
Department of Electrical and Computer Engineering
The University of Texas at Austin

EE 460N Spring 2015
Y. N. Patt, Instructor
Ben Lin, Kishore Punniyamurthy, Will Hoenig TAs
Final Exam
May 15, 2015

Name:

Problem 1 (10 points):

Problem 2 (10 points):

Problem 3 (10 points):

Problem 4 (20 points):

Problem 5 (25 points):

Problem 6 (30 points):

Problem 7 (25 points):

Total (130 points):

Note: Please be sure that your answers to all questions (and all supporting work that is required) are contained in the
space provided.

Note: Please be sure your name is recorded on each sheet of theexam.

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:

GOOD LUCK!

Name:

Problem 1 (10 points)

Part a (5 points): An application that is 96% parallelizable is executed on a single processor in 2.5 hours. If the
application is allowed to run with an unlimited number of processors, what is the lower bound on its execution time?

Part b (5 points): We wish to use even parity to protect each single-byte value we transmit, by adding a ninth bit. If
we wish to transmit 01010101, what nine bits should we transmit?

If we wish to transmit 00110111, what nine bits should we transmit?

2

Name:

Problem 2 (10 points)

The following program fragment operates on 8-bit IEEE-likefloating point format. Your job is to figure out how
many bits for exponent, how many bits for fraction, and to complete the table below. BIAS (excess) is 4. Rounding is
unbiased nearest.

float B;
float A = 5/16;

for(int i=0; i < 6; ++i)
{

B = A/(1<<i);
}

Note that (1<<i) is equal to2i
.

Each row of the table below specifies theresults of one iteration of the for loop. Note that some iterations cause
underflow and/or inexact exceptions, in addtion to producing a value for B.

Hint: Some representations of B are subnormal.

Iteration Binary RepresentationFloating point representation Exceptions
(i) of B of B Underflow Inexact
0 NO NO
1 NO NO
2 NO NO
3 NO YES
4
5

3

Name:

Problem 3 (10 points)

Consider a tightly coupled mutltiprocessor system with twoprocessors (P1 and P2). Each processor has its own private
data cache.

The Goodman “write-once” snoopy cache protocol we studied in class is used for maintaining cache coherence. On a
cache miss, if another processor has the line in the modified state, its cache supplies the line to the processor having
the cache miss.

The table shows the behavior of the system for eight consecutive data accesses, all to location A. Assume the caches
are initially empty. Each access is performed by either P1 orP2. Your job: complete the entries in the table.

Note: In the last column, the entry ”No one” means there is no need to supply the cache line because the private cache
had a cache hit.

Instance P1 Executes a P2 executes a Bus Activity Cache line
LOAD/STORE LOAD/STORE supplied by

1 LOAD A —
2 P2 READS A MEMORY
3 STORE A — P1 WRITES A NO ONE
4 P1 CACHE
5 P1 READS A P2 CACHE
6 — STORE A
7 — STORE A
8 LOAD A —

4

Name:

Problem 4 (20 points)
Recall the Tomasulo problem on midterm two. The rules are very similar here.

Instructions are of the form ADD Rx,Ry,Rz and MUL Rx,Ry,Rz, as discussed in class. Each instruction requires a
fetch cycle, a decode cycle, some number of execution cycles, and a final cycle to store the result into a register and/or
a reservation station entry that is waiting for that result.A result is available to subsequent instructions after it isstored
in a register or reservation station entry. Functional units not pipelined. Reservation stations are assigned from the
top down. The top-most reservation station with both data entries valid is the next to be processed. Each instruction
remains in its reservation station until its result is stored.

The only differences in the problem today are the following:There may be more than one adder and more than one
multiplier. We have changed the number of execution cycles to 3 cycles for the adder and 4 cycles for the multiplier.
All the adder(s) share three reservation stations. All the multiplier(s) likewise share three reservation stations. Finally,
each instruction has two unique source registers; that is, for all instructions OP Rx,Ry,Rz, y6=z

A program fragment, consisting of five instructions, is executed on this machine. The first instruction is fetched in
cycle 1. Part of your job: Complete the table below, i.e., thecomplete specification of the five instructions.

Instruction Opcode DR SR1 SR2

1

2 R0

3

4

5 ADD R3

Information on the next page will help you identify the five instructions executed.

