Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall, 2008

Yale Patt, Instructor :

TAs: Jeffrey Allan, Arvind Chandrababu, Eiman Ebrahimi, Aravind Jakkani, Khubaib,
Allison Korczynski, Pratyusha Nidamaluri, Zrinka Puljiz, Che-Chun Su, Christopher Wiley.
Exam 1, October 08, 2008

Name: SOLU'T'ION SH(E'T

Problem 1 (20 points):
Prablem 2 (20 points):
Problem 3 (15 points):
Problem 4 (15 points):
Problem 5 (15 points):
Problem 6 {15 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are
contained in the space provided.

‘Note: Please be sure ybur name is written legibly on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!

Name:

Problem 1 (20 points)

Part a (4 points): For what values of A,B,C,D,E, and F will the output of the 6-input AND gate be 1.

A=B=F=¢& C=D=6c= |

4

om oo w >

|

Part b (4 points): Add the two numbers. They are in base 7. Your result should also be in base 7.

56042
03561

62(33

Part c (4 points}: The value -5 can be represented by strings of 0s and 1s according to the following data
types. Please show them below.

(vt

© 1l

0010

(1ol

ooijl OlD)

[] 0ooooo !

O 1 0 0DOCOODD: - &

8 bit 2’s complement integer
in ASCIT

32 bit floating point

Name:

Part d (4 points): An Aggie knew that an inverter contained one P-type transistor and one N-type transistor,
but he wired them up wrong, as shown below.

Out
e
Vv
What is the value of Out when A=0: _’L
What is the value of Out when A=1: Oll -}— _f , DA-IL,S

Part e (4 points): When a computer executes an instruction, the state of the computer 1s changed as a result
of that execution. Is there any difference in the state of the LC-3 computer as a result of executing instruction
I below vs executing instruction 2 below? Explain. We can assume the state of the LC-3 computer before
execution is the same in both cases.

instruction 1: 0001 00Q 000 1 00000 register 0 <—- register 0 + #0

instruction 2: 0000 111 000000000 branch to PC* + #0 if any of N,Z,or P is set

Put your answer {no more than 20 words) in the box below.

[NSTRJCTIOY 1 SCTS @OANDITIoA CobDCx
(NSTavcTiow 2 Dots Nor

Name:

Problem 2 (20 points)

Part a (7 points): A program wishes to load a value from memory into register 1, and on the basis of the
value loaded, execute code starting at x3040 if the value loaded is positive, execute code starting at x3080 if
the value loaded is negative, or execute code starting at location x3003 if the value loaded is zero. The first
instruction of this program (load a value into register R1) is shown in x3000.

Your job: write the instructions for locations x3001 and x3002.

x3000: - 0010 001 011111111
x3001: 0000 por oodntub
x3002: 0000 (00 D01Li 1101

Part b (7 points): The program segment below starts execution at x3000. When the program halts, what
is contained in register 07 :

x300C: 0101 000 000 1 00000 ;register Q <-- O
x3001: 0001 000 000 1 00001 ;register 0 <-- register 0 + 1

x3002: 0000 001 111111110 ;jbranch p -2
x3003: 1111 0000 0010 0101 ; TRAP x25
RO: | OdoooOCD Oooo oo o

Part ¢ (6 points): Two of the outputs of a 3 to 8 decoder are used as inputs to an AND gate as shown
below.

i e [D

Do you have enough information to say for certain what the output of f is?
If yes, give the value of f and explain why you have enough information. If no, explain what further
information you need.

Since Tae ECuT OvTPoTs OF Tue Dezopsn Can
Ony Have AT Que Time E}ACTL)/ One OF Tudm = |

| P
Oy Of Two Inputs To Tus AND Gar Most Be g . [=g

Name:

Problem 3 (15 points)

Shown below is a state diagram for a 4 state machine, and the truth table showing the behavior of this state
machine. Some of the entries in both are missing.
Note that the states are labeled 00, 01, 10, and 11 and the output of each state Z (0 or 1) is shown in each
state. The input is shown as X.

Your job, complete both the truth table and the state machine,

S[1} S[o] X | 811 S'[0}
0 0 11 10
0 1 0 0O 0 |
01 1] 0 1 1

5(1:01=00 S[1:0f=01

S[1:0}=10

Name;

Problem 4 (15 points)

Shown below is a byte-addressible memory consisting of 8 locations, and its associated MAR and MDR.
Both MAR and MDR consist of flip flops which are latched at the start of each clock cycle based on the
values on their corresponding input lines. A memory read is initiated every cycle and the data is available

by the end of that cycle.

