 B- 255

VMM User Guide

Example

The following example shows how the testcase from Example B-126
and Example B-127 can be implemented, using shorthand macros.

Example B-128
import tb_env_pkg::*;

‘vmm_test_begin(my_test, tb_env, "Simple test")
 this.env.build();
 this.env.gen[0].stop_xactor();
 this.env.run();
‘vmm_test_end(my_test)

B-256

VMM User Guide

‘vmm_test_end()

Shorthand macro to define a testcase class.

SystemVerilog

‘vmm_test_end(testclassname)

OpenVera

Not supported.

Description

Shorthand macro that may be used to define a user-defined testcase
implemented using a class, based on the vmm_test class. The first
argument must be the same name specified as the first argument of
the ‘vmm_test_begin() macro.

This macro can be used to end the testcase class, including the
implementation of the vmm_test::run() method.

Example

The following example shows how the testcase from Example B-126
and Example B-127 can be implemented, using shorthand macros.

Example B-129
‘vmm_test_begin(my_test, tb_env, “Simple test”)
 this.env.build();
 this.env.gen[0].stop_xactor();
 this.env.run();
‘vmm_test_end(my_test)

 B- 257

VMM User Guide

vmm_test_registry

Global test registry that can be optionally used to implement runtime
selection of tests.

No constructor is documented, because this class is implemented
using a singleton pattern. Its functionality is accessed strictly
through static members.

Summary

• vmm_test_registry::list() page B-258
• vmm_test_registry::run() page B-259

B-258

VMM User Guide

vmm_test_registry::list()

Lists all available tests.

SystemVerilog

static function void list();

OpenVera

Not supported.

Description

Lists the tests that are registered with the global test registry.

This method is invoked automatically by the
vmm_test_registry::run() method, followed by a call to
$finish(), if the +vmm_test_help option is specified.

Example

Example B-130
program test;
 `include "test.lst"
 i2c_env env;

 initial begin
 vmm_test_registry registry = new;
 env = new;
 registry.list();
 registry.run(env);
 end
endprogram

 B- 259

VMM User Guide

vmm_test_registry::run()

Runs a testcase.

SystemVerilog

static task run(vmm_env env);

OpenVera

Not supported.

Description

Runs a testcase on the specified verification environment. Using
SystemVerilog, this method must be invoked in a program thread to
satisfy Verification Methodology Manual rules.

If more than one testcase is registered, then the name of a testcase
must be specified using the "+vmm_test" runtime string option.
For more information, see the section,
vmm_opts::get_string() to know how to specify runtime string
options. If only one test is registered, then it is run by default without
having to specify its name at runtime.

A default testcase, named "Default" that simply invokes
env::run(), is automatically available if no testcase is previously
registered under that name.

Example

Example B-131
program top;
 tb_env env = new();

B-260

VMM User Guide

 initial vmm_test_registry::run(env);
endprogram

 B- 261

VMM User Guide

vmm_timeline

The vmm_timeline user-defined class coordinates simulation
through a user-defined timeline, with predefined test phases as
follows:

- build

- configure

- connect

- configure_test

- start_of_sim

- reset

- training

- config_dut

- start

- start_of_test

- run

- shutdown

- cleanup

- report

- final

Phases may be subsequently added or removed as needed.

B-262

VMM User Guide

Summary

• vmm_timeline::abort_phase() page B-263
• vmm_timeline::append_callback() page B-264
• vmm_timeline::delete_phase() page B-267
• vmm_timeline::display_phases() page B-268
• vmm_timeline::get_current_phase_name() page B-269
• vmm_timeline::get_next_phase_name() page B-270
• vmm_timeline::get_phase() page B-271
• vmm_timeline::get_previous_phase_name() page B-272
• vmm_timeline::insert_phase() page B-273
• vmm_timeline::jump_to_phase() page B-275
• vmm_timeline::prepend_callback() page B-276
• vmm_timeline::rename_phase() page B-278
• vmm_timeline::reset_to_phase() page B-279
• vmm_timeline::run_phase() page B-280
• vmm_timeline::step_function_phase() page B-281
• vmm_timeline::task_phase_timeout() page B-282
• vmm_timeline::unregister_callback() page B-283
• vmm_timeline_callbacks page B-285
• vmm_timeline_callback::break_on_phase() page B-286

 B- 263

VMM User Guide

vmm_timeline::abort_phase()

Aborts the specified phase, if currently executing.

SystemVerilog

function void abort_phase(string name, string fname = "",
 int lineno = 0);

Description

Aborts the execution of the specified phase, if it is the currently
executing phase in the timeline. If another phase is executing, it
generates a warning message if the specified phase is already
executed to completion, and generates an error message if the
specified phase is not yet started. The fname and lineno
arguments are used to track the file name and the line number where
this method is invoked from.

Example

class test extends vmm_test;
 vmm_timeline topLevelTimeline;
endclass
...
initial begin
 test test1 = new ("test1", "test1");
 ...
 fork
 test1.topLevelTimeline.run_phase("reset");
 #(reset_cycle) test1.topLevelTimeline.abort_phase (
 "reset");
 ...
 join_any
 disable fork;
 ...
end

B-264

VMM User Guide

vmm_timeline::append_callback()

Appends the specified callback.

SystemVerilog

function void append_callback(vmm_timeline_callbacks cb);

Description

Appends the specified callback extension to the callback registry, for
this timeline. Returns true, if the registration was successful.

Example

class timeline_callbacks extends vmm_timeline_callbacks;
 virtual function void my_f1();
 endfunction
endclass

class timelineExtension extends vmm_timeline;
 function new (string name, string inst,
 vmm_unit parent=null);
 super.new(name,inst,parent);
 endfunction

 function void build_ph();
 `vmm_callback(timeline_callbacks,my_f1());
 endfunction:build_ph
 ...
endclass

class timelineExtension_callbacks extends
 timeline_callbacks;
 int my_f1_counter++;
 virtual function void my_f1();
 my_f1_counter++;
 endfunction

 B- 265

VMM User Guide

endclass

initial begin
 timelineExtension tl = new ("my_timeline", "t1");
 timelineExtension_callbacks cb1 = new();
 tl.append_callback(cb1);
 ...
end

B-266

VMM User Guide

vmm_timeline::configure_test_ph()

Configures the environment from testcase.

SystemVerilog

function void configure_test_ph();

Description

The configure_test_ph is the method that gets executed at the
beginning of the test root timeline. The test-specific run-time
configuration should be put in configure_test_ph() (options,
callbacks, and so on). For multiple test concatenation, the default
rollback for the tests in sequence is this configure_test_ph.
Also, for multiple tests, the configure_test phase is run, even
if timeline is not reset before it, followed by the test root timeline from
reset point (set through `VMM_TEST_IS_CONCATENABLE macro)
to the end (start_of_sim, reset, training, config_dut, run, shutdown,
cleanup, and report) for the subsequent tests.

Example

class test_read_back2back extends vmm_test;
 function new(string name);
 super.new(name);
 endfunction
 virtual function void configure_test_ph();
 test_read_back2back_test_trans tr = new();
 tr.address = 'habcd_1234;
 tr.address.rand_mode(0);
 cpu_trans::override_with_copy("@%*", tr, log, ̀ __FILE__,
`__LINE__);
 vmm_opts::set_int("%*:num_scenarios", 50);
 endfunction
endclass

 B- 267

VMM User Guide

vmm_timeline::delete_phase()

Deletes the specified phase from timeline.

SystemVerilog

function bit delete_phase(string phase_name,
 string fname = "", int lineno = 0);

Description

Deletes the specified phase in this timeline. Returns false, if the
phase does not exist.

The fname and lineno arguments are used to track the file name
and the line number where this method is invoked from.

Example

class groupExtension extends vmm_group;
 function void build_ph ();
 vmm_timeline t = this.get_timeline();
 ...
 t.delete_phase ("connect");
 ...
 endfunction
endclass

B-268

VMM User Guide

vmm_timeline::display_phases()

Displays all phases left to be executed.

SystemVerilog

function void display_phases();

Description

Displays all phases left to be executed, for this timeline.

Example

class test extends vmm_test;
 ...
 user_timeline topLevelTimeline;
 ...
endclass
...
initial begin
 test test1 = new ("test1", "test1");
 ...
 fork
 begin
 test1.topLevelTimeline.run_phase();
 end
 begin
 #20 test1.topLevelTimeline.display_phases();
 end
 ...
 join
 ...
end

 B- 269

VMM User Guide

vmm_timeline::get_current_phase_name()

Displays the current executing phase of the timeline.

SystemVerilog

function string get_current_phase_name();

Description

Displays the current phase, where the timeline phase execution is at
a given point of time.

Example

class test extends vmm_test;
 ...
 user_timeline topLevelTimeline;
 ...
endclass
...
initial begin
 test test1 = new ("test1", "test1");
 ...
 fork
 begin
 test1.topLevelTimeline.run_phase();
 end
 begin
 #20 `vmm_note (log, psprintf("Current Simulation
 Phase for test1 is : %s ",
 test1.topLevelTimeline.get_current_phase_name())
);
 end
 ...
 join
 ...
end

B-270

VMM User Guide

vmm_timeline::get_next_phase_name()

Returns the name of the following phase.

SystemVerilog

function string get_next_phase_name(string name);

Description

Returns the name of the phase that follows the specified phase.
Returns $, if the specified phase is the last one. Returns ?, if the
specified phase is unknown.

Example

class groupExtension extends vmm_group;
 ...
 function void build_ph ();
 string nxt_ph;
 vmm_timeline t = this.get_timeline();
 ...
 nxt_ph = t.get_next_phase_name ("start_of_sim");
 //returns "reset"
 ...
 endfunction
endclass

 B- 271

VMM User Guide

vmm_timeline::get_phase()

Returns the phase descriptor for a specified phase.

SystemVerilog

function vmm_phase get_phase(string name);

Description

Returns the descriptor of the specified phase in this timeline. Returns
null if the specified phase is unknown.

Example

class groupExtension extends vmm_group;
 ...
 function void build_ph();
 vmm_phase ph;
 vmm_timeline t = this.get_timeline();
 ...
 ph = t.get_phase ("start_of_sim");
 ...
 endfunction
endclass

B-272

VMM User Guide

vmm_timeline::get_previous_phase_name()

Returns the name of the preceding phase.

SystemVerilog

function string get_previous_phase_name(string name);

Description

Returns the name of the phase that precedes the specified phase.
Returns ^, if the specified phase is the first one. Returns ?, if the
specified phase is unknown.

Example

class groupExtension extends vmm_group;
 ...
 function void build_ph ();
 string prv_ph;
 vmm_timeline t = this.get_timeline();
 ...
 prv_ph = t.get_previous_phase_name ("start_of_sim");
 //returns "configure_test"
 ...
 endfunction
endclass

 B- 273

VMM User Guide

vmm_timeline::insert_phase()

Inserts a phase in timeline.

SystemVerilog

function bit insert_phase(string phase_name,
 string before_name, vmm_phase_def def, string fname = "",
 int lineno = 0);

Description

Creates the specified phase (phase_name) before the specified
phase (before_name) in this timeline, and issues a note that a new
user-defined phase is defined. The argument def specifies the
phase instance to be inserted. If the phase already exists, adds this
definition to the existing phase definition. If the before_name is
specified as a caret (^), then inserts the phase at the beginning of the
timeline. If it is specified as a dollar sign ($), then inserts the phase
at the end of the timeline. Returns true, if the phase insertion was
successful.

The fname and lineno arguments are used to track the file name
and the line number where this method is invoked from.

Example

typedef class groupExtension
class udf_start_def extends vmm_fork_task_phase_def
 #(groupExtension);
 ...
endclass
class groupExtension extends vmm_group;
 ...
 function void build_ph ();
 vmm_timeline t = this.get_timeline();

B-274

VMM User Guide

 udf_start_def udfstartph = new;
 ...
 if(t.insert_phase("udf_start", "start_of_sim",
 udfstartph) == 0)
 `vmm_error (log, " ... ");
 endfunction
endclass

 B- 275

VMM User Guide

vmm_timeline::jump_to_phase()

Aborts the execution of the timeline immediately and jump to the
beginning of the specified phase.

SystemVerilog

function void jump_to_phase(string name,string fname = "",
int lineno = 0);

Description

Aborts the execution of the timeline, and immediately jumps to the
beginning of the specified phase (but does not start executing it).
Generates a warning message, if the specified phase is already
started or completed.

Executing a phase without the intervening phases may cause severe
damage to the state of the executing testcase and verification
environment, and should be used with care. You should typically use
to abort a testcase or simulation, and jump to the report phase. The
fname and lineno arguments are used to track the file name and
the line number where this method is invoked from.

Example

class timelineExtension #(string jump_phase = "report",
 int delay_in_jump = 10) extends vmm_timeline;
 ...
 task reset_ph;
 #delay_in_jump jump_to_phase(jump_phase);
 endtask
 ...
endclass

B-276

VMM User Guide

vmm_timeline::prepend_callback()

Prepends the specified callback.

SystemVerilog

function void prepend_callback(vmm_timeline_callbacks cb);

Description

Prepends the specified callback extension to the callback registry,
for this timeline. Returns true, if the registration was successful.

Example

class timeline_callbacks extends vmm_timeline_callbacks;
 virtual function void my_f1();
 endfunction
endclass

class timelineExtension extends vmm_timeline;
 function new (string name, string inst,
 vmm_unit parent=null);
 super.new(name,inst,parent);
 endfunction

 function void build_ph();
 `vmm_callback(timeline_callbacks,my_f1());
 endfunction:build_ph
 ...
endclass

class timelineExtension_callbacks extends
 timeline_callbacks;
 int my_f1_counter++;
 virtual function void my_f1();
 my_f1_counter++
 endfunction

 B- 277

VMM User Guide

endclass

initial begin
 timelineExtension tl = new ("my_timeline", "t1");
 timelineExtension_callbacks cb1 = new();
 timelineExtension_callbacks cb2 = new();
 tl.append_callback(cb1);
 tl.prepend_callback(cb2);
 ...
end

B-278

VMM User Guide

 vmm_timeline::rename_phase()

Provides a new name to the specified phase.

SystemVerilog

function bit rename_phase(string old_name, string new_name,
string fname = "", int lineno = 0);

Description

Renames the specified phase old_name in this timeline, to the new
phase name new_name. Returns false, if the original named phase
does not exist, or if a phase already exists with the new name.
Generates a warning that a phase is renamed. Renaming timeline
default phases is not allowed. The fname and lineno arguments
are used to track the file name and the line number where this
method is invoked from.

Example

class groupExtension extends vmm_group;
 ...
 function void build_ph ();
 vmm_timeline t = this.get_timeline();
 ...
 // Renaming predefined phase 'start_of_sim'
 if(t.rename_phase("start_of_sim",
 "renamed_start_of_sim") == 0)
 `vmm_error(log, " ... ");
 ...
 endfunction
endclass

 B- 279

VMM User Guide

vmm_timeline::reset_to_phase()

Resets timeline to the specified phase.

SystemVerilog

function void reset_to_phase(string name, string fname="",
int lineno=0);

Description

Resets this timeline to the specified phase name. Any task-based
phase, which is concurrently running is aborted. If the timeline is
reset to the configure phase or earlier, all of its vmm_unit sub-
instances are enabled, along with itself.

The fname and lineno arguments are used to track the file name
and the line number where this method is invoked from.

Example

class test extends vmm_test;
 user_timeline topLevelTimeline;
endclass
...
initial begin
 test test1 = new ("test1", "test1");
 fork
 test1.topLevelTimeline.run_phase();
 //Assume topLevelTimeline is going to run more
 //than #9 delay
 #9 test1.topLevelTimeline.reset_to_phase ("build");
 join
end

B-280

VMM User Guide

vmm_timeline::run_phase()

Runs a timeline, up to and including the specified phase.

SystemVerilog

task run_phase(string name = "$", string fname = "", int
lineno = 0);

Description

Executes the phases in this timeline, up to and including the
specified phase by argument name. For name $, run all phases.

The fname and lineno arguments are used to track the file name
and the line number where this method is invoked from.

Example

class test extends vmm_test;
 ...
 vmm_timeline topLevelTimeline;
 ...
endclass
...
initial begin
 test test1 = new ("test1", "test1");
 test1.topLevelTimeline.run_phase ("build");
 ...
 test1.topLevelTimeline.run_phase ();
end

 B- 281

VMM User Guide

vmm_timeline::step_function_phase()

Steps to the next executable phase.

SystemVerilog

function void step_function_phase(string name,
string fname = "", int lineno = 0);

Description

Executes the specified function phase in this timeline. Must be a
function phase, and must be the next executable phase. The fname
and lineno arguments are used to track the file name and the line
number where this method is invoked from.

Example

class test extends vmm_test;
 ...
 vmm_timeline topLevelTimeline;
 ...
endclass
...
initial begin
 test test1 = new ("test1", "test1");
 ...
 test1.topLevelTimeline.run_phase ("configure");
 test1.topLevelTimeline.step_function_phase ("connect");
 test1.topLevelTimeline.step_function_phase (
 "configure_test");
 ...
end

B-282

VMM User Guide

vmm_timeline::task_phase_timeout()

Sets the timeout value for any task phase.

SystemVerilog

function bit task_phase_timeout(string name,
 int unsigned delta, vmm_log::severities_e
 error_severity=vmm_log::ERROR_SEV, string fname = "",
 int lineno = 0);

Description

Sets the timeout value - as specified by delta - for the completion
of the specified task phase. If the task phase does not complete
within the time specified in the timeout value, then an error message
is generated. Message severity, which is error by default, can be
overridden using the error_severity argument.Returns false, if
the specified phase does not exist or is not a task phase.

A timeout value of 0 specifies no timeout value. Calling this method,
while the phase is currently executing, causes the timer to be reset
to the specified value. By default, phases do not have timeouts. The
fname and lineno arguments are used to track the file name and
the line number where this method is invoked from.

Example

class groupExtension extends vmm_group;
 function void build_ph ();
 vmm_timeline t = this.get_timeline();
 if(t.task_phase_timeout("reset",4) == 0)
 `vmm_error (log, " ... ");
 ...
 endfunction
endclass

 B- 283

VMM User Guide

vmm_timeline::unregister_callback()

Unregisters a callback.

SystemVerilog

function void unregister_callback(
vmm_timeline_callbacks cb);

Description

Removes the specified callback extension from the callback registry,
for this timeline. Returns true, if the unregistration was successful.

Example

class timeline_callbacks extends vmm_timeline_callbacks;
 virtual function void my_f1();
 endfunction
endclass

class timelineExtension extends vmm_timeline;
 function new (string name, string inst, vmm_unit
 parent=null);
 super.new(name,inst,parent);
 endfunction

 function void build_ph();
 `vmm_callback(timeline_callbacks,my_f1());
 endfunction:build_ph
 ...
endclass

class timelineExtension_callbacks extends
 timeline_callbacks;
 int my_f1_counter++;
 virtual function void my_f1();
 my_f1_counter++;

B-284

VMM User Guide

 endfunction
endclass

initial begin
 timelineExtension tl = new ("my_timeline", "t1");
 timelineExtension_callbacks cb1 = new();
 timelineExtension_callbacks cb2 = new();
 tl.append_callback(cb1);
 tl.append_callback(cb2);
 ...
 tl.unregister_callback(cb2);
 ...
end

 B- 285

VMM User Guide

vmm_timeline_callbacks

Facade class for callback methods provided by a timeline.

Example

class timeline_callbacks extends vmm_timeline_callbacks;
 virtual function void my_f1();
 endfunction
 virtual function void my_f2();
 endfunction
endclass

Summary

• vmm_timeline_callback::break_on_phase() page B-286

B-286

VMM User Guide

vmm_timeline_callback::break_on_phase()

This method is called, if the +break_on_X_phase option is set for
this timeline instance.

SystemVerilog

function void vmm_timeline_callbacks::break_on_phase(
 vmm_timeline t1, string name)

Description

This method is called, if the +break_on_X_phase option is set for
this timeline instance. The arguments are the instance of the timeline
and the name of the phase (X). If no callbacks are registered, $stop
is called instead of this method.

Example

class timeline_callbacks extends vmm_timeline_callbacks;
 vmm_log log;
 function new(vmm_log log);
 this.log = log;
 endfunction

 function void break_on_phase(vmm_timeline tl,
 string name);
 if(name=="reset")
 `vmm_note(log,
 "user callback executing for reset phase");
 endfunction
endclass

vmm_timeline tl;

initial begin
 timeline_callbacks cb1;

 B- 287

VMM User Guide

 tl = new("my_timeline", "tl");
 cb1 = new(tl.log);
 tl.append_callback(cb1);
 tl.run_phase();
end

B-288

VMM User Guide

vmm_tlm

This class contains the sync_e enumerated for various phases of
the transaction. All TLM port classes use this enumerated value as
the default template for defining the phases of the transaction.

SystemVerilog

class vmm_tlm;
 typedef enum { TLM_REFUSED, TLM_ACCEPTED,
 TLM_UPDATED, TLM_COMPLETED } sync_e;
 typdef enum {BEGIN_REQ, END_REQ, BEGIN_RESP,
 END_RESP} phase_e;
 typedef enum { TLM_BLOCKING_PORT, TLM_BLOCKING_EXPORT,
 TLM_NONBLOCKING_FW_PORT, TLM_NONBLOCKING_FW_EXPORT,
 TLM_NONBLOCKING_PORT,TLM_NONBLOCKING_EXPORT,
 TLM_ANALYSIS_PORT,TLM_ANALYSIS_EXPORT} intf_e;
 sync_e sync;
endclass

Description

This class provides enumerated type sync_e, which is the
response status from a non-blocking transport function call, upon
receiving a transaction object.

The enumerated type phase_e contains various phases of a
transaction object. These phases can be updated by different
components that access the same transaction object.

The enumerated type intf_e is used to connect the
vmm_channel_typed to TLM transport ports, TLM transport
exports, and TLM analysis ports and exports.

 B- 289

VMM User Guide

The vmm_tlm class also provides static methods to print, check, and
report the bindings of all TLM ports and exports, under a specified
root.

Summary

• vmm_tlm::check_bindings() page B-297
• vmm_tlm::print_bindings() page B-298
• vmm_tlm::report_unbound() page B-299

B-290

VMM User Guide

vmm_tlm_extension_base

Generic payload extensions base class. This class must be
extended to define user extensions of the
vmm_tlm_generic_payload class.

SystemVerilog

class vmm_tlm_extension_base extends vmm_data;

Description

This class is used to define extensions of the
vmm_tlm_generic_payload class.

 B- 291

VMM User Guide

vmm_tlm_generic_payload

This data class contains attributes, as defined by the OSCI TLM2.0
tlm_generic_payload class. The class is extended from the
vmm_rw_access class, which is in turn extended from vmm_data
class. The SystemVerilog implementation uses the VMM data
shorthand macros, to implement all methods that are implemented
by the vmm_data class.

Generic payload class can be extended to have user defined
functionality by extending vmm_tlm_extension_base. The
vmm_tlm_generic_payload class has a dynamic array of
vmm_tlm_extension_base, which is used to store the user
extensions.

SystemVerilog

class vmm_tlm_generic_payload extend vmm_rw_access;
 typedef enum {TLM_READ_COMMAND = 0,
 TLM_WRITE_COMMAND = 1,
 TLM_IGNORE_COMMAND = 2
 }tlm_command;

 typedef enum {TLM_OK_RESPONSE = 1,
 TLM_INCOMPLETE_RESPONSE = 0,
 TLM_GENERIC_ERROR_RESPONSE = -1,
 TLM_ADDRESS_ERROR_RESPONSE = -2,
 TLM_COMMAND_ERROR_RESPONSE = -3,
 TLM_BURST_ERROR_RESPONSE = -4,
 TLM_BYTE_ENABLE_ERROR_RESPONSE = -5
 }tlm_response_status;

 rand longint m_address;
 rand tlm_command m_command;
 rand byte m_data[];
 rand int unsigned m_length;
 tlm_response_status m_response_status;

B-292

VMM User Guide

 bit m_dmi_allowed = 0;
 rand byte m_byte_enable[];
 rand int unsigned m_byte_enable_length;
 rand int unsigned m_streaming_width;
 int unsigned min_m_length;
 int unsigned max_m_length;
 int unsigned max_m_byte_enable_length;

 constraint c_length_valid
 { m_data.size == m_length;
 m_length>min_m_length;
 }
 constraint c_data_size_reasonable
 {m_length<=max_m_length;
 }

 constraint c_byte_enable_valid
 { m_byte_enable.size == m_byte_enable_length;
 }
 constraint c_byte_enable_size_reasonable
 { m_byte_enable_length<=max_m_byte_enable_length;
 }

endclass: vmm_tlm_generic_payload

Description

The class members are kept public to access methods to set and get
the members that are not provided. The DMI and Debug Interfaces
are not part of the VMM-TLM implementation, and therefore not
included in the vmm_tlm_generic_payload class.

The m_data and m_data_enable values are constrained to small
values of 16 and 256, respectively for better performance. If values
larger than these are required, then the constraint blocks such as
c_data_size_reasonable and
c_byte_enable_size_reasonable should be switched off and
applicable ranges can be provided.

 B- 293

VMM User Guide

For more details on the attributes of the
vmm_tlm_generic_payload class, refer to the OSCI TLM-2.0
User Guide.

Summary

• vmm_tlm_generic_payload::set_extensions() page B-294
• vmm_tlm_generic_payload::get_extensions() page B-295
• vmm_tlm_generic_payload::clear_extensions() page B-296

B-294

VMM User Guide

vmm_tlm_generic_payload::set_extensions()

To add user-defined extension to vmm_tlm_extension_base
class array in the generic payload class.

