Name: \qquad
Problem 1 (20 points): \qquad

Problem 2 (15 points): \qquad

Problem 3 (20 points): \qquad

Problem 4 (20 points): \qquad

Problem 5 (25 points): \qquad

Total (100 points): \qquad

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Name: \sin ions

Problem 1. (20 points):
Part a. (5 points): The following logic circuits consists of two exclusive-OR gates. Construct the output truth table.

A	B	C	output
0	0	0	O
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	\bigcirc
1	1	0	0
1	1	1	1

Part b. (5 points): After these two instructions execute:

$$
\begin{array}{ll}
\text { x3030 } & 0001000001000010 \\
\text { x3031 } & 0000011000000111
\end{array}
$$

the next instruction to execute will be the instruction at x3039 if:
Rl+R2 is zero or positive

Please be specific, but NOT unnecessarily wordy.

Name:

Part c. (5 points): We wish to know if R0 is being used as the Base Register for computing the address in an LDR instruction. Since the instruction is in memory, we can load it into R4. And, since the Base Register is identified in bits 8:6 of the instruction, we can Load R5 with 0000000111000000 , and then execute AND R6,R5,R4. We would know that R 0 is the base register if:

The result of AND is 0

Part d. (5 points): Three instructions all construct an address by sign-extending the low 9 bits of the instruction and adding it to the incremented PC.

The Conditional Branch

The Load Effective Address

The LD Instruction

The xxxxxxxxx represents the 9-bit offset that is sign-extended.
Where does the LC-3 microarchitecture put the result of adding the 9-bit sign-extended offset to the incremented PC?

Name:

Problem 2. (15 points):
Shown below is a transistor circuit, having four inputs (A,B,C,D) and one output (out). Also shown is the truth table for this circuit. The gates of some of the transisors are not labeled, and the outputs of some of the input combinations in the truth table are not shown.

Your job: Complete the transistor diagram by labeling the missing inputs to the gates, and by adding the missing outputs to the truth table. Every input combination produces an ouput of either 0 or 1 . The result will be a transistor diagram and the truth table describing its behavior.

Name:

Problem 3. (20 points): You are taking three courses, one each in computing (C), engineering (E), and math (M). In each course, you periodically receive assignments. You never receive more than one assignment at a time. You also never receive another assignment in a course if you currently have an assignment in that course that has not been completed. You must procrastinate (ie., do nothing) unless you have unfinished assignments in both computing and engineering.

Design a finite state machine to describe the state of the work you have to do and whether you are working or procrastimating.

Part a. (5 points): Label each state with the unfinished assignments (with letters C,E,M) for when you are in that state. There are far more states provided than you actually need. Use only what you need.

Part b. (10 points): There are six inputs: $\mathrm{c}, \mathrm{e}, \mathrm{m}, \bar{c}, \bar{e}, \bar{m} . \mathrm{c}, \mathrm{e}, \mathrm{m}$ refer to you receiving an assignment. $\bar{c}, \bar{e}, \bar{m}$ refer to you completing an assignment. Draw the transition arc for each state/input pair. For example, if you had previously only had an unfinished assignment in Math and you received an assignment in computing, you would transistion from state M to state CM, as shown below.

Part c. (5 points): The output of each state is your behavior, 1 if you are working on an assignment, 0 if you are procrastinating. Label the outputs of each state.

Name: Solutions

Problem 4. (20 points):
A warehouse is controlled by an electronic lock having an n-digit combination. The electronic lock has ten buttons, labeled 0 to 9 on its face. To open the lock, a user presses a sequence of n buttons. The corresponding ASCII characters get loaded into sequential locations of memory, starting at location $x 3150$. After n buttons have been pressed, the null character x 00 is loaded into the next sequential memory location.

The program shown below determines whether or not the lock should open, depending on whether the combination entered agrees with the combination stored in the n memory locations starting at x3100. If the lock should open, the program stores a 1 in location x3050. If the lock should not open, the program stores a 0 in location x3050.

Note that some of the instructions are missing.
Part a. (15 points): Complete the program by filling in the missing instructions.

Part b. (5 points): A simple change to the contents of memory will allow us to eliminate the instructions at memory locations x3006 and x3007 in our program. What is the change?

Name:

Problem 5. (25 points):
Part a. (15 points): The PC is loaded with x3000, and the instruction at address x3000 is executed. In fact, execution continues and four more instructions are executed. The table below contains the contents of various registers at the end of execution for each of the five (total) instructions.

Your job: complete the table.

