
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2019
Yale Patt, Instructor
TAs: Sabee Grewal, Arjun Ramesh, Joseph Ryan, Chirag Sakhuja, Meiling Tang, Grace Zhuang
Exam 1, October 16, 2019

Name:

Problem 1 (25 points):

Problem 2 (15 points):

Problem 3 (15 points):

Problem 4 (20 points):

Problem 5 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!



Name:

Problem 1. (25 points):

Part a. (5 points): How many of the 15 LC-3 instructions load the MAR during its instruction cycle?

Part b. (5 points): Write the decimal value 23 in the following representations:

6-bit unsigned binary:

6-bit 2’s complement:

3-digit hexadecimal:

3-digit base-7:

Part c. (5 points): A computer’s ALU operates on X-bit operands. When used to add a positive integer Y to the value
+21, the ALU output is -20. What is the minimum number of bits (i.e. X) used to specify each operand that will produce
this result? What must Y be to produce this result?

Minimum number of bits:

Y:

2



Name:

Part d. (5 points): Many ISAs have a conditional load instruction (LDC), which loads a value from memory into a reg-
ister based on the condition codes. We could add that instruction to the LC-3 ISA using the unused opcode. Further we
could use the BEN bit (BEN = (IR[11] AND N) OR (IR[10] AND Z) OR (IR[9] AND P)) the same way we use BEN to
determine whether to take the conditional branch. The LDC instruction has three operands: DR, PC offset, and the nzp bits.

If a program contained an LDC instruction in memory location x4000, what is the largest memory address that can provide
the value to be loaded into DR?

Largest memory address:

Part e. (5 points): Construct the truth table for the function OUT produced by the transistor circuit shown.

OUT

A

B

C A

A B

C

A

A B C OUT
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

3



Name:

Problem 2. (15 points):

Part a. (5 points): In class we implemented latches with two NAND gates. We can also do it with two NOR gates, as
shown below.

For what values of X and Y will the latch be in its ‘quiescent state’ (i.e. the latch will retain whatever value was previously
stored in it)?

X: Y:

What must be done to X and Y in order to store a 1 in the latch?

X: Y:

What must be done to X and Y in order to store a 0 in the latch?

X: Y:

4



Name:

Part b. (10 points): Below is the gated D latch we discussed in class.

As you can see, this gated D latch is implemented using only NAND and NOT gates. The inputs are D and WE, and the
output is Q.

Your job: Implement a gated D latch, with the same functionality as the gated D latch shown above, using only NOR and
NOT gates. Part of it has been completed for you.

5



Name:

Problem 3. (15 points):

We want to design a synchronous finite state machine with a single input and a single output. The output is 1 if the most
recent three inputs are the same.

Recall, outputs are determined solely by the state. Since the state is latched at the end of the clock cycle, the output due
to the input in clock cycle n will be present in clock cycle n+ 1.

Here is an example sequence of inputs and the outputs the sequence causes:

Cycle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Input 1 0 1 1 1 1 1 0 1 0 0 1 0 0 0 1 1 −
Output 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0

Your job: Complete the synchronous finite state machine. That is, show the output (0 or 1) for every state, and show the
input (0 or 1) that takes the machine from its current state to its next state.

We have provided twelve states. You will not need all of them. Use what you need. We have also provided the initial
state, shown in bold, where the sequence begins.

0
1

0

6



Name:

Problem 4. (20 points):

The incomplete program shown below starts executing at location x3000.

Address Value
x3000 0101 000 000 1
x3001
x3002 0001 000 000 1 11111
x3003
x3004 1111 0000 0010 0101

During the execution of the program, each time an instruction sets condition codes we record the values of those condition
codes in the table below. That is, the first row shows the condition codes set by the first instruction in the program that
sets condition codes (i.e., the instruction in location x3000). The second row shows the condition codes set by the second
instruction in the program that sets condition codes, and so on. If an instruction does not set condition codes, nothing is
recorded. The table records the condition codes set by all instructions up to the point just before the instruction in memory
location x3004 executes.

N Z P
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 1
0 1 0
1 0 0

Your job: Complete the program by filling in the blanks so that the resulting program produces the condition codes shown
in the table.

7



Name:

Problem 5. (25 points):

The Hamming distance of two bit vectors of equal length is the number of bits in which the two bit vectors differ. For ex-
ample, the Hamming distance of 0110 and 0111 is 1 because they differ in only one bit (the right most bit). The Hamming
distance of 11110000 and 10010010 is 3.

We decided to write a program that computes the Hamming distance of two bit vectors. To make life easier for us, we
decided to use our unused LC-3 opcode 1101 to form the exclusive-OR (XOR) of two bit vectors. The format of this
instruction is shown below.

0

1 SR20 0 01 10

15 12 11 9 8 6 5 3 2

DRXOR SR1

That is, bit n of DR is 1 if bit n of SR1 and bit n of SR2 are not the same.

