Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306. Fall 2009
Yale Patt, Instructor
Aater Suleman. Chang Joo Lee, Ameya Chaudhari, Antonius Keddis, Arvind Chandrababu, Bhargavi Narayanasetty,

Eshar Ben-dor, Faruk Guvenilir, Marc Kellermann, RJ Harden, TAs
Exam 2, November 18, 2009

Name: SO,QWEI on

Problem | (15 points):

Problem 2 (15 points);
Problem 3 (20 points):
Problem 4 (10 points):
Problem 5 (20 points):

Problem 6 (20 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!

Name:

Problem 1. (15 points):
Part a. (5 points): Two lines of assembly code contain the following:

.STRINGZ "000"
.BLKW 4

Does the assembler generate the identical lines of machine code for both pseudo-ops? If yes, what is the machine code. If
no, explain the difference (in no more than 20 words).

No. Twe STRINGZI. Arsembies Wt o 730,)(30,3&‘30! x 0O
The Lour words w . BLXW o wot syecitied

Partb. (5 points): In the data path, there is a MUX (PCMUX) whose output is used to load the PC. There are three inputs
to that MUX. For each input, list the LC-3 instructions that use that input at some point in their instruction cycles.

Left input Middle input Right input
TRAP SMP, TSR, SR AL
11 %, RET
(IMP)

Part c. (5 points): In two successive clock cycles. the PC is loaded. How is that possible? Explain in no more than 20
words.

The wistructiov Wy et divished s a contrel imehruction
ovnd e nexk wisYrudtion wan yust Tercwid |

(]

Name:

Problem 2. (15 points):
Part a. (10 points): A student wrote the following assembly language program:

.ORIG x4000

C LEA R2,ONE

\ AND RS5,R5, #0
TWO @ ADD R2,R2,#2

3 STR R5,R2, #0

4 BRzp TWO
S TRAP x25
ONE & .BLKW #50

THREE .STRINGZ "Input a character:"
FOUR .FILL xC000
.END

PC initially contains x4000.
Does the program ever halt? Circle one:@ NO
If yes, explain what makes it halt. If no, eXplain why not.

Whin Tae boils ™ R vopchey XBamo.

What does this program do (in no more than 15 words)?

Store 0x0000 in every other memory location from x4008-x8000

Part b. (5 points): In assembling the program of part a, the assembler creates a symbol table during the assembly process.

Show the symbol table in the box below.

Symbol Address

TWO

x Yoo

ONE | x YWoob
THREE | x o328
+OULR |xUoLB

L

x\-‘\()“-'c’

x 32
- -

x 1o 38
e

x 4038
i

M oyB

suleman
Text Box
Store 0x0000 in every other memory location from x4008-x8000

Name:

Problem 3. (20 points): As you know, in order to store into memory location A a value that is contained in memory
location B, we have to first load the value into a register, and after that store it into A. Someone suggested we could do
this with a single new instruction without changing the datapath in any way. Using the reserved opcode 1101, the new
instruction has the following format:

15 12,11 9 8 6,5 0

T 1 I I T T T T T T

MOV 1101 000 DR Offseté

1 1 1 1 L L 1

L

The address of the source is computed by adding the incremented PC to SEXT(IR[5:0]). The address of the destination is
in the register specified by IR[8:6].

Shown below are four states of the state machine required to do this job, labeled S1, S2, S3, and S4. A partial table of
control signals is shown on the next page.

Part a. (10 points): Identify what processing is necessary in states S| and S3.

32
BEN <- IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12])

NN

MAL < PCx offsetb

(TR:0]
R C[MDR <- M[MAR]

Sl

S2

AN

R
S3
MR <= DR
' S4
— ™
RC(M[MAR] <- MDR ,JI
R
To State 18

Name:

Part b. (10 points): Complete the table, identify the value of each control signal during each of the four states S1, S2, S3,
and S4. Use the convention specified below.

Note: For a particular state, if the value of a control signal does not matter, fill it with an X.

State ADDRI! | ADDR2 | MAR | ALUK LD. LD. Gate Gate Gate | MIO.EN | R/'W
MUX MUX MUX MAR | MDR | MARMUX | ALU | MDR
S1 0 0
| [\o| V| X |\]|oOo] | 0|0
S2 X X X X 0 1 0 0 0 1 0
S3 0 0
o| W[l || X]|]|O \ 0 |0
S4 X X P % X 0 0 0 0 0 1 |
ADDRIMUX 0: SR10OUT
1l: PC
ADDR2MUX 00: IR[10:0]
0l: IR[S:O]
10: IR[S:O]
11: 0
MARMUX 0: ZEXT(IR[7:0])

1: From adder

ALUK 00: ADD
01: AND
10: NOT

11: Pass input A

LD.MAR 0: load not enabled
1: load enabled

LD.MDR 0: load not enabled
1: load enabled

GateMARMUX 0: do not pass signal
1: pass signal

GateALU 0: do not pass signal
1: pass signal

GateMDR 0: do not pass signal
1: pass signal

MIO.EN 0: memory not accessed
1: memory accessed

R/W 0: Read
1: Write

Name:

Problem 4. (10 points): The following program is supposed to take a string of lower-case letters entered from the
keyboard. convert the characters to upper-case, and then display the resulting string on the screen.

