
 

Department   of   Electrical   and   Computer   Engineering  
University   of   Texas   at   Austin  

 
EE460N   Fall   2020  
Y.   N.   Patt,   Instructor  
Chester   Cai,   Sean   Stephens,   Arjun   Ramesh,   TAs  
Exam   1  
October   7th,   2020  
 

Name:  Solution  

  

EID:   

  
Problem   1:   20   points  
Problem   2:   10   points  
Problem   3:   20   points  
Problem   4:   20   points  
Problem   5:   30   points  

Total:   100   points  
 
 
Note:   Please   be   sure   that   your   answers   to   all   questions   (and   all   supporting   work   that   is   required)   are  
contained   in   the   space   provided.  
 
 
 
Please   read   the   following   sentence,   and   if   you   agree,   sign/print   your   name   where   requested:   I   have   not  
given   or   received   any   unauthorized   help   on   this   exam.   
 
 
 

Signature:  Solutio�  
 
 

Good   Luck!   

1  



 

General   Instructions:  
1. You   are   free   to   use   anything   in   the    Handouts    section   of   the   course   website   that   is   listed   under  

“Course   Related   Handouts”   or   “LC-3b   Handouts.”   In   particular,    Appendix   A    and    Appendix   C  
may   be   of   use.   Anything   other   than   that   from   the   course   website,   textbooks,   or   the   Internet   is   not  
allowed   and   considered   unauthorized   access.  

2. Use   of   a   calculator   is   not   required   but   is   permitted.  
3. If   you   have   any   questions,   join   the    class   Zoom   link    and   ask   a   TA.   You   do   not   need   to   stay   on   the  

Zoom   call   during   the   exam   unless   you   have   questions.  
4. Announcements   will   be   posted   here .   Check   this   page   periodically   throughout   the   exam.  
5. You   may   take   the   exam   by   printing   it,   editing   a   PDF,   or   editing   a   Google   Doc.   Read   the  

instructions   for   your   preferred   method   below.  
6. You   are   required   to   stop   working   on   the   exam   promptly   at   6:30   PM.  

 
Printing   or   editing   a   PDF:  

1. Download   and   save   the   PDF.  
2. Edit   the   PDF   to   fill   in   answers   with   a   software   of   your   choice.   Feel   free   to   show   your   work   in   the  

available   space.   You   may   also   choose   to   print   the   exam   and   solve   it   on   paper.  
3. When   you   are   ready   to   submit   your   exam,   save   the   edited   PDF   as   “Exam   1   <your   name>”;   if   you  

printed   your   exam,   scan   in   your   written   answers   as   a   PDF   with   the   same   name.   You   may   use   a  
scanner   or   an   app   such   as   CamScanner.  

4. Upload   the   PDF   to   Gradescope   by   6:40   PM.   The   entry   code   for   Gradescope   is    9RPGX3 .  
 
Editing   a   Google   Doc:  

1. Save   a   copy   of   the   document   to   your   Google   Drive.  
2. While   working   on   the   exam,    DO   NOT   expand   any   boxes   that   are   given   to   you.    Feel   free   to  

show   your   work   in   the   available   space.   If   you   need   more   space,   you   are   writing   too   much.  
3. When   you   are   ready   to   submit   your   exam,   click   “File”->   “Print”   and   select   “Save   as   PDF”.   Save  

the   edited   PDF   as   “Exam   1   <your   name>”.  
4. Upload   the   PDF   to   Gradescope   by   6:40   PM.   The   entry   code   for   Gradescope   is    9RPGX3 .  

  

2  

http://users.ece.utexas.edu/~patt/20f.460n/handouts.html
http://users.ece.utexas.edu/~patt/20f.460n/handouts/appA.pdf
http://users.ece.utexas.edu/~patt/20f.460n/handouts/appC.pdf
https://utexas.zoom.us/j/95589851944
https://docs.google.com/document/d/1k53Qj8NYuxClOhUtN2KYJ6LHNjStnPGKXr1RWXpvEks/edit


 

Problem   1   (20   points):    Answer   each   question   in   20   words   or   fewer.   Note:   For   each   of   the   four   answers  
below,   if   you   leave   the   box   empty,   you   will   receive   one   point   of   the   five.  
 
