
Chapter 7

Assembly Language

The following is provided as reference material to the Assembly process, and the LC-
3b Assembly Language. It has been extracted from Intro to Computing Systems: From
bits and gates to C and beyond, 2e, McGraw-Hill, 2004. In my urgency to get this on
the web site, I may have inadvertently created inconsistencies. If you find anything here
that is missing an antecedent or otherwise makes no sense, please contact me and/or
one of the TAs. – Yale Patt

7.1 LC-3b Assembly Language

We will begin our study of the LC-3b assembly language by means of an example.
The program in Figure 7.1 multiplies the integer intially stored in NUMBER by six by
adding the integer to itself six times. For example, if the integer is 123, the program
computes the product by adding 123+123+123+123+123+123.

The program consists of 21 lines of code. We have added aline number to each line
of the program in order to be able to refer to individual lineseasily. This is a common
practice. These line numbers are not part of the program. Tenlines start with a semi-
colon, designating that they are strictly for the benefit of the human reader. More on
this momentarily. Seven lines (06, 07, 08, 0C, 0D, 0E, and 10)specify actual instruc-
tions to be translated into instructions in the ISA of the LC-3b, which will actually be
carried out when the program runs. The remaining four lines (05, 12, 13, and 15) con-
tain pseudo-ops,which are messages from the programmer to the translation program
to help in the translation process. The translation programis called anassembler (in
this case the LC-3b assembler), and the translation processis calledassembly.

7.1.1 Instructions

Instead of an instruction being 16 0s and 1s, as is the case in the LC-3b ISA, an in-
struction in assembly language consists of four parts, as shown below:

LABEL OPCODE OPERANDS ; COMMENTS

143



144 CHAPTER 7. ASSEMBLY LANGUAGE

01 ;
02 ; Program to multiply an integer by the constant 6.
03 ; Before execution, an integer must be stored in NUMBER.
04
05 .ORIG x3050
06 LEA R2,NUMBER
07 LDW R2,R2,#0
08 LEA R1,SIX
09 LDW R1,R1,#0
0A AND R3,R3,#0 ; Clear R3. It will
0B ; contain the product.
0C ; The inner loop
0D ;
0E AGAIN ADD R3,R3,R2
0F ADD R1,R1,#-1 ; R1 keeps track of
10 BRp AGAIN ; the iterations
11 ;
12 HALT
13 ;
14 NUMBER .BLKW 1
15 SIX .FILL x0006
16 ;
17 .END

Figure 7.1: An assembly language program

Two of the parts (LABEL and COMMENTS) are optional. More on that momentarily.

Opcodes and Operands

Two of the parts (OPCODE and OPERANDS) aremandatory. An instruction must
have an OPCODE (the thing the instruction is to do), and the appropriate number of
operands (the things it is supposed to do it to).

The OPCODE is a symbolic name for the opcode of the corresponding LC-3b in-
struction. The idea is that it is easier to remember an operation by the symbolic name
ADD, AND, or LDW than by the four-bit quantity 0001,0101, or 0110.

The number of operands depends on the operation being performed. For example,
the ADD instruction (line 0E) requires three operands (two sources to obtain the num-
bers to be added, and one destination to designate where the result is to be placed). All
three operands must be explicitly identified in the instruction.

AGAIN ADD R3,R3,R2

The operands to be added are obtained from register 2 and fromregister 3. The result
is to be placed in register 3. We represent each of the registers 0 through 7 as R0, R2,
. . . , R7.



7.1. LC-3B ASSEMBLY LANGUAGE 145

The LEA instruction (line 06) requires two operands (the memory location whose
address is to be read) and the destination register which is to contain that address after
the instruction completes execution. We will see momentarily that memory locations
will be given symbolic addresses calledlabels. In this case, the location whose address
is to be read is given the labelNUMBER. The destination into which that address is to
be loaded is register 2.

LEA R2, NUMBER

As we discussed in class, operands can be obtained from registers, from memory, or
they may be literal (i.e., immediate) values in the instruction. In the case of register
operands, the registers are explicitly represented (such as R2 and R3 in line 0C). In
the case of memory operands, the symbolic name of the memory location is explicitly
represented (such as NUMBER in line 06 and SIX in line 08). In the case of immediate
operands, the actual value is explicitly represented (suchas the value 0 in line 0A).