	PC	MAR	DR	IR	R0	R1
Before execution starts	$\times 3000$	-	-	-	$x 0000$	$\times 0000$
After the first finishes	$\times 3001$	$\times 3006$	$\times B 333$	$x 2005$	$\times 3333$	$\times 0000$
After the 2nd finishes	$\times 3002$	$\times 3001$	$\times 0601$	$x 0601$	$\times 13333$	$\times 0000$
After the 3rd finishes	$\times 3003$	$\times 3002$	$x 1261$	$\times 1261$	$\times 13333$	$\times 0001$
After the 4th finishes	$\times 3004$	$\times 3003$	$x 1000$	$\times 1000$	$\times 6666$	$\times 0001$
After the 5th finishes	$\times 3001$	$\times 3004$	$\times 013 F C$	$\times 0 B F C$	$\times 6666$	$\times 0001$

Part b. (10 points): Let's start execution again, starting with $\mathrm{PC}=\mathrm{x} 3000$. First, we re-initialize R0 and R1 to 0 , and set a breakpoint at x3004. We press RUN eleven times, each time the program executes until the breakpoints. What are the final values of R0 and R1?

Description of program
x3000: load $M_{m}[\times 3006]=\times 8333$ into R0
$\times 3001$: Skip next instruction if number is not negative
$\times 3002$: ADD 1 to RI OOO1 001001100001×1261
$\times 3003$: left shift ko by adding it to itself
0001000000000000
$\times 3004$: if RO is not zero, branch bade to +3001
Part b) After II iterations of executing the lop, RD is shifted
II times and RI contains the number of Is in the most significant 11 bits.

$$
\begin{aligned}
& \quad 11 \text { bits. } \\
& \text { Initial } R Q=\frac{10110011 \text { col }}{\text { gets shitedout }} 00011 \quad \text { final RD: } 1001,1000,0000,0000 \\
& \times 9800
\end{aligned}
$$

Figure A. 2 Format of the entire LC-3 instruction set. Note: + indicates instructions that modify condition codes

Table 2.2 ASCII character set

Oct	Dec	Hex	Char												
000	0	∞	NLIL	040	32	20	SPACE	100	64	40	$\stackrel{1}{8}$	140	96	60	,
001	1	01	SOH	041	33	21	!	101	65	41	A	141	97	61	a
002	2	02	STX	042	34	22	"	102	66	42	в	142	98	62	b
003	3	03	ETX	043	35	23	\#	103	67	43	c	143	99	63	c
004	4	04	EOT	044	36	24	\$	104	68	44	D	144	100	64	d
005	5	05	ENQ	045	37	25	:	105	69	45	E	145	101	65	e
006	6	06	ACK	046	38	26	${ }_{6}$	106	70	46	F	146	102	66	f
007	7	07	BEL	047	39	27	,	107	71	47	G	147	103	67	g
010	8	Q8	BS	050	40	28	(110	72	48	н	150	104	68	h
011	9	09	HT	051	41	29	,	111	73	49	1	151	105	69	i
012	10	0A	LF	052	42	2A	*	112	74	4A	J	152	106	6 A	j
013	11	OB	VT	053	43	2B	+	113	75	4 B	к	153	107	6B	k
014	12	\cdots	FF	054	44	2 C	,	114	76	4 C	\pm	154	108	6 C	,
015	13	OD	$C R$	055	45	2D	-	115	77	4 D	M	155	109	6 D	m
016	14	OE	So	056	46	2 E	.	116	78	4 E	11	156	110	6 E	3
017	15	OF	SI	057	47	2 F	/	117	79	4 F	-	157	111	6 F	。
020	16	10	DLE	060	48	30	0	120	80	50	P	160	112	70	p
021	17	11	DC1	061	49	31	1	121	81	51	Q	161	113	71	q
022	18	12	DC2	062	50	32	2	122	82	52	R	162	114	72	r
023	19	13	DC3	063	51	33	3	123	83	53	s	163	115	73	s
024	20	14	DC4	064	52	34	4	124	84	54	т	164	116	74	t
025	21	15	NAK	065	53	35	5	125	85	55	v	165	117	75	u
026	22	16	SYN	066	54	36	6	126	86	56	v	166	118	76	v
027	23	17	ETB	067	55	37	7	127	87	57	n	167	119	77	w
030	24	18	CAN	070	56	38	8	130	88	58	x	170	120	78	x
031	25	19	EM	071	57	39	9	131	89	59	Y	171	121	79	y
032	26	1A	SUIB	072	58	3A	:	132	90	5A	-	172	122	7 A	$=$
033	27	1B	ESC	073	59	3 B	;	133	91	5B	[173	123	78	1
034	28	1 C	FS	074	60	3 C	$<$	134	92	5 C	-	174	124	7 C	।
035	29	1D	GS	075	61	3D	-	135	93	5D	1	175	125	7 D	1
036	30	1E	RS	076	62	3E	>	136	94	5 E		176	126	7	
037	31	1 F	US	077	63	3 F	?	137	95	5 F		177	127	7 F	DEL