.ORIG x3000
LEA RO, PROMPT
TRAP x22 ; print prompt

LEA R1, INPUT

AGAIN TRAP x20 ; input a character
TRAP x21 ; echo the character
ADD R2, RO, #-10 ; subtract line feed
BRz DONE
JSR CONVERT ; call convert
STR RO, R1, #0 ; save letter

ADD R1, R1l, #1 i
ERnzp AGAIN

DONE AND RO, RO, #0
STR RO, R1, #0 ; save NULL
LEA RO, INPUT
TRAP x22 ; print output string
HALT
CONVERT ST R2, SaveR2
LD R2, MASK
AND RO, RO, R2 ; convert to uppercase
LD R2, SaveR2
RET
SaveR2 .BLKW 1

PROMPT .STRINGZ "Type a string, followed by Enter:"

INPUT .BLKW 8
MASK .FILL x00DF ; NOT of 0x20
.END

The program was executed twice with the following results displayed on the screen:
First time:

Type the string, followed by Enter: abcd
ABCD

Second time:

Type the string, followed by Enter: introduction
INTRODUCT®@DD

Explain why “ion" was converted into *@DD" rather than “ION". Please be specific.

The \efter T geowrote The MASK. Letters ofter
MU' ace FEERNDed with x5L, weheod o} xDF.

Tor e::“\?\,_) T(xS4W) AND \Kxé"\) 1ve ® (x'-*\O).

Siwilorly , TRSH) AND 8(x 6F) & (xluly)

6

Name:

Problem 5. (20 points): There are times when one wants to implement a stack in memory, but can not provide enough
memory to be sure there will always be plenty of space to push values on the stack. Furthermore, there are times (beyond
EE 306) when it is okay to lose some of the oldest values pushed on the stack. We can save that discussion for the last
class if you like.

In such situations, a reasonable technique is to specify a circular stack as shown below. In this case, the stack occupies
five locations x3FFB to x3FFF. Initially, the stack is empty, with R6 = x4000. The figure shows the result of successively
pushing the values 1, 2, 3.4, 5, 6. 7, 8 on the stack.

x3FFB | x0005
x0004
" x0008 l=——R6

Pt]
x0007 |

x3FFF | x0006 |

That is. the | was written into x3FFF, the 2 was written into x3FFE, etc. When the time came to push the 6, the stack was
full, so R6 was set to x3FFF, and the 6 was written into x3FFF, clobbering the | which was originally pushed.

If we now pop five elements off the stack. we get 8, 7. 6, 5.and 4, AND we have an empty stack. even though R6 contains
x3FFD. Why? Because 3,2, and | have been lost. That is, even though we have pushed 8 values, there can be at most only
five values actually available on the stack for popping. We keep track of the number of actual values on the stack in RS.

Note that RS and R6 are known to the calling routine, so a test for underflow can be made by the calling program using
RS5. Further, the calling program puts the value to be pushed in RO before calling PUSH.

Your job: Complete the assembly language code shown below to implement the PUSH routine of the circular stack by
filling in each of the four boxes with a missing instruction. We will save the POP routine for the final exam.

PUSH ST R1, SAVER
LD R1, NEGFULL
ADD R1, R6, R1

%RP e

LD R6, BASE

SKIP ADD R6, R6, #-1
LD R1, MINUSS
ADD R1, R5, R1
BRz END

ADD RS9 R |
END =T R R(b’v\(-,,:ﬁo

LD R\, SAVER

RET
NEGFULL .FILL xC005 ; X-3FFB
MINUSS5 .FILL xFFFB ; #=5
BASE LFILL x4000

SAVER .BLKW #1

Name:

Problem 6. (20 points):
following values:

A program running on the LC-3 has reached a breakpoint. The LC-3 registers contain the

[PC | RO R1

R2 R3

R4 RS

R6 R7

| XFOI8 | xFF11

xBICD

xE000 | x613C

x3151 | xAC22

x1234 | xFO19

The computer operator immediately presses the run button, resuming execution. The table below shows a memory trace

of the first seven memory accesses after execution resumes.

Hint: What state is the computer in when a breakpoint occurs? Therefore, what is the first memory access when execution

is resumed?

Your job:

I st:

2nd:
3rd:
4th:
Sth:
6th:
Tth:

MAR MDR

x £000 xE002

% EOO\ xBFFE

x =000

){EUOD. X'FO[C\
N EOO%‘- xTF olQ
xOG lq x1A00

Part a. (14 points): Fill in the missing values in the above table.

Part b. (6 points): What are the values in PC, R0, and R7 during the cycle in which the 8th memory access occurs.

PC:| \p‘(}@

RO:

«\= 063

> Fetched TSRR 2,
5LEA ?\(b,#lj ?\?54-‘ XEOO3,?C€;?\L
ySTT W1, #®-2)

x Cood)%e)t oddress

5 sYove

> TRA? x\9
\ -‘tmb voutme’s odd ress.

53@-

RZ[x Eood

T2
RHexFa

L