5

Name:

The table below shows in what cycles the function units are executing. AnE in row ADD indicates that in that cycle
at least one adder is executing. AnE in row MUL indicates that at least one multiplier is executing.

1 2 3 4 5 6 7 8 9 10 11 12
ADD E E E E E E
MUL E E E E E E E E

Initial values in the Register File are shown below:

R0 1 – 7
R1 1 – 4
R2 1 – 5
R3 1 – 9

The rest of your job is as follows: Provide the missing entries in the Register File and in the reservation stations for
the adder(s) and multiplier(s) at the end of cycle X and at theend of cycle 10. Identify which cycle is X.

After Cycle X After Cycle 10

Register File: Register File:

R0

R1

R2 1 – 5

R3

R0 1 – 20

R1

R2 1 – 14

R3 0

Reservation Stations for adder(s): Reservation Stations for adder(s):

α 1

β – – – – – –

γ – – – – – –

α 1 – 5

β – – – – – –

γ 1

Reservation Stations for multiplier(s): Reservation Stations for multiplier(s):

π 1

σ 1 – 5

τ – – – – – –

π – – – – – –

σ 1 – 9

τ – – – – – –

Finally, how many adders and multipliers are there?

Adders Multipliers

6

Name:

Problem 5 (25 points): An LC-3b supporting VAX-style virtual memory has 16-bit virtual addresses, 11-bit physical
addresses, and a 128-byte page size. User space occupies virtual memory locations 0x0000 to 0x7FFF; system space
occupies locations 0x8000 to 0xFFFF.

Each PTE has the following format (Note: The PFN size is not given):

 V PFN0...0

7 0

A user space TLB contains two entries, with perfect LRU replacement.

The computer executes the following three instructions:

LDW R0,R1,#0
ADD ________
STW R0,R2,#0

You can assume no exceptions occur during their processing.

Before execution:
The TLB contains one valid entry: Page x14, 10000110
PC: x4000
R2: x1278

Your job: Complete the table and fill in the four additional boxes.

Virtual Physical Data TLB Hit

Address Address

x81

x8880

x200

x88

x3064 xABCD

x190

x124 x87

xABCE

UBR: SBR: Initial value of R1:

 0 0 0 1

15 0

The second instruction:

7

Name:

Problem 6 (30 points)
A 64KB byte-addressable memory is 4-way interleaved. The processor/memory bus is 16 bits wide, and each memory
access takes 4 cycles. There is only 1 channel.

The address bits are specified as shown below:

Byte on Bus
Bank (Interleave)

BitsAddress
Chip

Rank

01231015 11

128 64-bit signed integers are stored in a 1024-byte array, starting at address x0000. We wish to know how many of
these integers are negative.

The sign of a 64-bit signed integer is specified by its sign bit, i.e., the most significant bit of the most significant byte
of the integer. Thus, to determine the signs of all 128 integers, we only need to load and examine 128 bytes from
memory, as opposed to all 1024 bytes of the array.

Part a: What is the minimum number of cycles needed to read these 128 bytes from memory?

Part b: A smart engineer realized the time to read these 128 bytes from memory can be decreased if two bytes of
padding were added to each array element (i.e. the entire array now requires 1280 bytes instead of 1024 bytes). What’s
the minimum number of cycles needed to read the 128 bytes frommemory after padding has been added?

8

Name:

Part c: Assume our algorithm for determining the number of negativeintegers processes the 128 integers in sequential
order. As previously stated, the algorithm only needs to access 1 byte per integer to determine its sign. The processor
includes an initially empty 8KB, 4-way set associative datacache having a line size of 16 bytes. Compute the cache
hit ratio when the algorithm processes 64-bit integers without padding.

Compute the cache hit ratio when the algorithm processes 64-bit integers with padding.

9

Name:

Problem 7 (25 points): We wish to augment the LC-3b with a new instruction LTA, whichcopies a linked list into a
sequential array. (LTA: Linked To Array). The LTA instruction can be of either of the following two formats:

 1 0 1 0 DR SR1LTA 1 imm5

15 12 11 9 8 6 5 4 0

 1 0 1 0 DR SR1 SR2LTA 0 0 0

15 12 11 9 8 6 5 4 3 2 0

An example may help explain what is going on:

x0001

x0002

x0003

x4000

x5002

x0004

x0005

x0006

x0000 x0005

x0006

x0001

x0002

x0003

x0004

x6010

Resulting sequential array

x5002

Linked list to be copied

SR1 contains the memory address of the head of the linked list(x4000, in the above example). Each node in the
linked list consists of n consecutive 16-bit words, followed by the pointer to the next node. SR2 or the immediate field
contains the value for n (in the above example, n=3).