AND R3, R3, #0 ; Clear R3. It will contain the product.

A literal value must contain a symbol identifying the representation base of the number.
We use # for decimal, x for hexadecimal, and b for binary. Sometimes there is no
ambiguity, such as in the case 3F0A, which is a hex number. Nonetheless, we write it
as x3F0A. Sometimes there is ambiguity, such as in the case 1000. x1000 represents the
decimal number 4096, b1000 represents the decimal number 8,and #1000 represents
the decimal number 1000.

Labels

Labels are symbolic names which are used to identify memory locations that are re-
ferred to explicitly in the program. In LC-3b assembly language, a label cosists of
from one to 20 alphanumeric characters (i.e., a capital or lower case letter of the alpha-
bet, or a decimal digit), starting with a letter of the alphabet. NOW, Under21, R2D2,
and C3PO are all examples of possible LC-3b assembly language labels.

There are two reasons for explicitly referring to a memory location.

1. The location contains the target of a branch instruction (for example, AGAIN in
line 0E).

2. The location contains a value that is loaded or stored (forexample, NUMBER,
line 14, and SIX, line 15).

The location AGAIN is specifically referenced by the branch instruction in line 10.

BRp AGAIN

If the result of ADD R1,R1,#–1 is positive (as evidenced by the P condition code be-
ing set), then the program branches to the location explicitly referenced as AGAIN to
perform another iteration.



146 CHAPTER 7. ASSEMBLY LANGUAGE

The location NUMBER is specifically referenced by the LEA instruction in line 06.
The value stored in the memory location explicitly referenced as NUMBER is loaded
into R2.

If a location in the program is not explicitly referenced, then there is no need to
give it a label.

Comments

Comments are messages intended only for human consumption.They have no effect
on the translation process and indeed are not acted on by the LC-3b Assembler. They
are identified in the program by semicolons. A semicolon signifies that the rest of the
line is a comment and is to be ignored by the assembler. If the semicolon is the first
nonblank character on the line, the entire line is ignored. If the semicolon follows the
operands of an instruction, then only the comment is ignoredby the assembler.

The purpose of comments is to make the program more comprehensible to the
human reader. They help explain a nonintuitive aspect of an instruction or a set of
instructions. In line 0A, the comment “Clear R3; it will contain the product” lets the
reader know that the instruction on line 0A is initializing R3 prior to accumulating
the product of the two numbers. While the purpose of line 0A may be obvious to the
programmer today, it may not be the case two years from now, after the programmer
has written an additional 30,000 lines of code and cannot remember why he/she wrote
AND R3,R3,#0. It may also be the case that two years from now, the programmer
no longer works for the company and the company needs to modify the program in
response to a product update. If the task is assigned to someone who has never seen
the code before, comments go a long way to helping comprehension.

It is important to make comments that provide additional insight and not just restate
the obvious. There are two reasons for this. First, commentsthat restate the obvious
are a waste of everyone’s time. Second, they tend to obscure the comments that say
something important because they add clutter to the program. For example, in line 0F,
the comment “Decrement R1” would be a bad idea. It would provide no additional
insight to the instruction, and it would add clutter to the page.

Another purpose of comments, and also the judicious use of extra blank spaces
to a line, is to make the visual presentation of a program easier to understand. So,
for example, comments are used to separate pieces of the program from each other to
make the program more readable. That is, lines of code that work together to compute
a single result are placed on successive lines, while piecesof a program that produce
separate results are separated from each other. For example, note that lines 0E through
10 are separated from the rest of the code by lines 0D and 11. There is nothing on lines
0D and 11 other than the semicolons.

Extra spaces that are ignored by the assembler provide an opportunity to align
elements of a program for easier readability. For example, all the opcodes start in the
same column on the page.



7.1. LC-3B ASSEMBLY LANGUAGE 147

7.1.2 Pseudo-ops (Assembler Directives)

The LC-3b assembler is a program that takes as input a string of characters representing
a computer program written in LC-3b assembly language, and translates it into a pro-
gram in the ISA of the LC-3b. Pseudo-ops are helpful to the assembler in performing
that task.

