
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 306, Fall 2019
Yale Patt, Instructor
TAs: Sabee Grewal, Arjun Ramesh, Joseph Ryan, Chirag Sakhuja, Meiling Tang, Grace Zhuang
Exam 2, November 20, 2019

Name:

Problem 1 (15 points):

Problem 2 (15 points):

Problem 3 (10 points):

Problem 4 (15 points):

Problem 5 (20 points):

Problem 6 (25 points):

Total (100 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the space
provided.

Note: Please be sure your name is recorded on each sheet of the exam.

I will not cheat on this exam.

Signature

GOOD LUCK!

 

Solution

10
IS
20
25

100
amazing



Name:

Problem 1. (15 points):

Part a. (5 points): How many of the 15 LC-3 instructions assert the LD.PC control signal during its instruction cycle?
Explain in 10 words or fewer.

Part b. (5 points): Consider the following program written in LC-3 assembly language:

.ORIG x3000
LEA R0, LABEL
LD R1, LABEL
STI R0, LABEL
LDR R2, R1, #0
HALT

LABEL .FILL x4000
.END

The program is loaded into the LC-3 simulator, a breakpoint is set at x3004, and the program is run. What are the resulting
values in R0, R1, and R2?

R0: R1: R2:

2

15 because LD Pc is assertedduringfetch

I
2
4
S

x 3005 44000 3005



Name:

Part c. (5 points): State 20 of the LC-3 state machine is shown below.

Your Job: Fill in the output control signals for state 20. That is, fill in each control signal with 1, 0, or X depending on
whether the corresponding control signal must be 1, 0, or you don’t care.

We have provided information below about some of the muxes that you might find helpful. ALUK works as follows:
00 is ADD, 01 is AND, 10 is NOT, and 11 is PASSA.

3

000010 I 1000010 I 1 XX



Name:

Problem 2. (15 points):

Part a. (7 points): Consider the following program written in LC-3 assembly language:

.ORIG x3000
LDI R0, INPUT
BRzp SKIP
NOT R0, R0
ADD R0, R0, #1

SKIP ADD R1, R0, #0
AND R2, R2, #0

LOOP ADD R2, R2, R0
ADD R1, R1, #-1
BRp LOOP

STI R2, OUTPUT
HALT

INPUT .FILL x4000
OUTPUT .FILL x4001

.END

What does the program do? Answer in 10 words or fewer.

Part b. (8 points): The program below operates on two linked lists. The address of the first node of the first list is stored
at location x4000. The address of the first node of the second list is stored at location x4001. The first word of each node
contains a pointer to (i.e., the address of) the next node.

.ORIG x3000
LD R0, LIST1

LOOP LDR R1, R0, #0
BRz NEXT
LDR R0, R0, #0
BRnzp LOOP

NEXT LDI R1, LIST2
STR R1, R0, #0
HALT

LIST1 .FILL x4000
LIST2 .FILL x4001

.END

What does the program do? Answer in 10 words or fewer.

4

Squaresthevalue at x4000andstores it in 4001

Concatenates list 2 to list I



Name:

Problem 3. (10 points):

On exam 1, we introduced a conditional load instruction (LDC) which is similar to the conditional branch instruction.
In both cases, the condition codes specified in bits [11:9] are tested. If none of the condition codes tested are set, the
instruction acts as a no-op. In the case of LDC, if any of the condition codes tested are set, the PC-offset is added to the
incremented PC, and the value in the resulting memory location is loaded into DR. Condition codes are set based on the

value loaded into DR. Note that this instruction does not produce Access Control Violations (ACVs).

LDC uses the unused opcode and has the following format:

1 11 0 PCO!set6DRn pz

15 12 6 51113 9 710 814 14 23 0

To implement LDC, we need to add four states to the LC-3 state machine, as shown below.

Your job: Fill in the missing information, showing clearly what each state does.

BEN <- IR[11] & N + IR[10] & Z + IR[9] & P

[IR[15:12]]

32

To

1101

To

0

1

5

BENT 18

MAR Pct PCoff6

MDR M MAR

RR
DR MDR
set cc

18



Name:

Problem 4. (15 points):

Consider the following program written in LC-3 assembly language by an Aggie who thinks they’re clever.

