Floating Point Arithmetic

(The IEEE Standard)
Floating Point Arithmetic (and The IEEE Standard)

* Floating Point Arithmetic
 - Representations
 - Issues
 - Normalized, Unnormalized, Subnormal
 - Precision
 - Wobble

* The IEEE Standard
 - Why
 - What it contains, what it doesn't contain
 - Formats
 - Rounding
 - Operations
 - Infinities, NANs
 - Exceptions
 - Traps
Several Issues Come Up:

* How many bits for range, how many bits for precision?

* What to do with numbers too small to represent with this scheme?

* What to do with numbers that do not correspond to exact representations?

* What to do with numbers too large to be represented?

* Shall we distinguish numbers too large with true infinities?

* What about nonsense numbers?

 (Examples:

 $\text{Arcsin } 2$, $\frac{0}{0}$, $\infty - \infty$)
First, An Example

We Simplify: \[S \hspace{1cm} \text{EXP} \hspace{1cm} \text{FRA} \]

In DEC format: \((-1)^s \times 0.1 \text{frac} \times 2^{\text{EXP}-4}\)

\[
\begin{array}{c}
\text{0 001 00} \\
+0.100 \times 2^{-3} \\
\frac{1}{16}
\end{array} \hspace{2cm}
\begin{array}{c}
\text{0 010 00} \\
+0.100 \times 2^{-2} \\
\frac{1}{8}
\end{array} \hspace{2cm}
\begin{array}{c}
\text{0 011 00} \\
+0.100 \times 2^{-1} \\
\frac{1}{4}
\end{array}
\]

\[
\begin{array}{c}
\text{0 001 01} \\
+0.101 \times 2^{-3} \\
\frac{5}{64}
\end{array}
\]
First, Some General Stuff:

A number can be represented as

\[\pm d_0 \cdot d_1 d_2 ... \beta^e \]

These numbers correspond to points on the real line. If we insist that all representations be normalized, then the points are shown (normalized can mean: \(d_0 = 0, d_1 = 1 \))

(We can, incidentally, store the number in signed-magnitude format:)

\[s \, e + \text{BIAS} \, d_2 \, d_3 \, d_4 ... \]

SIGN

+ , -
Normalized, Unnormalized, Subnormal

Again, we are looking at $d_0.d_1d_2... \beta^e$

1. If it is normalized, it is:

$$\pm 0.1 \ d_2 \ d_3 \ ... \ \beta^e$$

2. Unnormalized (after a subtract of like signs, for example)

$$\pm 0.0001 \ d_2 \ d_3 \ ... \ \beta^{e+3}$$

3. Subnormal means it can't be represented in the machine in normalized format

- Recall the format

$$\pm \ e+BIAS \ d_2 \ d_3 \ ...$$

Corresponds to $\pm 0.1 \ d_2 \ d_3 \ ... \ \beta^e$

- Suppose we successively divide by β. We can do this until $e+BIAS = 1$. Below that we can't represent numbers (except 0). Why?

Suppose we let $e+BIAS = 0$. How do we now represent 0?
Precision

The Real Line

- Representable
- Representable

- Uncertainty is at Most: $\frac{1}{2}$ ULP

- Precision deals with worst unavoidable error

- Precision is a function of representation
 Accuracy is a function of your algorithm

- Relative uncertainty (the issue of wobble)

One ULP just above a power of β is β times as large as one ULP just below.
The IEEE Standard

Reasons:

1. Direct Support for:
 - Execution-time diagnosis of anomalies
 - Smoother handling of exceptions
 - Interval arithmetic at reasonable cost

2. Provide for development of:
 - Standard elementary functions
 - Very high precision arithmetic
 - Coupling of numeric & symbolic computation
The IEEE Standard
(Continued)

What does it contain:

- Formats: single, double, extended
- Operations: +, -, *, ÷, √, REM, CMP
- Rounding modes
- Conversion: Int/Fl., Dec/Fl., Fl/Fl
- Exceptions: Underflow, Overflow, Div Ø, Inexact, Invalid

What it does not contain:

- Requirements for implementation in HDWR or SFWR
- Interpretation of NaNs
- Formats for Integers, BCD
- Conversions other than above
The Formats

There are four; we start with one as an example.

Single

Representable Numbers:

* Normalized

\[1.d_1d_2d_3...d_{23} \times 2^e \]

where \(-126 \leq e \leq +127\)
Note: The range of exponents

\[-126 \leq e \leq +127\]

Coupled with the BIAS (127) which is added to the exponent yields an 8 bit string from 00000001

: 11111110

Two strings remain: 00000000, 11111111

* Subnormal numbers (Exp field = 00000000)

\[0.d_1d_2...d_{23} \times 2^{-126}\]

* Infinities (Exp field = 11111111)

\[s \hspace{0.5cm} 11111111 \hspace{0.5cm} 000 \ldots 0\]
Formats (Continued)

That still leaves those strings characterized:

\[
\begin{array}{c|c|c|c|c|c}
\text{s} & 11111111 & \text{Not Zero} \\
\end{array}
\]

These are defined as NaNs.