LTA copies the nodes into sequential locations of memory, starting with the location specified by DR (in the above
example, x6010). Note: there is no need to copy the pointers,since the nodes are now stored in sequential memory
locations.

Assume that DR, SR1, and SR2 (if SR2 is being used) all refer todifferent registers. Assume that all the linked list
nodes and the destination array are aligned in memory and do not overlap.

Note: After processing the LTA instruction, SR1 contains the null pointer, since the linked list no longer exists; DR
contains the address of the next location following the sequential array (in the above example x601C). The condition
code will be set to Z.

Part A. Implement the state machine.

Part B. Complete the data path diagram by augmenting the DRMUX and adding any other necessary structures and
control signals inside the provided box. Note: we have givenyou a counter which can be incremented or reset to 0.
Hint: A xor A = 0

Part C. Complete the microsequencer. Hint: you will need to add one AND gate and one OR gate.

10

Name:

[]

R
1 0

R

1
0

to state 18

26(this state is empty)

[Z]

R

R

R

from state 32

36

43

39

R

48

45

47

11

Name:

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

LD.MDR

D.MAR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

1616 16 16

LD.CC

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

[7:0]

LSHF1

[4:0]

1616

16

16

16

LOGIC

16 16

GateMDR

16 16

1616

16 SR2MUX

16

SHF

GateSHF

6
IR[5:0]

RESET

INCREMENT

GateALU

16

ALU
AB

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALUK

2

ADDR1MUX

PCMUX
2

SR1SR2

LD.REG

IRLD.IR

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

CONTROL

2

IR[11:9]

111

COUNTER

DRMUX

110

12

Name:

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

13

+

+

1

0 00 BaseR 000000

000 111 000000

PCoffset11

BaseR 000000

not used

not used

111111

+

+

+

0

1 imm5

00

LEA

BR

AND

ADD

+

ADD
+

+

AND
+

RET

RTI

JMP

JSR

JSRR

LDB
+

LDW

STB

STW

TRAP

zn p

DR SR1 1 imm50101

0000

DR1110

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

1100

1000 000000000000

1100

0100

0100

BaseRDR boffset6

DR BaseR offset6

0010

0110

PCoffset9

PCoffset9

000

1101 DR SR amount4

1101 DR SR amount4

1101 DR SR amount4

SR BaseR boffset60011

SR BaseR0111

1111 0000 trapvect8

offset6

15 12 11 9 8 6 5 4 3 2 017101314

+

DR1001

+

DR1001 SR

1010

1011

NOT
+

DR1001 SR

XOR

XOR

LSHF

RSHFL

RSHFA

0 0

0 1

1 1

SR2SR1

Figure 1: LC-3b Instruction Encodings

14

Table 1: Data path control signals

Signal Name Signal Values

LD.MAR/1: NO(0), LOAD(1)

LD.MDR/1: NO(0), LOAD(1)

LD.IR/1: NO(0), LOAD(1)

LD.BEN/1: NO(0), LOAD(1)

LD.REG/1: NO(0), LOAD(1)

LD.CC/1: NO(0), LOAD(1)

LD.PC/1: NO(0), LOAD(1)

GatePC/1: NO(0), YES(1)

GateMDR/1: NO(0), YES(1)

GateALU/1: NO(0), YES(1)

GateMARMUX/1: NO(0), YES(1)

GateSHF/1: NO(0), YES(1)

PCMUX/2: PC+2(0) ;select pc+2

BUS(1) ;select value from bus

ADDER(2) ;select output of address adder

DRMUX/1: 11.9(0) ;destination IR[11:9]

R7(1) ;destination R7

SR1MUX/1: 11.9(0) ;source IR[11:9]

8.6(1) ;source IR[8:6]

ADDR1MUX/1: PC(0), BaseR(1)

ADDR2MUX/2: ZERO(0) ;select the value zero

offset6(1) ;select SEXT[IR[5:0]]

PCoffset9(2) ;select SEXT[IR[8:0]]

