
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2015
Yale Patt, Instructor
Stephen Pruett, Siavash Zangeneh, Kamyar Mirzazad, Esha Choukse, Ali Fakhrzadegan, Zheng Zhao,
Steven Flolid, Nico Garofano, Sabee Grewal, William Hoenig, Adeesh Jain, Matthew Normyle
Final Exam, December 11, 2015

Name:

Part A:

Problem 1 (10 points):

Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (10 points):

Problem 5 (10 points): Part A (50 points):

Part B:

Problem 6 (10 points):

Problem 7 (15 points):

Problem 8 (20 points):

Problem 9 (25 points): Part B (70 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of theexam.

I will not cheat on this exam.

Signature

GOOD LUCK!
(HAVE A GREAT SEMESTER BREAK)

Name:

Problem 1. (10 points):

Part a. (5 points):
Construct the truth table for the following logic circuit.

Z

A

B

C

D

A B C D Z
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Part b. (5 points):
Cosntruct a logic circuit to implement the function:

f = (A AND B AND (NOT C)) OR ((NOT A) AND (NOT B) AND D)

F

A

B

C

D

2

Name:

Problem 2. (10 points):
Assemble the following program. You may not need every spaceprovided.

.ORIG x3000
LEA R1, BANNER
AND R2, R2, #0

AGAIN ADD R2, R2, #1
LDR R0, R1, #0
BRnp AGAIN

DONE ST R2, RESULT
HALT

;
BANNER .STRINGZ "Bevo"
RESULT .BLKW #3
MASK .FILL x0030

.END

x3000

x3001

x3002

x3003

x3004

x3005

x3006

x3007

x3008

x3009

x300A

x300B

x300C

x300D

x300E

x300F

x3010

x3011

x3012

x3013

3

Name:

Problem 3. (10 points): Shown below are the block diagram and the state diagram for a simple four state machine.

Master−Slave flipflop

Master−Slave flipflop

Combinational Logic
S1’

S0’

S1

S0

X Z

1
0

11

0

1 1

0
1

1 1

0,1

0100

0

S0S1

Note that upper left hand state is missing its label. Write itin the box provided.

Fill in the state table, and draw the logic circuits requiredto implement this state machine.

S1 S0 X S1’ S0’ Z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

S0’

S1’

Z

S0

X

S1

4

Name:

Problem 4. (10 points):

The instruction cycle of only one of the LC-3 instructions requires all three of the states 18, 32, and 15 to execute that
instruction.

Part a. (1 points): What is the assembly language name for that instruction’s opcode?

Part b. (9 points): The table below consists of three rows, one eachfor states 18, 32, and 15. The columns identify the
control signals of the LC-3.

Your job: Fill in the entries in the table.

If it does not matter what value is in that entry, put an x in that entry.

Note: Table C.1 at the back of your exam lists the signal values for each control signal. Use the signal value names
specified in Table C.1 as entries in the table you fill in below.

S
ta

te

LD
.P

C

LD
.M

A
R

LD
.M

D
R

LD
.R

E
G

G
at

eP
C

G
at

eM
A

R
M

U
X

G
at

eM
D

R

M
A

R
M

U
X

P
C

M
U

X

D
R

M
U

X

M
IO

.E
N

R
.W

18

32

15

5

Name:

Problem 5. (10 points):
The following program, after you insert the two missing instructions, will examine a list of positive integers stored in
consecutive sequential memory locations and store the smallest one in location x4000. The number of integers in the list
is contained in memory location x4001. The list itself starts at memory location x4002. Assume the list is not empty (i.e.,
the contents of x4001 is not zero.)

.ORIG x3000
LDI R1, SIZE
LD R2, LISTPOINTER
LDR R0, R2, #0
ADD R1, R1, #-1
BRz ALMOSTDONE ; Only one element in the list

AGAIN ADD R2,R2,#1
LDR R3,R2,#0
NOT R4,R3
ADD R4,R4,#1
ADD R4,R0,R4
BRnz SKIP

SKIP ADD R1,R1,#-1

ALMOSTDONE LD R5,MIN
STR R0,R5,#0
HALT

MIN .FILL x4000
SIZE .FILL x4001
LISTPOINTER .FILL x4002

.END

Your job: Insert the two the missing instructions.

6

Name:

Problem 6. (10 points):
As you know, the LC-3 ISA specifies that the JSR instruction saves the return linkage in R7, and JMP R7 returns to the
calling program. Some ISAs prefer to save the return linkageon the stack. There are actually pluses and minuses of doing
it that way, which you will learn before you graduate.

Suppose we decide to do that, have JSR cause the return linkage to be pushed on the stack and use the unused LC-3
opcode as the RET to pop the return linkage from the stack.

Your job: Fill in the boxes in the state machine below to implement JSR(R), RET if we implement the call/return mech-
anism by saving the return linkage on the stack.