SystemVerilog

function vmm_tlm_extension_base set_extension(int
index, vmm_tlm_extension_base ext);

Description

This function is used to assign the extension base to the dynamic
array in the generic payload class at the specified index, and returns
the old extension at that index.

 B- 295

VMM User Guide

vmm_tlm_generic_payload::get_extensions()

Returns the user-defined extension at the specified index from the
extensions array of the generic payload class.

SystemVerilog

function vmm_tlm_extension_base get_extension(int
index);

Description

This function is used to get the extension from the dynamic array in
the generic payload class in that index.

B-296

VMM User Guide

vmm_tlm_generic_payload::clear_extensions()

To clear the user-defined extension at the specified index from the
extensions array in the generic payload class.

SystemVerilog

function void clear_extension(int index);

Description

This function is used to clear the extension from the dynamic array
in the generic payload class in that index.

Example

class my_extensions extend vmm_tlm_extension_base;
 rand int data32;
 rand bit[7:0] data8;
end class

class producer extends vmm_xactor;
 vmm_tlm_nb_transport_port#(producer) nb_port;
 task run_ph();
 my_data tr;

 my_extensions tr_ex, temp_tr_ext;
 while(1) begin
 tr = new();

 tr_ex = new();
 tr.set_extensions(0,tr_ex);
 temp_tr_ext = tr.get_extensions(0);
 this.nb_port.nb_tranport_fw(tr,ph,delay);

 tr.clear_extensions(0);
 #5;
 end
 endtask
endclass

 B- 297

VMM User Guide

vmm_tlm::check_bindings()

Static method to check if minimum bindings exist for all TLM ports
and exports under the specified root.

SystemVerilog

static function check_bindings(vmm_object root= null);

Description

A warning is generated if a port is unbound ,or if an export contains
less than the minimum bindings specified for the export. Analysis
port bindings are reported with debug severity. If root is not specified,
then the binding checks are done for all TLM ports and exports in the
environment.

The check_bindings() method is also available with all TLM
ports and exportsm and can be invoked for the particular port object.

Example

class my_env extends vmm_group;
 function void start_of_sim_ph();
 ...
 vmm_tlm::check_bindings(this);
 endfunction
endclass

B-298

VMM User Guide

vmm_tlm::print_bindings()

Static method used to print the bindings of all TLM ports and exports,
instantiated under a specified root.

SystemVerilog

static function print_bindings(vmm_object root = null);

Description

Prints the bindings of all TLM ports and exports, including transport
ports and exports, sockets and analysis ports, and exports
instantiated under the vmm_object, specified by the root
argument. If null is passed, then the bindings are printed for all TLM
ports and exports in the environment.

The print_bindings() method is also available with all TLM
ports and exports, and can be invoked for the particular port object.

Example

class my_env extends vmm_group;
 function void start_of_sim_ph();
 ...
 vmm_tlm::print_bindings(this);
 endfunction
endclass

 B- 299

VMM User Guide

vmm_tlm::report_unbound()

Static method to report all unbound TLM ports and to export
instances available under a specified root.

SystemVerilog

static function report_bindings(vmm_object root = null);

Description

Reports all unbound TLM ports and exports, including transport ports
and exports, sockets and analysis ports, and exports instantiated
under the vmm_object, specified by the root argument. If null is
passed, then the bindings are printed for all TLM ports and exports
in the environment.

A warning is generated, if any TLM port or export under the specified
root is left unbound. For analysis ports, a message with debug
severity is generated.

The report_unbound() method is also available with all TLM
ports and exports, and can be invoked for the particular port object.

Example

class my_env extends vmm_group;
 function void start_of_sim_ph();
 ...
 vmm_tlm::report_unbound(this);
 endfunction
endclass

B-300

VMM User Guide

vmm_tlm_analysis_port#(I,D)

Analysis ports are useful to broadcast transactions, to observers like
scoreboards and functional coverage models. Analysis ports can be
bound to any number of observers, through the observers analysis
export.

The analysis port calls the write method of all the observers bound
to it.

SystemVerilog

class vmm_tlm_analysis_port#(
 type INITIATOR = vmm_tlm_xactor, type DATA = vmm_data,)
 extends vmm_tlm_analysis_port_base#(DATA);

Description

The analysis port can be instantiated in any transactor class that
wishes to broadcast the transaction object to the connected
observers.

Any number of bindings are allowed for the analysis port. The
analysis port calls the write methods of the connected analysis
exports, which in turn execute the write methods of their respective
parent components.

The vmm_tlm_analysis_port_base provides all the access
methods that are provided by the vmm_tlm_port_base class. The
methods provided by the vmm_tlm_analysis_port_base class
are get_peers(), get_n_peers(), get_peer_id(),
get_peer(), tlm_bind(), tlm_unbind(), and
tlm_import(). For more information on these access methods,
refer to the description provided in the vmm_tlm_port_base class.

 B- 301

VMM User Guide

Example

class consumer extends vmm_xactor;
 vmm_tlm_analysis_port#(consumer) analysis_port =
 new(this,"consumer_analysis");

 function b_transport(int id=-1,my_trans trans,
 ref int delay);
 this.analysis_port.write(trans);
 endfunction
endclass

B-302

VMM User Guide

vmm_tlm_analysis_export#(T,D)

Analysis exports are used by observer components that implement
a write method to receive broadcast transactions from other
components that instantiate the vmm_tlm_analysis_port class.
Analysis exports can be bound to any number of analysis ports, as
specified in the constructor of the analysis export. The different
analysis ports connected to this export can be distinguished using
the peer identity of the analysis port.

The analysis export implements the write method, which is called by
the analysis ports that are bound to this export.

SystemVerilog

class vmm_tlm_analysis_export#(type T = vmm_tlm_xactor,
 type D = vmm_data)
 extends vmm_tlm_analysis_export_base#(D);

Description

The analysis export can be instantiated in a component class that
wishes to receive broadcast transaction objects from other
components.

The vmm_tlm_analysis_export_base provides all access
methods that are provided by the vmm_tlm_export_base class.
The methods provided by vmm_tlm_analysis_port_base are:

get_peers()
get_n_peers()
get_peer_id()
get_peer()
tlm_bind()
bind_peer()
tlm_unbind()

 B- 303

VMM User Guide

unbind_peer()
tlm_import()
print_bindings()
check_bindings()
report_unbound()

For more information on these access methods, refer to the
description provided in the vmm_tlm_export_base class.
Methods to get and set the minimum and maximum bindings for the
port are also provided.

Available methods are:

function vmm_tlm_analysis_export::set_max_bindings(
 int unsigned max);
function vmm_tlm_analysis_export::set_min_bindings(
 int unsigned min);
function int unsigned
 vmm_tlm_analysis_export::get_max_bindings();
function int unsigned
 vmm_tlm_analysis_export::get_min_bindings();

Example

class scoreboard extends vmm_group;
 vmm_tlm_analysis_export#(scoreboard) analysis_export =
 new(this,"scb_analysis");
 function write(int id=-1, my_trans trans);
 endfunction
endclass

B-304

VMM User Guide

‘vmm_tlm_analysis_export(SUFFIX)

Shorthand macro to create unique class names of the analysis
export. This is used if multiple vmm_tlm_analysis_export
instances are required in the same observer class, each having its
own implementation of the write method.

SystemVerilog

`vmm_tlm_analysis_export(SUFFIX)

Description

The use model is similar to the shorthand macros provided for the
unidirectional exports. For more information, refer to the macro
description of `vmm_tlm_nb_transport_fw_export.

Example

class scoreboard extends vmm_group;
 `vmm_tlm_analysis_export(_1)
 `vmm_tlm_analysis_export(_2)
 vmm_tlm_analysis_export_1#(scoreboard) scb1;
 vmm_tlm_analysis_export_2#(scoreboard) scb2;
 function write_1 (int id=-1,my_trans trans);
 `vmm_note(log, $psprintf("Received %s from %0d",
 Trans.psdisplay(""), id);
 endfunction
 function write_2 (int id=-1,my_trans trans);
 `vmm_note(log, $psprintf("Received %s from %0d",
 Trans.psdisplay(""), id);
 endfunction
 endclass

 B- 305

VMM User Guide

vmm_tlm_b_transport_export#(T,D)

Blocking transport export class.

Any class instantiating this blocking transport export, must provide
an implementation of the b_transport() task.

SystemVerilog

class vmm_tlm_b_transport_export#(
 type TARGET = vmm_tlm_xactor,
 type DATA = vmm_data)
 extends vmm_tlm_export_base#(DATA);

Description

Class providing the blocking transport export. The parameter type
TARGET is the class that instantiates the transport export. This
defaults to vmm_tlm_xactor. The parameter DATA is the data type
of the transaction the export services. The default is vmm_data.

The export can be bound to multiple ports, up to the maximum
bindings, specified in the constructor of this class.

Summary

• `vmm_tlm_b_transport_export() page B-306
• vmm_tlm_b_transport_export::b_transport() page B-308
• vmm_tlm_b_transport_export::new() page B-309

B-306

VMM User Guide

`vmm_tlm_b_transport_export()

Shorthand macro to create unique blocking transport exports. This is
required if more than one export is bound in a target transactor.

SystemVerilog

`vmm_tlm_b_transport_export(SUFFIX)

Description

This macro creates a uniquified vmm_tlm_b_transport_export
class, with the SUFFIX appended to the class name
vmm_tlm_b_transport_export. The class with the name
vmm_tlm_b_transport_exportSUFFIX is created in the scope,
where the macro is called.

This macro is required if there are multiple instances of the
vmm_tlm_b_transport_export, and each requires a unique
implementation of the b_transport() task in the parent
transactor.

The b_transport() methods in the parent transactor must be
uniquified using the same SUFFIX to b_transport.

Alternatively, if multiple ports need to service the parent transactor,
then a single export with multiple bindings using unique ids can be
used in place of the macro. The single b_transport() method can
be programmed to serve the various ports depending on the id.

Example

class consumer extends vmm_xactor;
 `vmm_tlm_b_transport_export(_1)

 B- 307

VMM User Guide

 `vmm_tlm_b_transport_export(_2)
 vmm_tlm_b_transport_export_1#(consumer) b_export1 =
 new(this, "export1");

 vmm_tlm_b_transport_export_2#(consumer) b_export2 =
 new(this,"export2");

 task b_transport_1(int id = -1, vmm_data trans,
 ref int delay);
 trans.display("From export1");
 endtask

 task b_transport_2(int id = -1, vmm_data trans,
 ref int delay);
 trans.display("From export2");
 endtask
endclass

class producer extends vmm_xactor;
 vmm_tlm_b_transport_port#(producer) b_port;
endclass

class my_env extends vmm_group;
 producer p1,p2;
 consumer c1;
 function void connect_ph();
 c1.b_export1.tlm_bind(p1.b_port);
 c1.b_export2.tlm_bind(p2.b_port);
 endfunction
endclass

B-308

VMM User Guide

vmm_tlm_b_transport_export::b_transport()

Blocking transport method of the export.

SystemVerilog

task b_transport(int id = -1, DATA trans, ref int delay);

Description

Blocking transport task of the transport export. This task is internally
called by the bound transport port. This task calls the
b_transport() method of the parent transactor in which it is
instantiated.

The specified trans argument is a handle of the transaction object,
id specifies the binding identifier of this export, delay argument is
the timing annotation.

Example

class consumer extends vmm_xactor;
 vmm_tlm_b_transport_export#(consumer) b_export;
 task b_transport(int id = -1, vmm_data trans,
 ref int delay);
 trans.display("From consumer");
 endtask
endclass

 B- 309

VMM User Guide

vmm_tlm_b_transport_export::new()

Constructor of blocking transport export class.

SystemVerilog

function new(TARGET parent, string name, int max_binds = 1 ,
 int min_binds = 0);

Description

Sets the parent and instance name of the blocking transport export.
Sets the maximum and minimum bindings allowed for this export.
The default value of maximum bindings is 1, and the minimum
binding is 0. An error is generated during tlm_bind(), if the
current binding exceeds the maximum allowed bindings for the
export. An error is generated during elaboration, if the export does
not contain the minimum number of specified bindings.

Example

class consumer extends vmm_xactor;
 vmm_tlm_b_transport_export#(consumer) b_export;
 function void build_ph();
 this.b_export = new(this,"consumer export",5,1);
 endfunction
endclass

B-310

VMM User Guide

vmm_tlm_b_transport_port #(I,D)

Base class for modeling a blocking transport port.

SystemVerilog

class vmm_tlm_b_transport_port #(
 type INITIATOR = vmm_tlm_xactor, type DATA = vmm_data)
extends vmm_tlm_port_base#(DATA);

Description

Class providing the blocking transport port. The parameter type
INITIATOR is the class that instantiates the transport port. This
defaults to vmm_tlm_xactor. The parameter DATA is the data type
of the transaction port services. The default is vmm_data.

The port can be bound to one export. A warning is generated, if the
port is left unbound.

There is no backward path for the blocking transport.

Summary

• vmm_tlm_b_transport_port::b_transport() page B-311
• vmm_tlm_b_transport_port::new() page B-312

 B- 311

VMM User Guide

vmm_tlm_b_transport_port::b_transport()

TLM task for blocking transport.

SystemVerilog

task b_transport(DATA trans, ref int delay);

Description

TLM task for blocking transport. Invokes the b_transport()
method of the bounded export. The index argument can be used
for associating the b_transport call with the caller, this can be
usefull for the target to identify which producers called this task. The
trans argument is a handle of the transaction object. The delay
argument is the timing annotation.

Example

class producer extends vmm_xactor;
 vmm_tlm_b_transport_port#(producer) b_port;
 task run_ph();
 my_data tr;
 while(1) begin
 tr = new();
 this.b_port.b_tranport(tr, delay);
 $display("Transaction Completed");
 end
 endtask
endclass

B-312

VMM User Guide

vmm_tlm_b_transport_port::new()

Constructor for blocking transport port class.

SystemVerilog

function new(INITIATOR parent, string name);

Description

Sets the parent and instance name of the blocking transport port.

Example

class producer extends vmm_xactor;
 vmm_tlm_b_transport_port#(producer) b_port;
 function void build_ph();
 this.b_port = new(this,"producer port");
 endfunction
endclass

 B- 313

VMM User Guide

vmm_tlm_export_base #(D,P)

Abstract base class for all TLM2.0 transport exports. This class
contain the methods that are required by all TLM2.0 transport export
implementations. Any user-defined export must be extended from
this base class.

The parameter DATA is the type of the transaction object of the
export services. The default type is vmm_data. The parameter
PHASE is the type of the phasing class. The default value is
vmm_tlm::phase_e.

SystemVerilog

virtual class vmm_tlm_export_base #(type DATA = vmm_data,
 type PHASE = vmm_tlm::phase_e) extends vmm_tlm_base;

Description

Sets the parent, if it is an extension of vmm_object. Sets the name
of the instance.

Summary

• vmm_tlm_export_base::get_n_peers() Function page B-314
• vmm_tlm_export_base::get_peer() page B-315
• vmm_tlm_export_base::get_peer_id() page B-316
• vmm_tlm_export_base::get_peers() page B-317
• vmm_tlm_export_base::new() page B-318
• vmm_tlm_export_base::tlm_bind() page B-319
• vmm_tlm_export_base::tlm_import() page B-321
• vmm_tlm_export_base::tlm_unbind() page B-323

B-314

VMM User Guide

vmm_tlm_export_base::get_n_peers() Function

Returns the number of export bindings.

SystemVerilog

function int get_n_peers();

Description

Returns the number of port export bindings, as set with the
tlm_bind() method.

Example

class consumer extends vmm_xactor;
 vmm_tlm_b_transport_export#(consumer) b_export;
 function display_n_connections();
 $display("Export has %d bindings",
 this.b_export.get_n_peers());
 endfunction
endclass

 B- 315

VMM User Guide

vmm_tlm_export_base::get_peer()

Returns the binding for the port.

SystemVerilog

function vmm_tlm_port_base#(DATA,PHASE) get_peer(int
id = -1);

Description

Returns the port bound to the current export, with the specified id.
Null is returned, if the port does not have a binding with the specified
id. If only one binding exists for the export, then the handle to be
binding is returned without considering the id value passed.

Example

class consumer extends vmm_xactor;
 vmm_tlm_b_transport_export#(consumer) b_export;
 function display_my_id();
 vmm_tlm_export_base peer;
 peer = this.b_export.get_peer(0);
 $display("My id = %d",peer.get_peer_id();
 endfunction
endclass

B-316

VMM User Guide

vmm_tlm_export_base::get_peer_id()

Returns the id of this port, for its binding.

SystemVerilog

function int get_peer_id(vmm_tlm_port_base#(DATA,PHASE)
 peer);

Description

Returns the binding id of the specified port bound to this export. If
the specified port is not bound to this export, then -1 is returned.

Example

class my_env extends vmm_group;
 producer p1,p2;
 consumer c1;

 function void connect_ph();
 p1.b_port.tlm_bind(c1.b_export);
 p2.b_port.tlm_bind(c1.b_export);
 int p1_id = c1.b_export.get_peer_id(p1.b_port);
 int p2_id = c1.b_export.get_peer_id(p2.b_port);
 endfunction
endclass

 B- 317

VMM User Guide

vmm_tlm_export_base::get_peers()

Returns the list of all bindings of the export.

SystemVerilog

function void get_peers(vmm_tlm_port_base#(DATA,PHASE)
peers[$]);

Description

Returns the queue of bindings of the export in the specified queue.

Example

class consumer extends vmm_xactor;
 vmm_tlm_b_transport_export#(consumer) b_export;
 function display_connections();
 vmm_tlm_port_base q[$];
 b_export.get_peers(q);
 foreach(q[i])
 $display("Binding[%0d] %s",i,
 q[i].get_object_name());
 endfunction
endclass

B-318

VMM User Guide

vmm_tlm_export_base::new()

Constructor of an export base class.

SystemVerilog

function new(vmm_object parent, string name,
 int max_binds = 1, int min_binds = 0, vmm_log log);

Description

Sets the parent, if it is an extension of vmm_object. Sets the name
of the instance. Sets the maximum and minimum bindings allowed
for this export. log is the message interface instance to be used for
reporting messages.

 B- 319

VMM User Guide

vmm_tlm_export_base::tlm_bind()

Binds the TLM export to the TLM port passed as an argument.

SystemVerilog

function void tlm_bind(vmm_tlm_port_base#(DATA,PHASE)
 peer,int id = -1, string fname = "", int lineno = 0);

Description

Binds the TLM export to the supplied port. Multiple bindings are
allowed for exports.

This method adds the supplied port descriptor to the bindings list of
the export. An error is generated, if the supplied port already
contains a binding.

The second argument, id, is used to distinguish between multiple
ports that bind to the same export. If a positive id is supplied, then
it must be unique for this export. It is an error, if a positive id already
used by the export is supplied. If no id or a negative id is provided,
then the lowest available positive id is automatically assigned. This
id is passed as an argument of the transport method, implemented
in the exports parent.

The fname and lineno arguments are used to track the file name
and the line number, where the tlm_bind is invoked from.

Example

class producer extends vmm_xactor;
 vmm_tlm_b_transport_port#(producer)
 b_port = new(this,"producer port");
endclass

B-320

VMM User Guide

class consumer extends vmm_xactor;
 vmm_tlm_b_transport_export#(consumer)
 b_export = new(this,"consumer export");
 function b_transport(int index=-1, vmm_data trans,
 ref int delay);
 if(index == 0)
 $display("From producer 0");
 else if (index == 1)
 ...
 endfunction
endclass

class my_env extends vmm_group;
 producer p[4];
 consumer c;

 function void connect_ph();
 foreach(p[i]) begin
 c.b_export.tlm_bind(p[i].b_port, i);
 end
 endfunction
endclass

 B- 321

VMM User Guide

vmm_tlm_export_base::tlm_import()

Imports an export from an inner level in the hierarchy, to an outer
level.

SystemVerilog

function void tlm_import(vmm_tlm_export_base#(DATA,PHASE)
 peer, string fname = "", int lineno = 0);

Description

This is a special way of exporting bindings. It simplifies the binding
for hierarchical exports, by making the inner export visible to the
outer hierarchy. The binding resolves to a port-export binding. The
method allows only parent-child exports to be imported. An error is
generated, if the exports do not share a parent-child relationship. It
is an error to import an export that is already imported. It is an error
to import an export that is already bound. The method can be called
for both parent-to-child bindings and child-to-parent bindings. For
this, the parent transactors must be derivatives of vmm_object. If
the parent is a vmm_xactor extension, then the vmm_xactor base
class should be underpinned. If the vmm_xactor is not
underpinned, or the parent is not a derivative of vmm_object, then
only child.export.tlm_import(parent.export) is allowed.
The error checks are not executed, and you must ensure legal
connections.

The fname and lineno arguments are used to track the file name
and the line number, where the tlm_import is invoked from.

Example

class target_child extends vmm_xactor;

B-322

VMM User Guide

 vmm_tlm_b_transport_export#(target_child) b_export;
endclass

class target_parent extends vmm_group;
 vmm_tlm_b_transport_export#(target_parent) b_export;
 target_child target;
 function void connect_ph();
 target.b_export.tlm_import(this.b_export);
 endfunction
endclass

 B- 323

VMM User Guide

vmm_tlm_export_base::tlm_unbind()

Removes an existing binding of the export.

SystemVerilog

function void tlm_unbind(vmm_tlm_port_base#(D,P)
 peer = null, int id = -1, string fname = "", int lineno = 0);

Description

Removes the binding supplied as a peer or id from the list of
bindings, for this export. Also, removes the binding of this export with
the connected port.

If the supplied peer is not null, then the binding of the peer is
removed. An error is generated, if the supplied peer is not bound to
this export.

If the supplied peer is null and the supplied id is a positive number,
then the binding to the port with the supplied id is removed. An error
is generated, if there is no binding with the supplied positive id.

If the supplied peer is null and the supplied id negative, then all
bindings for this export are removed.

On unbinding, the id of the unbound port becomes available for
reuse.

The fname and lineno arguments are used to track the file name
and the line number, where the tlm_unbind is invoked from.

B-324

VMM User Guide

Example

class my_env extends vmm_group;
 producer p1;
 consumer c1, c2;
 function void connect_ph()
 p1.b_port.tlm_bind(c1.b_export);
 endfunction

class test2 extends vmm_test;
 function void configure_test_ph();
 env.p1.b_port.tlm_unbind();
 env.p1.b_port.tlm_bind(c2.b_export);
 endfunction
endclass

 B- 325

VMM User Guide

vmm_tlm_nb_transport_bw_export#(T,D,P)

Non-blocking backward transport export class.

SystemVerilog

class vmm_tlm_nb_transport_bw_export#(
 type TARGET = vmm_tlm_xactor, type DATA = vmm_data,
 type PHASE = vmm_tlm::phase_e)
 extends vmm_tlm_export_base#(DATA,PHASE);

Description

Class providing the non-blocking backward transport export. This
class should be instantiated in the initiator transactor, which
instantiates a non-blocking forward port. The transactions sent from
this transactor, on the forward path, can be received by the
transactor on the backward path through this backward export.

The parameter type TARGET is the class instantiating the transport
export. This defaults to vmm_tlm_xactor. The parameter DATA is
the data type of the transaction in the export services. The default is
vmm_data. The parameter type, PHASE, is the phase class for this
export. The default type is vmm_tlm::phase_e.

The export can be bound to multiple ports, up to the max bindings
specified in the constructor of this class.

Summary

• `vmm_tlm_nb_transport_bw_export() page B-326
• vmm_tlm_nb_transport_bw_export::nb_transport_bw() page B-328
• vmm_tlm_nb_transport_bw_export::new() page B-329

B-326

VMM User Guide

`vmm_tlm_nb_transport_bw_export()

Shorthand macro to create unique instances of non-blocking,
backward transport export. This is useful if multiple exports are
required in the same initiator transactor.

SystemVerilog

`vmm_tlm_nb_transport_bw_export(SUFFIX)

Description

This macro creates a uniquified
vmm_tlm_nb_transport_bw_export class, with the SUFFIX
appended to the class name
vmm_tlm_nb_transport_bw_export. The class with the name
vmm_tlm_nb_transport_bw_exportSUFFIX is created in the
scope, where the macro is called.

This macro is required if there are multiple instances of the
vmm_tlm_nb_transport_bw_export class, and each requires a
unique implementation of the nb_transport_bw() task, in the
parent transactor.

The nb_transport_bw() methods in the parent transactor must
be uniquified, using the same SUFFIX to nb_transport_bw.

Alternatively, if multiple ports need to service the parent transactor,
then a single export with multiple bindings using unique ids can be
used in place of the macro. The single nb_transport_bw()
method can be programmed to serve various ports, depending on
the id.

 B- 327

VMM User Guide

Example

class producer extends vmm_xactor;
 `vmm_tlm_nb_transport_bw_export(_1)
 `vmm_tlm_nb_transport_bw_export(_2)
 vmm_tlm_nb_transport__bw_export_1#(producer)
 nb_export1 = new(this, "export1");
 vmm_tlm_nb_transport_bw_export_2#(producer)
 nb_export2 = new(this, "export2");
 function nb_transport_bw_1(int id = -1, vmm_data trans,
 ref vmm_tlm::phase_e ph, ref int delay);
 trans.display("From export1");
 endfunction
 function nb_transport_bw_2(int id = -1,vmm_data trans,
 ref vmm_tlm::phase_e ph, ref int delay);
 trans.display("From export2");
 endfunction
endclass

class consumer extends vmm_xactor;
 vmm_tlm_nb_transport_bw_port#(producer) nb_port;
endclass

class my_env extends vmm_group;
 producer p1;
 consumer c1,c2;
 function void connect_ph();
 p1.nb_export1.tlm_bind(c1.nb_port);
 p1.nb_export2.tlm_bind(c2.nb_port);
 endfunction
endclass

B-328

VMM User Guide

vmm_tlm_nb_transport_bw_export::nb_transport_bw()

Non-blocking transport method of the export.

