Name: SOLUTION

Problem 1 (30 points):________
Problem 2 (10 points):________
Problem 3 (10 points):________
Problem 4 (10 points):________
Problem 5 (20 points):________
Problem 6 (20 points):________
Total (100 points):____________

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

__
Signature

GOOD LUCK!
Problem 1. (30 points):

Part a. (5 points): Recall that the instruction cycle consists of six phases, not all of which are needed by all instructions. However, all instructions do need the **Fetch** phase and the **Decode** phase.

Part b. (5 points): In the spirit of the IEEE Floating Point standard, we have specified a 10-bit floating point data type. Five bits are allocated to the exponent, using an excess-127 code. Four bits are allocated to the fraction. Convert the Floating Point data-type number shown below to a decimal fraction:

\[
101010101010 \quad 0
\]

Answer:

\[-13/32\]

Part c. (5 points): Recall the logic circuit of problem 1 of Problem Set 3, shown below, except the clock signals to all latches is \(\text{CLK} \) (NONE are \(\overline{\text{CLK}} \)). Assume as in the problem set that the initial state of the six latches just before \(t_0 \) are all 0. Assume the clock cycle is 20 nanoseconds. Assume the propagation time for a signal to get from the input of a latch to the output of that latch is 2 nanoseconds. What will be the state of the six latches at time \(T \) shown on the timing diagram?

Answer:

\[111110\]
Part d. (5 points): In class we discussed latches made of NAND gates. Latches can also be made of NOR gates as shown below. X and Y are logical inputs which set/reset the latch; Q is the state of the latch.

(1) What are the quiescent values of X, Y (i.e., the values which will cause Q to remain unchanged)?

X: 0, Y: 0

(2) Suppose the value of X is changed from its quiescent value to its other logical value for a long enough period of time that this change can propagate through all the gates, and then the value of X returns to its quiescent value. What will be the value of Q after X returns to its quiescent value?

Q: 0

Part e. (10 points): Assume the contents of memory locations x3000 and x3001 are as shown below.

Using the LC-3 Simulator, you load PC with x3000, set a breakpoint at xF000, and push the RUN button. What happens? (in 20 words or fewer, please)

Memory location x3002 - xF000 get the value x3200
Name:

Problem 2. (10 points): The transistor circuit shown below has three input variables A, B, C. The output is labeled OUT. Complete the truth table.

![Transistor Circuit Diagram]

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Problem 3. (10 points): A digital logic fanatic begged us to use the reserved opcode to implement four bit-wise logic functions OR, NAND, NOR, and XOR. He suggested the following instruction format:

```
  15 12 11 10  9  8  6  5  4  3  2  0
  | 1101 | DR | SR1 | 0 | OP | SR2 |
```

Note that bits[4:3] specifies which of the four logical functions is to be performed as follows:

<table>
<thead>
<tr>
<th>bits[4:3]</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>OR</td>
</tr>
<tr>
<td>01</td>
<td>NAND</td>
</tr>
<tr>
<td>10</td>
<td>NOR</td>
</tr>
<tr>
<td>11</td>
<td>XOR</td>
</tr>
</tbody>
</table>

Part a. (8 points): Complete the logic circuit shown below to implement one bit (bit i) of the bit-wise operation by connecting the outputs of the AND gates to the inputs of the OR gates as appropriate. Assume that the unconnected inputs to each OR gate is 0.

Part b. (2 points): What two bits control the select lines of the MUX?

```
IR[4:3]
```
Name: ____________________

Problem 4. (10 points): Professor Patt's favorite example of a program that uses simpler instructions to perform a more complicated operation is the multiply routine shown below. It multiplies the positive numbers in R0 and R1, and puts the result in R2, even though the LC-3 has no multiply instruction. The flow chart below illustrates the algorithm.

```
        R2 ← #0
        R1 ← #0
          F
           T
         /\  
R2 ← R2 + R0
       /   \
R1 ← R1 - 1
```

The code was produced by an Aggie, and true to form, there are **two** errors in the program. Find the errors and, in each case, write the correct instruction in the corresponding slot to the right. Please leave BLANK the slots corresponding to the instructions that are already correct.