R

R

BEN <− IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

32

MAR, SP <−−−− SP − 1

M[MAR] <−−− MDR

R

1 0

PC <−−− PC + offset11 PC <−−− BaseR

To State 18To State 18

JSR RET

To State 18

R

MDR <−−− M[MAR]

SP <−−− SP + 1

60

61

62

21 20

4

48

50

49

7

Name:

Problem 7. (15 points): The following user program (priority 0) is assembled and loaded into memory.

.ORIG x8000
LD R0, Z

AGAIN ADD R0, R0, #-1
BRnp AGAIN
LD R0, W
BRp L1
LD R0, X
TRAP x21
BRnzp DONE

L1 LEA R0, Y
TRAP x22

DONE HALT

X .FILL x34
Y .STRINGZ "OOOOPS!"
Z .FILL x100
W .BLKW #1

.END

Before this code executes, two things happen: (a) another program loads a value into W, and (b) a breakpoint is set at the
address DONE.

Then the run switch is hit and the program starts executing. Before the computer stops due to the breakpoint, several
interrupts occur and their corresponding service routinesare executed. Finally, the LC-3 stops due to the breakpoint.We
examine the memory shown, and R6, the supervisor stack pointer.

Memory
x2FF8 x0601
x2FF9 x0601
x2FFA x0500
x2FFB x0504
x2FFC x0204
x2FFD x0201
x2FFE x8004
x2FFF x8002
x3000 x8010
x3001 x8012

R6 x3000

Question: What does the user program write to the monitor? How do you know that?

8

Name:

Problem 8. (20 points):
Your job in this problem will be to add the missing instructions to a program that detects palindromes. Recall a palin-
drome is a string of characters that are identical when read from left to right or from right to left. For example, racecar
and 112282211. In this program, we will have no spaces and no capital letters in our input string – just a string of lower
case letters.

The program will make use of both a stack and a queue. The subroutines for accessing the stack and queue are shown
below. Recall that elements are PUSHed (added) and POPped (removed) from the stack. Elements are ENQUEUEd
(added) to the back of a queue, and DEQUEUEd (removed) from the front of the queue.

.ORIG x3050
PUSH ADD R6, R6, #-1

STR R0, R6, #0
RET

POP LDR R0, R6, #0
ADD R6, R6, #1
RET

STACK .BLKW #20
.END

.ORIG x3080
ENQUEUE ADD R5, R5, #1

STR R0, R5, #0
RET

DEQUEUE LDR R0, R4, #0
ADD R4, R4, #1
RET

QUEUE .BLKW #20
.END

The program is carried out in two phases. Phase 1 enables a user to input a character string one keyboard character at a
time. The character string is terminated when the user typesthe enter key (line feed). In Phase 1, the ASCII code of each
character input is pushed on a stack, and its negative value is inserted at the back of a queue. Inserting an element at the
back of a queue we call enqueuing.

In Phase 2, the characters on the stack and in the queue are examined by removing them, one by one from their re-
spective data structures (i.e., stack and queue). If the string is a palindrome, the program stores a 1 in memory location
RESULT. If not, the program stores a zero in memory location RESULT. The PUSH and POP routines for the stack as
well as the ENQUEUE and DEQUEUE routines for the queue are shown below. You may assume the user never inputs
more than 20 characters.

The program for detecting palindromes (with some instructions missing) are on the next page.

Your job, as stated earlier, is to fill in the missing instructions.

9

Name:

.ORIG X3000
LEA R4, QUEUE
LEA R5, QUEUE
ADD R5, R5, #-1
LEA R6, ENQUEUE ; Initialize SP
LD R1, ENTER
AND R3, R3, #0

;

TRAP x22
PHASE1 TRAP x20

BRz PHASE2
JSR PUSH

JSR ENQUEUE
ADD R3, R3, #1
BRnzp PHASE1

;
PHASE2 JSR POP

JSR DEQUEUE
ADD R1, R0, R1
BRnp FALSE

BRnzp PHASE2
;
TRUE AND R0, R0, #0

ADD R0, R0, #1
ST R0, RESULT
HALT

FALSE AND R0, R0, #0
ST R0, RESULT
HALT

RESULT .BLKW #1
ENTER .FILL x-0A
PROMPT .STRINGZ "Enter an input string: "

.END

10

Name:

Problem 9. (25 points):
Recall Problem 5 on Midterm 2. Dr. Patt liked that type of problem so much, we are going to try it again. We have a pro-
gram with some missing instructions, and we have a table consisting of some information and some missing information
associated with five specific clock cycles of the program’s execution. Your job is to complete both!

Part a: As on the second midterm, insert the missing instructions inthe program and the missing information in the table.
Cycle numbering starts at 1. That is, cycle 1 is the first clockcycle of the processing of LD R0,A. Note that we have not
said anything about the number of clock cycles a memory access takes. You do have enough information to figure that out
for yourself. Note that we are asking for the value of the registers DURING each clock cycle.