SystemVerilog

function vmm_tlm::sync_e nb_transport_bw(int id,
 DATA trans, ref PHASE ph, ref int delay);

Description

Non-blocking transport function of the transport export. This function
is internally called by the bound transport port. This function calls the
nb_transport_bw() method of parent transactor it is instantiated
in.The argument id specifies the binding id of this export. If the
export is bound to multiple ports then the peer can be distinguished
using the id passed to the nb_transport_bw().The trans
argument is a handle of the transaction object, ph is the handle of
phase class to specify the phase of a transaction trans, the delay
argument is the timing annotation.

Example

class producer extends vmm_xactor;
 vmm_tlm_nb_transport_fw_export#(producer) nb_export;
 function vmm_tlm::sync_e nb_transport_bw(int id = -1,
 vmm_data trans,ref vmm_tlm::phase_e ph, ref int delay
);
 trans.display("From producer on backward path.");
 endfunction
endclass

 B- 329

VMM User Guide

vmm_tlm_nb_transport_bw_export::new()

Constructor of non-blocking backward transport export class. Any
class instantiating this non-blocking export must provide an
implementation of the nb_transport_bw() function.

SystemVerilog

function new(TARGET parent, string name, int max_binds = 1 ,
 int min_binds = 0);

Description

Sets the parent and instance name of the blocking transport export.
Sets the maximum and minimum bindings allowed for this export.
The default value of maximum bindings is 1 and minimum bindings
is 0. An error is generated during tlm_bind(), if the current
binding exceeds the maximum allowed bindings for the export. An
error is generated during elaboration, if the export does not contain
the minimum number of specified bindings.

Example

class producer extends vmm_xactor;
 vmm_tlm_nb_transport_bw_export#(producer) nb_export;
 vmm_tlm_nb_transport_fw_port#(producer)nb_port;
 function void build_ph();
 this.nb_export = new(this,"consumer export",5,1);
 endfunction
endclass

B-330

VMM User Guide

vmm_tlm_nb_transport_bw_port#(I,D,P)

Non-blocking transport port for the backward path.

SystemVerilog

class vmm_tlm_nb_transport_bw_port #(
 type INITIATOR = vmm_tlm_xactor, type DATA = vmm_data,
 type PHASE = vmm_tlm::phase_e)
 extends vmm_tlm_port_base#(DATA,PHASE);

Description

Class providing the non-blocking backward transport port.
Transactions received from the producer, on the forward path, are
sent back to the producer on the backward path using this non-
blocking transport port. The parameter type INITIATOR is the class
instantiating the transport port. This defaults to vmm_tlm_xactor.
The parameter DATA is the data type of the transaction the port
services. The default is vmm_data. The parameter type PHASE is the
phase class for this port. The default type is vmm_tlm::phase_e.

The port can be bound to one export. A warning is generated if the
port is left unbound.

Summary

• vmm_tlm_nb_transport_bw_port::nb_transport_bw() .. page B-331
• vmm_tlm_nb_transport_bw_port::new() page B-332

 B- 331

VMM User Guide

vmm_tlm_nb_transport_bw_port::nb_transport_bw()

Non-blocking backward transport function. The target transactor
instantiating this transport port should call the
nb_transport_bw() method of the transport port.

SystemVerilog

function vmm_tlm::sync_e nb_transport_bw(DATA trans,
 ref PHASE ph, ref int delay);

Description

Non-blocking transport function of the port. Calls the
nb_transport_bw() method of the bound export. The argument
trans is a handle of the transaction object, ph is a handle of the
phase class, and delay is the timing annotation.

Example

class consumer extends vmm_xactor;
 vmm_tlm_nb_transport_bw_port#(consumer) nb_port;
 my_trans current_trans ;
 task run_ph();
 while(1) begin
 this.nb_port.nb_tranport_bw(current_trans,ph,
 delay);
 #5;
 end
 endtask
endclass

B-332

VMM User Guide

vmm_tlm_nb_transport_bw_port::new()

Constructor of non-blocking backward transport port class.

SystemVerilog

function new(INITIATOR parent, string name);

Description

Sets the parent and instance name of the non-blocking backward
transport port.

Example

class consumer extends vmm_xactor;
 vmm_tlm_nb_transport_fw_export#(consumer) nb_export;
 vmm_tlm_nb_transport_bw_port#(consumer)nb_port ;
 function void build_ph();
 this.nb_port = new(this,"consumer port");
 endfunction
endclass

 B- 333

VMM User Guide

vmm_tlm_nb_transport_export#(T,D,P)

Bidirectional non-blocking export.

SystemVerilog

class vmm_tlm_nb_transport_export#(
 type TARGET = vmm_tlm_xactor, type DATA = vmm_data,
 type FW_PHASE = vmm_tlm, type BW_PHASE = FW_PHASE)
 extends vmm_tlm_socket_base#(DATA,BW_PHASE);

Description

Bidirectional export providing non-blocking transport export for the
forward path, and non-blocking transport port for the backward path
in a single transport export.

Only one-to-one binding is allowed for this bidirectional non-blocking
export. The vmm_tlm_nb_transport_export can only be bound
to the vmm_tlm_nb_transport_port.

The vmm_tlm_socket_base provides all the access methods that
are provided by the vmm_tlm_export_base class. The methods
available with this class are tlm_bind(), tlm_unbind(),
tlm_import(), and get_peer(). For more information on the
descriptions of those methods, see the vmm_tlm_port_exbase
class description.

This class provides non-blocking transport methods for both the
forward path, nb_transport_fw and the backward path,
nb_transport_bw.

B-334

VMM User Guide

Any transactor class instantiating this bidirectional export must
provide an implementation of the nb_transport_fw() method,
and should call the nb_transport_bw() method of this export.

Example

class consumer extends vmm_xactor;
 vmm_tlm_nb_transport_export#(consumer) nb_export =
 new(this,"consumer_bi");

 function vmm_tlm::sync_e nb_transport_fw(int id=-1,
 my_trans trans, ref vmm_tlm ph, ref int delay);
 endfunction

 virtual task run_ph();
 my_trans tr;
 while(1) begin
 this.tr.notify.wait_for(vmm_data::ENDED);
 this.nb_port.nb_transport_bw(tr,ph,delay);
 #5;
 end
 endtask
endclass

Summary

• `vmm_tlm_nb_transport_export() page B-335

 B- 335

VMM User Guide

`vmm_tlm_nb_transport_export()

Shorthand macro to create unique classes of the bidirectional export.
This is useful if multiple vmm_tlm_nb_transport_export
instances are required in the same initiator transactor, each having
its own implementation of the nb_transport_fw() method.

SystemVerilog

`vmm_tlm_nb_transport_export(SUFFIX)

Description

The use model is similar to the shorthand macros provided for the
unidirectional non-blocking exports. For more information, see the
description of `vmm_tlm_nb_transport_fw_export macro.

Example

class consumer extends vmm_xactor;
 `vmm_tlm_nb_transport_export(_1)
 `vmm_tlm_nb_transport_export(_2)
 vmm_tlm_nb_transport_export_1#(producer) nb_exp1;
 vmm_tlm_nb_transport_export_2#(producer) nb_exp2;

 function vmm_tlm::sync_e nb_transport_fw_1(int id=-1,
 my_trans trans,ref vmm_tlm ph, ref int delay);
 endfunction

 function vmm_tlm::sync_e nb_transport_fw_2(int id=-1,
 my_trans trans,ref vmm_tlm ph, ref int delay);
 endfunction
endclass

B-336

VMM User Guide

vmm_tlm_nb_transport_fw_export#(T,D,P)

Non-blocking forward transport export class.

SystemVerilog

class vmm_tlm_nb_transport_fw_export#(
 type TARGET = vmm_tlm_xactor, type DATA = vmm_data,
 type PHASE = vmm_tlm::phase_e)
 extends vmm_tlm_export_base#(DATA,PHASE);

Description

Class providing the non-blocking forward transport export. The
parameter type TARGET is the class instantiating the transport
export. This defaults to vmm_tlm_xactor. The parameter DATA is
the data type of the transaction the export services. The default is
vmm_data. The parameter type PHASE is the phase class for this
export. The default type is vmm_tlm::phase_e.

The export can be bound to multiple ports up to the max bindings
specified in the constructor of this class.

Summary

• `vmm_tlm_nb_transport_fw_export() page B-337
• vmm_tlm_nb_transport_fw_export::nb_transport_fw() page B-339
• vmm_tlm_nb_transport_fw_export::new() page B-340

 B- 337

VMM User Guide

`vmm_tlm_nb_transport_fw_export()

Shorthand macro to create unique instances of non-blocking forward
transport export. This is useful if multiple exports are required in the
same target transactor.

SystemVerilog

`vmm_tlm_nb_transport_fw_export(SUFFIX)

Description

This macro creates a uniquified
vmm_tlm_nb_transport_fw_export class, with SUFFIX
appended to the vmm_tlm_nb_transport_fw_export class
name. The class with the name
vmm_tlm_nb_transport_fw_exportSUFFIX is created in the
scope, where the macro is called.

This macro is required if there are multiple instances of the
vmm_tlm_nb_transport_fw_export class, and each requires a
unique implementation of the nb_transport_fw() task in the
parent transactor.

The nb_transport_fw() methods in the parent transactor must
be uniquified using the same SUFFIX to nb_transport_fw.

Alternatively, if multiple ports need to service the parent transactor,
then a single export with multiple bindings using unique ids can be
used in place of the macro. The single nb_transport_fw()
method can be programmed to serve the various ports depending on
the id.

B-338

VMM User Guide

Example

class consumer extends vmm_xactor;
 `vmm_tlm_nb_transport_fw_export(_1)
 `vmm_tlm_nb_transport_fw_export(_2)
 vmm_tlm_nb_transport__fw_export_1#(consumer)
 nb_export1 = new(this, "export1");
 vmm_tlm_nb_transport_fw_export_2#(consumer)
 nb_export2 = new(this, "export2");

 function nb_transport_fw_1(int id = -1, vmm_data trans,
 ref vmm_tlm::phase_e ph, ref int delay);
 trans.display("From export1");
 endfunction

 task nb_transport_fw_2(int id = -1, vmm_data trans,
 ref vmm_tlm::phase_e ph, ref int delay);
 trans.display("From export2");
 endtask
endclass

class producer extends vmm_xactor;
 vmm_tlm_nb_transport_fw_port#(producer) nb_port;
endclass

class my_env extends vmm_group;
 producer p1,p2;
 consumer c1;

 function void connect_ph();
 c1.nb_export1.tlm_bind(p1.nb_port);
 c1.nb_export2.tlm_bind(p2.nb_port);
 endfunction
endclass

 B- 339

VMM User Guide

vmm_tlm_nb_transport_fw_export::nb_transport_fw()

Non-blocking transport method of the export.

SystemVerilog

function vmm_tlm::sync_e nb_transport_fw(int id = -1,
 DATA trans, ref PHASE ph, ref int delay);

Description

Non-blocking transport function of the transport export. This function
is internally called by the bound transport port. This function calls the
nb_transport_fw() method of the parent transactor in which it is
instantiated. If the export is bound to multiple ports then the peer can
be distinguished using the id field passed to the
nb_transport_fw() method.

The trans argument is a handle of the transaction object, ph is the
handle of phase class to specify the phase of a transaction trans,
and the delay argument is the timing annotation.

Example

class consumer extends vmm_xactor;
 vmm_tlm_nb_transport_fw_export#(consumer) nb_export;
 function vmm_tlm::sync_e nb_transport_fw(int id = -1,
 vmm_data trans,ref vmm_tlm::phase_e ph,
 ref int delay);
 trans.display("From consumer");
 return vmm_tlm::TLM_COMPLETED;
 endfunction
endclass

B-340

VMM User Guide

vmm_tlm_nb_transport_fw_export::new()

Constructor of non-blocking forward transport export class. Any
class instantiating this non-blocking export must provide an
implementation of the nb_transport_fw() function.

SystemVerilog

function new(TARGET parent, string name, int max_binds = 1,
 int min_binds = 0);

Description

Set the parent and instance name of the blocking transport export.
Sets the maximum and minimum bindings allowed for this export.
The default value of maximum bindings is 1 and minimum binding is
0. An error is issued during tlm_bind() if the current binding
exceeds the maximum allowed bindings for the export. An error is
issued during elaboration if the export does not have the minimum
number of specified bindings.

Example

class consumer extends vmm_xactor;
 vmm_tlm_nb_transport_fw_export#(consumer) nb_export;
 function void build_ph();
 this.nb_export = new(this,"consumer export",5,1);
 endfunction
endclass

 B- 341

VMM User Guide

vmm_tlm_nb_transport_fw_port#(I,D,P)

Non-blocking transport port for the forward path.

SystemVerilog

class vmm_tlm_nb_transport_fw_port #(
 type INITIATOR=vmm_tlm_xactor,
 type DATA = vmm_data, type PHASE = vmm_tlm::phase_e)
 extends vmm_tlm_port_base#(DATA,PHASE);

Description

Class providing the non-blocking forward transport port.
Transactions originating from the producer are sent on the forward
path, using this non-blocking transport port. The parameter type,
INITIATOR is the class that instantiates the transport port. This
defaults to vmm_tlm_xactor. The parameter DATA is the data type
of the transaction the port services. The default is vmm_data. The
parameter type PHASE is the phase class for this port. The default
type is vmm_tlm::phase_e.

The port can be bound to one export. A warning is generated if the
port is left unbound.

Summary

• vmm_tlm_nb_transport_fw_port::nb_transport_fw() .. page B-342
• vmm_tlm_nb_transport_fw_port::new() page B-343

B-342

VMM User Guide

vmm_tlm_nb_transport_fw_port::nb_transport_fw()

Non-blocking forward transport function. The initiator transactor
initiating this transport port should call the nb_transport_fw()
method of the transport port.

SystemVerilog

function vmm_tlm::sync_e nb_transport_fw(DATA trans,
 ref PHASE ph, ref int delay);

Description

Call the nb_transport_fw() method of the bound export. The
argument, trans is a handle of the transaction object, ph is a handle
of the phase class, and delay is the timing annotation.

You must ensure that delay is provided in the loop, where this non-
blocking function is being called.

Example

class producer extends vmm_xactor;
 vmm_tlm_nb_transport_port#(producer) nb_port;
 task run_ph();
 my_data tr;
 while(1) begin
 tr = new();
 this.nb_port.nb_tranport_fw(tr,ph,delay);
 #5;
 end
 endtask
endclass

 B- 343

VMM User Guide

vmm_tlm_nb_transport_fw_port::new()

Constructor of non-blocking forward transport port class.

SystemVerilog

function new(TARGET parent, string name);

Description

Sets the parent and instance name of the non-blocking forward
transport port.

Example

class producer extends vmm_xactor;
 vmm_tlm_nb_transport_fw_port#(producer) nb_port;
 function void build_ph();
 this.nb_port = new(this,"producer port");
 endfunction
endclass

B-344

VMM User Guide

vmm_tlm_nb_transport_port#(I,D,P)

Bidirectional non-blocking port.

SystemVerilog

class vmm_tlm_nb_transport_port#(
 type INITIATOR = vmm_tlm_xactor, type DATA = vmm_data,
 type FW_PHASE = vmm_tlm::phase_e,
 type BW_PHASE = FW_PHASE)
 extends vmm_tlm_socket_base#(DATA,FW_PHASE);

Description

Bidirectional port providing a non-blocking transport port for the
forward path, and a non-blocking transport export for the backward
path, in a single transport port.

Only one-to-one binding is allowed for this bidirectional, non-
blocking port. The vmm_tlm_nb_transport_port can only be
bound to the vmm_tlm_nb_transport_export.

The vmm_tlm_socket_base provides all the access methods that
are provided by the vmm_tlm_port_base class. The methods
available with this class are tlm_bind(), tlm_unbind(),
tlm_import(), and get_peer(). For more information on those
methods, see the vmm_tlm_port_base class.

This class provides non-blocking transport methods for both, the
forward path, nb_transport_fw and the backward path,
nb_transport_bw.

 B- 345

VMM User Guide

Any transactor class instantiating this bidirectional port must provide
an implementation of the nb_transport_bw() method, and
should call the nb_transport_fw() method of this port.

Example

class producer extends vmm_xactor;
 vmm_tlm_nb_transport_port#(producer) nb_port =
 new(this,"producer_bi");

 function vmm_tlm::sync_e nb_transport_bw(int id=-1,
 my_trans trans, ref vmm_tlm::phase_e ph,
 ref int delay);
 endfunction

 virtual task run_ph();
 my_trans tr;
 while(1) begin
 tr = new();
 tr.randomize();
 this.nb_port.nb_transport_fw(tr,ph,delay);
 #5;
 end
 endtask
endclass

Summary

• `vmm_tlm_nb_transport_port() page B-346

B-346

VMM User Guide

`vmm_tlm_nb_transport_port()

Shorthand macro to create unique classes of the bidirectional port.
This is useful if multiple vmm_tlm_nb_transport_port instances
are required in the same initiator transactor, each having its own
implementation of the nb_transport_bw() method.

SystemVerilog

`vmm_tlm_nb_transport_port(SUFFIX)

Description

The use model is similar to the shorthand macros provided for the
unidirectional non-blocking ports. For more information, see the
description of the `vmm_tlm_nb_transport_fw_export macro.

Example

class producer extends vmm_xactor;
 `vmm_tlm_nb_transport_port(_1)
 `vmm_tlm_nb_transport_port(_2)
 vmm_tlm_nb_transport_port_1#(producer) nb_port1;
 vmm_tlm_nb_transport_port_2#(producer)
 nb_port2;
 function vmm_tlm::sync_e nb_transport_bw_1
 (int id=-1,my_trans trans,ref vmm_tlm::phase_e ph,
 ref int delay);
 endfunction

 function vmm_tlm::sync_e nb_transport_bw_2
 (int id=-1,my_trans trans,ref vmm_tlm::phase_e ph,
 ref int delay);
 endfunction
endclass

 B- 347

VMM User Guide

vmm_tlm_port_base#(D,P)

Abstract base class for all TLM2.0 transport ports

SystemVerilog

 virtual class vmm_tlm_port_base#(type DATA=vmm_data,
 type PHASE = vmm_tlm::phase_e) extends vmm_tlm_base;

Description

This is an abstract base class for all TLM2.0 transport ports. This
class contain the methods that are required by all TLM2.0 transport
port implementations. Any user-defined port must be extended from
this base class.

The DATA parameter is the type of the transaction object the port
services. The default type is vmm_data. The PHASE parameter is the
type of the phasing class. The default value is vmm_tlm::phase_e.

Summary

• vmm_tlm_port_base::get_peer() page B-348
• vmm_tlm_port_base::get_peer_id() page B-349
• vmm_tlm_port_base::new() page B-350
• vmm_tlm_port_base::tlm_bind() page B-351
• vmm_tlm_port_base::tlm_import() page B-353
• vmm_tlm_port_base::tlm_unbind() page B-355

B-348

VMM User Guide

vmm_tlm_port_base::get_peer()

Returns the binding for the port.

SystemVerilog

function vmm_tlm_export_base#(DATA,PHASE) get_peer();

Description

Returns the export bound to the current port. Returns Null, if the port
does not contain a binding.

Example

class producer extends vmm_xactor;
 vmm_tlm_b_transport_port#(producer) b_port;

 function display_my_id();
 vmm_tlm_export_base peer;
 peer = this.b_port.get_peer();
 $display("My id = %d",peer.get_peer_id(this);
 endfunction
endclass

 B- 349

VMM User Guide

vmm_tlm_port_base::get_peer_id()

Returns the id of this port for its binding

SystemVerilog

function int get_peer_id();

Description

Returns the id of this port, with respect to its export binding. If port
is not bound, -1 is returned.

Example

class my_env extends vmm_group;
 producer p1,p2;
 consumer c1;

 function connect_ph();
 p1.b_port.tlm_bind(c1.b_export);
 p2.b_port.tlm_bind(c1.b_export);
 int p1_id = p1.b_port.get_peer_id(); //returns 0
 int p2_id = p2.b_port.get_peer_id(); //returns 1
 endfunction
endclass

B-350

VMM User Guide

vmm_tlm_port_base::new()

Constructor of the port base class.

SystemVerilog

function new(vmm_object parent, string name, vmm_log log);

Description

Sets the parent, if the base class extends vmm_object. Sets the
name of the instance. log is the message interface instance to be
used for reporting messages.

 B- 351

VMM User Guide

vmm_tlm_port_base::tlm_bind()

Binds the TLM port to the TLM export passed as an argument.

SystemVerilog

function void tlm_bind(vmm_tlm_export_base#(DATA,PHASE)
 peer,int id = -1, , string fname = "", int lineno = 0);

Description

Binds the TLM port to the TLM export. A port can contain only one
binding, though multiple bindings are allowed for exports. It is an
error to bind a port that already contains a binding.

This method adds the current port descriptor to the bindings list of
peer. Calling port.tlm_bind(export,id) is equivalent to
export.tlm_bind(port,id), and the binding can be done
either way. It is an error if both calls are made, since the port allows
only one binding.

The second argument, id, is used to distinguish between multiple
ports that bind to the same export. The id field is used by the export.
If a positive id is supplied, then it must be unique for that export. It
is an error if a positive id already used by the export is supplied. If
no id or a negative id is supplied, then the lowest available unique
positive id is automatically assigned. This id is passed as an
argument of the transport method implemented in the exports
parent. The fname and lineno arguments are used to track the file
name and the line number, where tlm_bind is invoked from.

Example

class producer extends vmm_xactor;

B-352

VMM User Guide

 vmm_tlm_b_transport_port#(producer)
 b_port = new(this,"producer port");
endclass

class consumer extends vmm_xactor;
 vmm_tlm_b_transport_export#(consumer)
 b_export = new(this,"consumer export");
endclass

class my_env extends vmm_group;
 producer p[4];
 consumer c;

 function void connect_ph();
 foreach(p[i]) begin
 p[i].b_port.tlm_bind(c.b_export, i);
 end
 endfunction
endclass

 B- 353

VMM User Guide

vmm_tlm_port_base::tlm_import()

Imports a port from an inner level in the hierarchy, to an outer level.

SystemVerilog

function void tlm_import(vmm_tlm_port_base#(DATA,PHASE)
peer, string fname = "", int lineno = 0);

Description

This is a special port-to-port binding. It simplifies the binding for
hierarchical ports and exports, by making the inner port visible to the
outer hierarchy. The binding finally resolves to a port-export binding.

The method allows only parent-child ports to be imported. An error is
generated, if the ports do not share a parent-child relationship. It is
an error to import a port that is already imported. It is an error to
import a port that is already bound.

The method can be called for both parent-to-child binding and child-
to-parent binding. The parent transactors must be derivatives of
vmm_object. If the parent is a vmm_xactor extension, then the
vmm_xactor base class should be underpinned. If the
vmm_xactor is not underpinned, or the parent is not a derivative of
vmm_object, then only
child.port.tlm_import(parent.port) is allowed. The error
checks are not executed, and you must ensure legal connections.
The fname and lineno arguments are used to track the file name
and the line number, where tlm_import is invoked from.

Example

class initiator_child extends vmm_xactor;

B-354

VMM User Guide

 vmm_tlm_b_transport_port#(initiator_child) b_port;
endclass

class initiator_parent extends vmm_group;
 vmm_tlm_b_transport_port#(initiator_parent) b_port;
 initiator_child initiator;
 function void connect_ph();
 initiator.b_port.tlm_import(this.b_port);
 endfunction
endclass

class target extends vmm_xactor;
 vmm_tlm_b_transport_export b_export;
endclass

class my_env extends vmm_group;
 initiator_parent initiator;
 target target;
 function void connect_ph();
 initiator.b_port.tlm_bind(target.b_export);
 endfunction
endclass

 B- 355

VMM User Guide

vmm_tlm_port_base::tlm_unbind()

Removes the existing port binding.

SystemVerilog

function void tlm_unbind(string fname = "", int lineno = 0);

Description

Sets the port binding to null. Also, removes the current port
descriptors binding from the export that the port is bound to. A
warning is generated if a binding does not exist for this port.

This method can be used to dynamically change existing bindings for
a port. The fname and lineno arguments are used to track the file
name and the line number, where tlm_unbind is invoked from.

Example

class my_env extends vmm_group;
 producer p1;
 consumer c1, c2;
 function void connect_ph();
 p1.b_port.tlm_bind(c1.b_export);
 endfunction
endclass
class test2 extends vmm_test;
 function void configure_test_ph();
 env.p1.b_port.tlm_unbind();
 env.p1.b_port.tlm_bind(c2.b_export);
 endfunction
endclass

B-356

VMM User Guide

vmm_tlm_initiator_socket#(I,D,P)

Bidirectional socket port providing both blocking and non-blocking
paths.

SystemVerilog

class vmm_tlm_initiator_socket#(
 type INITIATOR = vmm_tlm_xactor, type DATA = vmm_data,
 type PHASE = vmm_tlm::phase_e)
 extends vmm_tlm_socket_base#(DATA,PHASE);

Description

Bidirectional socket port providing blocking transport port, non-
blocking transport port for the forward path, and non-blocking
transport export for the backward path, in a single transport socket.

Only one-to-one binding is allowed for this bidirectional socket. The
vmm_tlm_initiator_socket can only be bound to the
vmm_tlm_target_socket.

The vmm_tlm_socket_base provides all access methods that are
provided by the vmm_tlm_port_base class. The methods
available with this class are tlm_bind(), tlm_unbind(),
tlm_import(), and get_peer(). For more information on those
methods, see the vmm_tlm_port_base class description.

This class provides a blocking b_transport() transport method,
and non-blocking nb_transport_fw() and
nb_transport_bw() transport methods for the forward path and
the backward path, respectively.