PCoffset11(3) ;select SEXT[IR[10:0]]

MARMUX/1: 7.0(0) ;select LSHF(ZEXT[IR[7:0]],1)

ADDER(1) ;select output of address adder

ALUK/2: ADD(0), AND(1), XOR(2), PASSA(3)

MIO.EN/1: NO(0), YES(1)

R.W/1: RD(0), WR(1)

DATA.SIZE/1: BYTE(0), WORD(1)

LSHF1/1: NO(0), YES(1)

15

Table 2: Microsequencer control signals

Signal Name Signal Values

J/6:

COND/2: COND0 ;Unconditional

COND1 ;Memory Ready

COND2 ;Branch

COND3 ;Addressing Mode

IRD/1: NO, YES

16

R

PC<−BaseR

To 18

12

To 18

To 18

RR

To 18

To 18

To 18

MDR<−SR[7:0]

MDR <− M

IR <− MDR

R

DR<−SR1+OP2*
set CC

DR<−SR1&OP2*
set CC

[BEN]

PC<−MDR

32

1

5

0

0

1
To 18

To 18
To 18

R R

[IR[15:12]]

28

30

R7<−PC
MDR<−M[MAR]

set CC

BEN<−IR[11] & N + IR[10] & Z + IR[9] & P

9
DR<−SR1 XOR OP2*

4

22

To 11
1011

JSR

JMP

BR

1010

To 10

21

20
0 1

LDB

MAR<−B+off6

set CC

To 18

MAR<−B+off6

DR<−MDR
set CC

To 18

MDR<−M[MAR]

25

27

3762

STW STBLEA
SHF

TRAP

XOR

AND

ADD

RTI

To 8

set CC

set CC
DR<−PC+LSHF(off9, 1)

14

LDW

MAR<−B+LSHF(off6,1) MAR<−B+LSHF(off6,1)

PC<−PC+LSHF(off9,1)

33

35

DR<−SHF(SR,A,D,amt4)

NOTES
B+off6 : Base + SEXT[offset6]

R

MDR<−M[MAR[15:1]’0]

DR<−SEXT[BYTE.DATA]

R

29

31

18, 19

MDR<−SR

To 18

R R

M[MAR]<−MDR

16

23

R R

17

To 19

24

M[MAR]<−MDR**

MAR<−LSHF(ZEXT[IR[7:0]],1)

15To 18

PC+off9 : PC + SEXT[offset9]

MAR <− PC
PC <− PC + 2

*OP2 may be SR2 or SEXT[imm5]
** [15:8] or [7:0] depending on
 MAR[0]

[IR[11]]

PC<−BaseR

PC<−PC+LSHF(off11,1)

R7<−PC

R7<−PC

13

Figure 2: A state machine for the LC-3b

17

MEMORY

OUTPUTINPUT

KBDR

ADDR. CTL.
LOGIC

MDR

INMUX

MAR L

L

MAR[0]

MAR[0]

DATA.SIZE

R

DATA.SIZE

D

D

.

.

M

MDR

AR

2

KBSR

MEM.EN

R.W

MIO.EN

GatePCGateMARMUX

16

16 16

16

16 16 16

LD.CC

SR2MUX

SEXT

SEXT
[8:0]

[10:0]

SEXT

SEXT
[5:0]

16

+2

PCLD.PC

16

+

16

16

[7:0]

LSHF1

[4:0]

GateALU

16

SHF

GateSHF

6
IR[5:0]

16

1616

16

16

16

16

LOGIC

16 16

GateMDR

N Z P

SR2
OUT

SR1
OUT

REG
FILE

MARMUX

16

3

0

16

R

ADDR2MUX

2

ZEXT &
LSHF1

3

3

ALU
ALUK

2 AB

ADDR1MUX

PCMUX
2

SR1

DR

SR2

LD.REG

IRLD.IR

CONTROL

DDR

DSR

MIO.EN

LOGIC

LOGIC

SIZE
DATA.

WE0WE1

[0]

WE

LOGIC

Figure 3: The LC-3b data path

18

IRD

Address of Next State

6

6

0,0,IR[15:12]

J[5]

Branch Ready
Mode
Addr.

J[0]J[1]J[2]

COND0COND1

J[3]J[4]

R IR[11]BEN

Figure 4: The microsequencer of the LC-3b base machine

19