Actually, a more formal name for a pseudo-op isassembler directive. They are
called pseudo-ops because they do not refer to operations that will be performed by the
program during execution. Rather, the pseudo-op is strictly a message to the assem-
bler to help the assembler in the assembly process. Once the assembler handles the
message, the pseudo-op is discarded. The LC-3b assembler contains five pseudo-ops:
.ORIG, .FILL, .BLKW, .STRINGZ, and .END. All are easily recognizable by the dot
as their first character.

.ORIG

• .ORIG tells the assembler where in memory to place the LC-3b program. In
line 05, .ORIG x3050 says, start with location x3050. As a result, the LEA
R2,NUMBER instruction will be put in location x3050.

.FILL

• .FILL tells the assembler to set aside the next location in the program and
initialize it with the value of the operand. In line 15, the eleventh location in the
resultant LC-3b program is initialized to the value x0006.

.BLKW

• .BLKW tells the assembler to set aside some number of sequential memory loca-
tions (i.e., aBLocK of Words) in the program. The actual number is the operand
of the .BLKW pseudo-op. In line 11, the pseudo-op instructs the assembler to
set aside one location in memory (and also to label it NUMBER,incidentally).

The pseudo-op .BLKW is particularly useful when the actual value of the
operand is not yet known. For example, one might want to set aside a location
in memory for storing a character input from a keyboard. It will not be until the
program is run that we will know the identity of that keystroke.



148 CHAPTER 7. ASSEMBLY LANGUAGE

.STRINGZ

• .STRINGZ tells the assembler to initialize a sequence ofn+a memory locations,
wherea = 1 if n is odd, anda = 2 if n is even. The argument is a sequence ofn
characters, inside double quotation marks. The firstn + 1 bytes of memory are
initialized with the ASCII codes of the corresponding characters in the string,
followed by x00. A final byte x00 is added if necessary to end the string on a
word boundary. Then + 1st character (x00) provides a convenient sentinel for
processing the string of ASCII codes.

For example, the code fragment

.ORIG x3010
HELLO .STRINGZ "Hello, World!"

would result in the assembler initializing locations x3010through x301D to the
following values:

x3010: x48
x3011: x65
x3012: x6C
x3013: x6C
x3014: x6F
x3015: x2C
x3016: x20
x3017: x57
x3018: x6F
x3019: x72
x301A: x6C
x301B: x64
x301C: x21
x301D: x00

.END

• .END tells the assembler where the program ends. Any characters that come
after .END will not be utilized by the assembler.Note: .END does not stop
the program during execution. In fact, .END does not even exist at the time of
execution. It is simply a delimiter—it marks the end of the source program.

7.1.3 An Example

The program shown in Figure 7.2 takes a character that is input from the keyboard and
a file and counts the number of occurrences of that character in that file.



7.1. LC-3B ASSEMBLY LANGUAGE 149

01 ;
02 ; Program to count occurrences of a character in a File.
03 ; Character to be input from the keyboard.
04 ; Result to be displayed on the monitor.
05 ; Program works only if no more than 9 occurrences are found.
06 ;
07 ;
08 ; Initialization
09 ;
0A .ORIG x3000
0B AND R2,R2,#0 ; R2 is counter, initialize to 0
0C LEA R3,PTR ; R3 is pointer to characters
0D LDW R3,R3,#0
0E TRAP x23 ; R0 gets character input
0F LDB R1,R3,#0 ; R1 gets the next character
10 ;
11 ; Test character for end of file
12 ;
13 TEST ADD R4,R1,#-4 ; Test for EOT
14 BRz OUTPUT ; If done, prepare the output
15 ;
16 ; Test character for match. If a match, increment count.
17 ;
18 NOT R1,R1
19 ADD R1,R1,R0 ; If match, R1 = xFFFF
1A NOT R1,R1 ; If match, R1 = x0000
1B BRnp GETCHAR ; If no match, do not increment
1C ADD R2,R2,#1
1D ;
1E ; Get next character from the file
1F ;
20 GETCHAR ADD R3,R3,#1 ; Increment the pointer
21 LDB R1,R3,#0 ; R1 gets the next character to test
22 BRnzp TEST
23 ;
24 ; Output the count.
25 ;
26 OUTPUT LEA R0,ASCII ; Load the ASCII template
27 LDW R0,R0,#0
28 ADD R0,R0,R2 ; Convert binary to ASCII
29 TRAP x21 ; ASCII code in R0 is displayed
2A TRAP x25 ; Halt machine
2B ;
2C ; Storage for pointer and ASCII template
2D ;
2E ASCII .FILL x0030
2F PTR .FILL x4000
30 .END