Clack MAR

0 —~WE
0
o 0] Memory
I D{7] D{6] Df5] D{o}
MDR j=—— Clock

Just before the start of cycle 1, MAR contains 000, MDR contains 00010101, and the contents of each

memory location is as-shown.

Memory Location Value
x0 (1010000
xl 11110001
x2 10000011
x3 00010101
x4 11000110
x5 10101011
x6 00111001
x7 01100010

(a) What do MAR and MDR contain just before the end of eycle 1.

- MAR: 0190

MDR: | ©(0 {DOpO

{b) What does MDR contain just before the end of cycle 4.

MDR:

Please show your work.

Bebore ead o oyde, 1
Belore end P eyl 2 .

Sef e uw(o?q O'{oel- 3 .

Bedore enol oF ("[‘ﬁ' 4 -

-y

001100}

MAZ mp2

olo . ©i10(00coo
too . loocoo ot
lto (1090 ((g
80 o0l (|00,

Name:

Problem 5 {15 points)

An operate instruction present in most ISAs is MOD {example: MOD C,A,B). The result is the remainder
one gets when the dividend A is divided by the divisor B. It is sometimes written: A mod B. That is, 10
mod 3 = 1. 20 mod 6 = 2.

Since the LC-3 does not have a MOD instruction, we wish to write a program to produce the result: A mod
B. It will require dividing A by B. Since the LC-3 does not have a Divide instruction either, we will extend
the idea we used in class to multiply two numbers together by successive additions. That is, we can perform
Division by successively subtracting the divisor from the dividend the proper number of times.

The program below will produce A mod B, the remainder when we divide A by B, and store the remainder in
location x3102. The dividend (A) is initially in location x3100 and the divisor (B) is initially in location x3101,

Your job: fill in the missing instructions so the program works correctly.

3011 CO0Q Q000 0000 ; Starts at x3000
0010 001 Q11111111 ; Loads A from x3100 into R1
0010 010 011111111 ; Loads B from %3101 into R2
ool o010 OO0 (i1} ¢+ NoT Rl- R2
0001 010 010 1 00001 ; Adds 1 to R2 and stores in R2
0001 001 Q0% Q00 010 ; Adds R1 and R2 and stores result in Ri
0000 011 111111110 i If zero or positive, branches to previous instruction
0010 010 011111010 ; Loads value from %3101 into R2 .
0001 oot 0ol 000 010! [ApD RZ,Ri_yR,
0011 001 011111001 ; Stores value in R1 into x3102
1111 0000 00100101 ; Halt

Name:

Problem 6 (15 points)

One of the opcodes we have not considered yet in class is LDI (1010), which stands for Load Indirect, It is
almost identical to LD (0010), which you already know. The difference is as follows: Both instructions use
PC' + offset9 to compute a memory address. In the case of LD, the contents of the corresponding memory
location is the value that gets loaded into the specified register. In the case of LDI, the contents of that
memory location is the ADDRESS of the memory location that contains the value to be loaded into the
specified register.

For example, if the instruction 0010 011 011111111 is in location x3000, and location x3100 contains x5000,
you know that the computer will load %5000 into register 3. If instead, the instruction 1010 011 011111111
is in location x3000, and x3100 contains x5000, and location x5000 contaings x0008, the computer would load
the value x0008 into register 3.

All instructions are processed, clock cycle by clock cycle, as the computer goes through the FETCH, DE-

~ CODE, ete. phases of the instruction cycle.

Your job: Fill in the table below, showing the contents of each of the registers at the end of each clock cycle.
Use as many clock cycles as you need. It is not necessary to use all that are provided.

At the start of clock cycle 1: :

. Memory Location | Value
x3030 xARS2
x30B3 x6000
x6000 x0002

Note: Recall that during a clock cycle, combinational logic is carried out, based on the values in the registers
at the start of that clock cycle. The results of that combinational logic are latched into the registers at the
end of the clock cycle (and ONLY at the end of the clock cycle}, so as to be available to the logic in the next
{(subsequent) clock cycle. '

Note: Assume a memory access takes one clock cycle. That is, the memory read uses the contents available
in MAR at the start of the clock cycle to determine the location to be read, and latches the data from that
location into MDR. at the end of the clock cycle. ‘

Note: We have provided the data sheet for LDI from Appendix A, and the state machine of the LC-3 from
Appendix C, although neither may be NECessary.