 B- 357

VMM User Guide

Any transactor class instantiating this bidirectional socket must
provide an implementation of the nb_transport_bw() method,
and should call one or both of the b_transport() and
nb_transport_fw() methods of this socket.

Example

class producer extends vmm_xactor;
 vmm_tlm_initiator_socket#(producer) socket =
 new(this,"producer_socket");

 function vmm_tlm::sync_e nb_transport_bw(int id=-1,
 my_trans trans, ref vmm_tlm ph, ref int delay);
 endfunction

 virtual task run_ph();
 my_trans tr;
 while(1) begin
 tr = new();
 tr.randomize();
 this.socket.nb_transport_fw(tr,ph,delay);
 #5;
 end
 endtask
endclass

Summary

• `vmm_tlm_initiator_socket() page B-358

B-358

VMM User Guide

`vmm_tlm_initiator_socket()

Shorthand macro to create unique classes of the bidirectional
socket. This is useful if multiple vmm_tlm_initiator_socket
instances are required in the same initiator transactor, each having
its own implementation of the nb_transport_bw() method.

SystemVerilog

`vmm_tlm_initiator_socket(SUFFIX)

Description

The use model is similar to the shorthand macros, provided for the
unidirectional non-blocking ports. For more information, see the
description of the `vmm_tlm_nb_transport_fw_export macro.

Example

class producer extends vmm_xactor;
 `vmm_tlm_initiator_socket(_1)
 `vmm_tlm_initiator_socket(_2)
 vmm_tlm_initiator_socket_1#(producer) s1;
 vmm_tlm_initiator_socket_2#(producer) s2;

 function vmm_tlm::sync_e nb_transport_bw_1(
 int id=-1,my_trans trans,ref vmm_tlm::phase ph,
 ref int delay);
 endfunction

 function vmm_tlm::sync_e nb_transport_bw_2(
 int id=-1,my_trans trans,ref vmm_tlm::phase_e ph,
 ref int delay);
 endfunction
endclass

 B- 359

VMM User Guide

vmm_tlm_target_socket#(T,D,P)

Bidirectional socket export providing both blocking and non-blocking
paths.

SystemVerilog

class vmm_tlm_target_socket#(
 type TARGET = vmm_tlm_xactor, type DATA = vmm_data,
 type PHASE = vmm_tlm::phase_e)
 extends vmm_tlm_socket_base#(DATA,PHASE);

Description

Bidirectional socket export providing blocking transport export, non-
blocking transport export for the forward path, and non-blocking
transport port for the backward path in a single transport socket.

Only one-to-one binding is allowed for this bidirectional socket. The
vmm_tlm_target_socket can only be bound to the
vmm_tlm_initiator_socket.

The vmm_tlm_socket_base provides all access methods that are
provided by the vmm_tlm_port_base class. The methods
available with this class are tlm_bind(), tlm_unbind(),
tlm_import(), and get_peer(). For more information on these
methods, refer to the vmm_tlm_port_base class description.

This class provides a blocking b_transport() transport method,
and non-blocking nb_transport_fw() and nb_transport_bw()
transport methods for the forward and backward paths, respectively.

B-360

VMM User Guide

Any transactor class instantiating this bidirectional socket must
provide an implementation of the nb_transport_fw() and
b_transport() methods, and should call nb_transport_bw()
method of this socket for the backward path.

Example

class consumer extends vmm_xactor;
 vmm_tlm_target_socket#(consumer) nb_export =
 new(this,"consumer_socket");
 function vmm_tlm::sync_e nb_transport_fw(int id=-1,
 my_trans trans,ref vmm_tlm::phase_e ph,
 ref int delay);
 endfunction

 task b_transport(int id=-1, my_trans trans,
 ref int delay);
 endtask

 virtual task run_ph();
 my_trans tr;
 while(1) begin
 this.tr.notify.wait_for(vmm_data::ENDED);
 this.nb_port.nb_transport_bw(tr,ph,delay);
 #5;
 end
 endtask
endclass

Summary

• `vmm_tlm_target_socket() page B-361

 B- 361

VMM User Guide

`vmm_tlm_target_socket()

Shorthand macro to create unique classes of the bidirectional
socket. Used if multiple vmm_tlm_target_socket instances are
required in the same target transactor, each having its own
implementation of the nb_transport_bw() method.

SystemVerilog

`vmm_tlm_nb_simple_target_socket(SUFFIX)

Description

The use model is similar to the shorthand macros provided for the
unidirectional exports. For more information, see the
`vmm_tlm_nb_transport_fw_export macro description.

Example

class consumer extends vmm_xactor;
 `vmm_tlm_target_socket(_1)
 `vmm_tlm_target_socket(_2)
 vmm_tlm_target_socket_1#(producer) soc1;
 vmm_tlm_target_socket_2#(producer) soc2;

 function vmm_tlm::sync_e nb_transport_fw_1(
 int id=-1,my_trans trans, ref vmm_tlm::phase_e ph,
 ref int delay);
 endfunction

 function vmm_tlm::sync_e nb_transport_fw_2(
 int id=-1,my_trans trans, ref vmm_tlm::phase_e ph,
 ref int delay);
 endfunction
 task b_transport_1(int id=-1, my_trans trans,
 ref int delay);
 endtask

B-362

VMM User Guide

 task b_transport_2(int id=-1, my_trans trans,
 ref int delay);
 endtask
endclass

 B- 363

VMM User Guide

vmm_tlm_transport_interconnect#(DATA)

Interconnect transport class.

Class extended from
vmm_tlm_transport_interconnect_base. This class is
specific to vmm_tlm::phase_e type.

The parameter DATA is the type of the transaction object of the port/
export services. The default type is vmm_data.

SystemVerilog

class vmm_tlm_transport_interconnect #(type DATA = vmm_data)
extends vmm_tlm_transport_interconnect_base#(DATA);

Description
Used to connect vmm_tlm port to a non-matching export.

Summary

• vmm_tlm_transport_interconnect::new() page B-364

B-364

VMM User Guide

vmm_tlm_transport_interconnect::new()

Constructor of an interconnect class.

SystemVerilog

function new(vmm_object parent,string name);

Description

Sets the parent, if it is an extension of vmm_object. Sets the name
of the instance.

 B- 365

VMM User Guide

vmm_tlm_transport_interconnect_base#(DATA,PHASE
)

Interconnect transport base class.

Base class for vmm_tlm_transport_interconnect class. This
class contains tlm_bind method which is used to connect below
ports and exports.

• vmm_tlm_b_transport_port to
vmm_tlm_nb_transport_export

• vmm_tlm_b_transport_port to
vmm_tlm_nb_transport_fw_export

• vmm_tlm_nb_transport_port to
vmm_tlm_b_transport_export

• vmm_tlm_nb_transport_fw_port to
vmm_tlm_b_transport_export

Any user-defined interconnect class should be extended from this
base class. The parameter DATA is the type of the transaction object
of the port/export services. The default type is vmm_data. The
parameter PHASE is the type of the phasing class. The default value
is vmm_tlm::phase_e.

SystemVerilog

class vmm_tlm_transport_interconnect_base #(type DATA =
vmm_data , type PHASE = vmm_tlm::phase_e) extends vmm_object;

Description

Used to connect vmm_tlm port to a non-matching export.

B-366

VMM User Guide

Summary

• vmm_tlm_transport_interconnect_base::new() page B-367
• vmm_tlm_transport_interconnect_base::tlm_bind() .. page B-368

 B- 367

VMM User Guide

vmm_tlm_transport_interconnect_base::new()

Constructor of an interconnect base class.

SystemVerilog

function new(vmm_object parent, string name);

Description

Sets the parent, if it is an extension of vmm_object. Sets the name
of the instance.

B-368

VMM User Guide

vmm_tlm_transport_interconnect_base::tlm_bind()

Binds the TLM port to TLM export.

SystemVerilog

function int tlm_bind(vmm_tlm_base tlm_intf_port,
vmm_tlm_base tlm_intf_export, vmm_tlm::intf_e intf, string
fname = "", int lineno = 0);

Description

Binds the tlm_intf_port to tlm_intf_export, which are
passed as arguments to the function.

First argument to the function is tlm port and the second argument is
tlm export. If wrong types are passed to first or second argument
then an error is issued.

Third argument takes type of the non-blocking port or export.

• vmm_tlm::TLM_NONBLOCKING_EXPORT

This is used when producer is vmm_tlm_b_transport_port
and consumer is vmm_tlm_nb_transport_export.

• vmm_tlm::TLM_NONBLOCKING_FW_EXPORT

This is used when producer is vmm_tlm_b_transport_port
and consumer is vmm_tlm_nb_transport_fw_export.

• vmm_tlm::TLM_NONBLOCKING_PORT

This is used when producer is vmm_tlm_nb_transport_port
and consumer is vmm_tlm_b_transport_export.

 B- 369

VMM User Guide

• vmm_tlm::TLM_NONBLOCKING_FW_PORT

This is used when producer is
vmm_tlm_nb_transport_fw_port and consumer is
vmm_tlm_b_transport_export.

Any other values for third argument will issue an error.

B-370

VMM User Guide

vmm_tlm_reactive_if #(DATA, q_size)

TLM Reactive class providing an API similar to the vmm_channel's
active slot.

SystemVerilog

class vmm_tlm_reactive_if#(type DATA = vmm_data, int q_size
= 1) extends vmm_object;

Description

It facilitates writing reactive transactors using a polling approach
rather than an interrupt approach. It provides blocking, non-
blocking_fw and non-blocking (bi-directional) exports and can be
bound to more than one port.

Summary

• vmm_tlm_reactive_if::completed() page B-371
• vmm_tlm_reactive_if::get() page B-372
• vmm_tlm_reactive_if::new() page B-373
• vmm_tlm_reactive_if::tlm_bind() page B-374
• vmm_tlm_reactive_if::try_get() page B-376

 B- 371

VMM User Guide

vmm_tlm_reactive_if::completed()

Indicate that the previously activated transaction has been
completed.

SystemVerilog

function void completed();

Description

The completed method must be called by the transactor to indicate
the completion of active transaction. The blocking port which initiated
the transaction will be unblocked and nb_transport_bw method is
called for non-blocking bi-directional with TLM_COMPLETED phase.

For vmm_data derivatives vmm_data::ENDED is also indicated.
The transaction is removed from the pending queue only when
completed is called.

Example

class consumer extends vmm_xactor;
 vmm_tlm_reactive_if#(my_trans, 4) reac_export1 = new(this,
"export1");
 virtual task run_ph();
 my_trans trans;
 fork
 while (1)
 begin
 reac_export1.get(trans);
 reac_export1.completed();
 end
 join_none
 endtask : run_ph
endclass : consumer

B-372

VMM User Guide

vmm_tlm_reactive_if::get()

Blocking method to get the next transaction object.

SystemVerilog

task get(output DATA tr);

Description

Blocks until a transaction object is available. If there is more than one
object then gets the first transaction object. Subsequent get calls
must be preceded by calling the completed() method. Else, an
error is issued.

Example

class consumer extends vmm_xactor;
 vmm_tlm_reactive_if#(my_trans, 4) reac_export1 = new(this,
"export1");
 virtual task run_ph();
 my_trans trans;
 fork
 while (1)
 begin
 reac_export1.get(trans);
 reac_export1.completed();
 end
 join_none
 endtask : run_ph
endclass : consumer
Indicate that the previously activated transaction has been
completed.

 B- 373

VMM User Guide

vmm_tlm_reactive_if::new()

Constructor of reactive interface class.

SystemVerilog

function new(vmm_object parent, string name);

Description

Sets the parent, if it is an extension vmm_object. Sets the name of
the instance.

B-374

VMM User Guide

vmm_tlm_reactive_if::tlm_bind()

Binds the TLM port passed as an argument to the corresponding
TLM export depending on the enum passed in second argument.

SystemVerilog

function int tlm_bind(vmm_tlm_base tlm_intf,
vmm_tlm::intf_e intf);

Description

Binds the TLM port passed as an argument to one of the export in
the class depending on the enum value passed as second
arguement.

The second argument can be,

• vmm_tlm::TLM_NONBLOCKING_EXPORT

Port passed as an argument is connected to
vmm_tlm_nb_transport_export (bi-directional)

• vmm_tlm::TLM_BLOCKING_EXPORT

Port passed as an argument is connected to
vmm_tlm_b_transport_export

• vmm_tlm::TLM_NONBLOCKING_FW_EXPORT

Port passed as an argument is connected to
vmm_tlm_nb_transport_fw_export (forward only)

 B- 375

VMM User Guide

Example

class consumer extends vmm_xactor;
 vmm_tlm_reactive_if#(my_trans, 4) reac_export1 = new(this,
"export1");
 virtual task run_ph();
 my_trans trans;
 fork
 while (1)
 begin
 reac_export1.get(trans);
 reac_export1.completed();
 end
 join_none
 endtask : run_ph
endclass : consumer
class producer extends vmm_xactor;
 vmm_tlm_b_transport_port#(producer) b_port = new(this,
"producer port");
endclass
class my_env extends vmm_group;
 producer p1;
 producer p2;
 consumer c;
 function void connect_ph();
 c.reac_export1.tlm_bind(p1.b_port,
vmm_tlm::TLM_BLOCKING_EXPORT);
 c.reac_export1.tlm_bind(p2.b_port,
vmm_tlm::TLM_BLOCKING_EXPORT);
 endfunction
endclass

B-376

VMM User Guide

vmm_tlm_reactive_if::try_get()

Non-blocking function to get the next transaction object.

SystemVerilog

Function DATA try_get();

Description

Returns null if no transaction object is received. If there are more
than one object then returns the first transaction object. Subsequent
try_get calls must be preceded by calling the completed()
method. Else, an error is issued.

Example

class consumer extends vmm_xactor;
 vmm_tlm_reactive_if#(my_trans, 4) reac_export1 = new(this,
"export1");
 virtual task run_ph();
 my_trans trans;
 fork
 while (1)
 begin
 trans = reac_export1.try_get();
 reac_export1.completed();
 end
 join_none
 endtask : run_ph
endclass : consumer

 B- 377

VMM User Guide

vmm_unit

Base class for providing pre-defined simulation phases.

SystemVerilog

virtual class vmm_unit extends vmm_object;

Description

This class is used as the base class that provides pre-defined
simulation phases to structural elements, such as transactors,
transaction-level models and generators. The purpose of this class
is to:

• Support structural composition and connectivity.

• Integrate into a simulation timeline.

The vmm_unit class should not be directly extended. Instead,
vmm_xactor and vmm_group are extended from vmm_unit.

Since the vmm_xactor and vmm_group base classes are extended
from vmm_unit, all classes extended from these base classes can
invoke the phase methods. You should continue to extend
vmm_xactor for implementing transactors, and for implementing
compositions (combination of components), extend vmm_group.

The following are the phases, listed in the order in which they are
called:

- build_ph()

- configure_ph()

B-378

VMM User Guide

- connect_ph()

- configure_test_ph()

- start_of_sim_ph()

- reset_ph()

- training_ph()

- config_dut_ph()

- start_ph()

- start_of_test_ph()

- run_ph()

- shutdown_ph()

- cleanup_ph()

- report_ph()

- final

Summary

• vmm_unit::build_ph() page B-380
• vmm_unit::cleanup_ph() page B-381
• vmm_unit::config_dut_ph() page B-382
• vmm_unit::configure_ph() page B-383
• vmm_unit::connect_ph() page B-384
• vmm_unit::consensus_requested() page B-385
• vmm_unit::consent() page B-386
• vmm_unit::disabled_ph() page B-387
• vmm_unit::disable_unit() page B-388
• vmm_unit::forced() page B-390
• vmm_unit::force_thru() page B-391
• vmm_unit::get_timeline() page B-392
• vmm_unit::is_unit_enabled() page B-393
• vmm_unit::new() page B-394
• vmm_unit::oppose() page B-395
• vmm_unit::override_phase() page B-396
• vmm_unit::report_ph() page B-397
• vmm_unit::request_consensus() page B-398

 B- 379

VMM User Guide

• vmm_unit::reset_ph() page B-399
• vmm_unit::run_ph() page B-400
• vmm_unit::shutdown_ph() page B-401
• vmm_unit::start_of_sim_ph() page B-402
• vmm_unit::start_of_test_ph() page B-403
• vmm_unit::start_ph() page B-404
• vmm_unit::training_ph() page B-405

B-380

VMM User Guide

 vmm_unit::build_ph()

Method to build this component.

SystemVerilog

virtual function void vmm_unit::build_ph();

Description

Builds this component. Leaf level or independent root components
associated can be created here.

Example

class memsys_env extends vmm_group;
 cpu_subenv extends cpu0;
 vmm_ms_scenario_gen gen;
 memsys_scenario memsys_scn;
 ...
 function void build_ph();
 cpu0 = new("subenv", "CPU0", this);
 cpu1 = new("subenv", "CPU1", this);
 memsys_scn = new();
 gen = new("MS-Generator");
 ...
 endfunction
endclass

 B- 381

VMM User Guide

vmm_unit::cleanup_ph()

Method for post-execution.

SystemVerilog

virtual task vmm_unit::cleanup_ph();

Description

Method to perform post-execution verification, if it is enabled.

Example

class groupExtension extends vmm_group;
 task cleanup_ph();
 `vmm_note(log,`vmm_sformatf(
 "groupExtension::cleanup_ph"));
 ...
 endtask:cleanup_ph
endclass

B-382

VMM User Guide

vmm_unit::config_dut_ph()

Method for DUT configuration.

SystemVerilog

virtual task vmm_unit::config_dut_ph();

Description

Initialization of the DUT attached to this component, if it is enabled.

Example

class vdmsys_env extends vmm_group;
 task config_dut_ph;
 top.write_reg(N_RD_PORT, 20);
 top.write_reg(N_WR_PORT, 30);
 ...
 endtask
endclass

 B- 383

VMM User Guide

 vmm_unit::configure_ph()

Method for functional configuration.

SystemVerilog

virtual function void vmm_unit::configure_ph();

Description

Functional configuration of this component.

Example

class groupExtension extends vmm_group;
 ...
 function void configure_ph();
 `vmm_note
 (log,`vmm_sformatf("groupExtension::configure_ph"));
 ...
 endfunction:configure_ph
endclass

B-384

VMM User Guide

vmm_unit::connect_ph()

Method for connecting components.

SystemVerilog

virtual function void vmm_unit::connect_ph();

Description

Connects the interfaces that are wholly contained within this
component.

Example

class memsys_env extends vmm_group;
 cpu_subenv extends cpu0;
 vmm_ms_scenario_gen gen;
 memsys_scenario memsys_scn;
 ...
 function void build_ph();
 cpu0 = new("subenv", "CPU0", this);
 cpu1 = new("subenv", "CPU1", this);
 memsys_scn = new();
 gen = new("MS-Generator");
 ...
 endfunction

 function void memsys_env::connect_ph();
 gen.register_channel("cpu0_chan",
 cpu0.gen_to_drv_chan);
 gen.register_channel("cpu1_chan",
 cpu1.gen_to_drv_chan);
 gen.register_ms_scenario("memsys_scn", memsys_scn);
 ...
 endfunction
endclass

 B- 385

VMM User Guide

vmm_unit::consensus_requested()

A consensus request is made.

SystemVerilog

virtual function void consensus_requested(vmm_unit who);

OpenVera

Not supported

Description

When this method is called, it indicates that a consensus request is
made to this currently-opposing unit by the specified unit, by calling
the vmm_unit::request_consensus() method.

This method should be extended, if this unit is to honor consensus
requests.

B-386

VMM User Guide

vmm_unit::consent()

Expresses the consent of this vmm_unit to the consensus for the
specified reason.

SystemVerilog

function void vmm_unit::consent(string why =
 "No reason specified");

Description

Expresses the consents of this vmm_unit to the consensus for the
specified reason.

Example

class groupExtension extends vmm_group;
 ...
 task reset_ph();
 this.oppose("reset phase running");
 fork
 begin
 #50;
 this.consent("reset phase finished");
 end
 join_none
 endtask:reset_ph
 ...
endclass

 B- 387

VMM User Guide

vmm_unit::disabled_ph()

Method executes instead of the reset_ph() method, when unit
disabled.

SystemVerilog

virtual task vmm_unit::disabled_ph();

Description

This Method gets executed instead of the reset_ph() method, if
this vmm_unit instance is disabled.

Example

class groupExtension extends vmm_group;
 function void disabled_ph();
 `vmm_note(log,`vmm_sformatf(
 "groupExtension::disabled_ph"));
 ...
 endfunction:disabled_ph
endclass

B-388

VMM User Guide

vmm_unit::disable_unit()

Disables a unit instance.

SystemVerilog

function void vmm_unit::disable_unit();

Description

Disables this instance of the vmm_unit class. This method must be
called, before the start_of_sim phase. A vmm_unit instance can
only be re-enabled by resetting its timeline to the configure phase
or earlier.

Example

class groupExtension extends vmm_group;
 ...
endclass

groupExtension m1 = new ("groupExtension","m1");
m1.disable_unit();

 B- 389

VMM User Guide

vmm_unit::final_ph()

Method to publish final report.

SystemVerilog

function void vmm_unit::final_ph();

Description

In case of multiple concatenated tests, final phase can be used to
summarize the final report.

Example

class testExtension extends vmm_test;
……….
 function void final_ph();
 env.summary();
 endfunction

endclass

B-390

VMM User Guide

vmm_unit::forced()

Forces consensus on this unit.

SystemVerilog

function void forced(string why = "No reason specified");

OpenVera

Not supported

Description

Forces consensus for this unit to be reached. The consensus may
be subsequently consented to by calling the
vmm_unit::consent() method, or it may be opposed by calling
the vmm_unit::oppose() method.

The forcing of consensus through the parent unit occurs, only if this
unit is configured to force through to its parent by the
vmm_unit::force_thru() method. The why argument is a string
that specifies the reason why the consensus is forced on this unit.

 B- 391

VMM User Guide

vmm_unit::force_thru()

Forces sub-consensus from a sub-unit through or not.

SystemVerilog

function void force_thru(vmm_unit child, bit thru = 1);

OpenVera

Not supported

Description

If the “thru” argument is TRUE, any consensus forced on the
specified child unit instance will force the consensus on this unit
instance.

If the “thru” argument is FALSE, any consensus forced on the
specified child unit instance will simply consent to the consensus on
this unit instance.

B-392

VMM User Guide

 vmm_unit::get_timeline()

Returns the enclosing timeline.

SystemVerilog

function vmm_timeline vmm_unit::get_timeline();

Description

Returns the runtime timeline, this unit is executing under.

Example

class groupExtension extends vmm_group;
 ...
 function void build_ph();
 vmm_timeline t = this.get_timeline();
 ...
 endfunction
endclass

 B- 393

VMM User Guide

 vmm_unit::is_unit_enabled()

Returns 1, if unit is enabled.

SystemVerilog

function bit vmm_unit::is_unit_enabled();

Description

Checks if this vmm_unit instance is disabled or not. By default, all
units are enabled. A unit may be disabled by calling its
disable_unit() method, before the start_of_sim phase.

Example

class groupExtension extends vmm_group;
 ...
endclass

class udf_start_def extends vmm_fork_task_phase_def
 #(groupExtension);
 ...
 task do_task_phase(groupExtension obj);
 if(obj.is_unit_enabled())
 obj.udf_start_ph();
 endtask:do_task_phase
 ...
endclass

B-394

VMM User Guide

vmm_unit::new()

Constructor for the vmm_unit.

SystemVerilog

function vmm_unit::new(string name, string inst,
 vmm_object parent = null);

Description

Constructs an instance of this class with the specified name,
instance name, and optional parent.

The specified name is used as the name of the embedded vmm_log.
The specified instance name is used as the name of the underlying
vmm_object.

Example

class vip1 extends vmm_group;
 function new (string name, string inst);
 super.new (name, inst, this);
 endfunction
endclass

 B- 395

VMM User Guide

vmm_unit::oppose()

Expresses the opposition of this vmm_unit to the consensus for the
specified reason.

SystemVerilog

function void vmm_unit::oppose(string why =
 "No reason specified");

Description

Expresses the opposition of this vmm_unit to the consensus for the
specified reason.

Example

class groupExtension extends vmm_group;
 ...
 task reset_ph();
 this.oppose("reset phase running");
 fork
 begin
 #50;
 this.consent("reset phase finished");
 end
 join_none
 endtask:reset_ph
 ...
endclass

B-396

VMM User Guide

 vmm_unit::override_phase()

Method to execute new phase definition instead of the existing one.

SystemVerilog

virtual function vmm_phase_def
vmm_unit::override_phase(string name, vmm_phase_def def);

Description

Overrides the specified phase with the specified phase definition for
this instance. If def is null, the override (if any) is removed. Returns
the previous override phase definition (if any).

Example

class cust_configure_phase_def #(type T = groupExtension)
 extends vmm_topdown_function_phase_def #(T);
 function void do_function_phase(T obj);
 obj.cust_config_ph();
 endfunction
endclass

class groupExtension extends vmm_group;
 function void config_ph();
 `vmm_note(log,`vmm_sformatf(
 "groupExtension::configure_ph"));
 endfunction:config_ph
 function void cust_config_ph();
 `vmm_note(log,`vmm_sformatf(
 "groupExtension::cust_config_ph"));
 endfunction:cust_config_ph
endclass

cust_configure_phase_def cust_cfg = new();
groupExtension m1 = new("groupExtension","m1");
`void(m1.override_phase("configure",cust_cfg));

 B- 397

VMM User Guide

vmm_unit::report_ph()

Method for test reporting.

SystemVerilog

virtual function void vmm_unit::report_ph();

Description

Method to perform post-test pass or fail reporting, if it is enabled.

