
Department of Electrical and Computer Engineering

The University of Texas at Austin

EE 306, Fall 2017

Yale Patt, Instructor

Stephen Pruett, Siavash Zangeneh, Aniket Deshmukh, Zachary Susskind, Meiling Tang, Jiahan Liu

Exam 1, October 18, 2017

Name:

Problem 1 (20 points):

Problem 2 (15 points):

Problem 3 (20 points):

Problem 4 (20 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space

provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!



Name:

Problem 1. (20 points):

Part a. (5 points): The following logic circuits consists of two exclusive-OR gates. Construct the output truth table.

A

B

C
output

A B C output

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Part b. (5 points): After these two instructions execute:

x3030 0001 000 001 0 00 010

x3031 0000 011 000000111

the next instruction to execute will be the instruction at x3039 if:

Please be specific, but NOT unnecessarily wordy.

2



Name:

Part c. (5 points): We wish to know if R0 is being used as the Base Register for computing the address in an LDR

instruction. Since the instruction is in memory, we can load it into R4. And, since the Base Register is identified in bits

8:6 of the instruction, we can Load R5 with 0000000111000000, and then execute AND R6,R5,R4. We would know that

R0 is the base register if:

Part d. (5 points): Three instructions all construct an address by sign-extending the low 9 bits of the instruction and

adding it to the incremented PC.

The Conditional Branch

The Load Effective Address

The LD Instruction

x x x x x x x x x 0 0 0 0

x x x x x x x x x 

x x x x x x x x x 1 1 1 0

0 0 1 0

1 1 1

1 1 1

1 1 1

The xxxxxxxxx represents the 9-bit offset that is sign-extended.

Where does the LC-3 microarchitecture put the result of adding the 9-bit sign-extended offset to the incremented PC?

Conditional Branch LEA LD

3



Name:

Problem 2. (15 points):

Shown below is a transistor circuit, having four inputs (A,B,C,D) and one output (out). Also shown is the truth table for

this circuit. The gates of some of the transisors are not labeled, and the outputs of some of the input combinations in the

truth table are not shown.

Your job: Complete the transistor diagram by labeling the missing inputs to the gates, and by adding the missing outputs

to the truth table. Every input combination produces an ouput of either 0 or 1. The result will be a transistor diagram and

the truth table describing its behavior.

out

B

D

C

B

A B C D out

0 0 0 0

0 0 0 1 1

0 0 1 0

0 0 1 1 1

0 1 0 0

0 1 0 1 1

0 1 1 0

0 1 1 1 0

1 0 0 0

1 0 0 1 0

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0 1

1 1 1 1

4



Name:

Problem 3. (20 points): You are taking three courses, one each in computing (C), engineering (E), and math (M). In

each course, you periodically receive assignments. You never receive more than one assignment at a time. You also never

receive another assignment in a course if you currently have an assignment in that course that has not been completed.

You must procrastinate (i.e., do nothing) unless you have unfinished assignments in both computing and engineering.

Design a finite state machine to describe the state of the work you have to do and whether you are working or procrasti-

nating.

Part a. (5 points): Label each state with the unfinished assignments (with letters C,E,M) for when you are in that state.

There are far more states provided than you actually need. Use only what you need.

Part b. (10 points): There are six inputs: c, e, m, c, e, m. c, e, m refer to you receiving an assignment. c, e, m refer to

you completing an assignment. Draw the transition arc for each state/input pair. For example, if you had previously only

had an unfinished assignment in Math and you received an assignment in computing, you would transistion from state M

to state CM, as shown below.

Part c. (5 points): The output of each state is your behavior, 1 if you are working on an assignment, 0 if you are procras-

tinating. Label the outputs of each state.

M CM

c

NONE

5



Name:

Problem 4. (20 points):

A warehouse is controlled by an electronic lock having an n-digit combination. The electronic lock has ten buttons, la-

beled 0 to 9 on its face. To open the lock, a user presses a sequence of n buttons. The corresponding ASCII characters

get loaded into sequential locations of memory, starting at location x3150. After n buttons have been pressed, the null

character x00 is loaded into the next sequential memory location.

