Introduction to

Measurement Methodology

Outline

Introduction

- Misuse of the data |

- The Basic Equation (how long
did it take)

- The Mean

How do we Measure

- Real Hardware, Simulator,
Analytical Model

- Hardware Instrument, ncode,
Software Monitor

What do we Measure
(Benchmarks)

- Synthetic code

- Kernels

- Toy Benchmarks

- SPEC __ |

- The Perfect Club

- vou_rif Rel'ev'-a_ntW_o-rkload .

Serious Abuses

From a Welcoming Address At A
Well-Known Conference

4 Attendance

1982 19|83 1984 1985 ‘1986 1987 1988 19t89

Why Measure

% Before the fact

- So we know what to build

% After the fact

- So we know what to do next
time

The Standard Performance E qua tion

T =Q* CPi *.Itc

/

Path Length Clock
Algorithm - Technology
Language Organization
Compiler
ISA

Cycles Per Instruction

ISA

Organization

- Pipelining

- Issue Rate
- Branch Handling

Means

% Arithmetic Mean

% Geometric Mean

o<1t

1=1

% Harmonic Mean

1
n

1 1

“ﬁ“zis;

1=1

Why Harmonic Means Work for Rates

If we are dealing with performance,
As measured in Megaflops,

M, = Megaflops.on Benchmark 1

If all benchmarks are approximately
equal with respect to amount of work,

M, = :rl-:— (F is work per benchmark)

Then, H = 1 = 1n
1w 1 1
F’Z M. nFZ Ti
1:1 l i=1
H = nF
n (Total Work

Y T, dividedby Total
1=1 T“ﬂ@)

How Do We Measure

Degree of Santizing

| : ‘ | ‘ |
!

[: 1
Real Qg . Analytic
Hardware Simulation Model

Real Hardware

- “Gotchas” Have a chance to get
in the way

- Least Flexible
- Fast for doing thorough job

Simulation
- Some effects are missing
- Most Flexible
- Slowest

Analytic Model

- Good for gross effects
- Must be validated

How Do We Measure (Continued)

Invasiveness

l | | - |
N . ' |, 1
Hardware AR ‘ Software
. Microcode . e
Instrumentation Instr_umentation Monitoring |

Hardware Instrumentation
- Most EXpensi\fe
- Non-Invasive
- Least Flexible

Microcoded Instrumentation

- Best of Both Worlds
- SPAM

Software Monitorihg

- Cheap
- Very Invasive
- Most Flexible

Benchmarks

Rationale: Find a set of programs or

program fragments
representative of the workload
you will be requiring of the
machine

Types:

1.
2.
3.

The ADD instruction - very old
Instruction MIX - Old (Gibson MIX, 1959)

Kernels
- e.g., Livermore Loops

. Synthetic Benchmarks

- Parameterized
- Careful: RRW is not RWR

. Toy Benchmarks

- Easy to hand-compile
- Pretty much in disrepute today
e.g., Towers of Hanoi

. SPEC Suite (Systems Performance

Evaluation Co-operative)
- At least common agreement,
| Guess!!

Real Workload

A few of my concerns

* One number: SpecMARK
-- Better than ADD time?

+ SimplScalar
-- the entry bar
~<th el —

« In the literature
-- 1.85 IPC max
-- Issue width does not matter

+ 400 floating point ops or 1 L2 miss
* Power models

* IPC ...or CPI?
Does it matter?
(Are you in Marketing, or
Are you in Engineering?)

Bad Ways to Measure Performanc'e
(... and each has been used and
reported in the Open Literature)

% Apples & Oranges

- A Lightly Loaded VAX vs. Counting
Simulated Cycles

% Who Gets the Credit

- The Architecture or the Compiler

- Example: Berkeley Pascal vs VMS
Pascal | |

- Algorithm Optimizations

- Instruction set or register windows
(Colwell)

% Choice on Benchmarks

- Selective

* Qverstates significance of one
feature -
e.g. Regularity (Fl. Pt.)
e.g. Procedure Call Intensive
e.g. No Floating Point

- Small

* 100% Cache, TB Hits
+ No 1/0, Context Switch

* Play with Statistics

Program A Program B

Machine 1: 1 unit 2 units
Machine 2: | 2 units 1 unit
Machine 1 is % on A, %on B

Speed Upiis 1 (2 + =) = 1.25

* Too Focused on Frequency

Frequency Execution Time
Calls 2.5% 21.6%
MOVL 12.4% 6.8%

The Dhrystbne MIPS Joke

Dhrystone - A 300 Llne Synthetlc
Benchmark

- Small main program, 11 short
- subroutines

- “Typical” Frequencies of common
ops. | |

e Arithmetic
e Loop Control
e Subroutine Calls

- No input data

Reference: VAX- 11/780 on a 1985
Compiler achieved 1757
dhrystones

MIPS; _ 1
DHRY; 1757

The Metric:

The Problem:

- Run Dhrystone with local optimir:
680 INST/ITER

- Variables in Registers: 461 INST/
Iteration

- Classical Optimizations (Global): 407

- Inlining + full optimizations: 297

- Theoretical limit (no input data): 0

