The I/O entity:

- the medium
- the transducer electronics
- the device

Basic types:

- interrupt-driven
- polling
- I/O controller (e.g., DMA)
- I/O processor

Disk storage:

1. track, cylinder, aerial density
2. Rotation, seek
3. disk block
4. I/O processor mechanism: e.g., elevator
5. Disk arrays -- RAID levels, performance vs. redundancy

Buses:

1. Signals: A, D, C
2. Separate A,D lines vs. Multiplexed A,D lines
3. Pending bus vs. Split-transaction bus
4. Asynch vs. Synch
5. Arbitration: Centralized vs. Distributed
I/O Notes (Sheet 1)

EE 4601
Spring, 2015

* Characteristics
 - Parts: Medium, Device, Controller
 - How: Poll, Interrupt, DMA, I/O Proc
 - Instructions: Memory-Mapped, Special
 - Synch/Asynch

* Buses
 - Wires: Data, Address, Control
 • Multiplexed
 - Arbitration
 • Central: PAU
 • Distributed: "Dinner Table"
 - Transfer
 • Asynch/Asynch/Shared
 Asynch - Handshaking
 (Slow) No Clock
 Everything Explicit
 • Synch - Most Implicit
 (Fast) Fast if Short Distance
 • Pending/Split-Transaction
 • Pipeline vs. Tagged

* Disk Area (800-5)
An Asynchronous Bus

Transaction

Arbitration

Vanilla:

Does not want BG:
I/O Notes (Set 3)

2. What if Dev wants bus after Grant?
 a. At this priority level, tough!
 b. At higher level: PAU must not

Answer: Once PAU has granted, can not grant to latecomer

8. What is "done"?

Diagram: Flowchart showing states and transitions with BBSY, MSYN, and SSYN.
1. Don't want bus
Race 1

You pass grant, the device waits service...

Race 2

PAU granted but, high priority mg. come in...

Notes:
- BG: Busy
- Idn: Idle
- BR: Busy
- SACK: System Acknowledgment
- BBSY: Busy Signal

Or. Hap.
1. Distil.
2. Reducing in abs.

Dual cap

Mirror

Chained decks

Initial Interleaf deck

Pail

Production
RAID 3
- Five grand stripe
 - First disk
 - Second disk
 - Strip part

RAID 2
- Five grand stripe
 - ECC
 - Mirror
 - Drive - no redundancy