They result from invalid operations (Like, \(\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty \))

Generalizing to the other formats

<table>
<thead>
<tr>
<th></th>
<th>Single</th>
<th>Single-X</th>
<th>Double</th>
<th>Double-X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>24 bits</td>
<td>≥32</td>
<td>53</td>
<td>≥64</td>
</tr>
<tr>
<td>Exponent</td>
<td>8 bits</td>
<td>≥11</td>
<td>11</td>
<td>≥15</td>
</tr>
<tr>
<td>Word Length</td>
<td>32 bits</td>
<td>≥43</td>
<td>64</td>
<td>≥79</td>
</tr>
<tr>
<td>Exp BIAS</td>
<td>+127</td>
<td>--</td>
<td>+1023</td>
<td>--</td>
</tr>
<tr>
<td>(e_{\text{max}})</td>
<td>+127</td>
<td>≥1023</td>
<td>1023</td>
<td>≥16382</td>
</tr>
<tr>
<td>(e_{\text{min}})</td>
<td>-126</td>
<td>≤-1022</td>
<td>-1022</td>
<td>≤-16382</td>
</tr>
</tbody>
</table>
Rounding

1st We perform the operation & produce the infinitely precise result

2nd We round to fit it into the destination format

Four Rounding Modes

1. Default: To nearest. If equally near, then to the one having A \emptyset in LSB

2. Directed roundings
 - Toward $+\infty$
 - Toward $-\infty$
 - Toward \emptyset (Chop)
Operations

* Arithmetic: +, -, *, ÷, REM

When \(y \neq \emptyset \), \(r = x \text{ REM } y \), is defined:

\[r = x - y \times n, \text{ where } n \text{ is the integer nearest } \frac{x}{y} \]

whenever \(\left| n - \frac{x}{y} \right| = \frac{1}{2} \), then \(n \) is EVEN.

.: Remainder is always exact.

* Square root: Result defined if ARG \(\geq \emptyset \).

* Conversion from one format to another

- To fewer bits: rounded
- To more bits: exact
Operations (Continued)

* Conversion Fl. Pt. <----> Integers
 Binary <----> Decimal

* Comparison

- Always exact
- Never underflow, overflow
- Four relations are possible
 \{>, =, <, unordered\}

Note: Invalid is signaled if unordered operands are compared and unordered is not the basis but > or < is the basis.

Examples:

<table>
<thead>
<tr>
<th>Predicate</th>
<th>></th>
<th><</th>
<th>=</th>
<th>?</th>
<th>Invalid if unordered</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>≠</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>No</td>
</tr>
<tr>
<td>></td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Yes</td>
</tr>
<tr>
<td><#</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>No</td>
</tr>
</tbody>
</table>
Infinities, NaNs, \(\pm \infty \)

\(\infty : \)

\(\times \) - \(-\infty < (\text{finite}) < +\infty \)

\(\bullet \) Arithmetic on \(\infty \) is exact

\(\bullet \) \(\infty \) is created by

- Overflow
- "Divide by zero"

NaN:

\(\bullet \) Signaling & Quiet

Signaling - Reserved operand that signals the invalid Op. Exception for all operations in the standard. If no trap occurs, a quiet NaN is delivered

Quiet - Operations on quiet NaNs produce quiet NaNs. They provide hooks to retrospective diagnostic information.
Exceptions

When detected: Take Trap, or
Set Flag, or
Both

Flag can be reset only under program control

* Invalid

- Operation on a signaling NaN.
- $\infty - \infty = 0/0$
- $0 \times \infty = \infty / \infty$
- $x \text{ REM } y$, where $y=0$ or $x=\infty$
- $\sqrt{\text{NEG}}$
- Conversion from Fl. to int. or decimal, when overflow, infinity, or NaN prevents the conversion
- Comparison via predicates involving $>$ or $<$, and Not?, when the operands are unordered
Exceptions (Continued)

* Divide by zero

When \(f(\text{finite}) \rightarrow \text{Infinite and exact} \)

* Overflow

When the destinations largest finite number is exceeded by what would have been the rounded floating point result if the exponent range were unbounded

To Nearest

\[
\begin{array}{c|c}
\text{To Zero} & \cdot \\
\hline
\text{To } -\infty & \cdot \\
\text{To } +\infty & \cdot \\
\hline
\end{array}
\]

\(\infty \)
Exceptions (Continued)

* Overflow (Continued)

Trapped overflows! [Except for conversions]

1st, Divide infinitely precise Result by 2^a

\[
a = \begin{align*}
\text{Single} & : 192 \\
\text{Double} & : 1536 \\
\text{Extended} & : 3 \times 2^{n-2}
\end{align*}
\]

$n = 1$ exponent bits

Why?

* Underflow

- Tiny value (which could cause subsequent overflow)

- Loss of precision

Delivered result may be zero, subnormal No., or $\pm 2^{\min\text{-exp}}$
Exceptions (Continued)

* Underflow (continued)

 Trapped underflows!
 [All operations except conversions]

 1st, Multiply infinitely precise Result by 2^a

* Inexact

 When the result of an operation is not exact, or on non-trapped overflow.
Traps

For any of the five exceptions, a user should be able to:

* Specify a handler
* Request that an existing handler be disabled, saved, restored.

When a system traps, the trap handler should be able to determine:

* Which exception occurred on this operation
* The kind of operation being performed
* The destination format
* In overflow, underflow, & inexact, the correctly rounded result
* In invalid & divide by zero, the operand values