.ORIG x3000
VALUE .FILL xEFFF

LEA R0, ARRAY
LD R1, N
ADD R0, R0, R1
LD R2, VALUE

LOOP STR R2, R0, #0
ADD R0, R0, #-1
ADD R2, R2, #2
ADD R1, R1, #-1
BRzp LOOP

ARRAY .BLKW #20
N .FILL #19

.END

Note: You may assume that memory locations x3000 through xFDFF all contain x0000 before this program was loaded
into the LC-3.

Part a. (4 points): Complete the symbol table generated while assembling the program.

Symbol Address

VALUE
LOOP

ARRAY
N

PROBLEM CONTINUES ON NEXT PAGE

6

X3000
3005
x300A
301 E



Part b. (4 points): Before the program is run, the registers contain the following values.

R0 x1D24
R1 x3C32
R2 x3C5C
R3 x4D5D
R4 xD296
R5 x7BBB
R6 x18C2
R7 x4B4F

Recall that a breakpoint can be placed at a memory location to pause execution of the program when the PC hits that
memory location (i.e. the instruction at that location will not have executed yet). We set a breakpoint a x3002 and then
run the program.

Your job: Fill in the contents of the registers when the breakpoint at x3002 is hit. Only fill in the registers that change.

R0
R1
R2
R3
R4
R5
R6
R7

Part c. (7 points): The breakpoint at x3002 is removed, a breakpoint is placed at x3100, and the program is restarted.
Does the breakpoint at x3100 get hit? Explain why or why not in 25 words or fewer.

7

300A

X3000

No because theprogram writes x1 025 at 300A which
getsexecuted after the loop is done



Name:

Problem 5. (20 points):

A palindrome is a word, phrase, or sequence that reads the same, backward and forward. Some examples are madam,
mom, and racecar.

We wrote a program (see next page) in LC-3 assembly language that determines whether a single word is a palindrome.
Some of the instructions are missing.

Specifically, the program inputs a word from the user, one typed character at a time, followed by the ENTER key, then
determines if that word is a palindrome. If the word is a palindrome, a 1 is stored in the location labeled OUTPUT. If not,
a 0 is stored in OUTPUT. Note that the ASCII code for ENTER is #10.

The program uses a stack and a queue, using subroutines PUSH, POP, INSERT, and REMOVE. R6 is the stack pointer;
R3 and R4 point to the front and rear of the queue. After PUSH is executed, the value in R0 will be pushed on to the stack.
After POP is executed, R0 will contain the value popped from the stack. After INSERT is executed, the value in R0 will
be inserted at the rear of the queue. After REMOVE is executed, R0 will contain the value removed from the front of the
queue. For all subroutines, if the subroutine executes successfully, then R5 will contain 0. If not, R5 will contain 1.

Assume the stack and queue are initially empty, and that both have enough space allocated to fit the input string without
overflowing.

Your Job: Fill in the missing instructions.

8



.ORIG x3000
LD R6, SP
LD R3, QUEUE
ADD R4, R3, #0

LD R1, NENTER
AGAIN TRAP x23

BRz PHASE2
JSR PUSH
JSR INSERT
BRnzp AGAIN

PHASE2 JSR POP

BRnp A
ADD R1, R0, #0
JSR REMOVE

BRz PHASE2
AND R0, R0, #0
BRnzp DONE

A AND R0, R0, #0
ADD R0, R0, #1

DONE ST R0, OUTPUT
HALT

NENTER .FILL #-10
SP .FILL xFE00
QUEUE .FILL x8000
OUTPUT .BLKW #1

.END

9

Couldbe RS or R7
ADD R2 RO R1

App Rs Rs O

NOT RI R l couldalso negate R4
ADD Rl Rl I
ADD R coma

d beanyregister



Name:

Problem 6. (25 points):

A program is executed in the LC-3. The following table shows the contents of the MAR and MDR for the first ten memory
accesses made during the execution of the program. Note that several entries in the table have been left blank.

Your Job: Fill in the missing entries.

MAR MDR

xA610

x480C

x4801 x40C0

x1DBF

x7180

x7FFF

x4A20 xC1C0

x7E04

x5008

10

4800

4811 x480C

x4A IE

x4AIE

x4AIF
5004

4802

4802


