
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2009
Yale Patt, Instructor
Aater Suleman, Chang Joo Lee, Ameya Chaudhari, Antonius Keddis, Arvind Chandrababu, Bhargavi Narayanasetty,
Eshar Ben-dor, Faruk Guvenilir, Marc Kellermann, RJ Harden, TAs
Final Exam, December 15, 2009

Name:

Part A:

Problem 1 (10 points):

Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (10 points):

Problem 5 (10 points): Part A (50 points):

Part B:

Problem 6 (20 points):

Problem 7 (20 points):

Problem 8 (20 points):

Problem 9 (20 points): Total (130 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of theexam.

I will not cheat on this exam.

Signature

GOOD LUCK!
(HAVE A GREAT SEMESTER BREAK)

Name:

Problem 1. (10 points): The following program is written in LC-3 Assembly Language. To generate the binary, the LC-3
Assembler must first create a symbol table corresponding to the program.

Your job: Create the symbol table. Use as many entries in the table as you need.

.ORIG x3000
MAIN LEA R0, S1

LEA R1, BUF
LD R2, NEGo

AGAIN LDR R3, R0, #0
ADD R4, R3, R2
BRnp SAVE
LD R3, ZERO

SAVE STR R3, R1, #0
ADD R0, R0, #1
ADD R1, R1, #1
ADD R3, R3, #0
BRnp AGAIN
HALT

NEGo .FILL x-6F
BUF .BLKW x30
S1 .STRINGZ ‘‘Good luck’’
ZERO .FILL x30

.END

Symbol Address

2

Name:

Problem 2. (10 points): Recall programming lab 5 where you wrote a keyboard interrupt service routine which displayed
a typed character ten times on the screen, followed by a line feed. One student who is preoccupied with other things sub-
mitted the following as his keyboard interrupt service routine. Five instructions in his code are incorrect.

Your job: For each of the incorrect instructions, enter the correct instruction in the table on the right in the same row as
the corresponding incorrect instruction. For example,STR R0, SaveR0 should beST R0, SaveR0, as shown.

Complete the table on the right by adding ONLY the four correct instructions that correct the four remaining bugs. Please
do not copy any instruction into the table on the right if theyare already correct.

Incorrect code Corrected instructions (ONLY)
.ORIG x2000

STR R0, SaveR0 ST R0, SaveR0

ST R1, SaveR1

ST R2, SaveR2

LD R0, KBDR

AND R2, R2, #0

ADD R2, R2, #10

DSP RDY LDI R1, DSR

BRn DSPRDY

STI R0, DDR

ADD R2, R2, #-1

BRp DSPRDY

ENTER LD R0, LF

DSP RDY1 LDI R1, DSR

BRn DSPRDY1

STI R0, DDR

LD R0, SaveR0

LD R1, SaveR1

LD R2, SaveR2

RET

SaveR0 .BLKW #1

SaveR1 .BLKW #1

SaveR2 .BLKW #1

KBDR .FILL xFE02

DSR .FILL xFE04

DDR .FILL xFE06

LF .FILL x000A

.END

3

Name:

Problem 3. (10 points): Design a digital logic circuit that implementsthe following truth table.

A B C OUT

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Please draw the logic circuit inside the box below. Connect the inputs and the output of your circuit to the wires labeled
A, B, C, and Out. You can useonly AND, OR, and NOT gates. You can use as many of them as you need.

Out

A

C

B

4

Name:

Problem 4. (10 points): One algorithm for dividing a positive (non-zero) even number by 2 is to load the even number
into one register, load a second register with 0, and then continually decrement the first and increment the second, until
you have the same value in both registers. That value is your original even number divided by 2.

Example: Take the value 10: (10,0)→ (9,1)→ (8,2)→ (7,3)→ (6,4)→ (5,5). Hooray!

The subroutine shown below, with the two missing instructions, performs this algorithm.

Your job: Insert the two missing instructions.