Example

class memsys_env extends vmm_group;
 function void report_ph();
 sb.report;
 ...
 endfunction
endclass

B-398

VMM User Guide

vmm_unit::request_consensus()

Requests that a consensus be reached.

SystemVerilog

task request_consensus(string why = “No reason specified”);

OpenVera

Not supported

Description

Makes a request of all currently-opposing participants in this unit
instance that they consent to the consensus.

A request is made by calling the
vmm_unit::consensus_requested() method in this unit, and
all currently-opposing child units. If a forced consensus on this unit
forces through to a higher-level unit, then the consensus request is
propagated upward as well. This task returns when the local unit-
level consensus is reached.

The why argument is a string that specifies the reason why the
consensus is forced on this unit.

 B- 399

VMM User Guide

vmm_unit::reset_ph()

Method for reset.

SystemVerilog

virtual task vmm_unit::reset_ph()

Description

Resets this unit, if it is enabled. This method is executed at the reset
phase.

Example

class memsys_env extends vmm_group;
 task reset_ph();
 // Resetting the DUT
 test_top.reset <= 1'b0;
 repeat(1) @(test_top.port0.cb)
 test_top.reset <= 1'b1;
 repeat(10) @(test_top.port0.cb)
 test_top.reset <= 1'b0;
 `vmm_verbose(this.log,"RESET DONE...");
 endtask
endclass

B-400

VMM User Guide

vmm_unit::run_ph()

Body of test, if it is enabled.

SystemVerilog

virtual task vmm_unit::run_ph();

Description

Body of test, if it is enabled. Can be interrupted by resetting this
component. May be stopped.

Example

class groupExtension extends vmm_group;
 task run_ph();
 `vmm_note(log,`vmm_sformatf(
 "groupExtension::run_ph"));
 ...
 endtask : run_ph
endclass

 B- 401

VMM User Guide

vmm_unit::shutdown_ph()

Method to stop all unit components.

SystemVerilog

virtual task vmm_unit::shutdown_ph();

Description

Method to stop processes within this component, if it is enabled.

Example

class cpu_subenv extends vmm_group;
 ...
 task shutdown_ph();
 if (enable_gen) this.gen.stop_xactor();
 endtask
 ...
endclass

B-402

VMM User Guide

 vmm_unit::start_of_sim_ph()

Method executes at start of simulation.

SystemVerilog

virtual function void vmm_unit::start_of_sim_ph();

Description

Method called at start of the simulation.

Example

class cpu_driver extends vmm_group;
 ...
 function void start_of_sim_ph();
 if (iport == null)
 `vmm_fatal(log, "Virtual port not connected to the
 actual interface instance");
 endfunction
 ...
endclass

 B- 403

VMM User Guide

vmm_unit::start_of_test_ph()

Method called at start of the test body.

SystemVerilog

virtual function void vmm_unit::start_of_test_ph();

Description

Method called at start of the test body, if it is enabled.

Example

class groupExtension extends vmm_group;
 function void start_of_test_ph();
 `vmm_note(log,`vmm_sformatf(
 "groupExtension::start_of_test_ph"));
 ...
 endfunction:start_of_test_ph
endclass

B-404

VMM User Guide

vmm_unit::start_ph()

Method to start unit components.

SystemVerilog

virtual task vmm_unit::start_ph();

Description

Method to start processes within this component, if it is enabled.

Example

class memsys_env extends vmm_group;
 ...
 task start_ph();
 this.gen.start_xactor();
 endtask
 ...
endclass

 B- 405

VMM User Guide

vmm_unit::training_ph()

Method for training.

SystemVerilog

virtual task vmm_unit::training_ph();

Description

Initialization of this component, such as interface training.

Example

class groupExtension extends vmm_group;
 task training_ph();
 `vmm_note(log,`vmm_sformatf(
 "groupExtension::training_ph"));
 ...
 endtask:training_ph
endclass

B-406

VMM User Guide

vmm_version

This class is used to report the version and vendor of the VMM
Standard Library implementation.

Summary

• vmm_version::display() page B-407
• vmm_version::major() page B-408
• vmm_version::minor() page B-409
• vmm_version::patch() page B-410
• vmm_version::psdisplay() page B-411
• vmm_version::vendor() page B-412

 B- 407

VMM User Guide

vmm_version::display()

Displays the version.

SystemVerilog

function void display(string prefix = "");

OpenVera

Not supported.

Description

Displays the version image returned by the psdisplay() method,
to the standard output.

The argument prefix is used to append a string to the content
displayed by this method.

B-408

VMM User Guide

vmm_version::major()

Returns the major revision number.

SystemVerilog

function int major();

OpenVera

Not supported.

Description

Returns the major version number of the implemented VMM
Standard Library. Should always return 1.

 B- 409

VMM User Guide

vmm_version::minor()

Returns the minor revision number.

SystemVerilog

function int minor();

OpenVera

function integer minor();

Description

Returns the minor version number of the implemented VMM
Standard Library. Should always return 5, if the additions and
updates specified in this appendix are fully implemented.

Example

Example B-132
initial begin
 string minor_ver;
 vmm_version v = new;
 $sformat(minor_ver,"VMM Minor Version %d", v.minor());
 `vmm_note(log,minor_ver);
end

B-410

VMM User Guide

vmm_version::patch()

Returns the patch number.

SystemVerilog

function int patch();

OpenVera

Not supported.

Description

Returns the patch number of the implemented VMM Standard
Library. The returned value is vendor-dependent.

 B- 411

VMM User Guide

vmm_version::psdisplay()

Formats the major and minor version, patch, and vendor information.

SystemVerilog

function string psdisplay(string prefix = "");

OpenVera

Not supported.

Description

Creates a well formatted image of the VMM Standard Library
implementation version information. The format is:

prefix VMM Version major.minor.patch (vendor)

B-412

VMM User Guide

vmm_version::vendor()

Returns the name of the library vendor.

SystemVerilog

function string vendor();

OpenVera

Not supported.

Description

Returns the name of the vendor supplying the VMM Standard Library
implementation. The returned value is vendor-dependent.

 B- 413

VMM User Guide

vmm_voter

This class is an interface to participate in a consensus, and indicates
consent or opposition to the end of test. It is created through the
“vmm_consensus::register_voter()” method. Its
constructor is not documented, therefore, it must not be created
directly.

Summary

• vmm_voter::consent() page B-414
• vmm_voter::forced() page B-415
• vmm_voter::oppose() page B-416

B-414

VMM User Guide

vmm_voter::consent()

Agrees to a consensus.

SystemVerilog

function void consent(string why = "No specified reason");

OpenVera

task consent(string why = "No specified reason");

Description

Allows consensus to be reached for the optionally specified reason.
This method may be called repeatedly to modify the reason for the
consent. A consent may be withdrawn by calling the
“vmm_voter::oppose()” method.

Example

Example B-133
program test_consensus;

 string who[];
 string why[];
 vmm_consensus vote = new("Vote", "Main");
 vmm_voter v1;

 initial begin
 v1 = vote.register_voter("Voter #1");
 v1.consent("Consent by default");
 ...
 end

endprogram

 B- 415

VMM User Guide

vmm_voter::forced()

Forces a consensus.

SystemVerilog

function void forced(string why = "No specified reason");

OpenVera

task forced(string why = "No specified reason");

Description

Forces an end of test consensus for the optionally specified reason.
The end of test is usually forced by a directed testcase, but can be
forced by any participant, as necessary. A forced consensus may be
cancelled (if the simulation is still running) by calling the
“vmm_voter::oppose()” or “vmm_voter::consent()”
method.

Example

Example B-134
initial begin
 ...
 vmm_voter test_voter = env.end_vote.register_voter(
 "Test case Stimulus");
 test_voter.oppose("Test not done");
 ...
 test_voter.forced("Test is done");
end

B-416

VMM User Guide

vmm_voter::oppose()

Opposes to a consensus.

SystemVerilog

function void oppose(string why = "No specified reason");

OpenVera

task oppose(string why = "No specified reason");

Description

Prevents consensus from being reached for the optionally specified
reason, by default. This method may be called repeatedly to modify
the reason for the opposition.

Example

Example B-135
initial begin
 my_env env = new();
 vmm_voter test_voter = env.end_vote.register_voter(
 "Test case Stimulus");
 test_voter.oppose("test not done");
end

 B- 417

VMM User Guide

vmm_xactor

This base class is to be used as the basis for all transactors,
including bus-functional models, monitors, and generators. It
provides a standard control mechanism expected in all transactors.

Summary

• vmm_xactor::append_callback() page B-418
• vmm_xactor::do_psdisplay() page B-419
• vmm_xactor::do_reset_xactor() page B-420
• vmm_xactor::do_start_xactor() page B-422
• vmm_xactor::do_stop_xactor() page B-424
• vmm_xactor::do_what_e page B-426
• vmm_xactor::exp_vmm_sb_ds() page B-428
• vmm_xactor::get_input_channels() page B-429
• vmm_xactor::get_instance() page B-430
• vmm_xactor::get_name() page B-431
• vmm_xactor::get_output_channels() page B-432
• vmm_xactor::inp_vmm_sb_ds() page B-433
• vmm_xactor::kill() page B-434
• vmm_xactor::log page B-435
• vmm_xactor::main() page B-436
• vmm_xactor::new() page B-437
• vmm_xactor::notifications_e page B-438
• vmm_xactor::notify page B-440
• vmm_xactor::prepend_callback() page B-442
• vmm_xactor::psdisplay() page B-444
• vmm_xactor::register_vmm_sb_ds() page B-445
• vmm_xactor::reset_xactor() page B-446
• vmm_xactor::restore_rng_state() page B-449
• vmm_xactor::stream_id page B-450
• vmm_xactor::save_rng_state() page B-451
• vmm_xactor::start_xactor() page B-452
• vmm_xactor::stop_xactor() page B-453
• vmm_xactor::unregister_callback() page B-454
• vmm_xactor::unregister_vmm_sb_ds() page B-455
• vmm_xactor::‘vmm_callback() page B-456
• vmm_xactor::wait_if_stopped() page B-457
• vmm_xactor::wait_if_stopped_or_empty() page B-459
• vmm_xactor::xactor_status() page B-461
• ‘vmm_xactor_member_begin() page B-462
• ‘vmm_xactor_member_end() page B-463
• ‘vmm_xactor_member_scalar*() page B-464
• ‘vmm_xactor_member_string*() page B-466
• ‘vmm_xactor_member_enum*() page B-468
• ‘vmm_xactor_member_vmm_data*() page B-470
• ‘‘vmm_xactor_member_channel*() page B-472
• ‘vmm_xactor_member_xactor*() page B-474
• ‘vmm_xactor_member_user_defined() page B-476

B-418

VMM User Guide

vmm_xactor::append_callback()

Appends the specified callback façade instance with this instance of
the transactor.

SystemVerilog

virtual function void
 append_callback(vmm_xactor_callbacks cb);

OpenVera

Not supported.

Description

Callback methods are invoked in the order in which they were
registered.

A warning is generated, if the same callback façade instance is
registered more than once with the same transactor. A façade
instance can be registered with more than one transactor. Callback
façade instances can be unregistered and re-registered dynamically.

 B- 419

VMM User Guide

vmm_xactor::do_psdisplay()

Overrides the shorthand psdisplay() method.

SystemVerilog

virtual function string do_psdisplay(string prefix = "")

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_xactor::psdisplay() method, created by the
vmm_xactor shorthand macros. If defined, it will be used instead of
the default implementation.

Example

Example B-136
class eth_frame_gen extends vmm_xactor;
 ...
 `vmm_xactor_member_begin(eth_frame_gen)
 ...
 `vmm_xactor_member_end(eth_frame_gen)
 virtual function string do_psdisplay(string prefix = "")
 $sformat(do_psdisplay,"%s Printing Ethernet frame \n
 generator members \n",prefix);
 ...
 endfunction
 ...
endclass

B-420

VMM User Guide

vmm_xactor::do_reset_xactor()

Overrides the shorthand reset_xactor() method.

SystemVerilog

protected virtual function void do_reset_xactor(
vmm_xactor::reset_e rst_typ)

OpenVera

Not supported.

Description

Overrides the default implementation of the
vmm_xactor::reset_xactor() method created by the
vmm_xactor shorthand macros. If defined, it is used instead of the
default implementation.

Example

Example B-137
class xact1 extends vmm_xactor;
 ...
endclass

class xact2 extends vmm_xactor;
 ...
endclass

class xact extends vmm_xactor;
 xact1 xact1_inst;
 xact2 xact2_inst;
 ...
`vmm_xactor_member_begin(xact)

 B- 421

VMM User Guide

 vmm_xactor_member_xactor(xact1_inst,DO_ALL)
 vmm_xactor_member_xactor(xact2_inst,DO_ALL)
`vmm_xactor_member_end(xact)
 protected virtual function void do_reset_xactor ();
 `ifdef XACT_2
 xact2_inst.reset_xactor();
 `else
 xact1_inst.reset_xactor();
 `endif
 ...
 endfunction
 ...
endclass

B-422

VMM User Guide

vmm_xactor::do_start_xactor()

Overrides the shorthand start_xactor() method.

SystemVerilog

protected virtual function void do_start_xactor()

OpenVera

Not supported.

Description

Overrides the default implementation of the
vmm_xactor::start_xactor() method, created by the
vmm_xactor shorthand macros. If defined, it is used instead of the
default implementation.

Example

Example B-138
class xact1 extends vmm_xactor;
 ...
endclass

class xact2 extends vmm_xactor;
 ...
endclass

class xact extends vmm_xactor;
 xact1 xact1_inst;
 xact2 xact2_inst;
 ...
`vmm_xactor_member_begin(xact)
 vmm_xactor_member_xactor(xact1_inst,DO_ALL)

 B- 423

VMM User Guide

 vmm_xactor_member_xactor(xact2_inst,DO_ALL)
`vmm_xactor_member_end(xact)
 protected virtual function void do_start_xactor ();
 `ifdef XACT_2
 xact2_inst.start_xactor();
 `else
 xact1_inst.start_xactor();
 `endif
 ...
 endfunction
 ...
endclass

B-424

VMM User Guide

vmm_xactor::do_stop_xactor()

Overrides the shorthand stop_xactor() method.

SystemVerilog

protected virtual function void do_stop_xactor()

OpenVera

Not supported.

Description

This method overrides the default implementation of the
vmm_xactor::stop_xactor() method, created by the
vmm_xactor shorthand macros. If defined, it will be used instead of
the default implementation.

Example

Example B-139
class xact1 extends vmm_xactor;
 ...
endclass

class xact2 extends vmm_xactor;
 ...
endclass

class xact extends vmm_xactor;
 xact1 xact1_inst;
 xact2 xact2_inst;
 ...
`vmm_xactor_member_begin(xact)
 vmm_xactor_member_xactor(xact1_inst,DO_ALL)

 B- 425

VMM User Guide

 vmm_xactor_member_xactor(xact2_inst,DO_ALL)
`vmm_xactor_member_end(xact)
 protected virtual function void do_stop_xactor ();
 `ifdef XACT_2
 xact2_inst.stop_xactor();
 `else
 xact1_inst.stop_xactor();
 `endif
 ...
 endfunction
 ...
endclass

B-426

VMM User Guide

vmm_xactor::do_what_e

Specifies which methods are to be provided by a shorthand
implementation.

SystemVerilog

typedef enum {DO_PRINT ='h001,
 DO_START ='h002,
 DO_STOP ='h004,
 DO_RESET ='h010,
 DO_KILL ='h020,
 DO_ALL ='hFFF} do_what_e;

OpenVera

Not supported.

Description

Used to specify which methods are to include the specified data
members in their default implementation. The "DO_PRINT" includes
the member in the default implementation of the psdisplay()
method. The "DO_START" includes the member in the default
implementation of the start_xactor() method, if applicable. The
"DO_STOP" includes the member in the default implementation of
the stop_xactor() method, if applicable. The "DO_RESET"
includes the member in the default implementation of the
reset_xactor() method, if applicable.

Multiple methods can be specified by adding or using or in the
individual symbolic values. All methods are specified by providing
the "DO_ALL" symbol.

 B- 427

VMM User Guide

Example

Example B-140
‘vmm_xactor_member_xactor(idler, DO_ALL - DO_STOP);

B-428

VMM User Guide

vmm_xactor::exp_vmm_sb_ds()

For more information on this method, refer to the VMM Scoreboard
User Guide.

 B- 429

VMM User Guide

vmm_xactor::get_input_channels()

Returns the input channels of this transactor.

SystemVerilog

function void get_input_channels(ref vmm_channel chans[$]);

OpenVera

Not supported.

Description

Returns the channels where this transactor is identified as the
consumer using the vmm_channel::set_consumer() method.

Example

Example B-141
class xactor extends vmm_xactor;
 ...
endclass

program prog;
 xactor xact = new;
 vmm_channel in_chans[$];
 ...
 initial begin
 ...
 xact.get_input_channels(in_chans);
 ...
 end

endprogram

B-430

VMM User Guide

vmm_xactor::get_instance()

Returns the instance name of this transactor.

SystemVerilog

virtual function string get_instance();

OpenVera

Not supported.

 B- 431

VMM User Guide

vmm_xactor::get_name()

Returns the name of this transactor.

SystemVerilog

virtual function string get_name();

OpenVera

Not supported.

B-432

VMM User Guide

vmm_xactor::get_output_channels()

Returns the output channels of this transactor.

SystemVerilog

function void get_output_channels(
ref vmm_channel chans[$]);

OpenVera

Not supported.

Description

Returns the channels where this transactor is identified as the
producer, using the vmm_channel::set_producer() method.

Example

Example B-142
class xactor extends vmm_xactor;
 ...
endclass

program prog;
 xactor xact = new;
 vmm_channel out_chans[$];
 ...
 initial begin
 ...
 xact.get_output_channels (out_chans);
 ...
 end

endprogram

 B- 433

VMM User Guide

vmm_xactor::inp_vmm_sb_ds()

For more information on this method, refer to the VMM Scoreboard
User Guide.

B-434

VMM User Guide

vmm_xactor::kill()

Prepares a transactor for deletion.

SystemVerilog

function void kill();

OpenVera

Not supported.

Description

Prepares a transactor for deletion and reclamation by the garbage
collector.

Removes this transactor as the producer of its output channels, and
as the consumer of its input channels. De-registers all data stream
scoreboards and callback extensions.

Example

Example B-143
class xactor extends vmm_xactor;
 ...
endclass
program prog;
 xactor xact = new;
 ...
 initial begin
 xact.kill();
 ...
 end
endprogram

 B- 435

VMM User Guide

vmm_xactor::log

Message service interface for messages, which are generated from
within this transactor instance.

SystemVerilog

vmm_log log;

OpenVera

Not supported.

B-436

VMM User Guide

vmm_xactor::main()

Forks-off this task whenever the start_xactor() method is
called.

SystemVerilog

protected virtual task main();

OpenVera

Not supported.

Description

This task is forked off, whenever the start_xactor() method is
called. It is terminated, whenever the reset_xactor() method is
called. The functionality of a user-defined transactor must be
implemented in this method. Any additional subthreads must be
started within this method, not in the constructor. It can contain a
blocking or non-blocking implementation.

Any extension of this method must first fork a call to the
super.main() method.

Example

Example B-144
task mii_mac_layer::main();
 super.main();
 ...
endtask: main

 B- 437

VMM User Guide

vmm_xactor::new()

Creates an instance of the transactor base class.

SystemVerilog

function new(string name,string instance,int stream_id = -
1,vmm_object parent);

With +define NO_VMM12

function new(string name,string instance,int
stream_id = -1);

OpenVera

Not supported.

Description

Creates an instance of the transactor base class, with the specified
name, instance name, and optional stream identifier. The name and
instance name are used to create the message service interface in
the vmm_xactor::log property, and the specified stream identifier
is used to initialize the vmm_xactor::stream_id property.

B-438

VMM User Guide

vmm_xactor::notifications_e

Predefined notifications.

SystemVerilog

typedef enum int {XACTOR_IDLE = 999999,
 XACTOR_BUSY = 999998,
 XACTOR_STARTED = 999997,
 XACTOR_STOPPED = 999996,
 XACTOR_RESET = 999995,
 XACTOR_STOPPING = 999994,
 XACTOR_IS_STOPPED = 999993
 } notifications_e;

OpenVera

static int XACTOR_IDLE;
static int XACTOR_BUSY;
static int XACTOR_STARTED;
static int XACTOR_STOPPING;
static int XACTOR_STOPPED;
static int XACTOR_RESET;

Description

Predefined notifications that are indicated, whenever the transactor
changes state.

XACTOR_IDLE

ON or OFF notification that is indicated when the transactor is
idle. Must be the complement of XACTOR_BUSY.

XACTOR_BUSY

 B- 439

VMM User Guide

ON or OFF notification that is indicated when the transactor is
busy. Must be the complement of XACTOR_IDLE.

XACTOR_STARTED

ONE_SHOT notification indicating that the transactor is started.

XACTOR_STOPPING

ON or OFF notification indicating that a request is made for the
transactor to stop.

XACTOR_STOPPED

ONE_SHOT notification indicating that all threads in the transactor
are stopped.

XACTOR_RESET

ONE_SHOT notification indicating that the transactor is reset.

Example

Example B-145
xactor.notify.wait_for(vmm_xactor::XACTOR_STARTED);

B-440

VMM User Guide

vmm_xactor::notify

Notification service interface and pre-configure notifications.

SystemVerilog

vmm_notify notify;
enum {XACTOR_IDLE;

 XACTOR_BUSY;
 XACTOR_STARTED;
 XACTOR_STOPPED;
 XACTOR_RESET;

 XACTOR_STOPPING;
 XACTOR_IS_STOPPED
 };

OpenVera

Not supported.

Description

Notification service interface and pre-configures notifications to
indicate the state and state transitions of the transactor. The
vmm_xactor::XACTOR_IDLE and vmm_xactor::XACTOR_BUSY
notifications are vmm_notify::ON_OFF. All other events are
vmm_notify::ONE_SHOT.

Example

Example B-146
class consumer extends vmm_xactor;
 ...
 virtual task main();
 ...
 forever begin

 B- 441

VMM User Guide

 transaction tr;
 this.in_chan.peek(tr);
 tr.notify.indicate(vmm_data::STARTED);
 ...
 tr.notify.indicate(vmm_data::ENDED, ...);
 this.in_chan.get(tr);
 end
 endtask: main
endclass: consumer

B-442

VMM User Guide

vmm_xactor::prepend_callback()

Prepends the specified callback façade instance with this instance of
the transactor.

SystemVerilog

virtual function void
 prepend_callback(vmm_xactor_callbacks cb);

OpenVera

Not supported.

Description

Callback methods are invoked in the order in which they were
registered.

A warning is generated, if the same callback façade instance is
registered more than once with the same transactor. A façade
instance can be registered with more than one transactor. Callback
façade instances can be unregistered and re-registered dynamically.

Example

Example B-147
program test;
initial begin
 dut_env env = new;
 align_tx cb = new(...);
 env.build();
 foreach (env.mii[i]) begin
 env.mii[i].prepend_callback(cb);
 end

 B- 443

VMM User Guide

 env.run();
end
endprogram

B-444

VMM User Guide

vmm_xactor::psdisplay()

Returns a human-readable description of the transactor.

SystemVerilog

virtual function string psdisplay(string prefix = "")

OpenVera

Not supported.

Description

This method returns a human-readable description of the transactor.
Each line is prefixed with the specified prefix.

Example

Example B-148
class xactor extends vmm_xactor;
 ...
endclass

program prog;
 xactor xact = new;
 ...
 initial begin
 ...
 $display("Printing variables of Transactor\n %s \n",
 xact.psdisplay());
 ...
 end

endprogram

 B- 445

VMM User Guide

vmm_xactor::register_vmm_sb_ds()

For more information on this method, refer to the VMM Scoreboard
User Guide.

B-446

VMM User Guide

vmm_xactor::reset_xactor()

Resets the state, and terminates the execution threads in this
transactor instance.

SystemVerilog

virtual function void
 reset_xactor(reset_e rst_typ = SOFT_RST);

OpenVera

Not supported.

Description

Resets the state, and terminates the execution threads in this
transactor instance, according to the specified reset type (see
Table B-1). The base class indicates the
vmm_xactor::XACTOR_RESET and
vmm_xactor::XACTOR_IDLE notifications, and resets the
vmm_xactor::XACTOR_BUSY notification.

 B- 447

VMM User Guide

Table B-1 Reset Types
Table B-2

Enumerated Value Broadcasting Operation
vmm_xactor::SOFT_RST Clears the content of all channels, resets all ON_OFF

notifications, and terminates all execution threads.
However, maintains the current configuration, notification
service, and random number generation state information.
The transactor must be restarted. This reset type must be
implemented.

vmm_xactor::PROTOCOL_RST Equivalent to a reset signaled through the physical
interface. The information affected by this reset is user
defined.

vmm_xactor::FIRM_RST Like SOFT_RST, but resets all notification service interface
and random-number-generation state information. This
reset type must be implemented.

vmm_xactor::HARD_RST Resets the transactor to the same state, found after
construction. The registered callbacks are unregistered.

To facilitate the implementation of this method, the actual values
associated with these symbolic properties are of increasing
magnitude (for example, vmm_xactor::FIRM_RST is greater than
vmm_xactor::SOFT_RST). Not all reset types may be
implemented by all transactors. Any extension of this method must
call super.reset_xactor(rst_type) first to terminate the
vmm_xactor::main() method, reset the notifications, and reset
the main thread seed according to the specified reset type. Calling
the super.reset_xactor() method with a reset type of
vmm_xactor::PROTOCOL_RST is functionally equivalent to
vmm_xactor::SOFT_RST.

Example

Example B-149
function void
 mii_mac_layer::reset_xactor(reset_e typ = SOFT_RST);
 super.start_xactor(typ);

B-448

VMM User Guide

 ...
endfunction: reset_xactor

 B- 449

VMM User Guide

vmm_xactor::restore_rng_state()

Restores the state of all random generators.