Part   a   (5   points):    Must   the   condition   codes   be   saved   on   a   context   switch ?   Why?   

Yes.   We   may   switch   before   a   branch   which   needs   its   condition   codes   when   it   resumes.  

 
Part   b   (5   points):    Not   all   ISAs   have   a   LDCTX   instruction,   but   most   operating   systems   today   perform  
the   function   of   the   LDCTX   instruction.    When   and   why   is   it   necessary   to   perform   that   function.  

Load   Context   -   It   loads   all   the   architectural   state   of   another   process   (regs,   PSR,   ...)   on   a   context  
switch.  

 
Part   c   (5   points):    A   company   called   MIPS   was   initially   adamant   in   refusing   to   provide   any   hardware  
interlock   if   the   function   it   performed   could   be   performed   in   software.    To   get   a   value   from   memory   and  
multiply   it   by   two,   most   compilers   would   produce   the   two   instruction   sequence  
 
LD   R1,A  
ADD   R1,R1,R1.  
 
This   two   instruction   sequence   would   not   work   in   a   pipelined   microarchitecture   without   stalling   the   ADD  
instruction   until   the   LD   got   data   back   from   memory.   MIPS   preferred   to   maintain   correct   execution   of   the  
program   in   a   pipelined   processor   with   software.    How   did   they   do   it?  

They   let   the   compiler   insert   independent   instructions   or   no-ops   between   the   LD   and   ADD.  

 
Part   d   (5   points):    The   AOBLEQ   instruction,   when   included   in   the   ISA   provides   benefit   to   the   use   of  
on-chip   storage   for   instructions.    How   so?  

It   saves   space   in   the   instruction   cache   because   one   instruction   is   fetched   for   a   lot   of   work   instead   of  
several   instructions.  

3  



 

Problem   2   (10   points):    XYZ   computer   company   has   been   selling   Processor   A   for   several   years.  
Processor   A   uses   instruction   types   1,   2,   3,   and   4   to   execute   the   only   program   that   matters.   The   company  
decided   to   design   a   new   processor   (Processor   B)   and   recompiled   that   program   using   instruction   types   1,  
2,   and   5.    Neither   processor   is   pipelined.    The   table   below   shows   the   CPI   of   each   instruction   type,   and  
the   fraction   of   instructions   of   each   type   executed   by   the   program   in   each   processor.  
 

Processor   A  Processor   B  

Inst   Type  Ratio  CPI  Inst   Type  Ratio  CPI  

1  40%  4  1  40%  4  

2  30%  5  2  30%  5  

3  20%  6  5  30%  7  

4  10%  5     

  
● Processor   B   needs   to   execute   10%   fewer   instructions   than   Processor   A   on   this   program.  
● The   clock   frequency   for   Processor   B   will   be   10%   faster   than   Processor   A  

 
Part   a   (4   pts):    What   is   the   CPI   for   each   processor   on   this   program?  
 

Processor   A:  4.8  Processor   B:  5.2  

 
 
 
Part   b   (6   pts):    Which   processor   will   execute   the   program   faster?    Show   your   work.  

Time   =   (Cycles/Instr)   *   (Time/Cycle)   *   Instructions  
Freq   =   Cycle   /   Time  
Let   A   take   n   instructions.   Thus   B   takes   .9n   instructions.  
Let   A   have   f   frequency.   Thus   B   has   1.1f   frequency.  
Time   A   =   4.8   *   [1/(f)]   *   n   =   4.8n/f  
Time   B   =   5.2   *   [1/(1.1f)]   *   .9n   =   4.25n/f  
n   and   f   are   both   positive,   so   Time   B   <   Time   A  
Processor   B   is   faster.  
 
Note   that   cycle   frequency   is   10%   faster   is   not   the   same   as   cycle   time   being   10%   faster.  