Figure 7.2: The assembly language program to count occurrences of a character



150 CHAPTER 7. ASSEMBLY LANGUAGE

A few notes regarding this program:
Three times during this program, assistance in the form of a service call is required

of the operating system. In each case, a TRAP instruction is used. TRAP x23 causes a
character to be input from the keyboard and placed in R0 (line0E). TRAP x21 causes
the ASCII code in R0 to be displayed on the monitor (line 29). TRAP x25 causes the
machine to be halted (line 2A).

The ASCII codes for the decimal digits 0 to 9 (0000 to 1001) arex30 to x39. The
conversion from binary to ASCII is done simply by adding x30 to the binary value of
the decimal digit. Line 2E shows the label ASCII used to identify the memory location
containing x0030.

The file that is to be examined starts at address x4000 (see line 2F). Usually, this
starting address would not be known to the programmer who is writing this program,
since we would want the program to work on files that will become available in the
future.

7.2 The Assembly Process

Before an LC-3b assembly language program can be executed, it must first be translated
into a machine language program, that is, one in which each instruction is in the LC-3b
ISA. It is the job of the LC-3b assembler to perform that translation.

7.2.1 A Two-Pass Process

In this section, we will see how the assembler goes through the process of translating
an assembly language program into a machine language program. We will use as our
running example the assembly language program of Figure 7.2.

You remember that there is in general a one-to-one correspondence between in-
structions in an assembly language program and instructions in the final machine lan-
guage program. We could attempt to perform this translationin one pass through the
assembly language program. Starting from the top of Figure 7.2, the assembler dis-
cards lines 01 to 09, since they contain only comments. Comments are strictly for
human consumption; they have no bearing on the translation process. The assembler
then moves on to line 0A. Line 0A is a pseudo-op; it tells the assembler that the ma-
chine language program is to start a location x3000. The assembler then moves on to
line 0B, which it can easily translate into LC-3b machine code. At this point, we have

x3000: 0101010010100000

The LC-3b assembler moves on to translate the next instruction (line 0C). Unfortu-
nately, it is unable to do so, since it does not know the meaning of the symbolic address,
PTR. At this point the assembler is stuck, and the assembly process fails.

To prevent the above problem from occurring, the assembly process is done in
two complete passes (from beginning to .END) through the entire assembly language
program. The objective of the first pass is to identify the actual binary addresses corre-
sponding to the symbolic names (or labels). This set of correspondences is known as



7.2. THE ASSEMBLY PROCESS 151

the symbol table. In pass one, we construct the symbol table. In pass two, we trans-
late the individual assembly language instructions into their corresponding machine
language instructions.

Thus, when the assembler examines line 0C for the purpose of translating

LEA R3,PTR

during the second pass, it already knows the correspondencebetween PTR and x3028
(from the first pass). Thus it can easily translate line 0C to

x3002: 1110011000010011

The problem of not knowing the 16-bit address correspondingto PTR no longer exists.

7.2.2 The First Pass: Creating the Symbol Table

For our purposes, the symbol table is simply a correspondence of symbolic names with
their 16-bit memory addresses. We obtain these correspondences by passing through
the assembly language program once, noting which instruction is assigned to which
address, and identifying each label with the address of its assigned entry.

Recall that we provide labels in those cases where we have to refer to a location,
either because it is the target of a branch instruction or because it contains data that must
be loaded or stored. Consequently, if we have not made any programming mistakes,
and if we identify all the labels, we will have identified all the symbolic addresses used
in the program.

The above paragraph assumes that our entire program exists between our .ORIG
and .END pseudo-ops: This is true for the assembly language program of Figure 7.2.