SystemVerilog

virtual function void restore_rng_state();

OpenVera

Not supported.

Description

This method restores, from local properties, the state of all random
generators associated with this transactor instance.

B-450

VMM User Guide

vmm_xactor::stream_id

Identifier for the stream of transaction and data descriptors.

SystemVerilog

int stream_id;

OpenVera

Not supported.

Description

The stream_id is a unique identifier for the stream of transaction
and data descriptors, flowing through this transactor instance. It
should be used to set the vmm_data::stream_id property of the
descriptors, as they are received or randomized by this transactor.

Example

Example B-150
class responder extends vmm_xactor;
 ...
 virtual task main();
 ...
 forever begin
 this.req_chan.get(tr);
 tr.stream_id = this.stream_id;
 tr.data_id = response_id++;
 if (!tr.randomize()) ...
 ...
 this.resp_chan.sneak(tr);
 end
 endtask: main
endclass: responder

 B- 451

VMM User Guide

vmm_xactor::save_rng_state()

Saves the state of all random generators.

SystemVerilog

virtual function void save_rng_state();

OpenVera

Not supported.

Description

This method saves, in local properties, the state of all random
generators associated with this transactor instance.

B-452

VMM User Guide

vmm_xactor::start_xactor()

Starts the execution threads in this transactor instance.

SystemVerilog

virtual function void start_xactor();

OpenVera

Not supported.

Description

Starts the execution threads in this transactor instance. The
transactor can later be stopped. Any extension of this method must
call the super.start_xactor() method. The base class
indicates the vmm_xactor::XACTOR_STARTED and
vmm_xactor::XACTOR_BUSY notifications, and resets the
vmm_xactor::XACTOR_IDLE notification.

Example

Example B-151
class tb_env extends vmm_env;
 ...
 virtual task start();
 super.start();
 ...
 this.mac.start_xactor();
 ...
 endtask: start
 ...
endclass: tb_env

 B- 453

VMM User Guide

vmm_xactor::stop_xactor()

Stops the execution threads in this transactor instance.

SystemVerilog

virtual function void stop_xactor();

OpenVera

Not supported.

Description

Stops the execution threads in this transactor instance. The
transactor can later be restarted. Any extension of this method must
call the super.stop_xactor() method. The transactor stops,
when the vmm_xactor::wait_if_stopped() or
vmm_xactor::wait_if_stopped_or_empty() method is
called. It is a call to these methods to define the granularity of
stopping a transactor.

B-454

VMM User Guide

vmm_xactor::unregister_callback()

Unregisters the specified callback façade instance.

SystemVerilog

virtual function void
 unregister_callback(vmm_xactor_callbacks cb);

OpenVera

Not supported.

Description

Unregisters the specified callback façade instance, for this
transactor instance. A warning is generated, if the specified façade
instance is not currently registered with the transactor. Callback
façade instances can later be re-registered with the same or another
transactor.

 B- 455

VMM User Guide

vmm_xactor::unregister_vmm_sb_ds()

For more information on this method, refer to the VMM Scoreboard
User Guide.

B-456

VMM User Guide

vmm_xactor::‘vmm_callback()

Simplifies the syntax of invoking callback methods in a transactor.

SystemVerilog

‘vmm_callback(callback_class_name, method(args));

OpenVera

Not supported.

Example

Example B-152

Instead of:

foreach (this.callbacks[i]) begin
 ahb_master_callbacks cb;
 if ($cast(cb, this.callbacks[i])) continue;
 cb.ptr_tr(this, tr, drop);
end

Use:

‘vmm_callback(ahb_master_callbacks, \
 ptr_tr(this, tr, drop));

 B- 457

VMM User Guide

vmm_xactor::wait_if_stopped()

Suspends an execution thread.

SystemVerilog

protected task wait_if_stopped(int unsigned n_threads = 1);

OpenVera

protected task wait_if_stopped_t(integer n_threads = 1);

Description

Blocks the thread execution, if the transactor is stopped through the
stop_xactor() method. This method indicates the
vmm_xactor::XACTOR_STOPPED and
vmm_xactor::XACTOR_IDLE notifications, and resets the
vmm_xactor::XACTOR_BUSY notification. The tasks will return,
once the transactor is restarted using the start_xactor()
method, and the specified input channel is not empty. These
methods do not block, if the transactor is not stopped and the
specified input channel is not empty.

Calls to this method and the
“vmm_xactor::wait_if_stopped_or_empty()” methods
define the granularity, by which the transactor can be stopped
without violating the protocol. If a transaction can be suspended in
the middle of its execution, then the wait_if_stopped() method
should be called at every opportunity. If a transaction cannot be
suspended, then the wait_if_stopped_or_empty() method
should only be called after the current transaction is completed,
before fetching the next transaction descriptor for the input channel.

B-458

VMM User Guide

If a transactor is implemented using more than one concurrently
running thread that must be stopped, the total number of threads to
be stopped must be specified in all invocations of this and the
“vmm_xactor::wait_if_stopped_or_empty()” method.

Example

Example B-153
protected virtual task main();
 super.main();
 forever begin
 transaction tr;
 this.wait_if_stopped_or_empty(this.in_chan);
 this.in_chan.activate(tr);
 ...
 this.wait_if_stopped();
 ...
 end
endtask: main

 B- 459

VMM User Guide

vmm_xactor::wait_if_stopped_or_empty()

Suspends an execution thread or wait on a channel.

SystemVerilog

protected task wait_if_stopped_or_empty(vmm_channel chan,
int unsigned n_threads = 1);

OpenVera

protected task wait_if_stopped_or_empty_t(rvm_channel chan,
integer n_threads = 1);

Description

Blocks the thread execution, if the transactor is stopped through the
stop_xactor() method, or if the specified input channel is
currently empty. This method indicates the
vmm_xactor::XACTOR_STOPPED and
vmm_xactor::XACTOR_IDLE notifications, and resets the
vmm_xactor::XACTOR_BUSY notification. The tasks will return,
once the transactor is restarted using the start_xactor()
method, and the specified input channel is not empty. These
methods do not block, if the transactor is not stopped and the
specified input channel is not empty.

Calls to this method and the
“vmm_xactor::wait_if_stopped()” methods define the
granularity, by which the transactor can be stopped without violating
the protocol.

B-460

VMM User Guide

If a transactor is implemented using more than one concurrently
running thread that must be stopped, then the total number of
threads to be stopped must be specified in all invocations of this and
the “vmm_xactor::wait_if_stopped()” method.

Example

Example B-154
protected virtual task main();
 super.main();
 fork
 forever begin
 transaction tr;
 this.wait_if_stopped_or_empty(this.in_chan, 2);
 this.in_chan.activate(tr);
 ...
 this.wait_if_stopped(2);
 ...
 end

 forever begin
 ...
 this.wait_if_stopped(2);
 ...
 end
 join_none
endtask: main

 B- 461

VMM User Guide

vmm_xactor::xactor_status()

Displays the current status of the transactor instance.

SystemVerilog

virtual function void xactor_status(string prefix = "");

OpenVera

Not supported.

Description

Displays the current status of the transactor instance in a human-
readable format using the message service interface found in the
vmm_log::log property, using the vmm_log::NOTE_TYP
messages. Each line of the status information is prefixed with the
specified prefix.

B-462

VMM User Guide

‘vmm_xactor_member_begin()

Starts the shorthand section.

SystemVerilog

‘vmm_xactor_member_begin(class-name)

OpenVera

Not supported.

Description

Start the shorthand section, providing a default implementation for
the psdisplay(), start_xactor(), stop_xactor(), and
reset_xactor() methods.

The class-name specified must be the name of the vmm_xactor
extension class that is being implemented.

The shorthand section can only contain shorthand macros, and must
be terminated by the “‘vmm_xactor_member_end()” method.

Example

Example B-155
class eth_mac extends vmm_xactor;
 ...
 ‘vmm_xactor_member_begin(eth_mac)
 ...
 ‘vmm_xactor_member_end(eth_mac)
 ...
endclass

 B- 463

VMM User Guide

‘vmm_xactor_member_end()

Terminates the shorthand section.

SystemVerilog

‘vmm_xactor_member_end(class-name)

OpenVera

Not supported.

Description

Terminates the shorthand section, providing a default
implementation for the psdisplay(), start_xactor(),
stop_xactor(), and reset_xactor() methods.

The class-name specified must be the name of the vmm_xactor
extension class that is being implemented.

The shorthand section must be started by the
“‘vmm_xactor_member_begin()” method.

Example

Example B-156
class eth_mac extends vmm_xactor;
 ...
 ‘vmm_xactor_member_begin(eth_mac)
 ...
 ‘vmm_xactor_member_end(eth_mac)
 ...
endclass

B-464

VMM User Guide

‘vmm_xactor_member_scalar*()

Shorthand implementation for a scalar data member.

SystemVerilog

‘vmm_xactor_member_scalar(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_scalar_array(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_scalar_aa_scalar(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_scalar_aa_string(member-name,
 vmm_xactor::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified scalar-type, array of scalars, scalar-indexed
associative array of scalars, or string-indexed associative array of
scalars data member to the default implementation of the methods
specified by the ’do_what’ argument.

A scalar is an integral type, such as bit, bit vector, and packed
unions.

The shorthand implementation must be located in a section started
by the “‘vmm_xactor_member_begin()” method.

 B- 465

VMM User Guide

Example

Example B-157
class eth_frame_gen extends vmm_xactor;
 local integer fr_count;
 ...
 `vmm_xactor_member_begin(eth_frame_gen);
 `vmm_xactor_member_scalar (fr_count, DO_ALL)
 ...
 `vmm_xactor_member_end(eth_frame_gen)
 ...
endclass

B-466

VMM User Guide

‘vmm_xactor_member_string*()

Shorthand implementation for a string data member.

SystemVerilog

‘vmm_xactor_member_string(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_string_array(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_string_aa_scalar(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_string_aa_string(member-name,
 vmm_xactor::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified string-type, array of strings, scalar-indexed
associative array of strings, or string-indexed associative array of
strings data member to the default implementation of the methods
specified by the ’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_xactor_member_begin()” method.

Example

Example B-158
class eth_frame_gen extends vmm_xactor;

 B- 467

VMM User Guide

 local string fr_name;
 ...
 `vmm_xactor_member_begin(eth_frame_gen);
 `vmm_xactor_member_string (fr_name, DO_ALL)
 ...
 `vmm_xactor_member_end(eth_frame_gen)
 ...
endclass

B-468

VMM User Guide

‘vmm_xactor_member_enum*()

Shorthand implementation for an enumerated data member.

SystemVerilog

‘vmm_xactor_member_enum(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_enum_array(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_enum_aa_scalar(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_enum_aa_string(member-name,
 vmm_xactor::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified enum-type, array of enums, scalar-indexed
associative array of enums, or string-indexed associative array of
enums data member to the default implementation of the methods
specified by the ’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_xactor_member_begin()” method.

Example

Example B-159
class eth_frame_gen extends vmm_xactor;

 B- 469

VMM User Guide

 fr_type fr_type_var;
 ...
 `vmm_xactor_member_begin(eth_frame_gen);
 `vmm_xactor_member_enum (fr_type_var, DO_ALL)
 ...
 `vmm_xactor_member_end(eth_frame_gen)
 ...
endclass

B-470

VMM User Guide

‘vmm_xactor_member_vmm_data*()

Shorthand implementation for a vmm_data-based data member.

SystemVerilog

‘vmm_xactor_member_vmm_data(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_vmm_data_array(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_vmm_data_aa_scalar(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_vmm_data_aa_string(member-name,
 vmm_xactor::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified vmm_data-type, array of vmm_datas, scalar-
indexed associative array of vmm_datas, or string-indexed
associative array of vmm_datas data member to the default
implementation of the methods, specified by the ’do_what’
argument.

The shorthand implementation must be located in a section started
by the “‘vmm_xactor_member_begin()” method.

 B- 471

VMM User Guide

Example

Example B-160
class eth_frame extends vmm_data;
 ...
endclass

class eth_frame_gen extends vmm_xactor;
 eth_frame eth_frame_packet;
 ...
 `vmm_xactor_member_begin(eth_frame_gen);
 ̀ vmm_xactor_member_vmm_data (eth_frame_packet, DO_ALL)
 ...
 `vmm_xactor_member_end(eth_frame_gen)
 ...
endclass

B-472

VMM User Guide

‘‘vmm_xactor_member_channel*()

Shorthand implementation for a channel data member.

SystemVerilog

‘vmm_xactor_member_channel(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_channel_array(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_channel_aa_scalar(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_channel_aa_string(member-name,
 vmm_xactor::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified channel-type, array of channels, dynamic array of
channels, scalar-indexed associative array of channels, or string-
indexed associative array of channels data member to the default
implementation of the methods specified by the ’do_what’
argument.

The shorthand implementation must be located in a section started
by the “‘vmm_xactor_member_begin()” method.

 B- 473

VMM User Guide

Example

Example B-161
class eth_frame_gen extends vmm_xactor;
 eth_frame_channel in_chan
 ...
 `vmm_xactor_member_begin(eth_frame_gen);
 `vmm_xactor_member_channel (in_chan, DO_ALL)
 ...
 `vmm_xactor_member_end(eth_frame_gen)
 ...
endclass

B-474

VMM User Guide

‘vmm_xactor_member_xactor*()

Shorthand implementation for a transactor data member.

SystemVerilog

‘vmm_xactor_member_xactor(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_xactor_array(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_xactor_aa_scalar(member-name,
 vmm_xactor::do_what_e do_what)

‘vmm_xactor_member_xactor_aa_string(member-name,
 vmm_xactor::do_what_e do_what)

OpenVera

Not supported.

Description

Adds the specified transactor-type, array of transactors, dynamic
array of transactors, scalar-indexed associative array of transactors,
or string-indexed associative array of transactors data member to
the default implementation of the methods, specified by the
’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_xactor_member_begin()” method.

 B- 475

VMM User Guide

Example

Example B-162
class custom_gen extends vmm_xactor;
 ...
endclass

class eth_frame_gen extends vmm_xactor;
 custom_gen custom_gen_inst;
 ...
 `vmm_xactor_member_begin(eth_frame_gen);
 `vmm_xactor_member_xactor (custom_gen_inst, DO_ALL)
 ...
 `vmm_xactor_member_end(eth_frame_gen)
 ...
endclass

B-476

VMM User Guide

‘vmm_xactor_member_user_defined()

User-defined shorthand implementation data member.

SystemVerilog

‘vmm_xactor_member_user_defined(member-name)

OpenVera

Not supported.

Description

Adds the specified user-defined default implementation of the
methods specified by the ’do_what’ argument.

The shorthand implementation must be located in a section started
by the “‘vmm_xactor_member_begin()” method.

Example

Example B-163
class eth_frame_gen extends vmm_xactor;
 integer fr_no;
 ...
 `vmm_xactor_member_begin(eth_frame_gen);
 `vmm_xactor_member_user_defined (fr_no, DO_ALL)
 ...
 `vmm_xactor_member_end(eth_frame_gen)
 function bit do_fr_no(input vmm_data::do_what_e do_what)
 do_fr_no = 1; // Success, abort by returning 0
 case (do_what)
 endcase
 endfunction
endclass

 B- 477

VMM User Guide

vmm_xactor_callbacks

This class implements a virtual base class for callback containments.
For more information, see the documentation for the
“vmm_xactor::append_callback()” on page 418.

B-478

VMM User Guide

vmm_xactor_iter

This class can iterate over all known vmm_xactor instances, based
on the names and instance names, regardless of their location in the
class hierarchy.

VMM adds this class to traverse list a registered transactors that
match a regular expression. This feature is useful to register specific
transactor callbacks, connect specific transactors to a scoreboard
object, and re-allocate transactor, by killing its channels and
reassigning some new ones.

class driver_typed #(type T = vmm_data) extends vmm_xactor;
 function new(string instance);
 super.new("driver", instance);
 endfunction
 virtual protected task main();
 vmm_channel chans[$];
 super.main();
 get_input_channels(chans);
 foreach (chans[i]) begin
 vmm_channel_typed #(T) chan;
 $cast(chan, chans[i]);
 start_drive(chan, i);
 end
 endtask
 virtual task start_drive(vmm_channel_typed #(T) chan);
 T tr;
 fork
 forever begin
 chan.get(tr);
 `vmm_note(log, tr.psdisplay(“Executing.."));
 wait_if_stopped();
 end
 join_none
 endtask
endclass

xact.first()

vmm_xactor_iter=new(“/ahb/”, “/./”);

xact.next()

xact.xactor()

xact.next()

...

ahb1 ahb1 ahb1

 B- 479

VMM User Guide

VMM provides a method to access all transactors available in the
environment using the vmm_xactor_iter. The VMM transactor
iterator iterates over the transactors based on name or instances,
using regexp. There is no need to know the hierarchical references
to the vmm_xactor instance. The vmm_xactor_iter maintains a
single queue of all transactors matching the specified regular
expression.

The VMM transactor iterator can be used by either creating a new
iterator object using vmm_xactor_iter::new() or by using the
shorthand macro `foreach_vmm_xactor(). The two methods
are explained below.

Using the vmm_xactor_iter Class

vmm_xactor_iter iter = new("/./" , "/./");

Uses regexp style name and instance matching. "/./" returns all
the vmm_xactor objects present in the environment.

The methods available with vmm_xactor_iter are:

B-480

VMM User Guide

• vmm_xactor_iter::first()

Resets the iterator to the first transactor, that is to the start of the
queue.

• vmm_xactor_iter::xactor()

Returns a reference to the current transactor iterated on.

• vmm_xactor_iter::next()

Moves the iterator to the next transactor.

The following below shows how to start all transactors extended from
the ahb_transactor class. The ahb_transactor class is
extended from the vmm_xactor class.

vmm_xactor_iter iter = new("/./", "/./");
 // Returns a list of all vmm_xactor objects
while(iter.xactor() != null) begin
 ahb_transactor ahb;
 if($cast(ahb, iter.xactor()) begin
 //get abh_transactor extended objects
 ahb.start_xactor();
 end
 iter.next();
end

Using the Shorthand Macro `foreach_vmm_xactor()

The macro `foreach_vmm_xactor(ahb_transactor,"/./
","/./") requires three arguments. This call returns all objects of
the ahb_transactor and its derived classes. For returning all
vmm_xactor objects, use the vmm_xactor as the first argument.
The second and third arguments are string name and instance,
respectively.

 B- 481

VMM User Guide

The variable name, xact, of the type specified as the first argument
is implicitly declared.

The following example achieves the same functionality as above,
using the shorthand macro.

The macro must be used in the declarative portion of the code, or
immediately followed by the begin keyword.

begin
 `foreach_vmm_xactor(ahb_transactor, "/./" , "/./")
 begin
 xact.start_xactor();
 end
end

Summary

• vmm_xactor_iter::first() page B-482
• vmm_xactor_iter::new() page B-483
• vmm_xactor_iter::next() page B-485
• vmm_xactor_iter::xactor() page B-486
• ‘foreach_vmm_xactor() page B-487

B-482

VMM User Guide

vmm_xactor_iter::first()

Resets the iterator to the first transactor.

SystemVerilog

function vmm_xactor first();

OpenVera

Not supported.

Description

Resets the iterator to the first transactor matching the name and
instance name patterns specified, when the iterator was created
using the vmm_xactor_iter::new() method and return a
reference to it, if found.

Returns NULL, if no transactors match.

The order in which transactors are iterated on is unspecified.

Example

Example B-164
int i = 0;
vmm_xactor_iter iter = new("/AHB/", "");
vmm_xactor xa;
for (xa = iter.first(); xa != null; xa= iter.next())
 i++;
`vmm_note (log, $psprintf("No. of AHB transactors = %0d ",i))

 B- 483

VMM User Guide

vmm_xactor_iter::new()

Creates a new transactor iterator.

SystemVerilog

function void new(string name = "", string inst = "");

OpenVera

Not supported.

Description

Creates a new transactor iterato,r and initializes it using the specified
name and instance name. If the specified name or instance name is
enclosed between ’/’ characters, they are interpreted as regular
expressions. Otherwise, they are interpreted as the full name or
instance name to match.

The “vmm_xactor_iter::first()” is implicitly called. So,
once created, the first transactor matching the specified name and
instance name patterns is available, using the
“vmm_xactor_iter::xactor()” method. The subsequent
transactors can be iterated on, one at a time, using the
“vmm_xactor_iter::next()” method.

Example

Example B-165
vmm_xactor_iter iter = new("/AHB/");
while (iter.xactor() != null) begin
 ahb_master ahb;
 if ($cast(ahb, iter.xactor()) begin

B-484

VMM User Guide

 ...
 end
 iter.next();
end

 B- 485

VMM User Guide

vmm_xactor_iter::next()

Moved the iterator to the next transactor.

SystemVerilog

function vmm_xactor next();

OpenVera

Not supported.

Description

Moved the iterator to the next transactor, matching the name and
instance name patterns specified, when the iterator was created
using the vmm_xactor_iter::new() method and return a
reference to it, if found.

Returns NULL, if no transactors match.

The order in which transactors are iterated on is unspecified.

Example

Example B-166
int i = 0;
vmm_xactor_iter iter = new("/AHB/", "");
vmm_xactor xa;
for (xa = iter.first(); xa != null; xa= iter.next())
 i++;
`vmm_note (log, $psprintf("No. of AHB transactors = %0d ",i))

B-486

VMM User Guide

vmm_xactor_iter::xactor()

Returns the current transactor iterated on.

SystemVerilog

function vmm_xactor xactor();

OpenVera

Not supported.

Description

Returns a reference to a transactor, matching the name and instance
name patterns specified ,when the iterator was created using the
vmm_xactor_iter::new() method.

Returns NULL, if no transactors match.

Example

Example B-167
vmm_xactor_iter iter = new("/AHB/");
while (iter.xactor() != null) begin
 ahb_master ahb;
 if ($cast(ahb, iter.xactor()) begin
 ...
 end
 iter.next();
end

 B- 487

VMM User Guide

‘foreach_vmm_xactor()

Shorthand transactor iterator macro.

SystemVerilog

‘foreach_vmm_xactor(type, name, inst) begin
 xact...
end

OpenVera

Not supported.

Description

Shorthand macro to simplify the creation and operation of a
transactor iterator instance, looking for transactors of a specific type,
matching a specific name and instance name. The subsequent
statement is executed for each transactor iterated on.

A variable named "xact" of the type specified as the first argument
to the macro is implicitly declared, and iteratively set to each
transactor of the specified type that matches the specified name and
instance name.

The macro must be located immediately after a "begin" keyword.

Example

Example B-168 Iterating over all transactors of type "ahb_master"
begin
 ‘foreach_vmm_xactor(ahb_master, "/./", "/./")
 begin
 xact.register_callback(...);

B-488

VMM User Guide

 end
end

 B- 489

VMM User Guide

B-490

VMM User Guide

C-1

VMM User Guide

C
Command Line Reference A

This appendix provides detailed information about the command line
references that compose the VMM Standard Library.

Table C-1 Run-Time Switches

Option Description

+vmm_break_on_phase Specifies "+" separated list of phases on which to
break

+vmm_break_on_timeline Specifies "+" separated list of timelines on which to
break

+vmm_channel_fill_thresh=<int> GLOBAL option that sets the number of objects
threshold in a channel. The default value is 10

+vmm_channel_shared_log All vmm_channel instances share the same log

+vmm_force_verbosity=[ERROR,
WARNING, NORMAL, TRACE, DEBUG,
VERBOSE]

Overrides the message verbosity level with the
specified one

+vmm_ gen_rtl_config Specifies Generation of VMM RTL Configuration

C-2

VMM User Guide

+vmm_help Lists all the VMM options specified through runtime
command line and through the environment

+vmm_list_timeline Lists the available timelines in simulation at the end
of the pre-test timeline. This comes into effect when
vmm_simulation::run_tests() is used to run the
simulation

+vmm_list_phases Lists the available phases in simulation at the end
of the pre-test timeline. This comes into effect when
vmm_simulation::run_tests() is used to run the
simulation

+vmm_object_children_thresh=<int> GLOBAL option that sets the number of child
objects threshold. The default value is 100

+vmm_object_root_thresh=<int> GLOBAL option that sets the number of root objects
threshold. The default value is 1000

+vmm_ object_thresh_check Global setting for checking object threshold in
object hierarchy, channel, and scoreboard

+vmm_opts+enable_auto_start=0/
1@<pattern>

Enables auto start of transactor with implicit
phasing; Hierarchical control can be enabled
through match patterns (enabled by default, 1)

+vmm_opts+enable_auto_stop=0/
1@<pattern>

Enables auto stop of transactor with implicit
phasing; (disabled by default, 0)

+vmm_opts_file+filename Passes a file to specify VMM runtime options

+vmm_opts+<option1>+<option2>+.... Enables user to specify runtime options

+vmm_opts+pull_mode_on@<pattern> Enables pull_mode for channels. Hierarchical
control can be enabled through match patterns
(push_mode by default)

+vmm_opts+stop_after_n_insts=[int]@<
pattern>

Stops a specified atomic or scenario generator after
running for the instances specified

+vmm_opts+stop_after_n_scenarios=[in
t]@<pattern>

Stops a scenario generator after running for the
number of scenarios specified

Table C-1 Run-Time Switches

Option Description

C-3

VMM User Guide

Note:There should be only one +vmm_opts+ in the runtime
command line. You can provide any number of options with the
same vmm_opts.For example,

./simv+vmm_opts+enable_auto_start=0@env:drv0+stop_after_n_insts=5+..

.