4  



 

Problem   3   (20   points):    An   LC-3b   computer   has   an   in-order   pipeline   with   a   gshare   predictor.   The   PHT  
is   indexed   using   the   BHR   along   with   4   bits   of   the   address   (PC[10],   PC[4],   PC[3],   and   PC[1])   of   the  
branch   instruction   being   predicted.   The   rightmost   bit   of   the   BHR   contains   the    predicted    direction   of   the  
most   recent   (previous)   branch,   and   is   updated   at   the   time   a   branch   is   predicted.   The   BHR   is   updated   by  
shifting   the    prediction    into   its   right-most   bit.   The   predicted   direction   is   used   to   fetch   the   next   instruction  
in   the   next   clock   cycle.   The   PHT   is   updated   when   the    actual    direction   of   the   branch   is   resolved.   Unlike  
some   commercial   products,   the   BHR   is   not   corrected   when   the   actual   direction   of   the   branch   is   resolved.  
 
The   snapshot   of   the   BHR   and   PHT   shown   below   was   taken   at   the   end   of   the   cycle   in   which   the   PHT   was  
updated   as   a   result   of   conditional   branch   A   being   resolved.   No   conditional   branches   entered   the   pipeline  
after   conditional   branch   A   was   fetched.  
 

 
 
Part   a   (5   points):    List   all   possible   values   in   the   BHR   at   the   time   conditional   branch   A   was   fetched.   Use  
as   many   entries   as   needed.  
 

0100   1100      

 

5  



 

Part   b   (15   points):    Each   case   below   is   an   independent   situation,   resulting   in   the   snapshot   of   the   BHR  
and   PHT   above.    For   each   case,   the   address   of   conditional   branch   A,   and   both   its   predicted   direction   and  
actual   resolved   direction   are   shown.   Given   the   information   about   each   branch   shown   below,    is   the  
snapshot   of   BHR   and   PHT   possible?    Explain   why   you   answer   yes   or   no.  
 
 
Case   1: PC   =   x2D54   (0010   1101   0101   0100) .   Predicted    taken ,   actually    not   taken .  

PC   bits   =   1100.  
BHR   =   0100:   0100   ̂    1100   =   1000   =   8.   PHT   entry   =   11.   Not   possible   since   actually   not   taken   would  
have   decremented   this   entry.  
BHR   =   1100:   1100   ̂    1100   =   0000   =   0.   PHT   entry   =   10.   Possible,   was   11   before   and   got   decremented.  
BHR   is   valid   since   lowest   bit   is   a   1,   the   predicted   result.  
 
Overall,   Case   1   is   Possible.   The   previous   BHR   must’ve   been   1100   and   PHT   entry   10   was   binary   11.  

 
 
 
Case   2:     PC   =   x7278   (0111   0010   0111   1000) .   Predicted    not   taken ,   actually    taken .  

BHR   is   NOT   valid   since   its   lowest   bit   is   1,   contradicting   the    not   taken    prediction.  
 
Overall,   Case   2   is   Not   Possible   since   the   BHR   is   invalid.  

 
 
 
Case   3:     PC   =   xF940   (1111   1001   0100   0000) .   Predicted   to   be    taken ,   actually    not   taken .  

PC   bits   =   0000  
BHR   =   0100:   0100   ̂    0000   =   0100   =   4.   PHT   entry   =   00.   Not   possible,   couldn’t   have   predicted   taken.  
BHR   =   1100:   1100   ̂    0000   =   1100   =   12.   PHT   entry   =   11.   Not   possible,   couldn’t   have   been   not   taken  
because   would   have   decremented   counter.  
BHR   is   valid   but   doesn’t   matter   since   neither   PHT   entry   is   possible.  
 
Overall,   Case   3   is   Not   Possible.   Neither   PHT   entry   could   correspond   to   this   branch.  

  

6  



 

Problem   4   (20    Points):    In   your   first   lab   assignment   you   were   asked   to   write   a   shuffle   program   that  
exchanges   the   high   and   low   bytes   of   16   bit   words   in   an   array.    Your   job   here   is   to   implement   a  
SHUFFLE   instruction   to   do   the   job.  
 

15  14  13  12  11  10  9  8  7  6  5  4  3  2  1  0  

1010  BaseR  SR1  000000  

 
BaseR   contains   a   pointer   to   the   start   of   the   array.   SR1   contains   the   number   of   words   in   the   array.  
 
