Key Notions – Microarchitecture

* Balanced Design
* Break & Build Design
* Critical Path Design
* The Science of Tradeoffs
 - Design Point (Cost, Performance, Area, Power)
 - Performance
 * Superscalar/Superpipelined
 * Branch Prediction
 * Value, Address Prediction
 * Fast execute, slow commit
 * Trace cache
 * Memory enhancements (latency, bandwidth)
 - Cycle time vs. Parallelism in march
 - Tailored vs. General purpose
 * Functionality
 - Compile-time vs. Run-time
The Microarchitecture (under the hood)

CPI vs. cycle time (or, IPC vs. frequency)
in-order vs. out-of-order execution
Speculate vs. stand around and wait
Issue-width
ASIC vs. programmed control
Use of chip real estate
 Better branch predictor
 Accelerators
 Microcode
Pipeline depth
Cache structures