+vmm_log_debug Enables debug of vmm_log

+vmm_log_default=[FATAL, ERROR,
WARNING, NORMAL, TRACE, DEBUG,
VERBOSE]

Sets the default message verbosity

+vmm_log_nowarn_at_200 Suppresses warning message for more than 200
vmm_log instances creation

+vmm_log_nofatal_at_1000 Suppresses fatal message for more than 1000
vmm_log instances creation

+vmm_rtl_config Specifies VMM RTL Configuration option

+vmm_tr_verbosity=[NORMAL, TRACE,
DEBUG, VERBOSE]

Enables the verbosity of transaction level debug

+vmm_test= <test> Name of testcase(s) to run

+vmm_test_file=filename Test cases specified in a file

+vmm_test_help Lists available testcases

Table C-2 Compile-Time Switches (+defines)

Option Description

+define+VMM_11 Enables support for only VMM 1.1 features

+define+VMM_IN_PACKAGE Option that needs to be passed when the VMM
Standard Library is to be embedded in a
package inside an sv package

+define+VMM_LOG_ANSI_COLOR Colorizes messages based on severity (see
vmm_log)

Table C-1 Run-Time Switches

Option Description

C-4

VMM User Guide

+define+VMM_LOG_FORMAT_FILE_LINE Adds file name and line number to information
provided by vmm_log

+define+VMM_NULL_LOG_MACROS Compiles-out debug messages to gain every
milligram of performance

+define+VMM_NO_NOTIFICATION Compiles-out the notifications from vmm_data
classes

+define+VMM_PARAM_CHANNEL Turns-on Parameterized channel when not
using VMM1.2

+define+ VMM_POST_INCLUDE=filename Includes a file, after vmm.sv is parsed to add
customization macros (see chapter on VMM
customization)

+define+VMM_PRE_INCLUDE=filename Includes a file, before vmm.sv is parsed to add
customization macros (see chapter on VMM
customization)

+define+VMM_RAL_DATA_WIDTH Defines the default RAL data width. The
default value is 64

+define+VMM_RW_ADDR_WIDTH Defines the default RAL address width

+define+ VMM_SB_DS_IN_STDLIB Enables the scoreboard integration methods
with various standard library components. For
example, channels, xactors, etc.

Table C-2 Compile-Time Switches (+defines)

Option Description

D-1

VMM User Guide

D
Release Notes A

New Features in VMM User Guide

VMM 1.2 is default. However, you can enable VMM 1.1 only by using
+define+VMM_11 switch.

New Base Classes

• Enhanced APIs in VMM Common Object

• Implicit phasing (vmm_group, vmm_timeline,
vmm_simulation, vmm_phase, vmm_phase_def, vmm_unit)

• Tests with implicit phasing [vmm_simulation::run_tests]

• Multi-test concatenation

D-2

VMM User Guide

• Hierarchical options

• RTL configuration (vmm_rtl_config)

• VMM TLM base classes (vmm_tlm*)

• Parameterized channels and generators

• Parameterized datastream scoreboard

• vmm_connect

• vmm_notify_observer

• vmm_group

• Class factory (`vmm_class_factory)

• Transaction and environment debugging

• Simple match patterns

	VCS Document Navigator
	Contents
	Introduction
	Overview
	VMM Benefits:
	Ease of Use
	Reuse
	Effectiveness

	How to Use This User Guide?
	Basic Concepts of VMM
	Building Blocks - Class Library
	vmm_object
	vmm_data [Transactions/Data model]
	vmm_xactor Transactors, such as Drivers, Monitors]
	`vmm_channel [Communication, Transaction Passing]
	vmm_tlm_* [Communication, Transport Interface Mechanisms]
	vmm_ms_scenario and vmm_ms_scenario_gen
	vmm_class_factory [VMM factory service]
	`vmm_callback

	Verification Environments and Execution Control Phases
	vmm_group
	vmm_consensus
	vmm_subenv
	vmm_env

	Enhanced Verification Performance and Flexibility
	vmm_test
	vmm_opts

	Debug and Analysis: Message Service Class and Transaction Debug
	vmm_log [message service class]
	Transaction and Environment Debug

	What's New in VMM?
	UML Diagram
	Resources

	Architecting Verification Environments
	Overview
	Testbench Architecture
	Signal Layer
	Command Layer
	Functional Layer
	Scenario Layer
	Test Layer
	Sub-environments
	A sub-environment might span multiple verification environment layers. VMM defines different abstraction layers in verification environments. These layers are more logical than structural. Though a transactor or basic verification component typically...
	A sub-environment might have transaction-level interfaces.

	Constructing and Controlling Environments
	Quick Transaction Modeling Style
	Understanding Implicit and Explicit Phasing
	Composing Explicitly Phased Environments
	Composing Explicitly Phased Sub-Environments
	Composing Implicitly Phased Environments/Sub- Environments
	Creating an Implicitly Phased Environment
	Completing the “run” Phase

	Reaching Consensus for Terminating Simulation

	Architecting Verification IP (VIP)
	VIP and Testbench Components
	Transactions
	Transactors
	Communication
	Environments and Sub-Environments
	Testing VIPs

	Advanced Usage
	Mixed Phasing
	Instantiating implicitly phased components in explicitly phased environment
	Instantiating explicitly phased components in implicitly phased environment

	Modeling Transactions
	Overview
	Class Properties/Data Members
	Quick Transaction Modeling Style
	Message Service in Transaction
	Randomizing Transaction Members
	Context References
	Inheritance and OOP
	Handling Transaction Payloads

	Methods
	Factory Service for Transactions
	Constraints
	Shorthand Macros
	User-Defined Implementations
	User-Defined Method Implementation
	User-Defined Member Default Implementation
	User-Defined vmm_data Member Default Implementation

	Unsupported Data Types
	rand_mode() copy in Shorthand Macros

	Modeling Transactors and Timelines
	Overview
	Transactor Phasing
	Explicit Transactor Phasing
	Implicit Phasing

	Threads and Processes Versus Phases
	Physical-Level Interfaces
	Transactor Callbacks
	Advanced Usage
	User-defined vmm_xactor Member Default Implementation
	User-Defined Implicit Phases
	Skipping an Implicit Phase
	Disabling an Implicit Component
	Synchronizing on Implicit Phase Execution
	Breakpoints on Implicit Phasing
	Concatenation of Tests
	Explicitly Phasing Timelines

	Communication
	Overview
	Channel
	Channel Declaration (vmm_channel_typed)
	Channel Declaration (vmm_channel)
	Connection of Channels Between Transactors
	Channel Completion and Response Models
	Typical Channel Execution Model
	Channel Record/Playback

	Completion Using Notification (vmm_notify)
	Notification Service Class
	Notify Observer

	Transport Interfaces in OSCI TLM2.0
	Blocking Transport
	Non-Blocking Transport
	Sockets
	Connecting Blocking Components to Non-blocking Components
	Generic Payload

	Broadcasting Using TLM2.0
	Analysis Port Usage with Many Observers
	Analysis Port Multiple Ports Per Observer
	Shorthand Macro IDs
	Peer IDs

	Interoperability Between vmm_channel and TLM2.0
	Connecting vmm_channel and TLM interface
	TLM2.0 Accessing Generators
	Forward Path Non-Blocking Connection
	Bidirectional Non-Blocking Connection

	Advanced Usage
	Updating Data in Analysis Ports From vmm_notify
	Connect Utility (vmm_connect)
	Channel Non-Atomic Transaction Execution
	Channel Out-of-Order Atomic Execution Model
	Channel Passive Response
	Channel Reactive Response
	vmm_tlm_reactive_if

	Implementing Tests & Scenarios
	Overview
	Generating Stimulus
	Random Stimulus
	Directed Stimulus
	Generating Exceptions
	Embedded Stimulus
	Controlling Random Generation

	Modeling Scenarios
	Architecture of the Generators
	Scenario Selection

	Modeling Generators
	Atomic Generation
	Multiple-Stream Scenarios
	Procedural Scenarios
	Hierarchical Scenarios
	Configuring Scenario Generators
	Stopping a Generator
	Available Scenarios
	Scenario Generation Order
	Constraining Transactions

	Single-Stream Scenarios
	Random Scenarios
	Procedural Scenarios
	Hierarchical Scenarios

	Parameterized Atomic and Scenario Generators

	Implementing Testcases
	Creating an Explicitly Phased Test
	Creating an Implicitly Phased Test
	Running Tests

	Common Infrastructure and Services
	Common Object
	Overview
	Setting Object Relationships
	Finding Objects
	Printing and Displaying Objects
	Object Traversing
	Namespaces

	Message Service
	Overview
	Message Source
	Message Type
	Message Severity
	Message Filters
	Simulation Handling
	Shorthand Macros
	Issuing Messages
	Filtering Messages
	Redirecting Message to File
	Promotion and Demotion
	Message Catcher
	Message Callbacks
	Stop Simulation Depending Upon Error Number

	Class Factory Service
	Overview
	Modeling a Transaction to be Factory Enabled
	Creating Factories
	Replacing Factories
	Factory for Parameterized Classes
	Factory for Atomic Generators
	Factory for Scenario Generators
	Modifying a Testbench Structure Using a Factory

	Options & Configurations Service
	Overview
	Hierarchical Options (vmm_opts)
	Specifying Placeholders for Hierarchical Options
	Setting Hierarchical Options
	Setting Hierarchical Options on Command Line
	Structural Configurations
	Specifying Structural Configuration Parameters in Transactors
	Setting Structural Configuration Parameters
	Setting Options on Command Line
	RTL Configuration
	Defining RTL Configuration Parameters
	Using RTL Configuration in vmm_unit Extension
	First Pass: Generation of RTL Configuration Files
	Second Pass: Simulation Using RTL Configuration File

	Simple Match Patterns
	Overview
	Pattern Matching Rules

	Methodology Guide
	Recommendations
	Transactions
	Message Service
	Transactors
	Callbacks
	Channels
	Environments
	Tests and Generators
	Channels and TLM Ports
	Configuration

	Rules
	Transactions
	Message Service
	Transactors
	Callbacks
	Channels
	Environments
	Notifications
	Tests and Generators

	Optimizing, Debugging and Customizing VMM
	Optimizing VMM Components
	Garbage-Collecting vmm_object Instances
	Optimizing vmm_log Usage
	Static vmm_log Instances
	vmm_log Instances in vmm_channel

	Transaction and Environment Debugging
	Usage
	Built-in Transaction Recording
	Debugging vmm_channel
	Debugging vmm_simulation
	Debugging vmm_env
	Debugging vmm_consensus

	Custom Transaction Recording

	Customizing VMM
	Adding to the Standard Library
	Customizing Base Classes
	Symbolic Base Class
	Customizing Utility Classes
	Symbolic Utility Class
	Underpinning Classes
	Base Classes as IP

	Primers
	Multi-Stream Scenario Generator Primer
	Introduction
	Step1: Creation of Scenario Class
	Step 2: Usage of Logical Channels in MSS
	Step 3: Registration of MSS in MSSG
	Complete Example of a Simple MSSG

	Class Factory Service Primer
	Introduction
	Step 1: Modeling Classes to be Factory Ready
	Step 2: Instantiating a Factory in Transactor
	Step 3: Instantiating a MSS Factory in MSSG
	Step 4: Replacing a Factory
	Step 4a: Replacing a Factory by a New One
	Step 4b: Replacing a Factory by a Copy
	Summary

	Hierarchical Configuration Primer
	Introduction
	Step 1: Setting/Getting Global Options
	Step 2: Setting/Getting Hierarchical Options
	Step 3: Getting Structural Options
	Step 4: Setting Options
	Step 4a: Setting Options with set_*
	Step 4b: Setting Options in Command Line
	Step 4c: Setting Options With Command File
	Conclusion

	RTL Configuration Primer
	Introduction
	Step 1: Defining RTL Configurations
	Step 2: Nested RTL Configurations
	Step 3: Instantiating RTL Configurations
	Step 4: Generating RTL Configuration File
	Step 5: Simulation Using RTL Configuration File
	Conclusion

	Implicitly Phased Master Transactor Primer
	Introduction
	The Protocol
	The Verification Components
	Step 1: Implementing the APB Interface
	Step 2: Instantiating and Connecting the DUT
	Step 3: Modeling the APB Transaction
	Step 4: Modeling the Master Transactor
	Step 5: Implementing an Observer
	Step 6: Instantiating the Components in the Environment
	Step 7: Implementing Sanity Test
	Step 8: Adding Debug Messages
	Step 9: Implementing Transaction Generator
	Step 10: Implementing the Top-Level File
	Step 11: Congratulations!
	Appendix A

	Standard Library Classes (Part 1)
	VMM Standard Library Class List
	factory
	Summary
	factory::create_instance()
	SystemVerilog
	Description
	Example

	factory::override_with_new()
	SystemVerilog
	Description
	Example

	factory::override_with_copy()
	SystemVerilog
	Description
	Example

	factory::this_type()
	SystemVerilog
	Description
	Example

	`vmm_class_factory(classname)
	Description
	Example

	vmm_atomic_gen#(T)
	SystemVerilog
	Description
	Example
	Summary
	vmm_atomic_gen::<class-name>_channel out_chan
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_atomic_gen::enum {DONE}
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_atomic_gen::enum {GENERATED}
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_atomic_gen::inject()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_atomic_gen::new()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_atomic_gen::post_inst_gen()
	SystemVerilog
	OpenVera
	Description

	vmm_atomic_gen::randomized_obj
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_atomic_gen::stop_after_n_insts
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_atomic_gen_callbacks
	Summary
	‘vmm_atomic_gen()
	SystemVerilog
	OpenVera
	Description

	‘vmm_atomic_gen_using()
	SystemVerilog
	OpenVera
	Description

	vmm_atomic_scenario#(T)
	SystemVerilog
	Description
	Example

	vmm_broadcast
	Summary
	vmm_broadcast::add_to_output()
	SystemVerilog
	OpenVera
	Description

	vmm_broadcast::bcast_off()
	SystemVerilog
	OpenVera
	Description

	vmm_broadcast::bcast_on()
	SystemVerilog
	OpenVera
	Description

	vmm_broadcast::broadcast_mode()
	SystemVerilog
	OpenVera
	Description

	vmm_broadcast::log
	SystemVerilog
	OpenVera
	Description

	vmm_broadcast::new()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_broadcast::new_output()
	SystemVerilog
	OpenVera
	Description

	vmm_broadcast::reset_xactor()
	SystemVerilog
	OpenVera
	Description

	vmm_broadcast::set_input()
	System Verilog
	Open Vera
	Description
	Example

	vmm_broadcast::start_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_broadcast::stop_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel
	Summary
	VMM Channel Relationships
	VMM Channel Record or Replay
	vmm_channel::activate()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::active_slot()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::connect()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::complete()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::empty_level()
	SystemVerilog
	OpenVera

	vmm_channel::flow()
	SystemVerilog
	OpenVera

	vmm_channel::flush()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::for_each()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::for_each_offset()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::full_level()
	SystemVerilog
	OpenVera

	vmm_channel::get()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::get_consumer()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::get_producer()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::grab()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::level()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::is_full()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::is_grabbed()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::is_locked()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::kill()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::lock()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::log
	SystemVerilog
	OpenVera

	vmm_channel::new()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::notify
	SystemVerilog
	OpenVera
	Description

	vmm_channel::peek()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::playback()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::put()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::reconfigure()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::record()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::register_vmm_sb_ds()
	vmm_channel::remove()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::set_consumer()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::set_producer()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::sink()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::size()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::sneak()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::start()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::status()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::tee()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::tee_mode()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::try_grab()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel_typed#(type)
	SystemVerilog
	OpenVera
	Description
	Example
	vmm_channel::ungrab()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_channel::unlock()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::unput()
	SystemVerilog
	OpenVera
	Description

	vmm_channel::unregister_vmm_sb_ds()
	‘vmm_channel()
	SystemVerilog
	OpenVera
	Description

	vmm_connect#(T,N,D)
	SystemVerilog
	Description
	Summary
	vmm_connect::channel()
	SystemVerilog
	Description
	Example

	vmm_connect::notify()
	SystemVerilog
	Description
	Example

	vmm_connect::tlm_bind()
	SystemVerilog
	Description
	Example

	vmm_connect::tlm_transport_interconnect()
	SystemVerilog
	Description
	Example

	vmm_consensus
	Summary
	vmm_consensus::consensus_force_thru()
	SystemVerilog
	OpenVera
	Description

	vmm_consensus::forcing()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::is_forced()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::is_reached()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::log
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::nays()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::new()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::notifications_e
	SystemVerilog
	OpenVera
	Description

	vmm_consensus::psdisplay()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::register_channel()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::register_consensus()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::register_no_notification()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::register_notification()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::register_voter()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::register_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::request()
	SystemVerilog
	OpenVera
	Description

	vmm_consensus::unregister_channel()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::unregister_consensus()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::unregister_notification()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::unregister_voter()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::unregister_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::wait_for_consensus()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::wait_for_no_consensus()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_consensus::yeas()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data
	SystemVerilog
	Description
	Summary
	‘vmm_data_byte_size()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_data_member_begin()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_data_member_end()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_data_member_enum*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_data_member_handle*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_data_new()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_data_member_scalar*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_data_member_string*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_data_member_user_defined()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_data_member_vmm_data*()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::allocate()
	SystemVerilog
	OpenVera
	Description

	vmm_data::compare()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::copy()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::copy_data()
	SystemVerilog
	OpenVera
	Description

	vmm_data::data_id
	SystemVerilog
	OpenVera
	Description

	vmm_data::display()
	SystemVerilog
	OpenVera
	Description

	vmm_data::byte_pack()
	SystemVerilog
	OpenVera
	Description

	vmm_data::byte_size()
	SystemVerilog
	OpenVera
	Description

	vmm_data::byte_unpack()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::do_byte_pack()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::do_byte_size()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::do_byte_unpack()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::do_compare()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::do_copy()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::do_how_e
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::do_is_valid()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::do_max_byte_size()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::do_psdisplay()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::do_what_e
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::is_valid()
	SystemVerilog
	OpenVera
	Description

	vmm_data::load()
	SystemVerilog
	OpenVera
	Description

	vmm_data::set_log()
	SystemVerilog
	OpenVera
	Description

	vmm_data::max_byte_size()
	SystemVerilog
	OpenVera
	Description

	vmm_data::new()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_data::notify
	SystemVerilog
	OpenVera
	Description

	vmm_data::psdisplay()
	SystemVerilog
	OpenVera
	Description

	vmm_data::save()
	SystemVerilog
	OpenVera
	Description

	vmm_data::scenario_id
	SystemVerilog
	OpenVera
	Description

	vmm_data::stream_id
	SystemVerilog
	OpenVera
	Description

	vmm_env
	Summary
	vmm_env::build()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_env::cfg_dut()
	SystemVerilog
	OpenVera
	Description

	vmm_env::cleanup()
	SystemVerilog
	OpenVera
	Description

	vmm_env::do_psdisplay()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_env::do_start()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_env::do_stop()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_env::do_vote()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_env::do_what_e
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_env::end_test
	SystemVerilog
	OpenVera
	Description

	vmm_env::end_vote
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_env::gen_cfg()
	SystemVerilog
	OpenVera
	Description

	vmm_env::log
	SystemVerilog
	OpenVera
	Description

	vmm_env::new()
	SystemVerilog
	OpenVera
	Description

	vmm_env::notify
	SystemVerilog
	OpenVera
	Description

	vmm_env::report()
	SystemVerilog
	OpenVera
	Description

	vmm_env::reset_dut()
	SystemVerilog
	OpenVera
	Description

	vmm_env::run()
	SystemVerilog
	OpenVera
	Description

	vmm_env::start()
	SystemVerilog
	OpenVera
	Description

	vmm_env::stop()
	SystemVerilog
	OpenVera
	Description

	vmm_env::wait_for_end()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_env_member_begin()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_env_member_channel*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_env_member_end()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_env_member_enum*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_env_member_scalar*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_env_member_string*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_env_member_subenv*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_env_member_user_defined()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_env_member_vmm_data*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_env_member_xactor*()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_group
	SystemVerilog
	Description
	Example
	Summary
	vmm_group::new()
	SystemVerilog
	Description
	Example

	vmm_group_callbacks
	Example
	Summary
	vmm_group::append_callback()
	SystemVerilog
	Description
	Example

	vmm_group::prepend_callback()
	SystemVerilog
	Description
	Example

	vmm_group::unregister_callback()
	SystemVerilog
	Description
	Example

	vmm_log
	Summary
	vmm_log::add_watchpoint()
	SystemVerilog
	OpenVera
	Description

	vmm_log::append_callback()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::catch()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::copy()
	SystemVerilog
	OpenVera
	Description

	vmm_log::create_watchpoint()
	SystemVerilog
	OpenVera
	Description

	vmm_log::disable_types()
	SystemVerilog
	OpenVera
	Description

	vmm_log::enable_types()
	SystemVerilog
	OpenVera
	Description

	vmm_log::end_msg()
	SystemVerilog
	OpenVera
	Description

	vmm_log::enum(message-severity)
	SystemVerilog
	OpenVera
	Description

	vmm_log::enum(message-type)
	SystemVerilog
	OpenVera
	Description

	vmm_log::enum(simulation-handling-value)
	SystemVerilog
	OpenVera
	Description

	vmm_log::for_each()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::get_instance()
	SystemVerilog
	OpenVera
	Description

	vmm_log::get_message_count()
	SystemVerilog
	OpenVera
	Description

	vmm_log::get_name()
	SystemVerilog
	OpenVera
	Description

	vmm_log::get_verbosity()
	SystemVerilog
	OpenVera
	Description

	vmm_log::is_above
	SystemVerilog
	OpenVera
	Description

	vmm_log::kill()
	SystemVerilog
	OpenVera
	Description

	vmm_log::list()
	SystemVerilog
	OpenVera
	Description

	vmm_log::log_start()
	SystemVerilog
	OpenVera
	Description

	vmm_log::log_stop()
	SystemVerilog
	OpenVera
	Description

	vmm_log::modify()
	SystemVerilog
	OpenVera
	Description

	vmm_log::new()
	SystemVerilog
	OpenVera
	Description

	vmm_log::prepend_callback()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::remove_watchpoint()
	SystemVerilog
	OpenVera
	Description

	vmm_log::report()
	SystemVerilog
	OpenVera
	Description

	vmm_log::reset()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::set_instance()
	SystemVerilog
	OpenVera
	Description

	vmm_log::set_name()
	SystemVerilog
	OpenVera
	Description

	vmm_log::set_typ_image()
	SystemVerilog
	OpenVera
	Description

	vmm_log::set_sev_image()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::set_verbosity()
	SystemVerilog
	OpenVera
	Description

	vmm_log::start_msg()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::stop_after_n_errors()
	SystemVerilog
	OpenVera
	Description

	vmm_log::text()
	SystemVerilog
	OpenVera
	Description

	vmm_log::uncatch()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::uncatch_all()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::unmodify()
	SystemVerilog
	OpenVera
	Description

	vmm_log::unregister_callback()
	SystemVerilog
	OpenVera
	Description

	vmm_log::use_hier_inst_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::use_orig_inst_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::uses_hier_inst_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log::set_format()
	SystemVerilog
	OpenVera
	Description

	vmm_log::wait_for_msg()
	SystemVerilog
	OpenVera
	Description

	vmm_log::wait_for_watchpoint()
	SystemVerilog
	OpenVera
	Description

	vmm_log_msg
	Summary
	vmm_log_msg::effective_severity
	SystemVerilog
	OpenVera

	vmm_log_msg::effective_typ
	SystemVerilog
	OpenVera

	vmm_log_msg::handling
	SystemVerilog
	OpenVera

	vmm_log_msg::issued
	SystemVerilog
	OpenVera
	Description

	vmm_log_msg::log
	SystemVerilog
	OpenVera

	vmm_log_msg::original_severity
	SystemVerilog
	OpenVera

	vmm_log_msg::original_typ
	SystemVerilog
	OpenVera

	vmm_log_msg::text[]
	SystemVerilog
	OpenVera
	Description

	vmm_log_msg::timestamp
	SystemVerilog
	OpenVera

	vmm_log_callback
	Summary
	vmm_log_callback::pre_abort()
	SystemVerilog
	OpenVera
	Description

	vmm_log_callback::pre_debug()
	SystemVerilog
	OpenVera
	Description

	vmm_log_callback::pre_finish()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log_callback::pre_stop()
	SystemVerilog
	OpenVera
	Description

	vmm_log_catcher
	Summary
	vmm_log_catcher::caught()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log_catcher::issue()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log_catcher::throw()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log_format
	Summary
	vmm_log_format::abort_on_error()
	SystemVerilog
	OpenVera
	Description

	vmm_log_format::continue_msg()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log_format::format_msg()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_log_format::pass_or_fail()
	SystemVerilog
	OpenVera
	Description

	vmm_ms_scenario
	Summary
	vmm_ms_scenario::execute()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario::get_channel()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario::get_context_gen()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario::get_ms_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario::new()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen
	Summary
	vmm_ms_scenario_gen::channel_exists()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::DONE
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::GENERATED
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_all_channel_names()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_all_ms_scenario_names()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_all_ms_scenario_gen_names()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_channel()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_channel_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_ms_scenario_index()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_ms_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_ms_scenario_gen()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_ms_scenario_gen_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_ms_scenario_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_n_insts()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_n_scenarios()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_names_by_channel()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_names_by_ms_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::get_names_by_ms_scenario_gen()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::inst_count
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::ms_scenario_exists()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::ms_scenario_gen_exists()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::register_channel()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::register_ms_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::register_ms_scenario_gen()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::replace_channel()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::replace_ms_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::replace_ms_scenario_gen()
	SystemVerilog
	OpenVera
	Description

