I/O Notes (Shit)

Spring 2015
Fall 2018

* Characteristics
 - Parts: Medium, Device, Controller
 - How: Poll, Interrupt, DMA, I/O Proc
 - Instructions: Memory-Mapped, Special
 - Synch/Asynch

* Buses
 - Wires: Data, Address, Control
 - Multiplexed
 - Arbitration
 - Central: PAU
 - Distributed: "Owner Table"
 - Transfer
 - Asynch/Synch
 - Asynch - Handshaking (Slow) No Clock Everything Explicit
 - Synch - Most Implicit (Fast) Fast if Short Distance
 - Pending/Split-transaction
 - Pipeline vs. Tagged

* Disk Arrays (See 5)
I/O Notes (Sheet 2)

An Asynchronous Bus

Transaction

Arbitration

Vanilla:

1. Does Not Want BG:

Is There A Problem?
A Race Condition (SHT 3)

Device does not want the bus.

So controller passes it on.

Someone asserts SACK.
Controller knows it no longer has to pass on the grant signal.

Controller returns to idle.

What Is The Problem?

What Happens If:

```
\[\text{Time} \quad \text{Controller passes SGE} \quad \text{Device wants service} \quad \text{Another device controller asserts SACK}\]
```

The Problem?

The Fix?
I/O Notes

What if Dev wants Bus After Grant?

4. At Same Priority — Tough!
3. At Higher Priority — PAU Must Not

Once Granted, That Is It

How? M/S Flipflop Will Do The Trick (Most Of The Time)

Recall SACK is Negated During Arbitration

When Will This Not Work?

What if We Introduce Logic Next To The PAU:
The Transaction

\[\text{DATA} \rightarrow \]

\[M \quad \text{DATA} \quad S \]
\[\quad \text{SSYN} \quad \quad \text{MSYN} \quad \text{C} \quad \text{SSYN} \quad \text{DATA} \quad \text{SSYN} \quad \]
\[\quad \text{MSYN} \quad \text{SSYN} \quad \text{SSYN} \quad \text{SSYN} \]

\[\text{DATA} \leftarrow \]

\[M \quad \text{C} \quad \text{MSYN} \quad \text{ADDR} \quad \text{SSYN} \quad \text{DATA} \quad \text{MSYN} \quad \text{SSYN} \quad \text{SSYN} \]

\[\text{BBSY} \quad \text{MSYN} \quad \text{SSYN} \quad \text{IDLE} \quad \text{SSYN} \]

\[\text{SSYN} \quad \text{SSYN} \quad \text{SSYN} \]
1. Distribute the file
2. Redundancy

RAID 0 Coarse
 No Red.

RAID 1 Coarse
(Mirror)
 Red.

RAID 2 Fine
 ECC

RAID 5 Fine
 Parity

RAID 4 Coarse
 Parity

RAID 5 No Parity dist.