<table>
<thead>
<tr>
<th>Address</th>
<th>Aggie’s code (comment)</th>
<th>Corrected instruction (ONLY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x3000</td>
<td>0001 0100 1010 0000 : ADD ADD R2, R2, #0</td>
<td>0101 010 010 1 00000</td>
</tr>
<tr>
<td>x3001</td>
<td>0001 0010 0110 0000 : ADD ADD R1, R1, #0</td>
<td></td>
</tr>
<tr>
<td>x3002</td>
<td>0000 0110 0000 0011 : BR BR #0</td>
<td>0000 010 0 0000 011</td>
</tr>
<tr>
<td>x3003</td>
<td>0001 0100 1000 0000 : ADD</td>
<td></td>
</tr>
<tr>
<td>x3004</td>
<td>0001 0010 0111 1111 : ADD</td>
<td></td>
</tr>
<tr>
<td>x3005</td>
<td>0000 1111 1111 1100 : BR</td>
<td></td>
</tr>
<tr>
<td>x3006</td>
<td>1111 0000 0010 0101 : HALT</td>
<td></td>
</tr>
</tbody>
</table>
Problem 5. (20 points): Once you graduate past the LC-3, you will encounter ISAs that have a LEFT ROTATE instruction. Since the LC-3 does not have one, we wish to write a program to perform the operation.

A one-bit LEFT ROTATE operation is nothing more than a LEFT SHIFT operation with the added feature of taking the bit shifted out of bit[15] and putting it back into bit[0]. The place vacated by shifting bit[0] into position bit[1]. An n-bit LEFT ROTATE is the same as n successive one-bit left rotate operations.

Example: The result of a three bit left rotate of

produces

The program below will take the 16 bits contained in x3100 and left rotate it by the number of bit positions specified by the value in x3101, and put the result in x3102. Note that three of the instructions have been omitted. Your job: write in the missing three instructions.

; Starts at x3000
; Loads the value from x3100 into R0
; Loads the value from x3101 into (R1)
; If zero, branches to x300A
; Adds R0 and R0 and stores result in R2
R2 ← shifted R0

; If zero or positive, branches to x3007

; Adds R2 and 0 and stores result in R0
R2 + 0 → R0

; Branches to x3002
; Stores value in R0 into x3102
; Halt
Name:__________________________

Problem 6. (20 points): Shown below are the contents of all the relevant (and some irrelevant) registers at the completion of three SUCCESSIVE clock cycles which are part of the instruction cycle for processing the instruction α.

Note: The start of the FETCH phase is before clock cycle N and memory is NOT accessed during cycles N, N+1, and N+2.

<table>
<thead>
<tr>
<th>Clock Cycle</th>
<th>IR</th>
<th>MAR</th>
<th>MDR</th>
<th>R0</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>α</td>
<td>x4010</td>
<td>α</td>
<td>xC89A</td>
<td>xA1B1</td>
<td>x1234</td>
<td>x2222</td>
<td>x2345</td>
<td>x8333</td>
<td>x5678</td>
<td>x00FF</td>
</tr>
<tr>
<td>N+1</td>
<td>α</td>
<td>x833A</td>
<td>α</td>
<td>xC89A</td>
<td>xA1B1</td>
<td>x1234</td>
<td>x2222</td>
<td>x2345</td>
<td>x8333</td>
<td>x5678</td>
<td>x00FF</td>
</tr>
<tr>
<td>N+2</td>
<td>α</td>
<td>x833A</td>
<td>xA1B1</td>
<td>xC89A</td>
<td>xA1B1</td>
<td>x1234</td>
<td>x2222</td>
<td>x2345</td>
<td>x8333</td>
<td>x5678</td>
<td>x00FF</td>
</tr>
</tbody>
</table>

Part a. (4 points): Which states in the LC-3 state machine correspond to the processing in cycles N, N+1, and N+2? (Write down ONLY the state numbers).

N: 39
N+1: 7
N+2: 23

Part b. (4 points): What is the address of the instruction being processed? Please answer in hexadecimal notation.

Address: x4010

Part c. (12 points): Fill in the bits of the instruction being processed.

<table>
<thead>
<tr>
<th>15</th>
<th>14</th>
<th>13</th>
<th>12</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

STR R1, R5, #7

Place 3A 33 7