.ORIG x3000
LD R0, A
LD R1, B
NOT R1, R1
ADD R1, R1, #1
AND R2, R2, #0

AGAIN

BRn DONE
BRnzp AGAIN

DONE ST R2, C
HALT

A .FILL #5

B .FILL

C .BLKW #1
.END

PC: x3008

ADDR2MUX:

Information

35

57

LD.MDR:

LD.REG:

GateALU:

GateMDR:

1

1

State
Number

Cycle
Number

50

16

1 DRMUX:

GateALU: GatePC:

IR:MDR:

x0001

MDR:
x_4A_

DRMUX:

x0003

LD.IR:

LD.REG:

BUS:

PC:

BUS: x_040
IR:

GatePC:

1LD.PC:

ADDR1MUX:

ADDERPCMUX:

GateMDR:

LD.CC:

23

11

Name:

Part b: What is stored in C at the end of execution for the specific operands given in memory locations A and B?

Part c: Actually, the program was written by an Aggie, so as expected, he did not get it quite right. Almost, but not quite!
Your final task on this problem is to examine the code, figure out what the Aggie was trying to do, point out where he
messed up, and how you would fix it. It is not necessary to writeany code, just explain briefly how you would fix it.

What was the Aggie trying to do?

How did the Aggie mess up?

How would you fix his program?

12

R

R R

R R

To 18

To 18

To 18

To 8
(See figure C.7)

RTI

MAR <− PC
PC <− PC + 1

[INT]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−PC+off9

PC<−MDR

MAR<−PC+off9

MDR<−M[MAR]

RR

MAR<−MDR

MAR<−PC+off9

MDR<−M[MAR]

MAR<−MDR

MAR<−B+off6

MAR<−PC+off9

MAR<−B+off6

MAR<−PC+off9

MDR<−SR

DR<−MDR
set CC M[MAR]<−MDR

18

32

1

5

76

11

3

0

0

1
22

29

3126

23

24

25

27

To 18

To 18

To 18 To 18

To 18

0

R R

MDR<−M[MAR]

[IR[15:12]]

To 49
(See figure C.7)

28

30

2

10

NOTES

16

R7<−PC
MDR<−M[MAR]

B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT{offset9]
PC+off11 : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5]

set CC
DR<−NOT(SR) 9

NOT

14

set CC
DR<−PC+off9

LEA LD LDR LDI STI STR ST

JSR

ADD

AND

JMP

BR

1

RR

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P 1101

To 13

33

35

MAR<−ZEXT[IR[7:0]]
15

TRAP

To 18

PC<−BaseR

1 0

12

4

21

To 18

20

To 18

[IR[11]]

PC<−PC+off11
R7<−PC

PC<−BaseR
R7<−PC

13

14

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

16

1616

16

ALU

B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG

FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

15

Logic BEN

P
Z
N

IR[11:9]

(c)

IR[11:9]

111

DR

DRMUX

110

IR[11:9]

(b)(a)

IR[8:6]

110

SR1MUX

SR1

16

“app-c” — 2004/5/21 — page 572 — #8

Table C.1 Data Path Control Signals

Signal Name Signal Values

LD.MAR/1: NO, LOAD

LD.MDR/1: NO, LOAD

LD.IR/1: NO, LOAD

LD.BEN/1: NO, LOAD

LD.REG/1: NO, LOAD

LD.CC/1: NO, LOAD

LD.PC/1: NO, LOAD

LD.Priv/1: NO, LOAD

LD.SavedSSP/1: NO, LOAD

LD.SavedUSP/1: NO, LOAD

LD.Vector/1: NO, LOAD

GatePC/1: NO, YES

GateMDR/1: NO, YES

GateALU/1: NO, YES

GateMARMUX/1: NO, YES

GateVector/1: NO, YES

GatePC-1/1: NO, YES

GatePSR/1: NO, YES

GateSP/1: NO, YES

PCMUX/2: PC+1 ;select pc+1

BUS ;select value from bus

ADDER ;select output of address adder

DRMUX/2: 11.9 ;destination IR[11:9]

R7 ;destination R7

SP ;destination R6

SR1MUX/2: 11.9 ;source IR[11:9]

8.6 ;source IR[8:6]

SP ;source R6

ADDR1MUX/1: PC, BaseR

ADDR2MUX/2: ZERO ;select the value zero

offset6 ;select SEXT[IR[5:0]]

PCoffset9 ;select SEXT[IR[8:0]]

PCoffset11 ;select SEXT[IR[10:0]]

SPMUX/2: SP+1 ;select stack pointer+1

SP−1 ;select stack pointer−1

Saved SSP ;select saved Supervisor Stack Pointer

Saved USP ;select saved User Stack Pointer

MARMUX/1: 7.0 ;select ZEXT[IR[7:0]]

ADDER ;select output of address adder

VectorMUX/2: INTV

Priv.exception

Opc.exception

PSRMUX/1: individual settings, BUS

ALUK/2: ADD, AND, NOT, PASSA

MIO.EN/1: NO, YES

R.W/1: RD, WR

Set.Priv/1: 0 ;Supervisor mode

1 ;User mode