LDI R0, INPUT
AND R1, R1, #0

AGAIN ADD R0, R0, #-1
ADD R1, R1, #1
NOT R2, R0

ADD R2, R2, R1

STI R0, OUTPUT
RET

INPUT .FILL x3100
OUTPUT .FILL x3101

5

Name:

Problem 5. (10 points): This problem tests your knowledge of the instruction cycle for processing the NOT instruction.
You are asked to show the values of several control signals inevery clock cycle of the sequence that is used to process the
NOT instruction.

The instruction cycle starts with state 18 as shown in the table below.

Your job: Identify each state in the sequence, and show the values of the control signals listed during each state in the
sequence. Use the convention specified below. For a particular state, if the value of a control signal does not matter, fillit
with an X. You may not have to use all the rows.

Note: Assume a memory access takes one clock cycle.

Cycle State LD.PC LD.MAR LD.MDR LD.REG LD.CC GateALU GatePC ALUK PCMUX

1 18

2

3

4

5

6

7

8

9

10

LD.PC 0: load not enabled GateALU 0: do not pass signal
1: load enabled 1: pass signal

LD.MAR 0: load not enabled GatePC 0: do not pass signal
1: load enabled 1: pass signal

LD.MDR 0: load not enabled ALUK 00: ADD
1: load enabled 01: AND

10: NOT
LD.REG 0: load not enabled 11: Pass input A

1: load enabled
PCMUX 00: PC+1

LD.CC 0: load not enabled 01: BUS
1: load enabled 10: from adder

6

Name:

Problem 6. (20 points): In the spirit of the IEEE Floating Point standard, we have specified a 16-bit floating point data
type. Bit[15] is the sign, bits[14:10] contains an excess-15 code for the exponent, bits[9:0] contains the fraction.

The subroutine shown below tests the floating point value contained in R0 and returns 0 in R5 if itis an integer, and returns
1 in R5 if it is not an integer. Three instructions in the subroutine have been omitted. Your job: insert the missing three
instructions.

Note: This subroutine calls another subroutineRightShift10 (not shown) which right shifts the contents of R1 by 10
bits, and returns the result in R1.

CHECK AND R5, R5, #0

; left shift the floating point number 6 bits, moving fraction bits into R2[15:6]
ADD R2, R0, #0
AND R3, R3, #0
ADD R3, R3, #6

LOOP1 BRz EXP
ADD R2, R2, R2
ADD R3, R3, #-1
BRnzp LOOP1

; move exponent into R1[4:0]
EXP LD R1, MASK1

AND R1, R1, R0
JSR RightShift10
ADD R1, R1, #-15

; determine if floating point number is an integer

ADD R5, R5, #1
BRnzp END

LOOP2 BRz NEXT

ADD R1, R1, #-1
BRnzp LOOP2

; report the result

NEXT ADD R2, R2, #0

ADD R5, R5, #1

END RET
MASK1 .FILL x7C00

7

Name:

Problem 7. (20 points): The interrupt service routine shown below is loaded into the LC-3 memory, and then the user
program shown below is loaded into the LC-3 memory. Then, therun button is pressed.

Interrupt service routine

.ORIG x2000
ST R0, SaveR0
ST R1, SaveR1
LDR R0, R6, #0
ADD R0, R0, #1
STR R0, R6, #0
LDR R0, R6, #1
LD R1, Mask
AND R0, R1, R0
ADD R0, R0, #4
STR R0, R6, #1
LD R0, SaveR0
LD R1, SaveR1
RTI

SaveR0 .BLKW 1
SaveR1 .BLKW 1
Mask .FILL xFFF8

User Program

.ORIG x4000
... ;initialize keyboard interrupt handler as x2000

LEA R0, S1
AGAIN TRAP x22
A AND R2, R2, #0 ; <=================== Interrupt during this instruction

BRz SKIP
BRz SET
ADD R2, R2, #-5

SET ADD R2, R2, #10
AGAIN2 BRnz DONE

LEA R0, S2
TRAP x22
ADD R2, R2, #-1
BRnzp AGAIN2

SKIP BRnzp AGAIN
DONE HALT

S1 .STRINGZ "UT "
S2 .STRINGZ "Rules "

.END

In the absence of any keyboard input, what does the User Program do (in no more than 10 words)?