The first pass starts, after discarding the comments on lines01 to 09 by noting (line
0A) that the first instruction will be assigned to address x3000. We keep track of the
location assigned to each instruction by means of a locationcounter (LC). The LC is
initialized to the address specified in .ORIG, that is, x3000.

The assembler examines each instruction in sequence, and increments the LC once
for each assembly language instruction. If the instructionexamined contains a label, a
symbol table entry is made for that label, specifying the current contents of LC as its
address. The first pass terminates when the .END instructionis encountered.

The first instruction that has a label is at line 13. Since it isthe sixth instruction
in the program and the LC at that point contains x300A, a symbol table entry is con-
structed thus:

Symbol Address

TEST x300A

The second instruction that has a label is at line 20. At this point, the LC has been
incremented to x3018. Thus a symbol table entry is constructed, as follows:

Symbol Address

GETCHAR x3018



152 CHAPTER 7. ASSEMBLY LANGUAGE

At the conclusion of the first pass, the symbol table has the following entries:

Symbol Address

TEST x300A
GETCHAR x3018
OUTPUT x301E
ASCII x3028
PTR x302A

7.2.3 The Second Pass: Generating the Machine Language Pro-
gram

The second pass consists of going through the assembly language program a second
time, line by line, this time with the help of the symbol table. At each line, the assembly
language instruction is translated into an LC-3b machine language instruction.

Starting again at the top, the assembler again discards lines 01 through 09 because
they contain only comments. Line 0A is the .ORIG pseudo-op, which the assembler
uses to initialize LC to x3000. The assembler moves on to line0B, and produces the
machine language instruction 0101010010100000. Then the assembler moves on to
line 0C.

This time, when the assembler gets to line 0C, it can completely assemble the
instruction since it knows that PTR corresponds to x302A. The instruction is LEA,
which has an opcode encoding of 1110. The Destination register (DR) is R3, that is,
011.

PCoffset is computed as follows: We know that PTR is the labelfor address x302A,
and that the incremented PC is LC+2, in this case x3004. SincePTR (x302A) must be
the sum of the incremented PC (x3004) and twice the sign-extended PCoffset (since the
offset is in words and memory is byte-addressable), PCoffset must be x0013. Putting
this all together, x3002 is set to 1110011000010011, and theLC is incremented to
x3004.

Note: In order to use the LEA instruction, it is necessary that thesource of the load,
in this case the address whose label is PTR, is not more than +512 or -510 memory
locations from the LEA instruction itself. If the address ofPTR had been greater than
LC+2 +510 or less than LC+2 -512, then the offset would not fit in bits [8:0] of the
instruction. In such a case, an assembly error would have occurred, preventing the
assembly process from completing successfully. Fortunately, PTR is close enough to
the LEA instruction, so the instruction assembled correctly.

The second pass continues. At each step, the LC is incremented and the location
specified by LC is assigned the translated LC-3b instructionor, in the case of .FILL,
the value specified. When the second pass encounters the .ENDinstruction, assembly
terminates.

The resulting translated program is shown in Figure 7.3.



7.2. THE ASSEMBLY PROCESS 153

Address Binary

0011000000000000
x3000 0101010010100000
x3002 1110011000010011
x3004 0110011011000000
x3006 1111000000100011
x3008 0010001011000000
x300A 0001100001111100
x300C 0000010000001000
x300E 1001001001111111
x3010 0001001001000000
x3012 1001001001111111
x3014 0000101000000001
x3016 0001010010100001
x3018 0001011011100001
x301A 0010001011000000
x301C 0000111111110110
x301E 1110000000000100
x3020 0110000000000000
x3022 0001000000000010
x3024 1111000000100001
x3026 1111000000100101
x3028 0000000000110000
x302A 0100000000000000

Figure 7.3: The machine language program for the assembly language program of
Figure 7.2

That process was, on a good day, merely tedious. Fortunately, you do not have
to do it for a living—the LC-3b assembler does that. And, since you now know LC-
3b assembly language, there is no need to program in machine language. Now we
can write our programs symbolically in LC-3b assembly language and invoke the LC-
3b assembler to create the machine language versions that can execute on an LC-3b
computer.