To   accomplish   this,   we   need   to   add   three   new   registers   to   the   data   path,   along   with   some   additional  
logic,   as   shown   below.   ROT8   rotates   the   16-bit   input   by   8   bit.   We   will   also   need   to   add   7   control  
signals,   also   shown.  
 
 
 

 
 
  

7  



 

Part   a   (8   points):    Note   there   are   6   states   and   4   state   numbers   (labeled   A,   B,   C   …   J)   in   the   state  
diagram   shown   below.   Put   into   the   boxes   the   corresponding   information   about   each   state   and  
state   number.  

 
 

A  MAR   ←   Pointer  B  MDR   ←   M[MAR]  C  DATA   ←   MDR  

      

D  M[MAR]   ←   MDR  E  Pointer   ←   Pointer   +   2  F  Length   ←   Length   -   1  
Set   CC  

 
 

G  10  H  46  I  45  J  41    

  

8  



 

Part   b   (6   Points):     Shown   below   are   two   possible   changes   to   the   microsequencer   to   implement  
SHUFFLE.  
 

                    Option   A:                                                     Option   B:  

         
 
 
Which   option   would   you   use?    Explain.  

Option   A.   The   choice   that   the   microsequencer   decision   depends   on   is   leaving   state   41.   It  
chooses   between   states   18   and   26,   which   are   8   apart.   Thus,   we   must   use   option   A,   since   that  
one   allows   X   to   set   the   3rd   bit   of   the   microsequencer,   incrementing   the   state   by   8.  

 

What   is   the   signal   X   in   the   microsequencer?  NOT   Z  

 
 
Part   c   (6   points):    Fill   in   the   following   table   of   control   store   signals   for   states   40,   41   and   44.   Please   fill  
in   0   for   signals   that   are   “Don’t   care”.   If   there   are   multiple   paths,   you   may   pick   any   of   them.   Refer   to  
page   8   of    Appendix   C    for   more   information   about   what   each   signal   does.   
 

State   No.  cond2  cond1  cond0  J[5:0]  SR1MUX  ALUK[1:0]  GateMARMUX  MIO.EN  R.W  

40  0  0  0  101001  1  11  0  0  0  

41  1  0  0  010010  0  00  0  0  0  

44  0  0  1  101100  0  00  0  1  0  

Note   in   state   40,   there   is   another   path   from   the   reg   file   to   the   bus   through   GateMARMUX   

9  

http://users.ece.utexas.edu/~patt/20f.460n/handouts/appC.pdf


 

Problem   5   (30   points):    An   out-of-order   processor   executes   instructions   based   on   the   original   Tomasulo  
algorithm   without   in-order   retirement.   The   processor   implements   a   standard   4-stage   pipeline:   Fetch,  
Decode,   Execute,   Writeback.   The   Execute   stage   of   the   pipeline   contains    one   non-pipelined   adder ,    one  
non-pipelined   multiplier ,   and    one   branch   unit .  
 

● Fetch   and   Decode   takes   one   cycle   each.  
● The   result   of   a   functional   unit   is   broadcast   during   the   writeback   stage   and   is   ready   for   use   the  

cycle   immediately   after   writeback.  
● An   ADD   takes   3   cycles    to   execute,    MUL     takes   5   cycles ,   and    BR     takes   1   cycle .  
● Branch   prediction   is   implemented   using   a    2-bit   saturating   counter ,   with   initial   state   10.   
● A   correct   prediction   allows   the   next   instruction   to   be   fetched   in   the   cycle   after   the   branch   is  

fetched.   A   misprediction   is   resolved   at   the   end   of   the   Execute   stage,   i.e,   the   next   instruction   will  
be   fetched   immediately   AFTER   the   Execute   stage   of   the   branch.   

● All   three   functional   units   have   three-entry   reservation   stations   that   are   initially   empty,   and   are  
allocated   in   a   top-to-bottom   manner.  

● Entries   are   put   into   reservation   stations   at   the   end   of   Decode   and   removed   at   the   end   of  
Writeback.  

● Instructions   with   no   dependencies   can   start   executing   immediately   after   Decode.  
 

The   following   snippet   of   code   is   executed   until   the   instruction   at   I5   has   completed.   
(Hint:   I2   is   not   a   branch   instruction.)  