At some point during the execution of the User Program, a key on the keyboard is pressed causing an interrupt. This
happens while the LC-3 is executing the instruction at location A.

What does this program doafter the key is pressed (in no more than 10 words)?

8

Name:

Problem 8. (20 points): The table shows the contents of all the relevant(and some irrelevant) registers at the completion
of three SUCCESSIVE instructions (I1, I2, and I3) of a program. Complete the table by filling in the missing entries.
Ignore entries that contain dashes.

Notes:
1. None of the three instructions is an LD, LDR, LDI, or LEA.
2. All interrupts are disabled during the execution.
3. R7 is not modified by any instruction in the program except I3.

I1 I2 I3

PC ——————-

MAR ——————- x0022

MDR ——————- x1000

R0 x389A

R1 x01B1

R2 x1234

R3 x2222

R4 x2345

R5 xFFFE

R6 x2678

R7 x4764 x4764 x5111

N 0 1 1

Z 1 0 0

P 0 0 0

Identify instructions I2 and I3.

I2:

I3:

9

Name:

Problem 9. (20 points): A program running in privilege mode (PSR[15]=0) suddenly stops due to a breakpoint set at
location x2000. The operator immediately pushes the run button.

The table lists in order the next nine memory accesses (MAR and MDR of each).

Your job: Complete the missing entries in the table.

Note: Do not make any assumptions about the values stored in registers or memory locations except what can be deduced
from the trace.

MAR MDR

x8000

x1050

x0004

xBCAE

x2800 x2C04

x1

x1052 x3C4D

x2C0A

10

“app-a” — 2003/6/30 — page 525 — #5

A.3 The Instruction Set 525

BaseR 000000

DR

DR SR 111111

000000000000

SR

BaseR offset6

0000 trapvect8

0 00 BaseR 000000

1 PCoffset11

PCoffset9

PCoffset9

PCoffset9

PCoffset9STI

STR

TRAP

+

+

+

+

+

+

+

+

+

reserved

15 12 11 017 6 5 4 3 210 9 81314

zn p

DR SR1 1 imm50101

0000

000

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

DR

DR

1100

1010

0110

1110

1001

1100

1000

0011

BaseR offset6

000 111 000000

SR1011

0111

1111

1101

SR

0100

DR0010

0100

PCoffset9

PCoffset9

BR

AND

ADD

ADD

AND

JMP

LD

LDI

LDR

LEA

NOT

RET

RTI

ST

JSRR

JSR

Figure A.2 Format of the entire LC-3 instruction set. Note: + indicates instructions that
modify condition codes

“app-c” — 2003/6/30 — page 568 — #4

568 appendix c The Microarchitecture of the LC-3

R

R R

R R

PC<–BaseR

20

To 18

PC<–BaseR

R7<–PC
[IR[11]]

1 0

12

4

PC<–PC+off11

21

To 18

To 18

To 18

To 18

To 18

To 8
(See Figure C.7)

RTI

MAR <–PC
PC<–PC+1

[INT]

MDR<–M

IR<–MDR

R

DR<–SR1+OP2*
set CC

DR<–SR1&OP2*
set CC

[BEN]

PC<–PC+off9

PC<–MDR

MAR<–PC+off9

MDR<–M[MAR]

RR

MAR<–MDR

MAR<–PC+off9

MDR<–M[MAR]

MAR<–MDR

MAR<–B+off6

MAR<–PC+off9

MAR<–B+off6

MAR<–PC+off9

MDR<–SR

DR<–MDR
set CC

M[MAR]<–MDR

18

32

1

5

76

11

3

0

0

1
22

29

3126

23

24

25

27

To 18

To 18

To 18 To 18

To 18

0

R R

MDR<–M[MAR]