PC IR MAR MDR Reg 4
Before Execution x3030 x1540 x302F x1540 x0005
At end of cycle 1 %3073) x303°
At end of cyele 2 x AYE 2.
At end of cycle 3 7 ¥ 2

At end of cycle 5 x20E3
At end of cycle 6 x 600D
At end of eycle 7 ¥ LDRO ,
At end of cycle 8 | ' vODO 2.

At end of cycle 9 ' ®x00D 2
At end of cycle 10
At end of cycle 11
At end of cycle 12

At end of cycle 4 plid.Di'e

38

chapter 2 Bits, Data Types, and Operaticns . .

23

1 =

8 | <

S| exponent

fraction

exponent - 127

N = (=1)° x 1fractlon x 2 ,1 5 exponent g 254
Figure 2.2 The floating point data type
The Standard ASCII Tahle
ASCH ASCII ASCII ASCH
Character Dec Hex | Character Dec Hex | Character Dec Hex | Character Dec Hex
Al 0 00 | sp 32 20 | @ 54 40 g 96 &0
sch 1 01 | 33 21 |a 65 41 la 97 61
BLX . 2 02 » 34 22 |B 66 42 | b 98 62
etx 3 03 |# 35 23 |C 67 43 | ¢ 99 63
eot 4 04 § 36 24 {D 68 44 {4 100 64
eng 5 05 % 37 25 [E 69 45 | e 101 &5
ack 6 06 | & 38 26 | F 70 46 | £ 102 66
bel 7 07 ‘ 39 27 | 71 47 | g 103 67
- bs a o8 |« 40 28 | H 72 48 | h 104 63
ht 3 09) 41 29 I 73 49 {4 105 &9
1f. 10 O0A | * 42 28 | 74 4A | 3 106 .6A
vt + 0B |+ 43 2B | K 75 4B | k 107 6B
£F 12 0C ‘ 44 2C | L 76 4C |1 108 &C
er 13 ob | - 45 20 | M 77 4D I m 109 6D
s0 14 OE ; 46 2E |m 78 4E | n 110 &E
si 15 ofF |/ 47 2F o 79 4F Jo 111 &F
dle 16 10 | o 48 30 | p 80 50 |p 112 70
del 17 11 1 49 31 |g 81 51 | g 113 71
de2 18 12 2 50 32 {R B2 52 |r 114 72
de3 19 13 3 51 33 |s 83 53 |& 115 73
, dcs 20 14 | 4 52 34 [T B4 54 |t 116 74
~ nak 21 15 5 53 35 | U 85 55 |u 117 75
syn 22 16 6 54 36 |V 8 56 |v 118 76
etb 23 17| 7 55 37 | w 87 57 |w 119 77
can 24 18 | 8 56 38 |x 88 58 | =x 120 78
em 25 19 9 57 39 |[Y 8 59 |y 121 79
sub 26 1A : 58 3A |z 90 SA |z 122 7A-
ese 27 18 | 59 3B | 91 5B | { 123 78
fs 28 1 | < 60 3¢ |\ 92 sC | 124 7¢
g8 24 1D | = 81 30 |1 93 5D |} 125 7b
ra 30 1E | » 62 3E | * 94 Sg | - 126 7E
us 31 IF |7 63 3F | _ 95 5F | @el 127 7F