The program shown below determines whether or not the lock should open, depending on whether the combination en-

tered agrees with the combination stored in the n memory locations starting at x3100. If the lock should open, the program

stores a 1 in location x3050. If the lock should not open, the program stores a 0 in location x3050.

Note that some of the instructions are missing.

Part a. (15 points): Complete the program by filling in the missing instructions.

x3000 0101 101 101 1 00000 ; R5 <– x0000

x3001 0010 000 000001111 ; R0 <– M[x3011]

x3002 0010 001 000001101 ; R1 <– M[x3010]

x3003 0110 010 000 000000 ; R2 <– M[R0]

x3004

x3005 0110 011 001 000000 ; R3 <– M[R1]

x3006 1001 011 011 111111 ; NOT R3

x3007 0001 011 011 1 00001 ; R3 <– R3 + 1

x3008

x3009 0000 101 000000100 ; Branch to x300E if N or P is set

x300A

x300B

x300C 0000 111 111110110 ; Branch always to x3003

x300D

x300E 0011 101 001000001 ; Store R5 in x3050

x300F 1111 0000 0010 0101 ; HALT

x3010 0011 0001 0000 0000 ; x3100

x3011 0011 0001 0101 0000 ; x3150

Part b. (5 points): A simple change to the contents of memory will allow us to eliminate the instructions at memory

locations x3006 and x3007 in our program. What is the change?

6



Name:

Problem 5. (25 points):

Part a. (15 points): The PC is loaded with x3000, and the instruction at address x3000 is executed. In fact, execution

continues and four more instructions are executed. The table below contains the contents of various registers at the end of

execution for each of the five (total) instructions.

Your job: complete the table.

PC MAR MDR IR R0 R1

Before execution starts x3000 —— —— —— x0000 x0000

After the first finishes xB333 x2005

After the 2nd finishes x0601

After the 3rd finishes x1 x0001

After the 4th finishes x1 x6666

After the 5th finishes x0BFC

Part b. (10 points): Let’s start execution again, starting with PC = x3000. First, we re-initialize R0 and R1 to 0, and set a

breakpoint at x3004. We press RUN eleven times, each time the program executes until the breakpoint. What are the final

values of R0 and R1?

R0 R1

7



R

R R

R R

To 18

To 18

To 18

To 8
(See figure C.7)

RTI

MAR <− PC
PC <− PC + 1

[INT]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−PC+off9

PC<−MDR

MAR<−PC+off9

MDR<−M[MAR]

RR

MAR<−MDR

MAR<−PC+off9

MDR<−M[MAR]

MAR<−MDR

MAR<−B+off6

MAR<−PC+off9

MAR<−B+off6

MAR<−PC+off9

MDR<−SR

DR<−MDR
set CC M[MAR]<−MDR

18

32

1

5

76

11

3

0

0

1
22

29

3126

23

24

25

27

To 18

To 18

To 18 To 18

To 18

0

R R

MDR<−M[MAR]

[IR[15:12]]

To 49
(See figure C.7)

28

30

2

10

NOTES

16

R7<−PC
MDR<−M[MAR]

B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT{offset9]
PC+off11 : PC + SEXT[offset11]

*OP2 may be SR2 or SEXT[imm5]

set CC
DR<−NOT(SR)9

NOT

14
DR<−PC+off9

LEA LD LDR LDI STI STR ST

JSR

ADD

AND

JMP

BR

1

RR

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P 1101

To 13

33

35

MAR<−ZEXT[IR[7:0]]
15

TRAP

To 18

PC<−BaseR

1 0

12

4

21

To 18

20

To 18

[IR[11]]

PC<−PC+off11
R7<−PC

PC<−BaseR
R7<−PC

8



MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16
16

16

16

16

1616

16

16

16

1616

16

ALU

B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2

OUT

SR1

OUT

REG

FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16

16

16

16
3

3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

3

CONTROL

9



10



11