To 49
(See Figure C.7)

28

30

2

10

NOTES

16

MDR<–M[MAR]
R7<–PC

B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT{offset9]
PC+off11 : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5]

DR<–NOT(SR)
set CC

9

NOT

14
DR<–PC+off9

set CC

LEA LD LDR LDI STI STR ST

JSR

ADD

AND

JMP

BR

1

RR

BEN<–IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

1101

To 13

33

35

MAR<–ZEXT[IR[7:0]]
15

TRAP

Figure C.2 A state machine for the LC-3

Chang Joo Lee
텍스트 상자

Chang Joo Lee
텍스트 상자
[IR[11]]

Chang Joo Lee
텍스트 상자
PC<–PC+off11 R7<–PC

Chang Joo Lee
텍스트 상자
PC<–BaseR R7<–PC

“app-c” — 2003/6/30 — page 577 — #13

C.6 Interrupt and Exception Control 577

MAR<–PC
PC<–PC+1

[INT]

IR<–MDR

BEN<–IR<11>⋅N+IR<10>⋅Z+IR<9>⋅P
[IR[15:12]]

37

45

49

18

33

35

32

MDR<–M

R
R

0
1

Write

R

Write

R

MDR<–M

R

PC<–MDR

41

47

43

0 1

34

51 59

13

48

50

52

54

RTI

MDR<–M

R

MDR<–M

R
R

T

To 18

T

T T

o

o

o o

18

To 18

45

4537

44

8
1101

36

38

39

40

42

See Figure C.2R

R

R

R

Vector<–INTV
PSR[10:8]<–Priority

MDR<–PSR
PSR[15]<–0

[PSR[15]]

MDR<–PC–1

MAR, SP<–SP–1

MAR, SP<–SP–1

Saved_USP<–SP
SP<–Saved_SSP

0 1

MAR<–x01’Vector

Vector<–x01
MDR<–PSR
PSR[15]<–0

[PSR[15]]

PC<–MDR

MAR, SP<–SP+1

PSR<–MDR

SP<–SP+1
[PSR[15]]

Saved_SSP<–SP
SP<–Saved_USP

Nothing

0 1

MAR<–SP
[PSR[15]]

Vector<–x00
MDR<–PSR
PSR[15]<–0

Figure C.7 LC-3 state machine showing interrupt control

of one of the two exceptions specified by the ISA. The two exceptions are a priv-
ilege mode violation and an illegal opcode. Figure C.7 shows the state machine
that carries these out. Figure C.8 shows the data path, after adding the addi-
tional structures to Figure C.3 that are needed to make interrupt and exception
processing work.

“app-c” — 2003/6/30 — page 570 — #6

570 appendix c The Microarchitecture of the LC-3

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16 16
16

16

16

1616

16

16

16

1616

16

ALU
B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG
FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

Figure C.3 The LC-3 data path

“app-a” — 2003/6/30 — page 543 — #23

A.4 Interrupt and Exception Processing 543

Table A.2 Trap Service Routines

Trap Vector Assembler Name Description

x20 GETC Read a single character from the keyboard. The character is not echoed onto the
console. Its ASCII code is copied into R0. The high eight bits of R0 are cleared.

x21 OUT Write a character in R0[7:0] to the console display.
x22 PUTS Write a string of ASCII characters to the console display. The characters are contained

in consecutive memory locations, one character per memory location, starting with
the address specified in R0. Writing terminates with the occurrence of x0000 in a
memory location.

x23 IN Print a prompt on the screen and read a single character from the keyboard. The
character is echoed onto the console monitor, and its ASCII code is copied into R0.
The high eight bits of R0 are cleared.

x24 PUTSP Write a string of ASCII characters to the console. The characters are contained in
consecutive memory locations, two characters per memory location, starting with the
address specified in R0. The ASCII code contained in bits [7:0] of a memory location
is written to the console first. Then the ASCII code contained in bits [15:8] of that
memory location is written to the console. (A character string consisting of an odd
number of characters to be written will have x00 in bits [15:8] of the memory
location containing the last character to be written.) Writing terminates with the
occurrence of x0000 in a memory location.

x25 HALT Halt execution and print a message on the console.