1514 1312 11 109 8 7

6 54 3 2 1
T

0

i T T T H [] T [T
ADD+ 0001 DR SR1 0l 00 SH2
] ! 1 1
:' : : Il : : T T T T T
ADD* 0001 DR SR1 1 imm5
. 1 L 1 1 1 1 1 1 1 1 1
T 1 T 1 T F T T T T
AND* o1 DR " 8R1 01 o0 SR2
| 1 L L] 1 1 i 1 1
T T H T I 1 1 [T T T
AND* 101 DR SR1 1 imm5
1 L 1 1 1 L 1
: : : — A S e T
BR 0000 zZ|(p PCoffset9
1 1 1 1] 1 1 1 1 1 i
T H T T T T T T T T T T
JMP 1100 Qo0 BaseR 000000
1 1 1 1 1 1 1 L
fl : : T T [T~ T T T T T T
JSR 0100 PCoffset1q
1) 1 1 ! 1 I | J |] [l
H I T T T T I 4 1 I T
JSRR 0100 00 BaseR 000000
1 b 13 1] | 1 1 1 1
Il T : T] T T T T 1) T - T T
LD 0010 DR PCoffsetg
L] 1 i 1 1 A 1 H L 1 1 i)
T T : T T T H T T T T 1] T
LDi* 1010 DR I PCoifsete
1 1 L 1 1 1 i | 1 1 | 4 1
T T)] T 1 1 T T T T I T
LDR* 0110 DR BaseR - offsets
: | 1 1 I -l 1 1)| 1 H I 1
¥ 1 I T I T T T] T T I T
LEA* 1110 DR PCoffsetg
1 i i 1 1 1 1 L | 1 1 I I
T T T T T T T T T T T T
NOT* 1001 DR SR 11111
1 1 1 1 I] 1 11 1 1 i
1 T] T T T [T T T T T
RET 1100 000 111 000000
L1 1 I 1 I 1] 1 1 |
T T T 1 T 1 i i T 1 1 T *
RTI 1000 000000000000 .
1 L i L L 1 1] I 1 1], i 1
] T 1 T T T 1)] T i T T 1
ST 0o SR PCoffsetg
L l | ' i i | L] i L 1 1
T] ¥ T T T T T) T t T
STI 1011 SR PCoffsetg
1 1 1 d 1 1] 1 1 I I i
T T T T F T T T T T T
STRH (IR SR BaseR oftset§
)3 1 | 1 1 1 1] I i 1
I T T T T L) 1 T i T T T T
TRAP 1111 0600 trapvect8 ‘I
1 1 L 1 1 L 1 L L
T L] T T 1 - T 3 T I1 T : II : I .
reserved 1101
| I 1 1 1 1 l 1 1] 1] L L 1

Formats of the entire LC-3 instruction set, NOTE: +

condition codes

indicates instructions that modify

532

appendix a Tha LC-3 ISA

L DI Load Indirect

Assembler Format
LDI DR, LABEL

Eﬁcoding

15 12, 11 9 a
T T T T T ¥ T T T T T T T
1010 DR PCoffsei?
1 1 1 !] 1

I] L 1}

Operation

DR = mem [mem [PCT + SEXT (PCoffsets)]];
setce() ;

Description

An address is computed by sign-extending bits {8:0] to 16 bits and adding this
value to the incremented PC. What is stored in memory at this address is the
address of the data to be loaded into DR. The condition codes are set, based on
whether the value loaded is negative, zero, or positive.

Example
LDI R4, ONEMORE R4 « mem[mcm{ONEMORE]]

! This is the incremented PC,

142

chapter 5 The LC-3

GateMARMUX GatePC
16
LD.PC PC
}.JdARMU‘X A___i y
+1
s Ao) proze] REG
PCMUX\ FILE
J 4 4 - ID.REG—&
16 A 16
SR2 3 SR2 SR1 3 SR1
ZEXT ouT OUT <7~
4 I
1701 / + Als A6
/. y
ADDRZMUX ! ADDRIMUX
£/ \ /
4 4 f f /16
6 Als A6 Als {6
[4:01 [
[8:0] /
] SR2MUX/ .
- : L
[5:0] FINITE [16
T R— N 0Y S A
_ IMACHINE B A
. UK ALU
TIJCONTROL -
.
. N[z[PJe-toce : 2
16 LOGIC
GateALU
16
GatsMDR
16 16 16
LD.MDR MDR MAR LD.MAR
y
16
MEMORY INPUT OUTPUT
MEM.EN, R.W

Figure 5.18 The data path of the LC-3

568 appendix ¢ The Microarchitecture of the LC-3

MAR <-PC
PC<—PC+1
[iNT]

To 49
(Sea Figure C.7}

IR<-MDR

BEN<—IR[11] & N + IR[10] & Z + IR[9] &

To8 To 13
(See Figure C.7) [IR[15:12]] ¢
o .
DR<«-SR1+0OP2" [BEN]
setCC Lol sn
1

22
12
4

R7<-PC
{iR[11]]

1 0
y 21
PC«—PC+ofi11
20

To 18
PC<-BaseR

To 18

To 18 To 18

To 18 To 18

10 1
@AFR—PC-H)@ @AHq:-—PCm@

: ‘ 24 ‘ 29
C@DR«M[MAF@ @:ne-ww\nb

R R R R

To 18

MAR<-B+aif6 MAR<-B+ofi6

r

MAR<-MDR

F
MAR<-MDR

28

To 18

NOTES

B+ofi6 : Base + SEXT(offsets]
PC+oft9 : PG + SEXT{ofiset9)
16 PC+off11: PC + SEXT[offset!1)

MDR<~SR

*0P2 may be SR2 ot SEXT{imms]

M[MAR}<~MDR
= —_

To 18 Toi8

Figure C.2 A state machine for the LC-3

“app-c” — 2003/6/30 — page 568 — #4