The program uses the contents of memory locations x3100 and x3101 as the two 16-bit bit vectors, computes their Ham-
ming distance, and stores that Hamming distance in memory location x3055. You will note that the program we wrote is
incomplete.

Your job: Complete the program by filling in the blanks in the instructions so that the resulting program correctly com-
putes the Hamming distance of the two bit vectors and stores the result in memory location x3055.

Address Value Comments
x3000 ; R2 ← M[x3100]
x3001 ; R3 ← M[x3101]
x3002 1101 000 ; XOR
x3003 0101 000 000 1 00000 ; R0 ← 0
x3004 0101 001 001 1 00000 ; R1 ← 0
x3005
x3006 0001 100 100 1 00000 ; R4 ← R4 + 0
x3007 0000 011 000000001 ; Branch to x3009 if Z or P is set
x3008
x3009 0001 100 100 000 100 ; R4 ← R4 + R4
x300A 0001 001 001 1 11111 ; R1 ← R1 - 1
x300B
x300C
x300D 1111 0000 0010 0101 ; HALT

8



702 appendix C The Microarchitecture of the LC-3

To 18

R

R R

To 18
RR

M[MAR]<−MDR
16

To 18

[BEN]

PC<−PC+off9

0 0

1 22

To 18

set CC

1

To 18 DR<−SR1&OP2*
set CC

To 18
DR<−NOT(SR)

set CC

DR<−PC+off9

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P
[IR[15:12]]

[ACV]

JSR

MAR<−MDR
set ACV

MAR<−PC+off9

JMP

BR

set ACV

[ACV]

MAR<−MDR
set ACV

MAR<−B+off6
set ACV

3
MAR<−PC+off9

set ACV

To 18

PC<−BaseR

1 0

12

4

21

To 18

20

To 18

[IR[11]]

PC<−PC+off11
R7<−PC

1101

PC<−BaseR
R7<−PC

0

1
0

[ACV]

RTI

1
33

MDR <− M

R

28

30
IR <− MDR

32

MAR<−PC+off9
set ACV

DR<−MDR
set CC

25

27

To 18

MDR<−M[MAR]

MAR<−PC+off9
set ACV

[ACV]

10

17

R

19

MDR<−SR
[ACV]

7

(See figure C.7)

(See figure C.7)

To 8

To 15

To 49
(See figure C.7)

01

To 48

0
To 57

1

R

MDR<−M[MAR]

R

MDR<−M[MAR]

To 56
0 1

R29
01

To 61

5

9

14

2

MAR<−B+off6
set ACV

11

24

6

26 31

35 23

AND
DR<−SR1+OP2*

To 13

ADD

LEA STR ST

[INT]
set ACV

PC <− PC + 1
MAR <− PC

*OP2 may be SR2 or SEXT[imm5]

LDRLD LDI STI
NOT

TRAP

18

NOTES
B+off6 : Base + SEXT[offset6]
PC+off9 : PC + SEXT[offset9]

(Addr<x3000 or Addr>=0xFE00)
ACV=
PC+off11 : PC + SEXT[offset11]

& PSR[15]

To 60

Figure C.2 A state machine for the LC-3.



704 appendix C The Microarchitecture of the LC-3

MEMORY

OUTPUTINPUT

DSR

DDRKBDR

ADDR. CTL.
LOGIC

GateMDR

MDR LD.MDR

INMUX

MAR LD.MAR

2

KBSR

MIO.EN

R

MEM.EN

R.W MIO.EN

SEXTSEXT

SEXT

SEXT
[5:0]

[8:0]

[10:0]

+1

GateMARMUX

16

16 16 16

16

16

1616

16

16

16

1616

16

ALU
B A

GateALU

16

SR2MUX

PC

+

IR

ZEXT

R
N Z P

LOGIC

SR2
OUT

SR1
OUT

REG
FILE

[7:0]

2

PCMUX

LD.CC

GatePC

LD.PC

LD.IR

MARMUX

ALUK

16
16

16

16 3

3 3

2

[4:0]
[5]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

LD.REG

DR

CONTROL

Figure C.3 The LC-3 data path.



656 appendix A The LC-3 ISA

BaseR 000000

DR

DR SR 111111

000000000000

SR

BaseR offset6

0000 trapvect8

0 00 BaseR 000000

1 PCoffset11

PCoffset9

PCoffset9

PCoffset9

PCoffset9STI

STR

TRAP

reserved

0123456789101112131415

zn p

DR SR1 1 imm50101

0000

000

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

DR

DR

1100

1010

0110

1110

1001

1100

1000

0011

BaseR offset6

000 111 000000

SR1011

0111

1111

1101

SR

0100

DR0010

0100

PCoffset9

PCoffset9

BR

AND+

ADD+

ADD+

AND+

JMP

LD+

LDI+

LDR+

LEA

NOT+

RET

RTI

ST

JSRR

JSR

Figure A.2 Format of the entire LC-3 instruction set. Note: + indicates instructions that
modify condition codes



12