Table A.3 Device Register Assignments

Address I/O Register Name I/O Register Function

xFE00 Keyboard status register Also known as KBSR. The ready bit (bit [15]) indicates if
the keyboard has received a new character.

xFE02 Keyboard data register Also known as KBDR. Bits [7:0] contain the last
character typed on the keyboard.

xFE04 Display status register Also known as DSR. The ready bit (bit [15]) indicates if
the display device is ready to receive another character
to print on the screen.

xFE06 Display data register Also known as DDR. A character written in the low byte
of this register will be displayed on the screen.

xFFFE Machine control register Also known as MCR. Bit [15] is the clock enable bit.
When cleared, instruction processing stops.

A.4 Interrupt and Exception Processing
Events external to the program that is running can interrupt the processor. A
common example of an external event is interrupt-driven I/O. It is also the case
that the processor can be interrupted by exceptional events that occur while the
program is running that are caused by the program itself. An example of such an
“internal” event is the presence of an unused opcode in the computer program
that is running.

Associated with each event that can interrupt the processor is an 8-bit vector
that provides an entry point into a 256-entry interrupt vector table. The starting
address of the interrupt vector table is x0100. That is, the interrupt vector table

“app-e” — 2003/6/25 — page 616 — #2

616 appendix e Useful Tables

E.2 Standard ASCII codes

Table E.2 The Standard ASCII Table

ASCII ASCII ASCII ASCII

Character Dec Hex Character Dec Hex Character Dec Hex Character Dec Hex
nul 0 00 sp 32 20 @ 64 40 ‘ 96 60
soh 1 01 ! 33 21 A 65 41 a 97 61
stx 2 02 " 34 22 B 66 42 b 98 62
etx 3 03 # 35 23 C 67 43 c 99 63
eot 4 04 $ 36 24 D 68 44 d 100 64
enq 5 05 % 37 25 E 69 45 e 101 65
ack 6 06 & 38 26 F 70 46 f 102 66
bel 7 07 ’ 39 27 G 71 47 g 103 67
bs 8 08 (40 28 H 72 48 h 104 68
ht 9 09) 41 29 I 73 49 i 105 69
lf 10 0A * 42 2A J 74 4A j 106 6A
vt 11 0B + 43 2B K 75 4B k 107 6B
ff 12 0C ’ 44 2C L 76 4C l 108 6C
cr 13 0D - 45 2D M 77 4D m 109 6D
so 14 0E . 46 2E N 78 4E n 110 6E
si 15 0F / 47 2F O 79 4F o 111 6F
dle 16 10 0 48 30 P 80 50 p 112 70
dc1 17 11 1 49 31 Q 81 51 q 113 71
dc2 18 12 2 50 32 R 82 52 r 114 72
dc3 19 13 3 51 33 S 83 53 s 115 73
dc4 20 14 4 52 34 T 84 54 t 116 74
nak 21 15 5 53 35 U 85 55 u 117 75
syn 22 16 6 54 36 V 86 56 v 118 76
etb 23 17 7 55 37 W 87 57 w 119 77
can 24 18 8 56 38 X 88 58 x 120 78
em 25 19 9 57 39 Y 89 59 y 121 79
sub 26 1A : 58 3A Z 90 5A z 122 7A
esc 27 1B ; 59 3B [91 5B { 123 7B
fs 28 1C < 60 3C \ 92 5C | 124 7C
gs 29 1D = 61 3D] 93 5D } 125 7D
rs 30 1E > 62 3E ^ 94 5E ~ 126 7E
us 31 1F ? 63 3F _ 95 5F del 127 7F

	exam
	ApendixForFinalExam