 

Instr   #  Label  Instruction  

I1  TARGET      MUL   R2,    R0 ,    R1  

I2       ADD   R1,   R1,   R7  

I3       BRp   TARGET  

I4       ADD    R5 ,    R2 ,   R5  

I5       MUL   R6,    R1 ,   R3  

 
To   find   TARGET:   At   the   end   cycle   6,   5   instructions   have   been   decoded.   We   see   a   total   of   4  
instructions   in   the   RS   (2   ADD   and   2   MUL).   This   implies   the   second   instruction   has   to   be   an  
ADD.   The   branch   could   not   have   been   resolved   at   that   point,   so   at   cycle   6,   the   two   instructions  
are   after   the   TARGET.   TARGET   can   only   be   on   I1   or   I4   to   get   4   instructions   in   RS,   We   know  
it’s   not   I4   because   R6   is   valid   at   the   end   of   cycle   6.   

10  



 

The   state   of   the   register   alias   table   (RAT)   is   partially   shown   before   the   code   starts   executing,  
after   cycle   6,   and   after   the   code   completes   execution.  

 
 V  Tag  Value  

R0  1  -  4  

R1  1  -  4  

R2  1  -  0  

R3  1  -  2  

R4  1  -  -1  

R5  1  -  10  

R6  1  -  6  

R7  1  -  -2  

 

 
 V  Tag  Value  

R0  1  -  4  

R1  0  𝛃  -  

R2  0  𝛒  -  

R3  1  -  2  

R4  1  -  -1  

R5  1  -  10  

R6  1  -  6  

R7  1  -  -2  

 

 
 V  Tag  Value  

R0  1  -  4  

R1  1  -  0  

R2  1  -  8  

R3  1  -  2  

R4  1  -  -1  

R5  1  -  18  

R6  1  -  0  

R7  1  -  -2  

 

  Before    Cycle   1     After    Cycle   6            After    Completion  

The   state   of   the   ADD   and   MUL   reservation   stations   are   partially   shown   at   the   end   of   cycle   6.  
 

 Valid  Tag  Value  Valid  Tag  Value   Valid  Tag  Value  Valid  Tag  Value  

𝛂  1  -  4  1  -  -2  𝞹  1  -  4  1  -  4  

𝛃  0  𝛂  -  1  -  -2  𝛒  1  -  4  0  𝛂  -  

𝞬        𝞼        

  
               ADD   RS                                                                           MUL   RS  
 
 
  

11  



 

Your   job:  
 
1.   Fill   in   the   missing   entries   in   the   program   snippet   (including   the   location   of   the   label   TARGET),   RATs,  
and   ADD   and   MUL   reservation   stations.   You   might   find   it   helpful   to   fill   in   the   timing   diagram   until  
cycle   6.  
 
2.   Complete   the   dynamic   timing   diagram   below   for   the   execution   of   the   program   snippet,   as   we   have  
done   in   class.    Only   committed   instructions   need   to   be   shown.  
 

● Each   row   corresponds   to   one   dynamic   instruction.    The   leftmost   column   identifies   the   static  
instruction   as   I1,   I2,   etc.  
 

● Use   F,   D,   M   (for   MUL),   A   (for   ADD),   B   (for   Branch)   to   indicate   what   is   going   on   with   each  
instruction   during   each   clock   cycle.  
 

● If   a   result   is   written   to   a   register,   write   that   register   number   in   the   cycle   the   writeback   occurs,   as  
we   did   in   class.   Branch   instructions   do   not   write   back.  
 

● Use   *   to   indicate   a   clock   cycle   when   an   instruction   is   waiting   to   continue   processing.  
 

● Use   as   many   rows/columns   as   needed.   
 
Inst  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  

I1  F  D  M  M  M  M  M  R2                   

I2   F  D  A  A  A  R1                    

I3    F  D  *  *  *  B                   

I1     F  D  *  *  M  M  M  M  M  R2              

I2      F  D  *  A  A  A  R1                

I3       F  D  *  *  *  *  B               

I4              F  D  A  A  A  R5         

I5               F  D  M  M  M  M  M  R6      

                          

                          

                          

                          

 

12  