	vmm_ms_scenario_gen::scenario_count
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::scenario_set[$]
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::select_scenario
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::stop_after_n_insts
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::stop_after_n_scenarios
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::unregister_channel()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::unregister_channel_by_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::unregister_ms_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::unregister_ms_scenario_by_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::unregister_ms_scenario_gen()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_ms_scenario_gen::unregister_ms_scenario_gen_by_n ame()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_notification
	Summary
	vmm_notification::indicate()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_notification::reset()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_notify
	Summary
	vmm_notify::append_callback()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_notify::configure()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::copy()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::get_notification()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::indicate()
	SystemVerilog
	OpenVera
	Example

	vmm_notify::is_configured()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::is_on()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::is_waited_for()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::new()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::register_vmm_sb_ds()
	vmm_notify::reset()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_notify::set_notification()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::status()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::terminated()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::timestamp()
	SystemVerilog
	OpenVera
	Description

	vmm_notify::unregister_callback()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_notify::unregister_vmm_sb_ds()
	vmm_notify::wait_for()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_notify::wait_for_off()
	SystemVerilog
	OpenVera
	Description

	vmm_notify_callbacks
	Summary
	vmm_notify_callbacks::indicated()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_notify_observer#(T,D)
	SystemVerilog
	Description
	Example
	Summary
	`vmm_notify_observer
	SystemVerilog
	Description
	Example

	vmm_notify_observer::new()
	SystemVerilog
	Description
	Example

	vmm_object
	Summary
	vmm_object::create_namespace()
	SystemVerilog
	Description
	Example

	vmm_object::display()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_object::find_child_by_name()
	SystemVerilog
	Description
	Example

	vmm_object::find_object_by_name()
	SystemVerilog
	Description
	Example

	vmm_object::get_hier_inst_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_object::get_log()
	SystemVerilog
	Description
	Example

	vmm_object::get_namespaces()
	SystemVerilog
	Description
	Example

	vmm_object::get_num_children()
	SystemVerilog
	Description
	Example

	vmm_object::get_num_roots()
	SystemVerilog
	Description
	Example

	vmm_object::get_nth_child()
	SystemVerilog
	Description
	Example

	vmm_object::get_nth_root()
	SystemVerilog
	Description
	Example

	vmm_object::get_object_hiername()
	SystemVerilog
	Description
	Example

	vmm_object::get_object_name()
	SystemVerilog
	Description
	Example

	vmm_object::get_parent()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_object::get_parent_object()
	SystemVerilog
	Description
	Example

	vmm_object::get_root_object()
	SystemVerilog
	Description
	Example

	vmm_object::get_type()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_object::get_typename()
	SystemVerilog
	Description
	Example

	vmm_object::implicit_phasing()
	SystemVerilog
	Description
	Example

	vmm_object::is_implicitly_phased()
	SystemVerilog
	Description
	Example

	vmm_object::is_parent_of()
	SystemVerilog
	Description
	Example

	vmm_object::kill_object()
	SystemVerilog
	Description
	Example

	vmm_object::new()
	SystemVerilog
	Description
	Example

	vmm_object::print_hierarchy()
	SystemVerilog
	Description
	Example

	vmm_object::psdisplay()
	SystemVerilog
	Description
	Example

	vmm_object::set_object_name()
	SystemVerilog
	Description
	Example

	vmm_object::set_parent()
	SystemVerilog
	OpenVera
	Description
	Examples

	vmm_object::set_parent_object()
	SystemVerilog
	Description
	Example

	vmm_object::type_e
	SystemVerilog
	OpenVera
	Description
	Example

	`foreach_vmm_object()
	SystemVerilog
	Description
	Example

	`foreach_vmm_object_in_namespace()
	SystemVerilog
	Description
	Example

	vmm_object_iter
	Example
	Summary
	vmm_object_iter::first()
	SystemVerilog
	Description
	Example

	vmm_object_iter::new()
	SystemVerilog
	Description
	Example

	vmm_object_iter::next()
	SystemVerilog
	Description
	Example

	vmm_opts
	Summary
	vmm_opts::get_bit()
	SystemVerilog
	Description
	Example

	vmm_opts::get_help()
	SystemVerilog
	Description
	Example

	vmm_opts::get_int()
	SystemVerilog
	Description
	Example

	vmm_opts::get_obj()
	SystemVerilog
	Description
	Example

	vmm_opts::get_object_bit()
	SystemVerilog
	Description
	Example

	vmm_opts::get_object_int()
	SystemVerilog
	Description
	Example

	vmm_opts::get_object_obj()
	SystemVerilog
	Description
	Example

	vmm_opts::get_object_range()
	SystemVerilog
	Description
	Example

	vmm_opts::get_object_string()
	SystemVerilog
	Description
	Example

	vmm_opts::get_range()
	SystemVerilog
	Description
	Example

	vmm_opts::get_string()
	SystemVerilog
	Description
	Example

	vmm_opts::set_bit()
	SystemVerilog
	Description
	Example

	vmm_opts::set_int()
	SystemVerilog
	Description
	Example

	vmm_opts::set_object()
	SystemVerilog
	Description
	Example

	vmm_opts::set_range()
	SystemVerilog
	Description
	Example

	vmm_opts::set_string()
	SystemVerilog
	Description
	Example

	‘vmm_unit_config*
	`vmm_unit_config_begin(<classname>)
	`vmm_unit_config_boolean(name, descr, verbosity, attribute)
	`vmm_unit_config_end(<classname>)
	`vmm_unit_config_int(name, dflt, descr, verbosity, attribute)
	`vmm_unit_config_obj(name, dflt, descr, verbosity, attribute)
	`vmm_unit_config_rand_boolean(name, descr, verbosity, attribute)
	`vmm_unit_config_rand_int(name, dflt, descr, verbosity, attribute)
	`vmm_unit_config_rand_obj(name, dflt, descr, verbosity, attribute)
	`vmm_unit_config_string(name, dflt, descr, verbosity, attribute)

	Standard Library Classes (Part 2)
	VMM Standard Library Class List
	vmm_phase
	Summary
	vmm_phase::completed
	Description
	Example

	vmm_phase::started
	Description
	Example

	vmm_phase::get_name()
	SystemVerilog
	Description
	Example

	vmm_phase::get_timeline()
	SystemVerilog
	Description
	Example

	vmm_phase::is_aborted()
	SystemVerilog
	Description
	Example

	vmm_phase::is_done()
	SystemVerilog
	Description

	vmm_phase::is_running()
	SystemVerilog
	Description
	Example

	vmm_phase::is_skipped()
	SystemVerilog
	Description
	Example

	vmm_phase::next_phase()
	SystemVerilog
	Description
	Example

	vmm_phase::previous_phase()
	SystemVerilog
	Description
	Example

	vmm_phase_def
	Summary
	vmm_bottomup_function_phase_def
	SystemVerilog
	Description

	vmm_bottomup_function_phase_def::do_function_phase()
	SystemVerilog
	Description
	Example

	vmm_fork_task_phase_def#(T)
	SystemVerilog
	Description

	vmm_fork_task_phase_def::do_task_phase()
	SystemVerilog
	Description
	Example

	vmm_null_phase_def
	SystemVerilog
	Description
	Example

	vmm_phase_def::is_function_phase()
	SystemVerilog
	Description
	Example

	vmm_phase_def::is_task_phase()
	SystemVerilog
	Description
	Example

	vmm_phase_def::run_function_phase()
	SystemVerilog
	Description
	Example

	vmm_phase_def::run_task_phase()
	SystemVerilog
	Description
	Example

	vmm_reset_xactor_phase_def
	SystemVerilog
	Description
	Example

	vmm_start_xactor_phase_def
	SystemVerilog
	Description
	Example

	vmm_stop_xactor_phase_def
	SystemVerilog
	Description
	Example

	vmm_topdown_function_phase_def
	SystemVerilog
	Description

	vmm_topdown_function_phase_def::do_function_phase()
	SystemVerilog
	Description
	Example

	vmm_xactor_phase_def
	SystemVerilog
	Description

	vmm_rtl_config_DW_format
	SystemVerilog

	vmm_rtl_config
	Example
	Summary
	vmm_rtl_config::build_config_ph()
	SystemVerilog
	Description
	Example

	vmm_rtl_config::default_file_fmt
	SystemVerilog
	Description
	Example

	vmm_rtl_config::file_fmt
	SystemVerilog
	Description
	Example

	vmm_rtl_config::get_config()
	SystemVerilog
	Description

	vmm_rtl_config::get_config_ph()
	SystemVerilog
	Description

	‘vmm_rtl_config_*
	`vmm_rtl_config_begin(classname) `vmm_rtl_config_boolean(name, fname) `vmm_rtl_config_int(name, fname) `vmm_rtl_config_string(name, fname) `vmm_rtl_config_obj(name) `vmm_rtl_config_end(classname)
	Description
	Example

	vmm_rtl_config::map_to_name()
	SystemVerilog
	Description
	Example

	vmm_rtl_config::save_config_ph()
	SystemVerilog
	Description

	vmm_rtl_config_file_format
	SystemVerilog
	Description
	Example
	Summary
	vmm_rtl_config_file_format ::fclose()
	SystemVerilog
	Description
	Example

	vmm_rtl_config_file_format::fname()
	SystemVerilog
	Description

	vmm_rtl_config_file_format::fopen()
	SystemVerilog
	Description
	Example

	vmm_rtl_config_file_format::get_fname()
	SystemVerilog
	Description

	vmm_rtl_config_file_format::read_bit()
	SystemVerilog
	Description
	Example

	vmm_rtl_config_file_format::read_int()
	SystemVerilog
	Description
	Example

	vmm_rtl_config_file_format::read_string()
	SystemVerilog
	Description
	Example

	vmm_rtl_config_file_format::write_bit()
	SystemVerilog
	Description
	Example

	vmm_rtl_config_file_format::write_int()
	SystemVerilog
	Description
	Example

	vmm_rtl_config_file_format::write_string()
	SystemVerilog
	Description
	Example

	vmm_scenario
	Summary
	vmm_scenario::get_parent_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::define_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::length
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::psdisplay()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::redefine_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::repeat_thresh
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::repeated
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::repetition
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::scenario_id
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::scenario_kind
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::scenario_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::set_parent_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario::stream_id
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_new()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_member_begin()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_member_end()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_member_enum*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_member_handle*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_member_scalar*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_member_string*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_member_vmm_data*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_member_user_defined()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_member_vmm_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen#(T, text)
	SystemVerilog
	Description
	Example
	Summary
	vmm_scenario_gen::define_scenario()
	SystemVerilog
	OpenVera
	Description

	vmm_scenario_gen::enum {DONE}
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::enum {GENERATED}
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::get_all_scenario_names()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::get_n_insts()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::get_n_scenarios()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::get_names_by_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::get_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::get_scenario_index()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::get_scenario_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::inject()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::inject_obj()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::inst_count
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::new()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::out_chan
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::replace_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::register_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::scenario_count
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::scenario_exists()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::scenario_set[$]
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::select_scenario
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::stop_after_n_insts
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::stop_after_n_scenarios
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::unregister_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scenario_gen::unregister_scenario_by_name()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_gen
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_scenario_gen_using()
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario
	Summary
	<class-name>_scenario::allocate_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::apply()
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::define_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::fill_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::items[]
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::length
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::log
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::redefine_scenario()
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::repeat_thresh
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::repeated
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::scenario_id
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::scenario-kind
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::scenario_name()
	SystemVerilog
	OpenVera
	Example

	<class-name>_scenario::stream_id
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario::using
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_atomic_scenario
	Summary
	<class-name>_atomic_scenario::ATOMIC
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_atomic_scenario::atomic-scenario
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario_election
	Summary
	<class-name>_scenario_election::last_selected[$]
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario_election::n_scenarios
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario_election::next_in_set
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario_election::round_robin
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario_election::scenario_id
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario_election::scenario_set[$]
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario_election::select
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario_election::stream_id
	SystemVerilog
	OpenVera
	Description
	Example

	<class-name>_scenario_gen_callbacks
	Summary
	<class-name>_scenario_gen_callbacks::post_scenario_gen()
	SystemVerilog
	OpenVera
	Description
	Example

	<class- name>_scenario_gen_callbacks::pre_scenario_randomize()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler
	Summary
	vmm_scheduler::get_object()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler::log
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler::new()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler::new_source()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler::out_chan
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler::randomized_sched
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler::reset_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler::sched_off()
	SystemVerilog
	OpenVera
	Description

	vmm_scheduler::sched_on
	SystemVerilog
	OpenVera
	Description

	vmm_scheduler::schedule()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler::set_output()
	System Verilog
	Open Vera
	Description
	Example

	vmm_scheduler::start_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler::stop_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election
	Summary
	vmm_scheduler_election::default_round_robin
	SystemVerilog
	OpenVera
	Example

	vmm_scheduler_election::election_id
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election::id_history[$]
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election::ids[$]
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election::instance_id
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election::n_sources
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election::next_idx
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election::obj_history[$]
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election::obj_offset
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election::post_randomize()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election::source_idx
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_scheduler_election::sources[$]
	SystemVerilog
	OpenVera
	Example

	vmm_ss_scenario#(T)
	SystemVerilog
	Description
	Example

	vmm_simulation
	Example
	Summary
	vmm_simulation::allow_new_phases()
	SystemVerilog
	Description
	Example

	vmm_simulation::display_phases()
	SystemVerilog
	Description
	Example

	vmm_simulation::get_post_timeline()
	SystemVerilog
	Description

	vmm_simulation::get_pre_timeline()
	SystemVerilog
	Description

	vmm_simulation::get_sim()
	SystemVerilog
	Description
	Example

	vmm_simulation::get_top_timeline()
	SystemVerilog
	Description
	Example

	vmm_simulation::run_tests()
	SystemVerilog
	Description
	Example

	vmm_subenv
	Summary
	vmm_subenv::cleanup()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::configured()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::do_psdisplay()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::do_start()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::do_stop()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::do_vote()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::do_what_e
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::end_test
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::log
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::new()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::report()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::start()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_subenv::stop()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_subenv_member_begin()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_subenv_member_channel*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_subenv_member_end()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_subenv_member_enum*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_subenv_member_scalar*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_subenv_member_string*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_subenv_member_subenv*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_subenv_member_user_defined()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_subenv_member_vmm_data*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_subenv_member_xactor*()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_test
	Example
	Summary
	vmm_test::get_doc()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_test::get_name()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_test::log
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_test::new()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_test::run()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_test::set_config()
	SystemVerilog
	Description
	Example

	‘vmm_test_begin()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_test_end()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_test_registry
	Summary
	vmm_test_registry::list()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_test_registry::run()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_timeline
	Summary
	vmm_timeline::abort_phase()
	SystemVerilog
	Description
	Example

	vmm_timeline::append_callback()
	SystemVerilog
	Description
	Example

	vmm_timeline::configure_test_ph()
	SystemVerilog
	Description
	Example

	vmm_timeline::delete_phase()
	SystemVerilog
	Description
	Example

	vmm_timeline::display_phases()
	SystemVerilog
	Description
	Example

	vmm_timeline::get_current_phase_name()
	SystemVerilog
	Description
	Example

	vmm_timeline::get_next_phase_name()
	SystemVerilog
	Description
	Example

	vmm_timeline::get_phase()
	SystemVerilog
	Description
	Example

	vmm_timeline::get_previous_phase_name()
	SystemVerilog
	Description
	Example

	vmm_timeline::insert_phase()
	SystemVerilog
	Description
	Example

	vmm_timeline::jump_to_phase()
	SystemVerilog
	Description
	Example

	vmm_timeline::prepend_callback()
	SystemVerilog
	Description
	Example

	vmm_timeline::rename_phase()
	SystemVerilog
	Description
	Example

	vmm_timeline::reset_to_phase()
	SystemVerilog
	Description
	Example

	vmm_timeline::run_phase()
	SystemVerilog
	Description
	Example

	vmm_timeline::step_function_phase()
	SystemVerilog
	Description
	Example

	vmm_timeline::task_phase_timeout()
	SystemVerilog
	Description
	Example

	vmm_timeline::unregister_callback()
	SystemVerilog
	Description
	Example

	vmm_timeline_callbacks
	Example
	Summary
	vmm_timeline_callback::break_on_phase()
	SystemVerilog
	Description
	Example

	vmm_tlm
	SystemVerilog
	Description
	Summary

	vmm_tlm_extension_base
	SystemVerilog
	Description

	vmm_tlm_generic_payload
	SystemVerilog
	Description
	Summary
	vmm_tlm_generic_payload::set_extensions()
	SystemVerilog
	Description

	vmm_tlm_generic_payload::get_extensions()
	SystemVerilog
	Description

	vmm_tlm_generic_payload::clear_extensions()
	SystemVerilog
	Description
	Example

	vmm_tlm::check_bindings()
	SystemVerilog
	Description
	Example

	vmm_tlm::print_bindings()
	SystemVerilog
	Description
	Example

	vmm_tlm::report_unbound()
	SystemVerilog
	Description
	Example

	vmm_tlm_analysis_port#(I,D)
	SystemVerilog
	Description
	Example

	vmm_tlm_analysis_export#(T,D)
	SystemVerilog
	Description
	Example

	‘vmm_tlm_analysis_export(SUFFIX)
	SystemVerilog
	Description
	Example

	vmm_tlm_b_transport_export#(T,D)
	SystemVerilog
	Description
	Summary
	`vmm_tlm_b_transport_export()
	SystemVerilog
	Description
	Example

	vmm_tlm_b_transport_export::b_transport()
	SystemVerilog
	Description
	Example

	vmm_tlm_b_transport_export::new()
	SystemVerilog
	Description
	Example

	vmm_tlm_b_transport_port #(I,D)
	SystemVerilog
	Description
	Summary
	vmm_tlm_b_transport_port::b_transport()
	SystemVerilog
	Description
	Example

	vmm_tlm_b_transport_port::new()
	SystemVerilog
	Description
	Example

	vmm_tlm_export_base #(D,P)
	SystemVerilog
	Description
	Summary
	vmm_tlm_export_base::get_n_peers() Function
	SystemVerilog
	Description
	Example

	vmm_tlm_export_base::get_peer()
	SystemVerilog
	Description
	Example

	vmm_tlm_export_base::get_peer_id()
	SystemVerilog
	Description
	Example

	vmm_tlm_export_base::get_peers()
	SystemVerilog
	Description
	Example

	vmm_tlm_export_base::new()
	SystemVerilog
	Description

	vmm_tlm_export_base::tlm_bind()
	SystemVerilog
	Description
	Example

	vmm_tlm_export_base::tlm_import()
	SystemVerilog
	Description
	Example

	vmm_tlm_export_base::tlm_unbind()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_bw_export#(T,D,P)
	SystemVerilog
	Description
	Summary
	`vmm_tlm_nb_transport_bw_export()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_bw_export::nb_transport_bw()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_bw_export::new()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_bw_port#(I,D,P)
	SystemVerilog
	Description
	Summary
	vmm_tlm_nb_transport_bw_port::nb_transport_bw()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_bw_port::new()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_export#(T,D,P)
	SystemVerilog
	Description
	Example
	Summary
	`vmm_tlm_nb_transport_export()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_fw_export#(T,D,P)
	SystemVerilog
	Description
	Summary
	`vmm_tlm_nb_transport_fw_export()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_fw_export::nb_transport_fw()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_fw_export::new()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_fw_port#(I,D,P)
	SystemVerilog
	Description
	Summary
	vmm_tlm_nb_transport_fw_port::nb_transport_fw()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_fw_port::new()
	SystemVerilog
	Description
	Example

	vmm_tlm_nb_transport_port#(I,D,P)
	SystemVerilog
	Description
	Example
	Summary
	`vmm_tlm_nb_transport_port()
	SystemVerilog
	Description
	Example

	vmm_tlm_port_base#(D,P)
	SystemVerilog
	Description
	Summary
	vmm_tlm_port_base::get_peer()
	SystemVerilog
	Description
	Example

	vmm_tlm_port_base::get_peer_id()
	SystemVerilog
	Description
	Example

	vmm_tlm_port_base::new()
	SystemVerilog
	Description

	vmm_tlm_port_base::tlm_bind()
	SystemVerilog
	Description
	Example

	vmm_tlm_port_base::tlm_import()
	SystemVerilog
	Description
	Example

	vmm_tlm_port_base::tlm_unbind()
	SystemVerilog
	Description
	Example

	vmm_tlm_initiator_socket#(I,D,P)
	SystemVerilog
	Description
	Example
	Summary
	`vmm_tlm_initiator_socket()
	SystemVerilog
	Description
	Example

	vmm_tlm_target_socket#(T,D,P)
	SystemVerilog
	Description
	Example
	Summary
	`vmm_tlm_target_socket()
	SystemVerilog
	Description
	Example

	vmm_tlm_transport_interconnect#(DATA)
	SystemVerilog
	Description

	Summary
	vmm_tlm_transport_interconnect::new()
	SystemVerilog
	Description

	vmm_tlm_transport_interconnect_base#(DATA,PHASE)
	SystemVerilog
	Description
	Summary
	vmm_tlm_transport_interconnect_base::new()
	SystemVerilog
	Description

	vmm_tlm_transport_interconnect_base::tlm_bind()
	SystemVerilog
	Description

	vmm_tlm_reactive_if #(DATA, q_size)
	SystemVerilog
	Description
	Summary
	vmm_tlm_reactive_if::completed()
	SystemVerilog
	Description
	Example

	vmm_tlm_reactive_if::get()
	SystemVerilog
	Description
	Example

	vmm_tlm_reactive_if::new()
	SystemVerilog
	Description

	vmm_tlm_reactive_if::tlm_bind()
	SystemVerilog
	Description
	Example

	vmm_tlm_reactive_if::try_get()
	SystemVerilog
	Description
	Example

	vmm_unit
	SystemVerilog
	Description
	Summary
	vmm_unit::build_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::cleanup_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::config_dut_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::configure_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::connect_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::consensus_requested()
	SystemVerilog
	OpenVera
	Description

	vmm_unit::consent()
	SystemVerilog
	Description
	Example

	vmm_unit::disabled_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::disable_unit()
	SystemVerilog
	Description
	Example

	vmm_unit::final_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::forced()
	SystemVerilog
	OpenVera
	Description

	vmm_unit::force_thru()
	SystemVerilog
	OpenVera
	Description

	vmm_unit::get_timeline()
	SystemVerilog
	Description
	Example

	vmm_unit::is_unit_enabled()
	SystemVerilog
	Description
	Example

	vmm_unit::new()
	SystemVerilog
	Description
	Example

	vmm_unit::oppose()
	SystemVerilog
	Description
	Example

	vmm_unit::override_phase()
	SystemVerilog
	Description
	Example

	vmm_unit::report_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::request_consensus()
	SystemVerilog
	OpenVera
	Description

	vmm_unit::reset_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::run_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::shutdown_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::start_of_sim_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::start_of_test_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::start_ph()
	SystemVerilog
	Description
	Example

	vmm_unit::training_ph()
	SystemVerilog
	Description
	Example

	vmm_version
	Summary
	vmm_version::display()
	SystemVerilog
	OpenVera
	Description

	vmm_version::major()
	SystemVerilog
	OpenVera
	Description

	vmm_version::minor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_version::patch()
	SystemVerilog
	OpenVera
	Description

	vmm_version::psdisplay()
	SystemVerilog
	OpenVera
	Description

	vmm_version::vendor()
	SystemVerilog
	OpenVera
	Description

	vmm_voter
	Summary
	vmm_voter::consent()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_voter::forced()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_voter::oppose()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor
	Summary
	vmm_xactor::append_callback()
	SystemVerilog
	OpenVera
	Description

	vmm_xactor::do_psdisplay()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::do_reset_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::do_start_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::do_stop_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::do_what_e
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::exp_vmm_sb_ds()
	vmm_xactor::get_input_channels()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::get_instance()
	SystemVerilog
	OpenVera

	vmm_xactor::get_name()
	SystemVerilog
	OpenVera

	vmm_xactor::get_output_channels()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::inp_vmm_sb_ds()
	vmm_xactor::kill()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::log
	SystemVerilog
	OpenVera

	vmm_xactor::main()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::new()
	SystemVerilog
	OpenVera
	Description

	vmm_xactor::notifications_e
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::notify
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::prepend_callback()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::psdisplay()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::register_vmm_sb_ds()
	vmm_xactor::reset_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::restore_rng_state()
	SystemVerilog
	OpenVera
	Description

	vmm_xactor::stream_id
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::save_rng_state()
	SystemVerilog
	OpenVera
	Description

	vmm_xactor::start_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::stop_xactor()
	SystemVerilog
	OpenVera
	Description

	vmm_xactor::unregister_callback()
	SystemVerilog
	OpenVera
	Description

	vmm_xactor::unregister_vmm_sb_ds()
	vmm_xactor::‘vmm_callback()
	SystemVerilog
	OpenVera
	Example

	vmm_xactor::wait_if_stopped()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::wait_if_stopped_or_empty()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor::xactor_status()
	SystemVerilog
	OpenVera
	Description

	‘vmm_xactor_member_begin()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_xactor_member_end()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_xactor_member_scalar*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_xactor_member_string*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_xactor_member_enum*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_xactor_member_vmm_data*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘‘vmm_xactor_member_channel*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_xactor_member_xactor*()
	SystemVerilog
	OpenVera
	Description
	Example

	‘vmm_xactor_member_user_defined()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor_callbacks
	vmm_xactor_iter
	Using the vmm_xactor_iter Class
	Using the Shorthand Macro `foreach_vmm_xactor()
	Summary

	vmm_xactor_iter::first()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor_iter::new()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor_iter::next()
	SystemVerilog
	OpenVera
	Description
	Example

	vmm_xactor_iter::xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	‘foreach_vmm_xactor()
	SystemVerilog
	OpenVera
	Description
	Example

	Command Line Reference
	Release Notes
	New Features in VMM User Guide
	New Base Classes

